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1. Introduction 

Superfluid helium exhibits some of the most fascinating effects known to 
continuum physics. Standard texts such as WILKS [1] and PUTTERMAN [2] may 
be consulted for comprehensive surveys. The generally accepted theory describing 
the most fundamental aspects of  the behaviour of this liquid is that due to LAN- 
DAU [3]. At the foundation of  this theory is a notional mixture of two ingredients 
referred to as normal fluid and superfluid. As LANDAU has emphasized, this 
mixture is not of  the conventional kind. Since all the atoms present are helium 
atoms, distinct constituents cannot exist independently of  each other. Some 
motivation for the mixture idea may be found from quantum statistical mechanics 
in terms of the Bose-Einstein condensate, but we consider here only those appro- 
aches which may be directly related to the principles of  continuum mechanics. 

A macroscopic thermodynamic framework for the LANDAU theory has been 
presented by KHALATNIKOV [4]. In this work the densities 9~, 9, and the velocities 
v n, v s of the normal fluid and superfluid are introduced in a plausible manner, 
but the plausibility stems in some measure from conventional mixture ideas. 
Aware of the dangers of  unwarranted assumptions arising from this source, 
PUTTERMAN [2] gives KHALATN1KOV'S treatment a different emphasis. He shows 
how the postulates of the theory may be stated using conventional single-fluid 
variables with the addition of just one vector field which he takes to be v s. Having 
developed the theory he is then able to define 9n, 9s, v" using thermodynamic 
functions and the relations 

9 = 9n + ~s, 9v = 9nv n + 9sv s, (1.1) 

where 9, ov are the density and momentum of the whole fluid. By this means he 
shows that the LANDAU theory is the only theory of a certain class, and the mixture 
model upon which it is based is not essential to the derivation of the equations; 
the model may be viewed only as a convenient interpretation of some of  the 
variables. Although this result is reassuring, some investigation of the class of 
materials studied by PUTTERMAN is desirable. 
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Now in modern theories of continuum mechanics the classification of  a material 
is based upon the nature of  its constitutive equations (e.g. functional or rate- 
type) together with the variables appearing (e.g. deformation gradients or velocity 
gradients). Our objective here is to examine a general class of  materials, defined 
in this sense, of which superfluid helium is a special case. We follow PUTTERMAN 
to the extent that we use conventional single continuum variables together with 
one generalised velocity v s, and we postulate a rate-type equation for this velocity, 
relating the superfluid acceleration to a certain 'driving force'. However, we do 
not restrict this driving force to be the gradient of  a scalar potential as PUTTERMAN 
does. The use of the scalar potential leads, subject to the conditions of Kelvin's 
theorem, to the condition 

curl v s : 0, (1.2) 

and gives the LANDAU theory a deceptively simple appearance. When the whole 
set of  independent variables required for such a driving force is examined a rather 
complex situation emerges. Although LANDAU regarded (1.2) as essential, we can- 
not raise this condition to the status of a constraint because it is not invariant. 

We present here a set of  constitutive equations, of sufficient complexity, and 
containing a sufficient number of independent variables, to encompass the non- 
dissipative LANDAU theory in a logical and systematic manner. We consider the 
restrictions imposed upon these equations by the Clausius-Duhem inequality 
using techniques similar to those of  COLEMAN • NOEL [5]. These restrictions turn 
out to be severe, and yet leave the theory a little more general than LANDAU'S. 

This work extends that of ATKIN & FOX [6, 7]. In these papers we took the 
constitutive equations for the conventional variables to be in the form directly 
suggested by the LANDAU equations, and we then proceeded to examine the most 
general superfluid equation of  motion consistent with entropy balance. The result- 
ing non-dissipative theory was shown to reduce to LANDAU'S if certain relations 
between parameters were assumed. Further discussion of  related continuum 
approaches to superfluid helium will also be found in these papers. 

2. Balance laws and entropy inequality 

Let 0 be the mass density of the liquid, vi, bi the components of  velocity and 
body force per unit mass, and aij the cartesian components of  the stress tensor. 
Then the equations of  mass and momentum balance have their usual forms 

DQ 
D--7 ~ ~Vk,k : 0, (2.1) 

Ol)  i 
~ : (Yji,j ~ -  Qbi, crij = CTji , (2.2) 

where D/Dt denotes the material time derivative, a comma followed by a suffix 
denotes partial differentiation with respect to the current cartesian coordinates 
Xg, repeated suffixes implying summation. 
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We postulate an energy balance equation which differs slightly from that used 
for conventional fluids, and the various terms appearing are most easily explained 
if the equation is first presented in integral form. Suppose that an arbitrary set 
of material particles of the fluid occupy a region V bounded by a surface S in 
the current configuration at time t. Then we assume 

d 
dt f (�89 q- OU) d V  q- ~ f (qz + l i  - -  r Hi d S  : V f o(bivi + r) dV.  (2.3) 

In this equation �89 + p U denotes the total energy density per unit volume. 
(We avoid the use of the term 'internal energy' here because of  our later assump- 
tions that U depends on a velocity field.) The flux of  energy across S arises from 
the rate of working of  surface traction together with the flux of  q -k I. Here q 
denotes the heat flux and the vector l allows for an additional mechanical energy 
flux. The introduction of 1 is mathematically equivalent to the assumption, 
developed by MOLLER [8], that the entropy flux may differ from q/T,  where T 
is the absolute temperature. This equivalence has been pointed out by GURTIN 
& VARCAS [9]. Finally, r denotes the rate of heat supply from the external world. 

We use the Clausius-Duhem inequality in the conventional form 

d 
dt f os dg + f (qi/T) ni a s  - -  f or/T d V  ~ O, 

27 V 
(2.4) 

where S denotes the entropy per unit mass. The point forms of (2.3) and (2.4) 
may be written 

D U  
" ~  -~- li, i ~- qi, i --  ~o Dij = or, (2.5) 

where 

D S  giqi ~ O, (2.6) o T - - ~  + qi,i --  O r --  - -~  ~-- 

g i  : Ti,  Dij : � 8 9  + vzi). (2.7) 

By use of  the Helmholtz free energy F = U --  TS, (2.5) and (2.6) may be combined 
to give 

D F  D T  giqi > O. (2.8) 
--O - ~  - -  O S - ~  - -  li, i -}- ~ij Do T --=-- 

3. Constitutive theory 

Many of  the novel phenomena observed in superfluid helium are believed 
to arise from the motion through the fluid of  certain microscopic excitations 
known as rotons and phonons. In phenomenological theories account is taken 
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of this motion by the introduction of an additional vector field. Here we postulate 
the existence of a velocity field v s which we later identify with the variable common- 
ly known as the superfluid velocity. We suppose that under a change of frame 

x* = Qu(t) xy q- ci(t), (3.1) 

where Q(t) is an orthogonal tensor, the vector v s transforms as an absolute velo- 
city: 

vsi * = aijv] -t- f2ij(x? - -  Cj) -Jr- Ci, (3.2) 

where 

ff2ij : QikQjk" (3.3) 

We further postulate that v s satisfies an equation of motion of the form 

Dsv~ 
Ot = f~ -}- bi" (3.4) 

where Ds/Dt denotes the convected time derivative based on the velocity field vs: 

D J D t  = O/Ot q- v~i O/Oxi. (3.5) 

The vector f is assumed to be objective, transforming as 

fi* ~- QofJ (3.6) 

and is to be determined by a constitutive equation. The appearance of the body 
force b in (3.4) ensures the correct invariance of  the energy equation when the 
constitutive equation for F contains a dependence on v s. This starting point is 
similar to, but more general than, that of  PUTTERMAN [2], where the driving force 
.f is assumed at the outset to be the gradient of  a scalar potential. 

Under change of frame (3.1), the velocity v can be shown to have the same trans- 
formation property as that postulated for v s in (3.2). Hence, the vector 

s = v - -  v s (3.7) 

is objective, transforming according to 

s* = Qosj. (3.8) 

We now postulate constitutive equations in which F, S, qi, li, f i ,  aij depend on 
O, T, si, hi, gi, n i j ,  Nij, where 

hi = O,i, Mij : l(si, j @ sj, i) , N i ]=  �89 j - -  Sj, i ) .  (3.9) 

The inequality (2.8) may now be written 

OF D o OF Dsi OF Dhi OF Dgi OF DM~i OF DNgjt 
--O ~ " ~  q- Os-i D'-~ -t- Oh"--~. D-~ -]- Og-"-i 0-'-7 q- OM U D---~ ~- ON U " ~  '~ 

OF } D T  
--O ~ +  S ~ --  l i i ,+ (roDo -qig-'2>-r --  O. (3.10) 
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Using (3.5) and (3.7) we can show that 

Dsi Dv i Dsv~ 
Dt  Dt  Dt  SjVi'j -~ SjSi'j' (3.11) 

and using (2.2) and (3.4) we deduce 

Dsi 
- -  l ( r  , 

Dt f i  -~- ~ ji,j - -  sjvi,y + SySi j. (3.12) 

Consider now thermodynamic processes in which, at an arbitrary point and 
instant of time, ~, T, si, vi and the gradients of these quantities take prescribed 
values. Then Dr is determined through (2.1), and Dsi/Dt  is determined through 
(3.12) and the constitutive equations. However, the material time derivatives of  
hi, gi, Mo, No, T, appearing in (3.10) may be chosen arbitrarily and independently 
of~, T, si, vi and their gradients. Since (3.10) must hold for all admissible thermo- 
dynamic processes, we deduce 

0F OF OF OF OF 
--  O, OM o --  O ---;-;~vij --  O, S --  OT" (3.13) 0gi 

Since F must be invariant under change of frame, we must have therefore 

F = F(Q, T, s2), s 2 = sisi. (3.14) 

To proceed further with the analysis of (3.10) some simplification of the con- 
stitutive equations is desirable. Here we study a particular class of constitutive 
equations which keeps the algebraic manipulations down to a reasonable level 
while retaining sufficient generality to include the traditional LANDAU theory as 
a special case. We consider constitutive equations for % li, f i ,  aij which are linear 
in the gradients hi, gi, Mo, Nu. We restrict all equations to be at most of order 
two in si and its gradients with the exception of that for li which is allowed to 
be of order three. The motivation for the latter exception may be seen from (3.10) 
where li is the only variable not occurring in a product. Bearing in mind these 
restrictions and the requirements of frame indifference we find that F takes the 
form 

F = +o(Q, T) -k �89 T)s  2 , (3.15) 

and 

fi : ~ + ~x2hi -~- ~162 -]- ~162 -~- or (3.16) 

li = fl,si -k fl2h, -k fl3g, -]- fl4sjMu -k flssjN o, (3.17) 

qi : ~'lSi -~- ~2hi -~- ~'3gi -~- ~4sjMu -[- ~'5sjNu, (3.18) 

a O = (rlsisj -}- az(hisj -}- hjsi) q- a3(gisj q- gjsi) q- tr4M U --P~u" (3.19) 
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The coefficients in (3.16)-(3.19) depend on 0, T, s 2, sigi, sihi, Mii , although in 
some cases the dependence on these variables is limited by the restrictions mention- 
ed above. Explicit forms for the coefficients are given below. Substituting (3.15)- 
(3.19) into (3.10) and making use of (2.1), (3.12) and (3.13) we find 

OdPlSi(O~lSi -j- 0r i -~- o~3g i -~- or - -  OdplSiSjMij 

- -  (81Si -~- 82hi + fl3gi -~- 8 4 s j g o  -1- 85sjNo),i 

- (gi/T) {71si + 72hi + 73gi + 74sjMo + 75sjNo) 

- -  t~ISi(0"1SiSj -~ (72(hisj + hjsi) 31- 0"3(gisj + gjsi) + 0"4Mo - -  POij},) 

+ ((04~1 + al) s~sy + 0"2(hisj + hjsi) + ,r3(g~sj + gjsi) + a4Mij 

q- {05(8F/00) -- p) ~5o} D,j ~ O. (3.20) 

Again the inequality must be satisfied by all admissible thermodynamic processes. 
Considering first those in which Do, Mo, hi, gi, si, N o, Nij,k may be varied arbitra- 
rily and independently, we may deduce 

e~bl .qt_ O' 1 = O, 

0"2 = 0"3 = 0"4 = O, 

p = 05 ~F/~o, 

8 s : O ,  7 s = O .  
(3.21) 

Bearing in mind the restrictions that we have imposed on the constitutive 
equations, we may write 

0r 1 = 0r -~ Or i -~- o~12sih i -~ or , 

0r 2 : 0620 -~  0C21S 2 , (3.22) 

0r 3 = 0(,30 -~ 0r 2, 

81 = 81o + 8 . s  2 + 812sigi + 813Szhi + 814M.. 

82 = 820  -~ 821 $2 ,  (3 .23 )  

r = 830 + 831s 5, 

71 = 71o + 711sigi + 712sihi + 713M., 

72 : 720 + 721 s2, (3.24) 

73 : 730 -}- 731 $2 ,  

where all coefficients of the form ~0, 8o, 7a, together with ~4, o~5, 84, 85, 74, 7s 
depend only on 0 and T. Using (3.15) and (3.21)2 we find 

P = Po + 01 s2, (3.25) 

where 

Po = 02 ~(~o/~0, p~ = 102 ~ b l / ~ 0 .  (3 .26 )  
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Using (3.23) we see that  the only terms on the left-hand side of  (3.20) involving 
the second-order gradients o f  9, T, si are 

--fll2SiSjgj, i - -  fll3Sisjhj, i - -  ~14siMjj,  i 
(3.27) 

Since these second-order gradients may be varied independently we deduce 

i l l2 = ['~13 = i l l4 = f12 = /~3 = f14 = 0. (3.28) 

Using (3.21)-(3.28) in (3.20) we find 

))4, 
{--04,1 - r  ~4,,or - -  4, ,a l  4- 2p14,1 - -  2fl, , }  s, s j M  o - -  - ~  s,gjM~j 

-~- {--f120 -- {~11 $2 -- 4,20'1 $2 + ~4,1&;23 $2} m i i  - -  T~113 ~gjlvlii'' 

{ ~10 ~P0 ( ~0"2 0pl ~/'Jl 2 \ ] 

?fllo Ylo ~Po 
+ 04,1O,~o - eT -T- + ~ 4,2 

( ~0'1 ~P2 ~f121 / } 
+ 04,1e~32 --  4,2 - ~  + 4,1 ~ + ~4,1oql --  ~T ] s2 Sigi 

g2 2 gihi 
+ or 2 - (~,3o + ~,~1s2) T - (~'~o + ~,22s ) T 

722T I, .2 _ "-T-9"12 sigisjh.i => 0. (3.29) 

Considering now the independent  variations of  si, hi, gi, Mu, we deduce the 
following relations: 

fl~o = 712 = 7~3 ---- 72o = ) ' 21  = ?', = O, 

4,10r ~ 0, ~'30 ~- 0, )"31 ~ 0, ]711] ~ --731, 

--04,1 + ~176 --  4,xal + 2p14,1 --  2fltl = 0, 

/t12 + 4,2a2 --  o4qc~23 = 0, 

epo 
0C~2o + ~ = O, 

~Po ?'20 
q4,2~162 + 4,2 cY-'-T T - -  0, 

~al ~P2 eft12 
q4,2o~2 - 4'2 ~ + 4'1 7 0  + ~4,~oq~ eq 

�9 ea2 ep2 ~3fl2 2 
Q4,20('31 -- ~)1 -~ -}- 4,1 ~ ~- q4,10r 0T 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

- -  --  0, (3.36) 

- - - -  0, (3.37) 
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and (3.29) reduces to 

g2 711 
Q~IOr $2 - -  (730  "Jr- ~231 $2) T T (sigi)2 ~ O. (3.38) 

4. Reduction to Landau's theory 

The preceding analysis has placed a number of  severe restrictions on the pro- 
posed constitutive equations (3.16)-(3.19). However, as it stands, the theory is 
still more general than that of  LANDAU. We consider now the further relationships 
between the coefficients which lead to LANDAU'S non-dissipative equations. 

For a non-dissipative theory we must take 

0610 = 711 = 730 = 731 = 0 .  (4.1) 

In addition we take 

0611 = 0~12 = 0613 = 0,  0r 4 + o~ s = 0, 710 ---- O-TS~I. (4.2) 

With these assumptions and in the absence of heat supply the energy equation 
reduces to 

DS 
o~ --ff[ + (oScbls~).i : 0. (4.3) 

By use of  the continuity equation, this may be written 

--~ (oS) + (eS(v, + d&s~)),, = O, (4.4) 

and so ~S(v + 4,1s) is the flux of entropy measured per unit area of  elements 
of  surface fixed in space. 

Now one of the most basic observations concerning superfluid helium, which 
has a direct bearing on the two-fluid model, relates to the flow of the fluid through 
a system of very fine channels known as a superleak. KAPITZA [10] showed that 
the total entropy content of  a reservoir feeding helium into a superleak showed no 
measurable change. 

This motivates the definition of a superleak as a region in which 

v + ~bls = 0, (4.5) 

and suggests a transition to two-fluid formalism. I f  we wish to view the fluid as 
a mixture of  normal fluid and superfluid, and regard a superleak as a region in 
which only superfluid flows, then in such a region v n = 0, or using (1.1)2, 

~ov - -  o-sv ~ ----- 0. (4.6) 

Using (3.7), (4.5) becomes 

(1 + ~bl) v - -  ~blv ~ = O. (4.7) 

In view of (1.1)1, (4.6) and (4.7) coincide if we make the identification 

q~l ---- O-,/O-,. (4.8) 
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The whole theory now involves only v s and ~b~ in addition to conventional 
variables, and the identification (4.8) means that all the terms appearing in the 
governing equations may be written in terms of the two-fluid variables v s and 
es/Pn. The relations (1.1) and (4.8) may be used to provide definitions of  r r 
v n in terms of ~ if required. We have therefore reduced the theory to the set of  
field equations (2.1), (2.2), (3.4), and constitutive equations (3.13)5, (3.15), (3.21)2 
together with special forms of (3.16)-(3.19) which may now be written 

: --#,i, (4.9) 
where 

,u : f q- p - -  �89 + (v 7 - -  vl) (v7 - -  v]),  (4.10) 7 

(4.11) 

qi : p~TS(v7 - -  vS), (4.12) 

% ---- --pc~ o O~'~ ~ vD (v] v~). (4.13) 

This set of equations constitutes the Landau non-dissipative theory. 
In conclusion we may say that the Landau non-dissipative theory is a special 

case of a fluid in which the independent variables of  the constitutive equations 
are density, temperature, and a generalised velocity field (together with its gra- 
dients) satisfying a certain rate-type equation. An observed property of a superleak 
may be formalised to provide a basis for the two-fluid description. Further study 
may show how other observed properties may be treated similarly to motivate 
the restrictions (4.2). 
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