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Abstract 

This paper delineates a class of time-periodically perturbed evolution equations 
in a Banach space whose associated Poincar6 map contains a Smale horseshoe. 
This implies that such systems possess periodic orbits with arbitrarily high period. 
The method uses techniques originally due to MELNIKOV and applies to systems 
of  the form ~ = fo(x) + efl(x, t), where ~ = fo(X) is Hamiltonian and has a homo- 
clinic orbit. We give an example from structural mechanics: sinusoidally forced 
vibrations of a buckled beam. 

w 1. Introduction: A Physical Model 

In this paper we give sufficient conditions on T-periodically forced evolution 
equations in a Banach space for the existence of a Smale horseshoe for the time-T 
map of the dynamics. This implies the existence of infinitely many periodic orbits 
o f  arbitrarily high period and suggests the existence of a strange attractor. The 
results here are an extension to infinite dimensions of some of those in HOLMES 
[1979a, b, 1980a] and CHOW, HALE & MALLET-PARET [1980]. 

The techniques used are invariant manifolds, nonlinear semigroups and an 
extension to infinite dimensions of MELNIKOV'S method [1963] for planar ordinary 
differential equations. The results are applied to the equations of a nonlinear, 
periodically forced, buckled beam. As the external force is increased, we show 
that a global bifurcation occurs, resulting in the transversal intersection of stable 
and unstable manifolds. This leads to all the complex dynamics of a horseshoe 
(SMALE [1963]). 

The study of chaotic motion in dynamical systems is now a burgeoning industry. 
The mechanism given here is just one of many that can lead to chaotic dynamics. 
For  a different mechanism occuring in reaction-diffusion equations, see GUCKEN- 
HEIMER [1979]. 

A physical model will help motivate the analysis. Consider a beam that is 
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buckled by an external load / ' ,  so there are two stable and one unstable 
equilibrium states (see Figure 1). The whole structure is then shaken with a 
transverse periodic displacement, f c o s  tot. The beam moves due to its inertia. 
In a related experiment (see TSENG & DUGUNDJI [1971] and M o o n  & HOLMES 
[1979], and remarks below), one observes periodic motion about  either of  the 
two stable equilibria for small f ,  but  a s f i s  increased, the mot ion becomes aperiodic 
or chaotic. The mathematical  problem is to provide theorems that  help to explain 
this behavior. 

f cos wl z=l 

w(Z t) 

z=0 

Fig. 1. The forced, buckled beam 

There are a number  of  specific models that  can be used to describe the beam 
in Figure 1. One of  these is the following partial differential equation for the 
transverse deflection w(z, t) of  the centerline o f  the beam:  

--W .... ~- FW"--~(  ? [W']2 d~t w" = e ( f c o s t o t -  6fv), (1) 
\ 6 

where " = blot, " ----- ~ / & ,  /" = external load, ~ = stiffness due to " m e m b r a n e "  
effects, 6 = damping, and e is a parameter  used to measure the relative size o f f  
and 6. Amongs t  many possible boundary  conditions we shall choose w = w" = 0 
at z = 0, 1 ; i.e., simply supported, or hinged ends. With these boundary  conditions, 
the eigenvalues of  the linearized, unforced equations, i.e., complex numbers  2 such 
that 

2Zw + w .... + F w "  =- O 

for some non-zero w satisfying w ---- w" = 0 at z = 0, 1, form a countable set 

;tj = -}-, : z j l /F  - -  .n2j 2 , j = 1, 2 , . . .  

Thus, i f / "  < zr z, all eigenvalues are imaginary and the trivial solution w = 0 is 
formally stable; for positive damping it is Liapunov stable. We shall henceforth 
assume that  

if.g2 ( / 1 (  4n2, 

in which case the solution w --  0 is unstable with one positive and one negative 
eigenvalue and the nonlinear equation (1) with e = 0, ~ > 0 has two nontrivial 
stable buckled equilibrium states. 
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A simplified model for the dynamics of (1) is obtained by seeking lowest mode 
solutions of the form 

w ( z ,  t )  = x ( t )  sin (~rz). 

Substitution into (1) and taking the inner product with the basis function sin (~rz), 
gives a Duffing type equation for the modal displacement x(t): 

- -  f i X  + OCX 3 = ~ ( ~  COS o9t - -  6Jc), (2) 

where fl = :r2(F -- Jr 2) > 0, cr = ~Jr4/2 and Y = 4f/~r.  Equation (2) was studied 
at length in earlier papers (see HOLMES [1979a, 1979b] and HOLMES & MARSDEN 
[1979]). This work uses MELrqIICOV'S method; see MELNIKOV [1963], ARNOLD 
[1964], and HOLMES [1980a]. Closely related results are obtained by CHOW, HALE 
& MALLET-PARET [1980]. This method allows one to estimate the separation 
between stable and unstable manifolds and to determine when they intersect 
transversally. The method given in the above references applies to periodically 
perturbed two-dimensional flows such as the dynamics of equation (2). In this 
paper we extend these ideas to infinite dimensional evolution equations on Banach 
spaces and apply the method to the evolution equation (1). 

TSENG & DUGUNDJI [1971] studied the one and two mode Galerkin approxima- 
tions of (1) and found "chaotic snap-through" motions in numerical integrations. 
Such motions were also found experimentally but were not studied in detail. 
Subsequently, MOON & HOLMES [1979] found similar motions in experiments with 
an elastic, ferromagnetic beam and showed that a single-mode Galerkin approxi- 
mation could indeed admit infinite sets of periodic motions of arbitrarily high 
period (HOLMES [1979b]). 

It is known that the time t-maps of the Euler and Navier-Stokes equations 
written in Lagrangian coordinates are smooth. Thus the methods of this paper 
apply to these equations, in principle. On regions with no boundary, one can 
regard the Navier-Stokes equations with forcing as a perturbation of a Hamil- 
tonian system (the Euler equations); see EBIN & MARSDEN [1970]. Thus, if  
one knew that a homoclinic orbit existed for the Euler equations, then the methods 
of this paper would produce infinitely many periodic orbits with arbitrarily high 
period, indicative of turbulence. No specific examples of this are known to us. 
One possibility, however, is periodically forced surface waves. See GOLLtJB 
[1980]. 

An unforced sine-Gordon equation possesses heteroclinic orbits, as was shown 
by LEVI, HOPPENSTEADT & MIRANKER [1978]. Methods of this paper were used 
by HOLMES [1980b] to show that this system, with weak periodic forcing and 
damping and defined on a finite spatial domain, contains horseshoes. The methods 
should also be useful for travelling wave problems on infinite domains, such as the 
Korteweg-de Vries equation. 

Acknowledgements. We are grateful to the following people for their interest in this 
work and their comments: HAIM BREZlS, JACK CARR, PAUL CHERNOFF, SHuI-NFE CHOW, 
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w 2. Abstract Hypotheses 

We consider an evolution equation in a Banach space X of the form 

~: = fo(x) + ef~(x, t) (3) 

where f t  is periodic of period T in t. Our hypotheses on (3) are as follows: 

(HI ) .  (a) Assume fo(x)  = A x  q- B(x)  where A is an (unbounded) linear operator 
which generates a C O one parameter group o f  transformations on X and where 
B: X - +  X is C ~. Assume that B(O) = 0 and DB(O) = O. 

(b) Assume f~: X •  S~---~ X is C ~ where S 1 = R/ (T) ,  the circle o f  length T. 

Assumption 1 implies that the associated suspended autonomous system on 
X x S  1, 

= fo(x) + eft(x,  0), 
O---- 1, (4) 

has a smooth local flow, F;. This means that Ft: X x  $1--~ X x  S 1 is a smooth 
map defined for small I tl which is jointly continuous in all variables e, t, x C X, 
0 E S 1 and for Xo in the domain of A, t ~ FT(xo, 0o) is the unique solution of (4) 
with initial condition Xo, 0o. 

This implication results from a theorem of SEPAL [1962]. For a simplified proof, 
see HOLMES 8,~ MARSDEN [1978, Prop. 2.5] and for generalizations, see MARSDEN 8Z 
MCCRACKEN [1976]. 

The final part  of assumption 1 follows: 

(c) Assume that F~ is defined for  all t C R for  e ~ 0 sufficiently small. 

To verify this in examples, one must obtain an a priori bound on the Z-norm 
o f  solutions of  (4) to ensure they do not escape to infinity in a finite time. This is 
sufficient by the local existence theory alluded to above. In examples of  concern 
to us, (c) will be verified using straightforward energy estimates. See HOLMES & 
MARSDEN [1978] for related examples. 

Our second assumption is that the unperturbed system is Hamiltonian. This 
means that X carries a skew symmetric continuous bilinear m a p / 2 :  X x X - - ~  
which is weakly non-degenerate (i.e., /2(u, v) = 0 for all v implies u = 0) called 
the symplect ic form and there is a smooth function Ho: X - +  R such that 

/2(fo(x), u) = dHo(x) . u 

for all x in DA, the domain of A. Consult ABRAHAM 8~; MARSDEN [1978] and 
'CHERNOFF • MARSDEN [1974] for details about Hamiltonian systems. For example, 
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these assumptions imply that the unperturbed system conserves energy: 

Ho(F~ ----- Ho(x). 

(For  e = 0 we drop the dependence on 0.) We summarize this condition and further 
restrictions as follows: 

(H2). (a) Assume that the unperturbed system Jc = f o ( x )  is Hamiltonian with 
energy Ho : X - ~  R .  

(b) Assume these is a symplectic 2-manifoM Z Q X invariant under the f low 
F ~ and that on ~ the f i xedpo in t  Po = 0 has a homoclinic orbit Xo(t), i.e., 

J%(t) = fo(Xo(t)) 
and 

limit Xo(t) ---- limit Xo(t) = O. 
t - + d -  o~ t - + - -  Do 

Remarks  on Assumption 2. 

(a) For  a non-Hamiltonian two-dimensional version, see HOLMES [1980a] and 
CHOW, HALE & MALLET-PAREr [1980]. Non-Hamiltonian infinite dimensional 
analogues could probably be developed by using the methods of this paper. 

(b) The condition that Z' be symplectic means that L~ restricted to vectors 
tangent to Z' defines a non-degenerate bilinear form. We also note that by a 
general theorem of CHERNOFF & MARSDEN [1974], the restriction of F ~ to ~' is 
generated by a smooth vector field on S ;  i.e., the dynamics within Z" is governed 
by ordinary differential equations. The situation described in assumption 2 is 
illustrated in Figure 2(a). 

p~A 0 (P~) 

W~S(p,~} 

a b 

Fig. 2a. Phase portrait on 27 for e = 0; b. Perturbation of invariant manifolds; 
e ~ 0 .  

(c) Assumption 2 can be replaced by a similar assumption on the existence 
of heteroctinic orbits connecting two saddle points and the existence of transverse 
heteroclinic orbits can then be proven using the methods below. For  details in the 
two-dimensional case, see HOLMES [1980a]. Theorems guaranteeing the existence 
of  saddle connections may be found in CONLEY t~ SMOLLER [1974] and KOPELL 
H O W A R D  [1979]. 

(d) To apply the techniques that follow, one must be able to calculate Xo(t) 
either explicitly or numerically. In our examples, we find it analytically; for numeri- 
cal methods, see HASSARD [1980]. 
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Next we introduce a non-resonance hypothesis. 

(H3) (a) Assume that the forcing term f l ( x ,  t) in (3) has the form 

f l ( x ,  t) = Aax + f ( t )  4- g(x, t) (5) 

where A 1 : X - ~  X is a bounded linear operator, f is periodic with period T, g(x, t) is 
t-periodic with period T and satisfies g(O, t) = O, Dig(O, t) = O, so g admits the 
estimate 

I[g(x, t)X[ ~ (Const)][x[I 2 (6) 

for  x in a neighborhood o f  O. 
(b) Suppose that the "linearized" system 

xL = AxL 4- eAlXL 4- ef(t) (7) 

has a T-periodic solution xL(t, e) such that xL(t, e) = O(e). 

Remarks on (H3) 
1. For  finite dimensional systems, (H3) can be replaced by the assumption 

that 1 does not lie in the spectrum of e rA ; i.e. none of the eigenvalues of A resonate 
with the forcing frequency. 

2. For  the beam problem, with f ( t )  = f ( z ) c o s  o~t, (b) means that ~o ~= -+-2,, 
n ---- 1, 2 . . . . .  where i2n are the purely imaginary eigenvalues of A. This is seen by 
solving the component forced linear oscillator equations. As we shall see, more 
delicate noo-resonance requirements would be necessary for general (smooth) 
T-periodic perturbations, not of the form (5). 

3. For  the beam problem we can take g = 0. We have included it in the 
abstract theory for use in other examples such as the sine-Gordon equation. 

Next, we need an assumption that A1 contributes positive damping and that 
Po = 0 is a saddle. 

(H4) (a) For e = O, e rA has a spectrum consisting in two simple real eigenvalues 
e • 2 ~ O, with the rest o f  the spectrum on the unit circle. 

(b) For e ~ O, e T~A+~AI) has a spectrum consisting in two simple real eigenvalues 

e T~{ (varying continuously in e f rom perturbation theory; of. KATO [1977]) with the 
rest o f  the spectrum, ~ ,  inside the unit circle ]z ] = 1 and obeying the estimates 

C2• ~ distance (a], tzl = 1) ~ C~e (8) 

for  C~, C2 positive constants. 

Remarks on (H4). 1. In general it can be awkward to estimate the spectrum of  
e rA in terms of the spectrum ofA. Some informationis contained in HILLE & PHILLIPS 
[1957] and CARR [1980]. See also CARR & MALI-IARDEEN [1980], VIDAV [1970], 
SmZUTA [1979] and RAUCH [1979]. For  the beam problem with e ---- 0 it is suffi- 
cient to use these two facts or a direct calculation: 

(a) if A is skew adjoint, then a(e tA) = closure of eta(A); 
(b) if X = Xa @ )(2, where X2 is finite dimensional (the eigenspace of the 

real eigenvalues in the beam problem) and B~ is skew adjoint on X~ and B2 : X2-+X2 
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is a (bounded) linear operator, then 

~r(e tw`| = closure (e ~tB1) kJ e '~ 

For  e > 0 the abstract theorems are not very helpful. In the beam example 
the eigenfunctions of A + eA~ can be computed explicitly and form a basis for 
X, so the estimates (8) can be done directly; in fact ~r~ consists of a circle a distance 
O(e) inside the unit circle; see Appendix A. 

2. The estimate dist (a,~, Izl = 1) ~ C2e guarantees that 

Z~ = l d  - -  e r(A+~A') 

is invertible and 
I[L71 ]l =< const/e. (9) 

3. The estimate dist ( ~ ,  Iz I : 1 ) ~  C~e guarantees that the eigenvalue 
exp (T2~-) will be the closest to the origin for e small. This is needed below for the 
existence of an invariant manifold corresponding to 27. 

Finally, we need an extra hypothesis on the nonlinear term. We have already 
assumed B vanishes at least quadratically, as does g. Now we assume B vanishes 
cubically. 

(H5) B(0) = 0, DB(O) = 0 and D2B(0) = 0. 

This means that in a neighborhood of 0, 

IIO(x)ll ~ Const [[xll 3. 

(Actually B(x)  = o(11 x ll =) wou ld  do).  

Remarks  on (H5). 1. The necessity of having B vanish cubically is due to the 
possibility of the spectrum of A accumulating at zero. If this can be excluded for 
other reasons, (H5) can be dropped and (H4) simplified. There is a similar phenom- 
enon for ordinary differential equations noted by JACK HALE. Namely, if the linear 
system 

u = 

is perturbed by nonlinear terms plus forcing, to guarantee that the trivial solution 
(0, 0, 0) perturbs to a periodic solution as in lemma 1 below, one needs the non- 
linear terms to be o(Ix I + [xl § ]Yl) 3. 

2. For  nonlinear wave equations, positivity of energy may force D2B(0) = 0. 

Consider the suspended system (4) with its flow F ~ : X • 2 1 5  1. Let 
P~: X- +  X be defined by 

P~(x) = ~1" (F~(x, 0)) 

where 7~1 :X•  S 1 -+ X is the projection onto the first factor. The map P~ is just 
the Poincar6 map for the flow F t. Note that P~ = Po, and that fixed points 
o f  P~ correspond to periodic orbits of F;. 

Lemma 1. For e > 0 small, there is a unique f i x e d  point  p~ o f  P~ near Po ~ 0; 
moreover p~ - - P o  = O(e), i.e. there is a constant K such that t[p~[I ~ Ke f o r  all 
(small) e. 
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For ordinary differential equations, lemma 1 is a standard fact about persistence 
of fixed points, assuming 1 does not lie in the spectrum of e TA (i.e., Po is hyper- 
bolic). For general partial differential equations, the validity of lemma 1 can be a 
delicate matter. In our context of smooth perturbations of linear systems with 
assumptions (HI)-(H5),  the result is proved in Appendix A, along with the follow- 
ing. 

Lemma 2. For e > 0 sufficiently small, the spectrum o f  DP~(p~) lies strictly inside 

the unit circle with the exception o f  the single real eigenvalue e ~'+ ~ 1. 

In lemma 1 we saw the fixed point Po perturbs to another fixed point p, for  
the perturbed system. The same is true for the invariant manifolds; see Figure 2(b): 

Lemma 3. Corresponding to the eigenvalues e r ~  there are unique invariant mani- 
fo lds  WS~(p,) (the strong stable manifold) and WU(p,) (the unstable manifold) o f  p~ 
f o r  the map P" such that 

i. WS~(p,) and W~(p~) are tangent to the eigenspaces oj e respecttvety at p , ;  
ii. they are invariant under P*; 
iii. i f  x C W~(p,) ,  then 

limit (P*)" (x) = p,,  
n - + o ~  

and i f  x C W"(p~) then 

limit (P~)" (n) ----- p~. 
n - + - -  o o  

iv. For any f inite t*, W~S(p,) is C ~ close as e -+ 0 to the homoclinic orbit Xo(t), 
t* <= t < oo and fo r  any finite t , ,  W'(p,) is C ~ close to Xo(t), - -  oo < t <= t ,  as 
e ~ O. Here, r is a n y f i x e d  integer, 0 <= r < oo. 

This lemma follows from the invariant manifold theorems (HIRSCH, PUGH & 
SHUB [1977] and the smoothness of the flow of equations (4), discussed in Appen- 
dix A. 

The Poincar6 map P* was associated with the section X •  {0} in X x  S 1. Equally 
well, we can take the section XX{to} to get Poincar6 maps Pt*o. By definition, 

eto(X) = ,~l(r~(x ,  to)). 

[The Poincar6 maps on different sections are related as follows: let UT.s: X--~ X 
be the evolution operators defined by U[,s(x) = ~l(FT_s(x, s)). Then U/,~ ~ UT, r ~ U~ 
and P~o --  Ur+to,T+,o ~ P;o ~ Uto,2o'] 

There is an analogue of Lemmas l, 2 and 3 for P~o. Let p,(to) denote its unique 
fixed point and W~S(p,(to)) and W~(p,(to)) be its strong stable and unstable mani- 
folds. Lemma 2 implies that the stable manifold WS(p~) of p, has codimension 1 
in X. The same is then true of W~(p,(to)) as well. 

Let 7,(0 denote the periodic orbit of the (suspended) system (4) with 7,(0) 
(p,, 0). We have 

y,(t) = (p,(t), t) .  (10) 
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The invariant manifolds for the periodic orbit ~', are denoted W~(7,), W~(7, ) 
and W~"(7~). We have 

W~(p,(to) ) = W~(7, ) f~ (X•  {to}), 

and 
W~S(p,(to)) = W~'(7,) f~ (X•  {to}), 

W~'(p,(to)) = W~"O'~) n ( X •  

See Figure 3. 
We wish to study the structure of W'~(p,(to) ) and WZ~p~(to)) and their inter- 

sections. To do this, we first study the perturbation of solution curves in W~(7,), 
WS(7~) and W,'(~/~). 

Choose a point, say Xo(0) on the homoclinic orbit for the unperturbed system. 
Choose a codimension 1 hyperplane H transverse to the homoclinic orbit at 
Xo(0). Since W~(p,(to)) is C ~ close to Xo(0), it intersects H in a unique point, say 
x~(to, to). Define (x~(t, to), t) to be the unique integral curve of the suspended 
system (4) with initial condition x~(to, to). Define ~( t ,  to) in a similar way. 

/ 

Identify 

l 

1=7 F 
/I \ w~%ct0j) _~ / / / 

t.o ~ ~ . ~ y  7 t . ~ o  /~,,o, ,,,o ', e'Ipol ~oCOl/// 

I wgiy~) 

Fig. 3. The perturbed manifolds 

The initial conditions x~(to, to) and x~"(to, to) are not conveniently computable. 
This difficulty is, however, unimportant and is taken care of by the boundary 
conditions at t -~ -_tz cx~. We have 

xS(to, to) = Xo(0) + ~v s + O(e 2) 
and (11) 

~(t0,  to) - Xo(0) + ~v" + O(e 2) 

by construction, where I[ O( ez)[I ~ Constant .  e z and v s and v" are fixed vectors, 
Notice that 

(Pt~o)" x~(to, to) = x~(to + nT, to) -+ p~(to) as n ~ ~ .  
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Since x~(t, to) is an integral curve of a perturbation, we can write 

x~(t, to) = Xo(t - -  to) + ex~(t, to) + O(eZ), (12) 

where x~(t, to) is the solution of the first variation equation 

d 
--~ x~(t, to) = Dfo(Xo(t - -  to))" ~ ( t ,  to) + f l ( x o ( t  - -  to), t ) ,  (13) 

with 
x~( to ,  to) = v ~. 

This linearization procedure is justified by the proof  of smoothness of the time 
~-maps; see Appendix A. There is a similar formula for x~(t, to). Notice that when 
e -+ 0, the curve x~(t, to) approaches the homoclinic orbit x( t  - -  to) with a phase 
shift to. In (12), O(e 2) means a term bounded by a constant•  2, on each finite 
time interval. For ~( t ,  to), the error O(e 2) is uniform as t ~ -+- ~ since (x~(t, to), t)  
.converges to the periodic orbit 7~(t), by construction. Similarly the error O(e 2) 
in the corresponding equation for x~(t, to) is uniform as t -~- -- ~ .  

w 3. The Melnikov Function 

Recall that s X •  denotes the symplectic form on X relative to 
which/o  is Hamiltonian. Define the Meln i kov func t i on  by 

A,(t ,  to) = Q(fo(Xo(t  - -  to)), x~(t, to) - -  ~( t ,  to)) (14) 
and set 

A,(to) = A~(to, to). 

Lemma 4. I f  e is sufficiently small  and A~(to) has a simple zero at some to and 
m a x i m a  and minima that are at least O(e), then W~(p,(to)) and W~(p,(to)) intersect 
transversally near Xo(0). 

Proof. First note that, by lemma 2, W~(p~) has codimension 1. As e ~ 0, the per- 
C r 

turbation theory of invariant manifolds shows that W~(p,) _ 4  WSC(po) ' where WSC(po ) 
is the center-stable manifold for Fr, the time T map for the unperturbed system. 

Let d~(t, to) ~- ~ ( t ,  to) - -  x~(t, to) and 4(to) = d~(to, to). 
Let Txo(O)X be the tangent space to S at Xo(0) and let 

(Txo(O)X) a = (v C X lO(v ,  w) ~ 0 for all w C Txo(0)S } 

be its O-orthogonal complement. Because Z' is finite (2)-dimensional and symplec- 
tic, 

X---- Txo~O)S �9 (T~o(0)S) ~ �9 (15) 

Let ?:  X---~ T~o(o~X be the projection onto the first factor, associated with the 
decomposition (15). Set 

dZ~(to) = ?(d,( to))  (16) 
(see Fig. 4). 

By definition, 

A,(to) -~ -Q(fo(xo(O)), d,(to)) ~- -QOro(xo(O)), d~(ro)). 
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~'(p,  Cto)) 

/ ~ /  / / -  f " x \  

J 
T~DIOlr 

d~(to} ] 

/ u 
x~(to, (to,to} 

r, 0( 0c01) 
Fig. 4. Geometry for the Melnikov function 

If  d,(to) has a simple zero, then as a function of to, dr(to) changes orientation 
relative to fo(Xo(0)) within S as to changes. Thus, as W~C(po) is codimension 1, 
dr(to) also changes orientation relative to it. 

The tangent space of W~(p,(to)) near Xo(t) is c-close to that of W~C(po); and 
the tangent space of W~(p,(to)) near Xo(0) is c-close to the vectorfo(Xo(0)), uniform- 
ly for 0 ~ to ~ T. This follows from the perturbation theory of invariant mani- 
folds. Let v~(to) denote the vector from ~(to,  to) to the nearest point on W~(p~(to)) 
(it is easy to see that there is a unique such point in an c-neighborhood of Xo(0)). 
By (1 I) and the tangent space estimates just discussed, it follows that 

v~(to) -~ = d; (to) -1- O(e2). (17) 

Thus if d~(to) passes through zero, changing orientation relative to fo(Xo(0)) with 
an amplitude O(e), then by (17), v,(to) must do the same. It follows that Wg(p,(to)) 
and W~(p~(to)) then intersect transversally near the to at which A,(to) has its zero. I 

The next lemma gives a formula for A~(to) that uses the Hamiltonian nature of 
fo- This formula is needed in examples to check effectively that A~(to) has simple 
zeros. 

Lemma 5. The following formula holds: 

At(to)  : - e  f ~ ( fo (Xo( t  - t o ) ) , f l ( xo ( t  - to)), t)  dt + O(e2).  
- - o o  

(18) 
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Proof. By (12) we can write A~(t, to) ---- A+(t ,  to) --  A~-(t, to) + O(e2), where 

A+(t,  to) = Q(fo(Xo(t - -  to)), ex~(t, to)) 
and 

AT(t ,  to) = [2(fo(Xo(t --  to)), e~( t ,  to)). 

Using (13), we get 

d + 
-d-[ Ll, (t, to) = -Q(Dfo(Xo(t, to)) . fo(Xo(t --  to)), ex~(t, to)) 

+ [2(fo(Xo(t --  to)), e(Dfo(Xo(t - -  to)). x~(t, to) + f~(xo(t --  to), t)}). 

Sincefo is Hamiltonian, Dfo is .Q-skew. Therefore the terms involving x~ drop out, 
leaving 

d + 
--~ A~ (t, to) = O(fo(Xo(t --  to)), efl(xo(t --  to), t)).  

Integrating, we have 

--A~+(to, to) = e ~ D(fo(Xo(t --  to)),f~(xo(t --  to), t)) dt, (19) 
to  

since 

A + ( ~ ,  to) = -Q(fo(Po), efl(po, cx~)) = 0, becausefo(Po) = 0. 

Similarly, we obtain 
t o  

A y ( t o ,  to) = e f t2( fo(Xo( t  - -  t o ) ) , f ~ ( x o ( t  - -  to), t)) dt 
- - o o  

and adding gives the stated formula. | 

o o  

The expression f Q ( f o ( X o ( t -  t o ) ) , f i ( x o ( t -  t o ) , t ) ) d t  is an "averaged 
- - o o  

bracket" over the orbit Xo(t); iff~ is Hamiltonian (time dependent), this is just 
an integrated Poisson bracket over the orbit Xo(t); e f  ARNOLD [1964]. The power 
of MELNIKOV'S method rests in the fact that this formula renders the leading term 
of A,(to) computable. 

We summarize the situation as follows: 

Theorem 1. Let hypotheses 1-5 hold. Let 

M ( t o )  = f t 2 ( f o ( x o ( t  - -  t o ) ) , Z ( X o ( t  - -  to), t ) )  d t .  (20) 
b O O  

Suppose that M(to) has a simple zero as a function o f  to. Then for  e > 0 sufficiently 
small, the stable manifold W~(p~(to)) o f  p , fo r  P~o and the unstable manifold W~(p,(to)) 
kTtersect transversally. ( W e  shall also call M the Melnikov funct ion) .  

In Section 5 we discuss consequences of this result. Before doing so we discuss 
some examples related to the physical model of the beam. 



Chaotic Oscillations of a Forced Beam 

w 4. Examples 

1. (See HOLMES [1979 b]): Consider the forced Duffing equation 

-- fix + a x  3 = e(y cos rot - -  &~). 

Here the unperturbed (e = 0) system is 5b - -  fix q- ax 3 = O, i.e., 

d 

147 

(21) 

which is Hamil tonian in X = g 2 =- 27 with 

5c 2 ~ x  2 o~x" 
H(x, ~) 2 2 4- 4 (22) 

The flow of  this system is the "figure eight" pat tern shown in Figure 5(a). The 
homoclinic orbit  is given by 

(Xo(t),JCo(t)) = (~/~fl sech(l/-flt), --fl V~sechy f l t tanh  l/~t). (23) 

We have based the solution at (Xo(0),)?o(0)) = (l/2fl/o~, 0). The symplectic form is 
/2((x, 9?), (y, 3))) = xj~ - -  xy, so by (20) the Melnikov function is 

M(to) = f .Q :i(7, cos ~ot x - - o ~ x  3 ' y c o s o ) t - - O J c  dt=_~o --6;c) dt, (24) 
o o  

0) 
a 

b 

Fig. 5a and b. The single mode model. 
a Unperturbed ease; e = 0; b Perturbed Case; e > small, y > ~'c 
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where x and k are given in (23) (with t replaced by t - -  to). The integral (24) may 
be evaluated by standard methods (HOLMES [1979b]) to yield 

3 
4~f-f / 2  sin (coto) 

M(to) -- 3~ ~- 2)'o~ �9 ( 2 5 )  

cosh 

Thus, if 

)' > )'c - -  3co1/2--o~o~ cosh , (26) 

then M has simple zeros and so by Theorem 1 the stable and unstable manifolds 
intersect transversely for e sufficiently small. See Fig. 5(b). 

2. The two mode Galerkin approximat ion o f  the beam equation (1) is given 
as follows (ep TSENG & DUGUNDJI [1971], HOLMES [1979a]): 

d x f l l x - -~ (  + 4 y  2) x y ~ c o s c o t - - ~ l ~  

~ -  = + e  0 

--fl2x -- 40r 2 + 4y 2) y ~  )'2 cos cot O2.i,/ 

(27) 

~7~ 4 
w h e r e  f l l  ---- 7( V ?  - -  7( 2 > 0,  f12 = ~ V ~ 2  - -  /~  > 0 a n d  oc - -  

2 " 
Here the plane Z, spanned by the vectors (1, 0, 0, 0) r and (0, 1, 0, 0) r, is a 

symplectic 2 manifold and the unper turbed homoclinic orbit  is given by 

(Xo(to), Xo(to), yo(to), 33o(to)) 

=(V2--~flo sech(l / -~t) , - - fF'2sechl /- f l t tanh]/ f l t ,O,O).  (28) 

The Melnikov function is found to be 

oo 

M(to) = f cos cot - Olx) + J) (72 cos cot - 62y)] dt, (29) 
--oo 

and since Yo = 0 by (28), the computat ion of  (29) reduces to that  of  Example 1. 
The non-resonance condit ion (H3) for  this example becomes co 2 @ HIE. 

3. The partial  differential equat ion of  the beam: 

( / )  /b + w .... + _Pw" --  ,~ [w'] 2 d(  w" = e ( fcos  cot - -  6fi') 

with boundary  conditions 

w = w " = O a t z = O ,  1. 

The basic space is X = H g x L 2 where Ho 2 denotes the set of  all H 2 functions on 
[0, 1 ] satisfying the boundary  conditions w = 0 at z = 0, 1. For  x = (w, fi~)E X, 
the X-norm is the "energy"  norm IlxlI2 = Iw"12 + Iwl where 1. ] denotes the 
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L2 norm. Write the equation as 

dx 

dt 
where 

- f o ( x )  + e f l ( x ,  t ) ,  

( 0 )  
fo(x) = Ax  + B(x) and f l (x ,  t) = f c o s  cot - -&b = Atx  + f( t) .  

Here A and A a are the linear operators 

 (wl ( w [ 0,w] 
with domains D(AI) = X (At is bounded) and 

D(A) = {(w, rip) ~ H 4 • H 2 [ w = 0, w" = 0 and w = 0 at z = 0, 1}, 

and B is the nonlinear mapping of X to X given by 

( / :  ~ B ( x ) =  ~ [w'] 2d~w''  " 

In the forcing te rmf( t )  = - f c o s  cot, f c a n  be a function of z, i.e., a spatially distrib- 

uted load. L e t f d e n o t e  the mean o f f  We expand f i n  a Fourier series with period 
twice the beam length: 

J(Z) = .7 -~- ~ (0~ n sin (nxz) + fin cos (nztz)}. 
n--I 

The coefficients J=and oq will be important in calculations that follow. 
The theorems of HOLMES & MgRSDEN [1978] show that A is a generator and 

that B and f l  are smooth maps. This, together with the energy estimates, shows 
that the equations generate a global flow Ft: X •  S~-+ X•  S ~ consisting of C ~ 
maps for each e and t. See appendix A for details. If  Xo lies in the domain of  the 
(unbounded) operator A, then Ft(xo, s) is t-differentiable and the equation is 
literally satisfied. Thus Hypothesis 1 holds. 

For  e = 0 the equation is readily verified to be Hamiltonian using the symplec- 
tic form 

1 
~((wl ,  wx), (w2, w2)) = f {%(z) w~(z) - %(z) w~(z)} dz 

and 0 

1 -P 1 2 ~'g 14 
H ( w , w ) =  T w l ~ - T [ w ' l ~ + T l w "  [ + T l w '  . 

The invariant symplectic 2-manifold _r is the plane in X spanned by the functions 
(a sin zlz, b sin ztz) and the homoclinic loop is given by 

2 ] / / ,  ~2 
Wo(Z, t) = - -  sin (z~z) sech (t~ I/_P - -  792) ,  7g 
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Hypothesis 2 therefore holds. For  e = 0 one finds by direct calculation that the 
spectrum of Dfo(Po), where Po = (0, 0), is discrete with two real eigenvalues 

- ' ~ .  = : k ~  1 / / '  - ~2 

and the remainder pure imaginary (since _P < 4~ 2) at 

A n ~- -?nzc ] / / '  -- n2~ 2 , n = 2, 3 . . . .  

(cf. HOLMES [1979a]). Hypothesis (H3a) clearly holds with g = 0. Condition (H3b) 
holds by direct calculation using Fourier series and the following nonresonance 
assumption: 

j2~2(j2792 - -  /~)  A/= co2, j = 2, 3, 4 . . . .  (30) 

Expanding w(z, t) in the eigenfunctions sinj~z of the linearized problem and 
using Galerkin's method we obtain an infinite set of second order ordinary differ- 
ential equations for the modal coefficient aj(t): 

a ) - ~ - e O h j q - . j 2 ~ 2 ( j 2 ~  2 - - I ' ) a j = e ? ~ j c o s c o t ,  j =  1,2 . . . . .  (31) 
where 

oo 1 

w(z, t) = ~ aj(t) sin (jz~z) and ~/j = f f ( z )  sin ( j~ z )  dz .  
j = l  0 

It is easy to check that if (30) holds, then (31) has a unique periodic solution 
wL(z, t) = WljZ, t + 2~ /w)  of O(e). Moreover, the eigenvalues of the perturbed 
operator e r(A+*A1) and the unperturbed operator e TM can be calculated directly 
from (31), with the ~,j set to zero ( c f  HOLMES [1979a]). One obtains a countable 
set of eigenvalues for the flow given by 

1 
2~ = - - f  [ - - e  0 ~ ]/e 2 82 -1- nZ~Z(I" - -  n2~ 2) 1, n = 1, 2 . . . .  (32) 

Exponentiation of (32) reveals that hypothesis (H4) holds (here T = 2zl/co). 
Finally, it is clear that (H5) also holds for this example. 

The Melnikov function (20) is given by 

M(to)  = _~f ~ - w  .... + z I w'  ]2 w" - - / " w " '  f c o s  cot - -  Oiv aft 

= f c o s  cot fv(z, t - -  to) - -  air(z, t - -  to) iv(z, t - -  to) dz dt .  

Substituting the expressions for w, iv along the homoclinic orbit, we evaluate the 
integral as in Example 1. One gets 

- - m ( t o )  = - -  + 

Thus, if 

3 
sin (cot0) 40(/" -- ~2)T 

+ 
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then the hypotheses of Theorem 1 hold and so the stable and unstable manifolds 
intersect transversally. Note that in the spatial integral evaluated, in the expression 

for s only the components f a n d  o~ off(z)  survive, due to orthogonality of the 
other Fourier components with the solution 

2 
fi~o(t) = 1/~ (F  -- :r 2) sin (:~z) sech (trc V'F - .~2) tanh (t7~ l / F -  ~2). 

It should be realized that, while the formal calculations of M(to) in the second 
and third examples are similar to that of M(to) in the two dimensional example 
given first, the full power of Theorem 1 is necessary since in the four and infinite 
dimensional cases, the perturbed manifolds W~S(p~(to)) and W~(p~(to)) do not lie 
in X. 

We close this section with a comment on the bifurcations in which the 
transversal intersections are created. Since the Melnikov function M(to) has non- 
degenerate maxima and minima in all three examples, it can be shown that, near 
the parameter values at which M(to) = M'(to) ~ O, but M"(to) @- O, the stable 
and unstable manifolds W~(p,(to)), W~(p,(to)) have quadratic tangencies. The 
mechanism, described by NEWHOUSE [1974, 1979], then implies that P;o can have 
infinitely many stable periodic orbits of arbitrarily high periods near the bifurca- 
tion point, at least in the first two (finite dimensional) examples. In practice it 
may be difficult to distinguish these long period stable periodic points with their 
small basins, from transient chaos, noise and from "true" chaos itself. We note 
that transient chaos has been observed in experimental work (Moon & HOLMES 
[19791). 

w 5. Consequences of Transversal Intersection 

If  the hypotheses of Theorem 1 hold, we obtain a Poincar6 map Pt~o:X-+ X 
having the following property: there is a hyperbolic saddle point p, which has a 
1 dimensional unstable manifold intersecting a codimension 1 stable manifold 
transversally. For X = R 2, this situation implies that the dynamics contains a 
horseshoe (see SMALE [1967]). For instance, one can conclude the existence of 
infinitely many periodic points with arbitrarily high period. See Figure 6. Together 
with global attractivity due to positive damping, this suggests the presence of a 
strange attractor (el HOLMES [1979a, b]). 

A particularly noteworthy method for analysis in such cases has been given by 
CONLEY & MOSER; see MOSER [1973], Chapter III. The attractive feature of their 
method is that it reduces the proof to one of finding explicit estimates on what 
Pt~o does to horizontal and vertical strips near the saddle point. This enables 
one to generalize the argument to dimension =>2 and to Banach spaces X. In 
particular, it applies to the beam example. Specifically, we prove the following 
result in Appendix B. 

Theorem 2. I f  the diffeomorphism Pt~o:X-+ X possesses a hyperbolic saddle point 
p, and an associated transverse homoclinic point q C W~(p,) f~ W~(p~), with W~(p,) 
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of  dimension 1 and W~(p,) o f  codimension 1, then some power o f  P~o possesses an 
invariant zero dimensional hyperbolic set A homeomorphic to a Cantor set on which 
a power of  P~o is conjugate to a shift on two symbols. 

ge of R 
er o 

power of P~o 

Fig. 6 

As in the finite dimensional case, this implies 

Corollary 1. A power of  P~o restricted to A possesses a dense set o f  periodic points 
there are points of  arbitrarily high period and there is a non-periodic orbit dense 
inA.  

The hyperbolicity of A under a power of P~o and the theorem on structural 
stability of ROBBtN [1971] implies that the situation of Theorem 2 persists under 
perturbations: 

Corollary 2. I f  i f :X-+ X is a diffeomorphism that is sufficiently close to P~ in C 1 to 

norm, then a power of  P has an invariant set A and there is a homeomorphism 

h :A-+  A such that ~ N (Pro) ~ h = h o fiN for a suitable power N. 

Thus, the complex dynamics of (PTo) N near A cannot be removed by making 
small changes in lower order (bounded) terms in the governing equations (3). 

Although the dynamics near A is complex, we do not assert that A is a strange 
attractor. In fact, A is unstable in the sense that its generalized unstable manifold 
(or outset), WU(A) is non-empty (it is one dimensional) and thus points starting 
near A may wander, remaining near A for a relatively long time, but eventually 
leaving a neighborhood of A and approaching an attractor. This kind of behavior 
has been referred to as transient chaos (or pre-turbulence). In two dimensions 
(Example 1 of w 4), A can coexist with two simple sinks of period one or with a 
strange attractor, depending on the parameter values (see HOLMES [1979b]). As 
noted earlier, there is experimental evidence for transient chaos in the magnetic 
cantilever problem, in addition to the evidence for sustained non-periodic notions 
(HOLMES & MOON [1979]). 
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Appendix A. Perturbations of Fixed Points and Invariant Manifolds 
for Partial Differential Equations 

We begin by recalling the local existence result. 

Proposition A.1. Let X be a Banach space and Ut a linear semigroup on X with 
generator A and domain D(A). Let B:X--> X be C ~, k ~ 1. Let G = A + B on 
D(A). Then 

dx 
d~- = G(x); Xo = x(0)C X (A-l)  

defines a unique local semiflow Ft(xo): I f  Xo E D(A), then Ft(xo) C D(A) = D(G), 
is X-differentiable and satisfies (A-I) with initial condition Xo, Ft(xo) is the unique 
such solution and moreover, Ft extends to a C k map of  an open set in X to X for  
each t ~ O. 

The basic idea is to use Picard iteration on the corresponding integral equation 

t 

x(t) = Utxo + f U,_sB(x(s)) ds, (A-2) 
0 

where Ut = etA. One sets Ft(xo) = x(t). For  details, see HOLMES & MARSDEN 
[1978], Prop. 2.5. 

Suppose G = A + B and G = A + B both satisfy the conditions of  proposi- 

tion A. 1. and Ft and Ft are the corresponding semiflows. 

Proposition A.2. We have the following estimates on Ft -- Ft: f ix  T > 0 and suppose 

Ft and 1~ map the bounded set S ~ X into the ball Bit of  radius R and that on BR 
we have 

(i) sup II B(x) -- B(x)II < C, 
xEB R 

liB(x) -- g(y)ll ~ Kl[x -- Yl[ (ii) 

and assume 

(iii) 

Let M = Me Ta. Then 

[[etAll ~ Meltle for M >  O, t 3 > O. 

J[ Ft(t) -- ~(x)I[ ~ l~CTeKItl~" (A-3) 

Furthermore, assume that for x, y ~ BR, 

(iv) ]t [DB(x) -- DB(y)]. v]l ~ K~ It v I[ ]] x - y II, 

(v) ][ [DB(x) - - D B ( x ) ]  vii =< Ca Ilvll, 

(vi) II DR(x) .  v 11 ~ M2 [I v II 

and(vii) for x ~  S, [IOF,(x) �9 u][ ~ M3 I[ullfor It[ ~ T. Then 

[] [DFt(x) -- DE(x) ] .  ull ~ TMaM--(C1 + KiMCTe  kr~) eM'l'lHWuII. (A-4) 
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In particular, if B and B are close in C 1 norm on bounded sets then OFt(x) 

.and D ~ ( x )  are close in the operator norm; cJ: Prop. 2.13 of HOLMES & MARSOEN 
[1978]. 

Proof.  Let x(t)  = Ft(x) and ~(t) = /~ (x ) .  From (A-2) we have 

t 

x( t )  - ~ ( t )  = f v , _ A e ( x ( s ) )  - ~ ( ~ ( s ) ) l  d~ 
0 

t 

= f U t _ s [ B ( x ( ~ ) )  - B(~(s))] d~ 
0 

t 

+ f U t _ s [ B ( x ( s ) )  - -  B ( ' x ( s ) ) ]  ds .  
o 

Thus from (i), (ii) and (iii), 
t 

H x(t)  - -  -x(t)[[ <= M K  f II x(s) - ~(s)II ds + M C T .  
0 

Estimate (A-3) thus follows. To prove (A-4) we recall (HOLMES & MM1SDEN 
[1978, Eq. 14]) that DFt(x) satisfies the first variation equation: 

t 

DFt(x ) u = Ut " u + f Ut_sDB(Fs(x)) " [DFs(x) . u] ds. 
0 

(Note that from this one can choose M3 = MeMM2T. )  Therefore 

OFt(x  ) �9 u --  DFt(x ) �9 U 
t 

= f Ut_,[DB(Fs(x)) .  (DFs(x) .  u) - -  DB(F~(x)).  (DF~(x).  u)l as 
0 

t 

= f Ut_,[DB(Fs(x)) .  (DFs(x) .  u - -  DFs(x) .  u) dsl 
0 

t 

+ f Ut_,[(DB(F~(x)) - -  D B ( ~ ( x ) ) } .  {OPt(x) �9 u}] as 
0 

t 

+ f Ut_,{DB(Fs(x)) - -  DB(b;(x) )} .  {Dff~(x). u} ds. 
0 

t 

Thus HDFt(x) �9 u - -  O F t ( x  ) �9 u][ ~ M--Mz f [[OF(x).  u - -  Offs(x) .  u][ ,:Is -k 
0 

~- M K t M C T 2 e  KTM Ma [[uH -k M C 1 T M 3  HuH, 
f rom which (A-4) follows. | 

Condition (ii) holds if D B  is bounded on BR and (iii) is automatic for any C o 
semigroup and serves only to define the constants. Condition (iv) holds if D2B 
is bounded on BR, (vi) just says D B  is bounded on BR, and we have already noted 

that one can choose M3 = M e  M M :  to obtain (vii). 

Proposition A.3. Under assumptions l(a), (b) and (c) o f  w 2, the bounded linear 
~)perators OP~(po): X --~ X converge in norm as e --~ 0 to DP~ 
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Proof. As e -+ 0, ell(x,  t) -+ 0 locally in x (uniformly in t) along with its derivative. 
Thus, by proposition A.2 DF~(x) -+ DF~ as e -+ 0, where the convergence is in 
norm. Since P~(x) = ~1 �9 (F~(x, 0)), the result follows. | 

Remarks.  (a) Norm convergence of evolution operators in general is not to 
be expected, even for linear operators. It is true here because the unbounded part 
is fixed and the perturbation is bounded; cf. the Trotter-Kato theorem, KA'ro 
[1977, p. 502]. (b) These estimates generalize to higher derivatives in the obvious 
way. 

We now prove Lemmas 1 and 2 of Section 2. 

Proof  of Lemma 1. By (H3b) we have an xL(t, e) satisfying 
t 

x~(t, 0 = e '(A+~`~ x~(O, ~) 5- f ee(t--s)(A+eAO f(s) (IS (A-S) 
0 

and 
x~(r, e) = xL(O, e), x~(t, e) = 0(~). 

We seek a curve x(t, e) such that 
t 

x(t, e) = e t(A+~AO x(O, e) 5- f ee(t-~l(A+~AO f ( s )  ds 
0 

t 

5- f e (t-s)(A+~A') [B(x(s, e))5- eg (x(s, e), s)] ds (A-6) 
0 

and 
x(r,  ~) = x(O, ~), x(T, e) = 0(~). 

We first claim that for e sufficiently small, 1[ x(0, e)J[ =< (Const) e implies that 
[] x(t, e)I[ ~ (Const) e for 0 --< t --< T. To obtain this, subtract (A-5) and (A-6): 

x(t,  e) --  xL(t, e) = e t(A+~a~) [x(0, e) --  XL(0, e)] 
1 

5- f e (t-s~(A+~A0 [B(x(s, e)) 5- eg(x(s, e), s)] ds. (A-7) 
0 

Thus 
t 

I[x(t, ~) - xL(t, ~)lJ < (Cons0 ~ + (Const) f {ll x(s, ~ )?  + ~JI x(s, ~)II 2} ,Is. (A-S) 
0 

The estimates on g and g are valid since for e small enough the solutions will 
remain in a neighborhood of 0 for 0 _< t _< T. From (A-8) we obtain an estimate 
of  the form 

t 

]Ix(t, e)H ~< (Const) e 5- Const f ]Ix(s, e)] r ds 
0 

by using [[ xL(t, e)I[ ----< (Const) e and dropping the cube and square. Thus, by 
Gronwall's inequality, 

]] x(t, e)][ =< (Const) e (A-9) 
as desired. 

Next, let BE be the ball of  radius e about XL(0, e) = xL(T, e). Consider the map 

P~: B. -~ x ;  x(O, ~) ~ x(r ,  e). 

We seek a fixed point of P*. 
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From (A-7) note that x(0, e) is a fixed point of P~ if and only if it is a fixed 
point of the map 

o~  :B~ --> X,  
T 

~ ( x ( O ,  e)) -- XL(O, e) + L;-' f e (r-s)(a+'a~) [B(x(s, e)) -k eg(x(s, e), s)] ds, (A-10) 
0 

where 
L~ ~- (Id --  er(a+~A1)). 

Claim 1. For e small, ~ ,  maps B, to itself. 

Proof. From (9), (A-9) and (H-5), 

Const r 
II~,(x(0,  e)) - xL(0, e)X[ < - -  f (Const) [[[x(s, e)[[ 3 _L e3[x(s, e)[[ 2] ds 

E 0 

(Const) e z . 

This is less than e for e sufficiently small. 

Claim 2. ~-~ is a contraction; i.e. has Lipschitz constant < 1. 

Proof. Indeed, the derivative of ~ ,  is 
1 

Do~e(x(O , e)) = L Z  1 f e (r-s)(A+~A') [DS(x(s ,  e)) o DFj~,o(x(O, e)) 
o 

-k eDxg(x(s, e), s) o DF;~,o(x(O, e), s)] ds. 

Estimating as above, 
T 

][ D~,(x(O, e))I[ ~ (Const____~) . f (const) �9 e 2 ds <= (Const)  e 
E 0 

so if e is small enough, this is less than 1. II 

Thus ~-, has a unique fixed point in B,, so lemma 1 is proved. I 

Proof of Lemma 2. The Poincar6 map P~ is the map x(0, e) ~ x(T, e) determined 
by equation (A-6). Thus DP'(x(O, e)) = DP~(p~) maps v(0) to v(T), determined by 

T 

v(T) : e (A+'al)r v(O) -k f e (A+`AI)(r-~) [DB(x(s, e)) . DF:,o(x(O, e)) . v(s) 
0 

q- eDg(x(s, e)) . Dr;~,o(x(O, e))- v(s)] ds. 

By lemma 1, x(s, e) = O(e) and B is cubic, so DB(x(s,  e)) = O(e 2); also eDg(x(s, e)) 
---- O(e2). Thus for e small, DP~(p,) - -  e ( A + e A O T  = O(e 2) where the O(e z) estimate 
is in norm. Now e ( A + e A 1 ) T  has spectrum shifted toward the origin by an amount 
O(e) and so it follows by perturbation of spectra that DP'(p,)  has its spectrum 
shifted by O(e) in the same direction as well. (See KATO [1977], Chapter 4, w 3.) I 

Finally we make some remarks on why the flow is global for the beam example. 
First of all, the fact that A generates a group in X follows the same pattern as 
the proposition 2.4 of HOLMES & MARSDEN [1978], SO is omitted. Secondly, B 
and f~ are smooth maps since multiplication H~•  Ha--> H 1 is continuous and 
bilinear. Moreover it is clear that B andf~ have bounded derivatives on bounded 
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sets. Thus hypotheses l(a) and (b) hold. To prove (c) we use energy functionals. 
To begin we consider the unforced case. 

Proposition A.4. Consider equation (1) with f = 0 and 6 ~ O. Then its flow Ft on 
X is globally defined. I f  1" < ~z 2, and e ~ O, then (0, O) is stable: i.e. for any 
x E X ,  

limit F;(x) = (0, 0). 
t---~ + oo 

Proof. Consider the energy 

1 1" 1 ~ [w,l" 
H ( w ' f v ) = - - f J w l 2 - T I w ' [ 2  + T  [w''[2 + - 4  

1 

where [w[ 2 = f ]w(r 012 de is the square of the L 2 norm. We compute: 
0 

d 
-yi H(w, r = 1;v[ 2 < O. 

Also, we have the elementary estimate 

/ 1 
H(w, r ~ -2-[[(w, w)ll~c if ]w' 12 ~ 1"/u, 

[--1"2/2u if [w' [z ~ 1"fit. 

In particular, ][(w, lb)l[x is a priori bounded for all t, so the flow is global in time 
from the local existence theory. 

Notice that H strictly decreases along any trajectory if e6 > 0. (Thus there 
can be no closed orbits.) Along any trajectory H(x(t)) decreases, so it converges 
to a limit, say H~,  as t -+  q- ~ .  From 

t d  i . t  [ i  
H(x(s)) - -  H ( x ( t ) )  : - -  _ J - - ~  H ( x ( t ) )  d t  ---- e~ J [ ~,(z)12 dr, 

we see that ~ satisfies a Cauchy condition, so it converges in L 2. If  1" < =2, then 
the estimate [w"] 2 ~ ~2 [w,]2 shows that 

H(w, >= I 12 + 
1") 

----T--- Iw'12 0. 

Now since H is strictly decreasing, and H ~ 0, ~ converges to 0 in L 2. Also H 
must converge to 0 so from the above inequality, w' -+ 0 in L 2. From the original 
expression for H, w ~ 0 in H 2. | 

For 1" > ~2, F~(x) will generally converge to one of the stable fixed points. 

Proposition A.5. The flow of ( l )  on X•  S ~ is global in time for any e > O, ~ > O. 

Proof. The same energy function has 

--~ H(w, rio = --e6 ]fi; ]2 + (e cos o~t) f(~') lb(r b) de , 

which decreases for I/v[ 2 large (by the Schwartz inequality) and so [](w, rb)[[~: 
is again bounded uniformly for all time. | 
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This completes the details of hypothesis 1. (Similar results were obtained for a 
slightly different equation in HOLMES [1979a].) We have already checked hypo- 
theses 2-5. 

Appendix B. The Birkhoff-Smale Homoclinic Theorem 
in Infinite Dimensions 

The goal of this appendix is to outline the proof  of theorem 2 for a C ~ diffeo- 
morphism P:X-+ X where X is a Banach space. Let p E X be a fixed point of P 
that is hyperbolic; specifically assume that a(DP(p)) is the union of two compact 
sets not meeting the unit circle. In fact, assume the piece exterior to the unit circle 
is a single point. Let W~(p) and WS(p) be the corresponding unstable and stable 
manifolds, so W"(p) is one dimensional and WS(p) has codimension one. Assume 
q E W~(p) f~ W'(p) is a transverse homoclinic point. We wish to show that there 
is an integer N such that pN has an invariant set A such that pN restricted to A 
is conjugate to a shift on two symbols. 

We shall only outline the argument since many of the details are similar to 
the two dimensional case. The plan is that due to CONLEu & MOSER. The reader 
wishing to reconstruct all the details should consult MOSER [1973], Chapter III. 
(Some notes of DAVID RAND were also helpful.) 

Abstract Shoes 

Let Z be a Banach space and let Q C Z •  denote the unit box: 

Q = { ( x , y ) E  Z •  i [IxlI <= l , O ~  y ~  l). 

Fix a number /Z, 0 < / Z <  1. A map u : B = ( x E Z ]  []xll =< I ] ) - + R  is called 
horizontal (or/z-horizontal) if 0 ~ u(x) < 1 for x E B and if l U(Xl) -- u(x2)] 
/z ][ x~ --  x2 II for x~, x2 E B. Let ~ (or ~((u) denote the set of such maps. For  u~ 
and u2 in ~ satisfying 0 =< u~(x) < Uz(X) =< 1 let 

H = ((x, y) E Q I ul(x) < y < uz(x)} 

and call such a set a horizontal strip. Its diameter is 

d(H) = sup (Uz(X)]-- ul(x)). 
xEB 

A vertical (or/z-vertical) curve is a map 

v:[0, 1 ] - + B  

such that X[ v(yl) -- v(y2) [[ ~ / z  [Yl -- Y21 for ya, Yz C [0, 1 ]. The set of all such curves 
is denoted 3e" (or 3e'v). A vertical strip is the closure of an open set V in Q bounded 
by open subsets of B • {0} and B x (1} and by vertical curves joining their respective 
boundaries. We set 

d(V) : sup II v~(y) -- vt~(y)[[, 
~,{3,y 

where (v~} denotes the vertical curves comprising the sides of V as described above. 
See Figure 7. 
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1 

U2 

U! 

Horizontal strip 

B,,fl} 

840} 

Vertical strip 

Fig. 7 

Lemma B.1. I f  H I ~ H 2 ~ . . .  is a nes ted  sequence o f  #-horizontal  strips and  i f  
oo 

d ( H  k) -+ 0 as k -+ (x~, then I~  H k is the graph o f  a i f-horizontal map.  
k l l  

Proof .  Let  u~ and u~ be the two functions defining H k. Then u~(x) - -  u~(x) --~ O. 
But by the nesting assumption,  uk(x) is increasing and u~(x) is decreasing, so they 
converge to, say, u(x). Letting k -+ e~ in lug(x1) --  uk(x2) [ <~ ff I[ x ,  - x2 II gives, 
the/z-horizontal i ty  of  u. | 

There is an analogous lemma for vertical strips. 

Lemma B.2. A if-horizontal  graph and a if-vertical curve intersect in exact ly  o n e  
point .  

Proof .  Let  u and v describe the/z-horizontal  graph and #-vertical curve respectively. 
Let  (x, y) lie on their graphs:  Then x = v(y) and y = u(x),  so x - -  v(u(x))  = O, 
and y - -  u(v(y))  ---- 0. Let  g(y)  ---- y - -  u(v(y))  so g: [0, 1] ~ R. Now if 0 --< y~ < 
Y2 ~ a, then 

lu(v(y2)) - u(v(y~))l  ~ ff Iv(y2) - v(y~) I ~ / z  2 ]y2 - Y~I 
and so as #2 < 1, 

g(Y2) --  g(Yl) = Y2 - -  Y~ + [u(v(y2)) - -  u(v(yl))] > O. 

Thus g is strictly increasing. However,  g(0) _--< 0 and g( l )  --> 0 so g has exact ly 
one zero. | 

By lemma B.2, there is a well-defined map 

Z:d&~ x 'r ->  Q" 

Define norms on ~r • ~e" and Q by 

II (u, v)II = sup In(x) l -F sup II v(y)II, 
x E B  yE[0,1] 

[[(x,y)l[ = IixI[ + ]Yl. 

Lemma B.3. Z is Lipschi tz  continuous with Lipschi tz  constant (1 - -  ff)-~. 
This is s traightforward (see MOSER [1973], p. 71). 
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Definition B.4. Fix numbers/Z and v satisfying 0 < # < 1 and 0 < v < 1. Let Ht  
and H2 be two disjoint/z-horizontal strips and V1 and V2 be two disjoint/z-vertical 
strips. Let 

~b:H1 L/H2 ~ V1 U V2 

be a homeomorphism satisfying 
(i) ~ (Hi )  = V~, i = 1, 2;  
(ii) horizontal (respectively vertical) boundaries of Hi are mapped onto the 

horizontal (respectively vertical) boundaries of Vi, i = 1, 2; and 
(iii) if H is a/z-horizontal strip in H~ L/H2, then for i ---- 1 or 2 

qb-l(n) A H i = I~ 

is a non-empty/z-horizontal strip satisfying 

d(ffI) <= v d(H) .  

Similarly, if V is a/z-vertical strip in V~ L/ V2, then for i = 1 or 2 

r n V, = P 

is a non-empty/z-vertical strip satisfying 

d(f/) <= ~ d(v) .  

Such a homeomorphism ~ is called a shoe. (One can allow i to range over a general 
set A; we chose i = 1, 2 for the present context.) 

The Smale horseshoe is a basic example of a shoe; cf. SMALE [1967]. 

Theorem B.5.  Let  $ be a shoe. Let  A = m ~pn( v 1 kl V2). Then A is a non-empty 
-- oO < n .< oo 

invariant set for  cb and dp I A is conjugate to the shift automorphism on two symbols. 

In particular, it follows that ~b has infinitely many periodic points in A and there 
is a point p 6 A whose orbit is dense in A. 

Proof of B.5. Let io, i_1 . . . . .  i_n be a sequence of n + 1 O's or l's. Define Hi ...... i_n 
in terms of sequences of length n inductively by 

n i o , i _ l , . . . , i _ n  : n i o  A cb-l(ni_,,...,i_n). 

Thus Hio,Lt,...,i_n is/z-horizontal of width :<C.  constant. If i ---- i0, i_1, i_2 . . . .  

is a (one sided) sequence of O's or l's, then 

oo 

H i -  = n n i o , i  l , . . . , i_ n 
n=O 

is the graph of a/z-horizontal map by lemma B.1. Similarly if i + =i~, i2 . . . . .  
define Vil,...,i ~ by 

~,,....i, = Vii n r 

and obtain the/z-vertical curve 
oo 

V i +  : [ ~  Vil , . . . , i  n �9 
n = l  
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If  i = . . .  i_2,  i _ l ,  i0, i~,/2 . . . .  is a bi-infinite sequence, then by lemma B.2 V/+ 
and Hi_ meet in precisely one point, denoted r(i). [Lemma B.3 implies ~ is con- 
tinuous from (0, 1} z to Q.] Thus z: {0, 1} z --> A and z-~o 4~o ~ is shift automorphism 
by construction. ! 

Sector Bundles 

Assume that  4> in definition B.4 is C 1. We now give a condition that  implies 
property (iii) in that  definition. 

Definition B.6. Let 0 < 2 < 1 and for (x, y) E Q, let 

S~(x, y) = {(~, ~) ~ Z •  I I[~J[ < 2 [~ I} 

and 
S/(x, y) = {(~, ~) ~ / x a  I r~[ <,~ II~ll}. 

If  R is a closed subset of  Q, we call 

S~ = k,] S"(x, y ) a n d  S~ = kJ S~(x, y) 
(x ,y )ER (x,y)ER 

the unstable and stable 2-sector bundles over R. 
Consider the following condition on 4>: 

1 
(iii)' There exists a/~, 0 < # < -~- such that 

(a) the unstable (respectively stable)/~-sector bundle over H1 kJ H2 (respec- 
tively V~ kJ V2) is mapped to itself by d4~ (respectively d4~ -1) and 

(b) if (Xo, Yo) ~ Hi for i = 1 or 2 and (~o, ~7o) C S~(xo, Yo), then I~h I ~ #-a [~/o I 
where (~l ,~h)=dch(xo,  Yo)'(~o,~o), and if (xl, y l ) ~  Vi for i =  1 or 2 and 
(~1, ~1)~ S~(xl, YO, then II~:oll > #-1 II~l[. 

Condition (b) says that vectors in S~ are vertically expanded by a factor #-1 
by d4~ while vectors in S~ are horizontally contracted by a factor #_1. 

Proposition B.7. Let 4) satisfy (i) and (ii) of definition B.4 and be C a. Then (iii)' 
implies (iii). 

Proof. Let >, be the graph of a/~-horizontal map in H; and let 7'  = ~ F~ V: where 
i , j  are 1 or 2. Consider qb-l(y'); we claim it is the graph of  a/~-horizontal map. 
See Figure 8. Because the boundaries of  //j and Vj correspond under 4, 4~-a(V ') 
covers all of  B. Also, if v -- (~, ~/) is tangent to ~', then I~]] ~ / ~  ll~ll because ~' is 
,u-horizontal. Thus by (iii)' (a), the same is true of vectors tangent to 4~-a(~'). 
Thus, by the mean value theorem, if (xl, y~) and (x2, Y2) lie on 4~-10,'), then 
flY1 -- Y211 <=/z IIx, -- x211. Thus <p-~(~,') is the graph of a #-horizontal map. This 
implies the/~-horizontality of / - )  in B.4(iii). 

It remains to check the condition on the diameters. Let Pl and P2 be points 

on different horizontal boundaries o f / ~  = 4>-1(H) ~ Hi = 4~-1(H~ Vi) with the 
same x-component.  The image of the #-vertical segment joining pa and Pz is a /z  
vertical curve. Let Z1 = q~(Pl) and Z 2 = 4)(p2). By B.3, I[ Z1 -- Z2 [l ----< (1 __/~)-1 d(H). 
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B 

Fig. 8 

Hi 

Let  p(t) = (1 - -  t) pl -k P2 and Z(t) = cb(p(t)) ---- (x(t), y(t)). Since p(t) is vertical 
(iii)'(b) gives [YI =>/~-1 l,bl _ [[pl _ p2 [[ > 0. Thus  ~ does not  change sign, so 

1 

[tPl --P2[[ ~ f Iyl dt = / ~  [y(1) - y ( 0 )  I ~ / ~  [[z1 - Z2[[ ~ p ( 1  _ /~ ) -1  d(H). 
0 

This verifies d(~l) ~ v d(H) with ~ = #(1 -- /~)-~ ; since 0 < # < 1/2 we have  
0 ~ v ~ 1. The  assertions for  vertical strips are similar. | 

We remark  that  if  4) is sufficiently close to a vo lume preserving m a p  (which 
happens  in our  example  for  e small), then A is actually hyperbol ic  for  4'. 

Homoclinic Points 

N o w  we apply  the machinery  just  developed to prove  theorem 2. In t roduce  
local coordinates  (x, y) near  p, for  x in a ne ighborhood  of  0 in a Banach  space Z 
and  y in a ne ighborhood  of  0 in R such that  WS(p) is the codimension 1 submani -  
fold y = 0 and WU(p) is the curve x = 0. 

Write 
P(x, y) = (u(x,  y), v(x, y)). 

Then invariance of  WS(p) and WU(p) implies U(x, 0) = 0 and V(0, y) = 0. Thus,  
a t p  = (0, 0), 

o, 0 0 :(o ~ t 
where A:Z  ~ Z and B E R. The spectral hypotheses  imply that  we can define a 
n o r m  on Z such that  [IAII < 1 and can assume B > 1. (See, for  example,  
MARSDEN & McCRACKEN [1976], Sec. 2A.) Let  Q~ = ((x, y) I IIxLI < a and  lYl < a}. 
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Near q points can similarly be coordinatized by pairs of points in WS(p) and 
W"(p) which can in turn be assumed to be linear near q. Relative to these coordin- 
ates, let R be defined in a manner like Qa but on one side of  WS(p) (which makes 
sense as W~(p) has codimension 1); i.e. relative to coordinates near q, 

R = {(x, y) [ IIxll < b, llyll < b, y ~ 0}. 

We can choose b sufficiently small so that for some integers/, m > 0 

A = P-re(R) C Q= and B ---- Pt(R) C Qa; 

I and m are large enough so that pt(q)(  Q, and p-m(q)E Q,. We shall locate the 
desired set A inside B (or, equivalently, inside A). See Figure 9. The rectangle R 
is chosen small enough and l is chosen large enough so the sides of A and B are 
C r close to the coordinate planes. 

1 
One now proceeds in several steps; fix a/~, 0 < / z  < -~-. 

Fig. 9a. ~2 

b 

Fig. 9b. R3 

wu(p) . r .  

r--- I w (p) / 

I 
. . . . . . . .  , - I  

Lemma B.8. There are disjoint horizontal strips H1 and H2 in B and an integer n 
such that U1 = P"(HI) and U2 = P"(H2) are disjoint vertical strips crossing A 
from one side to the other. 

The idea is simply to take horizontal strips in B and map them repeatedly 
forward (keeping track only of things in Qa). The spectral hypothesis implies that 
horizontal distances shrink and vertical distances stretch. The details in MOSER 
[1973, p. 186-188] are readily adapted to the present context. 

Lemma B.9. 111 = pm+I(uI  f'~ A) and II2 = pm+t(Ue f'~ A) are disjoint vertical 
strips in B. 

Here we follow our vertical strips in A out to R and back to B. The verticality 
is maintained if R is small enough. Shrink B horizontally so that P" maps Hi 
homeomorphically onto V/, i = I, 2. 

Lemma B.10. Let cb = p,V where N > n + m -r l, is sufficiently large, restricted 
to 111 LI H2. Then r satisfies condition (i) and (ii) of B.4 and (iii)' following B.6. 
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This is now s t ra igh t forward  using the given spectral  condi t ions  on DP(p). 
Again,  see MOSER [1973] for  details .  Thus  we have set up  a map  4~ to which Theo-  
rem B.5 applies,  p roduc ing  the desired set A. 
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