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Let f2 be a bounded domain in IR" with a piecewise smooth boundary 01L 
Points in 12 are denoted by x = ( x l ,  ..., Xn) and the time variable is denoted by Xo 
or t. Consider the non-linear hyperbolic boundary-initial value problem 

u . - ~ T Z u + f ( x ,  u)=O, (0.1) 

u=0  on so ,  (0.2) 
u(x, 0)= U(x), u,(x, 0)= V(x). (0.3) 

In this paper the question of the existence of global weak solutions of (0.1)-(0.3) 
is investigated. 

The method of analysis of (0.1)-(0.3) is based on the energy integrals of (0.1). 
The "kinetic" and "potential" energies associated with (0.1) are the funetionals 

K ( u ) = ~ � 8 9  J ( u ) = ~ { � 8 9  (0.4) 

respectively, where F is an antiderivative of f :  F, =f.  Suppose that J has a local 
minimum at u =  Uo(X). Then, in analogy with the local minimum of a potential 
function for a mechanical system with a finite number of degrees of freedom, we 
may imagine a potential well W situated at u = Uo in function space. If U lies in W 
and if the total energy of the initial data is less than the depth of W then we expect 
that (0.1)-(0.3) has a global solution. 

In this paper it is shown that under certain conditions on the nonlinear t e r m f  
these conjectures are correct. The main result is the following theorem. 

Theorem 1. Let the functional J have a local minimum at u = Uo (x). By a simple 
transformation (see section 2) Uo may be translated to the origin, and it can be 
assumed that Uo-  0 and that f (x, O) = F(x, O) = O. Let the non-linear term f ( x ,  u) 
satisfy the assumptions ( i ) -  (vii) of section 1. Then there is a positive number d given 
by (3.3) and a potential well W of depth d given by (3.4). Furthermore the boundary- 
initial value problem (0.1)- (0.3) has a global weak solution (in the sense (2.2), (2.3)), 
provided that Ue W and that the total initial energy is less than d: 

f v  2 1" [av~ ~ 

The weak derivatives u t and u l, i=  1, ..., n of the solution u satisfy the energy 
inequality 

r ut2 . ul2 V 2 1 " U)~ d x .  (0.5) 
J ~I. i = 1  
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The assumptions (i)-(vii) on the non-linear term f are overly restrictive, but 
they allow us to apply the method of this paper under a single set of conditions. 
In section 6 it will be seen that in some cases these conditions can be relaxed. 

An immediate consequence of the variational formulation of (3.3) of d is that 
the depth of W decreases as the size of the domain increases. Thus the boundary- 
initial value problem (0.1)-(0.3) is relatively less stable on larger domains. On an 
infinite domain equation (0.1) may not have a global solution for any set of 
initial data. 

Theorem 1 is proved by approximating the initial value problem (0.1)-(0.3) 
by non-linear systems of ordinary differential equations. The global existence of 
the solutions of these systems is proved by using the energy equality K+J=cons t .  
which is valid for finite dimensional systems. Compactness theorems and the 
diagonal method are used to select a convergent subsequence from the sequence of 
approximate solutions. The limit of this subsequence is then shown to satisfy the 
boundary-initial value problem (0. I)-(0.3) in weak form. The main difficulties of 
the approximation method are in establishing the existence and compactness of a 
potential well associated with a local minimum of J. A convergence theorem 
(Lemma 4.2) must also be proved. 

Equations of the form (0.1) arise in diverse areas of mathematical physics. See, 
for example, the references in [7]. Furthermore, the treatment of the initial value 
problem (0.1)-(0.3) may provide a model for the investigation of other types of 
non-linear partial differential equations of evolution. For example, the method 
of approximating a non-linear system of partial differential equations by non-linear 
systems of ordinary differential equations has been used by HoPE [4] in his investi- 
gation of the Navier-Stokes equations. Thus the approach appears to be a powerful 
and elegant one which should be applicable to a wide class of semi-linear partial 
differential equations or systems of evolution whose solutions formally satisfy an 
energy inequality. 

In [3] the existence of a strong solution of (0.1)-(0.3) for some finite time 
interval 0_<t _<6 is proved by an iteration method. This method allows one to 
establish a regular (differentiable) solution for the given time interval, but it does 
not give any insight into the existence of a global solution of (0.1)-(0.3). On the 
other hand, KELLER [5] has given examples of equations of the type (0.1) for which 
the solutions diverge to infinity in a finite time interval for certain initial data. 

In [7] the non-linear equation (0.1) with the presence of the damping term 2~ut 
is discussed. The existence of a strong solution is proved there using a perturbation 
technique. It is assumed in that paper thatf(u) is analytic; but no growth assump- 
tions are made on f,  and f may even have singularities on the real axis. Further- 
more it is shown that the solution u(x, t) tends uniformly to the stationary point 
Uo(X) as t tends to infinity. The initial data is assumed to lie sufficiently close to 
the stationary point Uo; but no precise description of the admissible initial data is 
given. 

One of the features of the approximation method of the present paper is that 
it is possible to specify precisely that class of initial data for which (0.1)-(0.3) has 
a global solution. The assumption of analyticity o f f  can be dropped, but assump- 
tions about the asymptotic behavior o f f  as l u l ~  oo must be added. On the other 
hand, the solutions obtained by the approximation method are weak solutions. 
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The actual construction of a solution of (0.1)-(0.3) is not discussed until 
section 5. In sections 1 - 4 the problem is restated in weak form, and the necessary 
concepts and analysis are developed. In section 6 some specific examples are dis- 
cussed. 

1. Preliminaries 

In this section we introduce some notation, basic ideas, and important lemmas 
which will be needed in the course of the paper. 

The volume element of integration in IR ~ is denoted by d x = d x l . . ,  dx~. In 
case n =  1, 12 is an interval on the real line. It is usually assumed that n=  1, 2, or 3, 
although some results hold for higher dimensions as well. The closure of O is 
denoted by ~. The boundary gO is assumed to satisfy some sort of regularity con- 
dition, such as the cone condition [3]. 

For any T > 0  let f2r=I2 x(0,T) and let f2~o =~2 • (0,dO). The volume element 
of integration in space-time is denoted by dx dxo. 

The partial derivatives of the function u(x, t) are denoted by 

du au du 
~3x~'i=0 . . . . .  n, where aXo at  

For a function u(x) defined on f2 we introduce the norms: 

1 

Ilullp=($lulPdx) p, l<p<oo (1.1) 
D 

i=1 \ ox i /  

,u , (1.3) 

The class of measurable functions u for which Ilullp is finite is the Banach space 
L~(~). 

We now construct a space of functions with weak derivatives as follows. Let 
C~~ denote the class of C ~ functions with compact support in O. The comple- 

~ I tion of the class C~~ under the norm II II1, 2 is denoted by H . The Hilbert 
space/~l is a subspace of the Sobolev space W 1' 2 (f2). 

Let Ck(f~ -)  be the class of functions which are k times continuously differen- 
tiable on ~. If r/E C 1(O-) we have by an integration by parts 

dn I u ~ dx = - I  w, rl dx  (1.4) 

du 
where ueCg(f~) and w ~ = - - .  It is easily seen by the customary arguments [1] 

dx~ 
that for any ue/?/1 there exist functions wi, i= 1, ..., n such that (1.4) holds for 
any r/e C 1(O-). The functions wi are called the weak derivatives of u. The notation 

( d u  au ) 
g r a d u =  d x l '  " " '  b-x~ 
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will always be interpreted in the weak sense (1.4) where necessary. For  u~/~ 1 the 
derivatives appearing in the norms III III1 or  II 11~,2 are to be taken in the weak 
sense. 

The function space/2/1 consists of the class of functions u r L  2 (Q) which vanish 
on af2 (in the weak sense) and which have weak L2 first derivatives. 

We have the following inequality of S.L. SOBOLEV [8] for functions in/~1 : 

Lemma 1.1. For all u~[-t 1 
Ilull~ < C [llul[12 (1.5) 

where 1 <q<2n/(n-2)  /f n>  3 and 1 < q <  ~ if n=2 .  The constant C depends only 
on f2, q, and n. 

We also need to discuss functions u(x, t) with weak space and time derivatives. 
A class of test functions is defined as follows. We let 6 a be the class of all r/e C2 (0oo) 
which vanish on 0f2 and which vanish identically for sufficiently large t. The class 
6 e is called the class of test functions. We define Sgo to be the subclass of SP con- 
sisting of all q for which r/= r/t = 0 on the hyperplane t = 0. 

The function u(x,t) is said to have weak space and time derivatives us, i=  
0 . . . .  ,n,  if 

~u d x d x o = -  Iu, qdxdxo  (1.6) 
0 f~ 

for all qeSe o. The Sobolev space Wa'2(f2r) is the class of all such functions for 
which the norm 

+ ]+ 
is finite. 

Weak solutions of the initial value problem (0.1)-(0.3) lie in the closed sub- 
space of W 1' 2 (Or) which consists of functions which vanish on 0f2. This subspace 
is constructed as follows. Let ~1,2(f2r) denote functions u(x, t)~ C l(Or) with the 
property that u(x,t)=O on dr2 for O<t<T. Let ~l ,2(f2r)  denote the closure of 
~x,2(Or) under the norm [ u [ ~  2. For every U~I,Z(~"~T) (1.6) holds for every 
~l(x,t)~ 6at. In fact, if u~.~t,2(f2r) we may approximate u by a sequence {urn} in 
~1,2(Or) �9 Equation (1.6) holds for every Ume~l, 2(Or) and, passing to the limit, 
we see that (1.6) holds for u as well. 

The following imbedding theorem by Sobolev will be an important tool in 
constructing weak solutions of (0 .1) -  (0.3). 

Lemma 1.2. Let {Wk} be a sequence of functions in Wa'2(f2r) such that the norms 
I Wk I ~  are uniformly bounded as k tends to infinity. Then there exists a subsequence 
{Wk, } which is a Cauchy sequence in L 2 (Or). 

Thus bounded sets in W 1' 2 (Or) are compact in L 2 (Or). A proof of Lemma 1.2 
may be found in [1]. 

A sequence of functions {Wk} is said to have uniformly absolutely continuous 
integrals on O if given any e > 0 there is a 6 > 0 such that 

Slwkldx<~, k = l ,  2 . . . .  
E 

whenever meas (E)<  6 and E =  O. The following lemma can be found in [6]. 
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Lemma 1.3. Let ff~(u) be a non-negative function which increases monotonically as u 
tends to infinity and which satisfies the condition 

lim ~(u) = + o0. 
U-*cO U 

Let {w~} be a sequence of functions on f2rfor which the integrals 

T 

S S~(Iw~l) d x d t  
O f  J 

are uniformly bounded as k tends to infinity. Then the sequence {wk} has uniformly 
absolutely continuous integrals on O r . 

Lemma 1.3 will be used in conjunction with the following lemma. 

Lemma 1.4. Let lim wk(x , t )=w(x , t )  a.e. in Or and suppose that the sequence {wk} 
has uniformly absolutely continuous integrals. Then 

T T 

lim S ~ wk(x, t) ~p dx  dxo = ~ ~ w(x, t) ~p dx  dxo 
k ~ cO 0 f l  0 $~ 

f o r  all bounded measurable functions q~ on Or. 

The proof of Lemma 1.4 uses standard measure-theoretic arguments and will 
be omitted. Finally, we have 

Lemma 1.5. Let uk converge to u in L2(f2 ) and suppose that Ilukllp<A, k =  1, 2 . . . .  
for  p > 2. Then u k converges to u in Lq(g2) for  2 < q < p. 

Proof. By Fatou's lemma we see that Ilullp < A. For 2 < q < p we have by H6lder's 
inequality 

luk--uladx < (. luk--Ul"lUk--Ul a dx<[..(, l u k - u l " * d x ]  t/s [-~ [uk-ulP']  x/' (1.7) 

where ,t, fl, s, and t must satisfy 
1 1 

~ + f l = q ,  s + T = l ,  s > l ,  t > l .  (1.8) 

We take 

(-~-1-1) p -  1 p -  1 ~x=2 P - q  B _ = q - 2 ( P - q ]  s -  , t = - - -  
' \ p - l ] '  p - q  q - - l "  

Then the relations (1.8) are satisfied; and, furthermore, ~s=2  and fit <p.  There- 
fore the first factor on the right side of (1.7) converges to zero while the second 
factor remains bounded. Q.E.D. 

The solution of (0.1)-(0.3) will be constructed by expanding the solution in 
"normal modes" 

u(x, t)= ~ qi(t) ~bi(x ) . 
i = 1  

The functions {~ki(x)} are chosen to be the eigenfunctions of the Laplacian on ~2: 

V 2~k,+~i$~=0, ~ki=O on t912. (1.8) 
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By Gauss's theorem we have 

S (grad ~k,). (grad ~j) dx = S {div(~k, grad ~kj) - ~k, V 2 ~/j} dx 
I2 O 

(! .9) 
�9 t3~kj ds+pj~ki~bjdx=ll~6~ j 

by the orthogonality properties of the eigenfunctions. The functions 0r are in the 
class C~(~) and vanish on 0~. 

Listed below is a general set of conditions on the non-linear t e rmf(x ,  u) under 
which the approximation method will work to give an existence theorem for 
O. 1)- (0.3) in the neighborhood of a stable equilibrium of the potential. Most of 
the lemmas in sections 3 and 4 can be proved under more general assumptions or 
under assumptions of a quite different nature. These more general assumptions, 
however, vary from one lemma to the next, while the conditions below are in the 
spirit of a lowest common denominator. 

We assume that 

(i) f (x ,  u) is twice continuously differentiable in u for each fixed x e ~ .  

(ii) either F(x,u) is uniformly bounded below for x e Q  and - oo < u <  oo, or there 
is a constant N and a constant c, 0 < c < �89 such that 

c uf(x, u)-F(x,  u)<=g 

for all x e f2 and - oo < u < oo. 

(iii) the operator A = - V 2 +f~(x, O) 

with the boundary conditions (0.2) is positive definite. 

(iv) f.(x,O) is bounded and measurable on f2. 

(v) If n =  1 there is a constant Mp such that If~(x,u)l <M a if lul_---p. It follows 
that [f(x,u)l<�89 p2Mp if [ul<p. 

(vi) If n = 2 there are positive constants C~, C2 and q, 1 < q < oo, such that 

If~u(x, 

If(x, 

luf(x, 

(vii) If n = 3 there are constants C1 

IA.(x, 

If(x, 

luf(x, 

u)l~C, +C21ul q, 

u)l~C, +Czlul" 

u) l~c ,  +czlul  ~. 

and 6'2 and q < 3 such that 

u)l<C, +C2 lul' 
u) l<f l  +Czlul '+~ 

U) I ~ C 1  --I-C 2 lu I q+a. 

Note that the growth conditions onf (x ,  u) and uf(x, u) in assumptions (vi) and 
(vii) follow from the growth condition o n f , , .  The significance of the condition 

c uf(x, u)-F(x ,  u)<N 
is discussed in section 4. 
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2. Weak Formulation of the Problem 

In this section the boundary-initial value problem (0.1)-(0.3) is stated in weak 
form. The boundary condition (0.2) is met by requiring that the solution u belong 
to the class ~l ,z(f2r)  for all T>0 .  As discussed in section 1, ~1,2(Or) is the 
closure under the norm I 1 ~  of the class of C ~ functions which vanish on the 
boundary. 

The weak form of the initial condition u(x,0)= U(x) is stated as follows: if u 
is the weak solution with weak partial derivative Uo with respect to time, then 

{. Uort+u % dx dxo= -5 U(x) rt dx (2.1) 
0 

for all test functions r/~6e. It is easily seen that (2.1) is always satisfied if u is 
differentiable in the usual sense and satisfies the initial condition u(x,0)= U(x). 

The weak form of the partial differential equation (0.1) and the initial condi- 
tion u,(x,0)= V(x) is expressed as follows. Multiply (0.1) by any test function 17, 
integrate over f2+, and integrate by parts. We get, using the condition u,(x,0)= 
V(x), 

+ } ~qV(x) dx+ u, rh-~=lu i -f(x,u)q dxdt=O. (2.2) 

We require that u and its weak derivatives u~, i=0,  ..., n, satisfy (2.1) and (2.2) 
for all ~7e6 a. Weak solutions of (2.2) are constructed provided the initial data is 
sufficiently close to a point of stable equilibrium in function space. The function 
Uo (x) is a stationary solution of (0.1) if it satisfies the equation 

- V  2uo+f(x,uo)=O, Uo=0 on dr2. (2.3) 

Equation (2.3) is Euler's equation for the extremals of the potential functional J. 
The weak form of (2.3), 

~{~=lU,~xz+f(x, uo)q}dx:O, (2.4) 

is simply the statement that the first variation of J vanishes at Uo. The variation t/ 
in (2.4) is assumed to be any function of class Cl(~)  which vanishes on dO. 

We assume that Uo is a stationary solution of (0.1) in either the strong sense 
(2.3) or the weak sense (2.4). Of course, if uo satisfies (2.4) and has continuous 
second partial derivatives, then u o satisfies (2.3). Let us show that by a simple 
transformation it can always be assumed that the stable equilibrium under con- 
sideration is at the origin. In fact, let 

u(x, O=Uo(X)+V(X, t) 

where u is a solution of (0.1). We then get the following boundary-initial value 
problem for v: 

vt,-V z v+ g(x, v)=O (2.5) 

v=O on dr2 (2.6) 

v(x, 0)= U(x)-uo(x), v,(x, 0)= V(x), (2.7) 
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where 
g(x, v) =f(x ,  u o + v ) - f ( x ,  Uo). 

The problem (2.5)-(2.7) is formally the same as (0.1)-(0.3),  except that now the 
stationary solution is the identically zero function. Note that g(x,O)= O. 

From now on we always assume that the stationary solution Uo of (0 .1) -  (0.3) 
is at the origin; hence it is always assumed tha t f (x ,  0) = 0. Furthermore, we always 
take 

u 

F(x, u)=  ~f(x ,  s) as 
0 

so that F(x, O)= 0 also. 

From assumption (i) it follows by Taylor's theorem that 

where 

and 

where 

U 2 

F(x,  u)=f~(x,  O ) ~ - + R ( x ,  u) 
(2.8) 

u 

R(x,  u)=�89 S f~u(x, t ) ( u - t )  2 dt; (2.9) 
0 

f (x ,  u ) = f  ~(x, O)u+Q(x,  u) (2.10) 

u 

Q (x, u) = S fuu(X, t) (u - t) d t. (2.11) 
0 

3. Local Minima and Potential Wells 

Our aim is to construct global solutions of (0.1)-(0.3) when the function U 
lies sufficiently close to a local minimum of the potential functional J. The fact 
that the first variation (2.4) of J vanishes at Uo is not sufficient to guarantee that J 
attains a local minimum at u o. To determine whether Uo is a local minimum the 
second variation of J must be examined. As discussed in section 2, it is assumed 
that the local minimum in question is the function Uo =0.  In that case the second 
variation of J is 

t ~" i= 1 \ - ~ i ]  +fu(x, O) 

0 1 
where ~/is any function in H . 

It is easily seen that 5 2 J(~) is the quadratic form for the operator 

A = - V 2 +f, (x ,  0) (3.2) 

with the boundary conditions (0.2). Thus a necessary condition that J have a local 
minimum at the origin is that the operator A be positive definite. (This is assump- 
tion (iii) of section 1.) It follows that there is a constant r > 0 such that 

r 62 J (q)> (l[q[12) 2 
for all qe /4 ' .  
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We now proceed to construct a "potential well" associated with the minimum 
of J at the origin. We proceed formally at first; then the construction is put on a 

~ 1 firm mathematical basis. Assume that the functional J is defined for all ueH . 
Since J has a minimum at the origin the function J(2u) is an increasing function 
of 2 in a neighborhood of the origin (for 2>0). Let 21>0 be the first value of 2 
at which J(2u) begins to decrease. We write 2a = 21(u) to indicate the dependence 
of 21 on u. The depth d of the potential well is given by 

d =  infd(21 u). (3.3) 

The number d has the interpretation as the level of the lowest "pass" leading 
out of the valley situated at Uo=0. It is easily seen that 0 < d < o o .  If d>0 ,  the 
potential well W may be defined as follows: 

~ 1 W = { u : u ~ H ,  O<J(2u)<d  for 0 < 2 < I } .  (3.4) 

Thus, in order that u~ W, we require that J(u)<d and moreover that all points 
between 0 and u - that is, all points of the form 2u where 0<2_< 1 - lie below 
the potential level d. These geometric ideas are immediate in the case of a poten- 
tial function V(qx, ..., qN) which is positive in a neighborhood of the origin (in 
N-dimensional space) and has a local minimum there. 

In order to put the preceding construction of W on a rigorous basis we must 
show that 

~ 1 (a) the existence of the positive number 21(u) is guaranteed for each ue H . 

(b) the depth d given by the variational principle (3.3) is strictly positive. 

Conditions under which (a) and (b) hold are given in Lemmas 3.1 and 3.2 below. 

Lemma 3.1. Let u~H 1 and suppose that f (x ,u)  satisfies the assumptions (v)-(vii). 
Then J(2u) is continuously differentiable and 

J ' ( 2 u ) =  S {2 Igrad u [2 +f(x ,  2u)} u dx .  
f /  

Proof. It is clear that the first term in J(2u) is continuously differentiable. There- 
fore it is sufficient to show that the term 

j (2)=  S F(x, 2u) dx  
9 

is continuously differentiable. 

We have for h > 0, 

Therefore 

F(x, (2+h)  u ) - F ( x ,  2 u) ~ dz] 
- , 

1 

j ( 2 + h ) - j ( 2 )  _ ~ j'f(x, 2 u + z h u )  u d z d x .  
h ~o 

In case n = l, u e H  1 implies that u is uniformly bounded on s Therefore the 
integrandf(x, [2 + z h] u) is uniformly bounded for fixed 2, 0 < z < l, and h tending 
to zero. Let (hm} be any sequence which tends to zero. By the Lebesgue dominated 
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convergence theorem we get 

1 

lim j (2 + hm)- j  (2) = S Sf(x, 2 u) u d ~ d x = ~f(x, 2 u) dx .  
m--*oo hm a o a 

Since this result holds for any sequence {h,,} we must kave 

j '0.)  = ~f(x, 2u) dx.  
S/ 

To show tha t j '  (2) is continuous at an arbitrary point 20, let {2m} be any sequence 
tending to 20 . Again by the dominated convergence theorem it follows that 
j'(2m) -}j '  (20); hencej '  (2) is continuous at 20. 

In case n = 2 it follows from condition (vi) that 

If(x, [2+z  hi u ) u l < C l + C  212+xh] q �9 lul  ~. 

By Lemma 1.1 the function u belongs to the class L~(O) for 1 < q <  oo. Therefore, 
for fixed 2, h tending to zero, and 0 < z < 1, the integrand in the difference quotient 
for j(2) is dominated in absolute value by the fixed integrable function 

Cl +C'21ul ~. 

Here C~ is some constant that dominates C2 12+~hl q for 2, h, and 0 < 3 <  1. The 
dominated convergence theorem is again applied to all sequences hm tending to 
zero to show thatj ' (2)  exists. Similarly it can be shown thatj ' (2)  is continuous. 

The case n =  3 is similar to the case n=2.  The integrand in the difference 
quotient for j(2) is bounded in absolute value by the fixed function 

Ca + C'41u l ~ 

which is integrable by Lemma 1.1 provided that 1 < q < 6. Since condition (vii) is 
actually more restrictive than this, the proof of Lemma 3.1 is established. 

Lemma 3.2. Let the functional J have a local minimum at uo-O, and suppose that 
conditions O) and (iii)-(vii) are satisfied by f .  Then the depth d given by (3.3) is 
positive. 

Proof. To prove lemma 3.2 it is sufficient to show that there are positive numbers 
and fl such that 

(a) J ' ( 2 u ) > 0  for 0 < 2 < 1  whenever 0 < l l l u l l 1 2 < ~ .  
(b) J(u) > fl whenever III u ll12 = ~. 

o 

It then follows that d >  ft. In fact, let u ~ 0, u ~ H 1, and assume that u is normal- 
ized so that tll u III 2 = ~. (This renormalization of u simply changes the scale along 
the ray {2u: 2>  0} and involves no loss of generality.) Let 21 be the first value of 2 
at which J(2u) begins to decrease; by (a) we have 2~ ~ 1. If 21 = oo then u is not an 
admissible trial function for the variational problem (3.3). On the other hand, if 
21 is finite then by (b) we have 

J(21 u)>J(u)>~, 

since J(2u) increases over 0___ 2 < 21. Since d is the infimum of the numbers J(21 u) 
over ue/~ 1, we have immediately that d >  ft. 
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We now establish the existence of positive numbers ~ and fl for which properties 
(a) and (b) are valid. 

Let 01, 02, and 03 be three positive numbers such that 01 + 02 + 03 = 1.02 and 03 
are arbitrary, but 01 will be restricted later. We may write, by virtue of equations 
(2.8) and (2.10), 

J(u)  = �89 j" {02 [grad u [2 +f , (x ,  0) u 2} dx 
(3.5) 

+ .[ {�89 Igrad u 12 +R(x ,  u)} dx+�89 S [grad u 12 dx 

J ' ( 2 u ) = 2  S 02 Igrad u [2 +f , (x ,  0) u 2 dx 
(3.6) 

+ j" 2 (1 -01 )  Igrad u 12+u a(x, 2u) dx.  
f~ 

By assumption the operator A in (3.2) is positive definite. By perturbation 
theory, the operator 

A(01) = - 01 ~72 +fu(X, O) 

will be positive definite for 01 sufficiently close to 1. Thus 01 is restricted to be 
sufficiently close to 1 so that 

S {01 [grad u 12+f~(x, 0) u 2} dx>O (3.7) 

for all uE/~ 1. 

We show below that there is a number ~ > 0 such that 

{�89 021 grad u 12 + R (x, u)} d x > 0 (3.8) 
O 

and 
S {2(1-01)  [grad u 12+u Q(x, 2u)} dx>O (3.9) 

for all 0 < 2 <  1 whenever Ill u lll2_-_-c~. Property (a) then holds for this choice of ~ by 
virtue of (3.6), (3.7) and (3.9). Moreover, for 111 u 1112 =~ we have 

~ _ ~  ~2 03 
J(u)>= lgradu[2 dx=----~ ---- 

O~ 2 

by virtue of (3.5), (3.7), and (3.8). Thus we may take fl=---f-03. 

To show that (3.8) holds whenever III u I1[ 2 is sufficiently small we first estimate 
the term R(x,u). From (2.9) 

[R(x,u)l<�89 max If, u(X,t)(u-t)21. 
0__6 Itl ~ lul 

In case n =  1, uE/~ 1 implies that u is uniformly bounded. Therefore for III u Ith 
bounded by some fixed constant, there is a constant Mp such that Ifu,(X, t)  l < g p  
if l t l<p (assumption (v)). In that case IR(x,u)l<<_�89 l u l l  In case n=2 ,  3 it 
follows from assumption (vi) or (vii) that 

IR(x,u)l<=�89 +C21ul ~) 
where 1 < q < oo if n = 2 or q < 3 if n = 3. 
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The above estimate also holds in case n = 1 by taking C 1 = M o and C2 = 0. There- 
fore if n = 1, 2, 3, 

] ~R(x, u) dx[~�89247247 

From the Sobolev inequality (1.5) it follows that the above expression is dominated 
by 

c'1 (Ill u III 2) 3 + c~ (111 u III 2) (3.10) 

for some constants C~ and C~. The quantity (3.10) vanishes to third order in the 
variable Iilu t112 at zero. Therefore there is a constant cq such that III u 1112 < a t  
implies that (3.10) is dominated by �89 02(111 u 1112) 2, and (3.8) holds for III u ll12-<_~t. 

Similarly, since the term u Q (x,2u) behaves as u 3 as u ~ 0, there is a constant 
ct2 > 0  such that (3.9) holds whenever III u 1112_-<~2. The proof of Lemma 3.2 is 
completed by taking ~=min{cq, ~2}. 

An immediate consequence of the variational expression (3.3) for d is that the 
depth of W decreases as the size of the domain increases. In fact, let f2 be contained 
in a larger domain f2' and d and d' denote the depths of the respective potential 
wells. Assuming that the boundary of f2 is sufficiently regular, the function space 
f/l(I2) can be embedded as a subspace of/~1(O'). Thus d' is determined by taking 
the infimum over a larger class of functions, and therefore d' < d. 

The following lemma on the continuity of the functional J will be needed in 
the sequel. 

Lemma 3.3. Let the conditions (v)-(vi i )  be satisfied. I f  {Uk} is a sequence in ~1 
tending strongly to u then lim J(Uk)= J(u). 

Proof. It is sufficient to show that 

F(x,  uk) dx  ~ ~ F(x,  u) dx  

as k tends to infinity, since III Uk 1112 tends to 111 u 1112 as k --* co. In case n = 1 the result 
follows from the Lebesgue dominated convergence theorem and the fact that the 
functions {Uk} and u are uniformly bounded as k tends to infinity. 

In case n = 2 or 3 we have 
i 

F (x, Uk) -- F (x, u) = ~f(x,  z u k + (1 - T) u) (Uk -- U) d z.  
0 

Therefore, by H61der's inequality, 

j ~F(x,  Uk)--F(x , U) dx[ 
f~ 

< If(x, zuk+(1--Ou)Pdxdv �9 IlUk--UlI,,, ~-+~-r=  1. 

By Lemma 1.5 the second factor above tends to zero as k-~ oo for 1 < p ' <  oo if 
n =2  or for 1 < p ' <  6 if n = 3. On the other hand, by condition (vi) or (vii), the 
Minkowski inequality, and the convexity of the function Is I p ~ for p q > 1, the first 
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factor above is dominated by 

1 ] 1/p 

is/ "" < Cl [meas (~)]I/P+ C2 I~uk+(1-~:)ul~qdxd~J 

11" < Cl [meas(Q)]l/P+ C2 ~luklPq+(1-~)[ulPqdxd~ 

<C,[meas(~q)]x/P +C2 [~ luklP" +lulP' dx] '/p. 

The constant q satisfies the condition 1 < q <  oo if n = 2 or 1 _< q <  5 if n = 3. The 
right side above is finite if Uk and u belong to the class Lp~(O). By Sobolev's 
inequality (1.5) this is the case provided that 1 <=pq< oo in case n = 2  or provided 
that pq=> 6 in ease n = 3. The lemma is proved for case n = 2  by takingp andp '  sub- 
ject only to the condition p > 1, p'  > 1. In case n = 3 we take p = 6/q. Since q < 5, it 
follows that p'< 6, and the lemma is proved. 

4. Compactness and Convergence Theorems 

In section 5 the solution of the initial value problem (0.1)-(0.3) is approxi- 
mated by a sequence of functions {Uk (X, t)} which possess the following properties: 

ukeCl(~oo) and uk=0 on 0f2 (4.1) 

u~eW for all t > 0  (4.2) 

~{~OUk'~2+F(x'uk)} d x < - d ~ = o  \OX~] _ for all t-->0_ (4,3) 

where d is the depth of W. In order to prove the existence of a weak solution of 
(0.1)-(0.3) it must be shown that the sequence {Uk} contains a subsequence which 
converges in an appropriate sense. More precisely, we must show that there exists 
a subsequence {uk,} and a limit function u such that for all T > 0  

u E~I .  2(~T) (4.4) 

OUk, tends weakly to the weak derivatives us, i = 0  . . . . .  n; 
Ox~ (4.5) 

Uk, tends to u strongly in Lz(.QT) 
T T 

lira ~ Sf(x, Uk,) rl dx dxo = [. Sf(x, u) q dx dxo. (4.6) 

The function r/in (4.6) is assumed to be any bounded mesurable function on f2 T. 

In this section it is shown that under the assumptions ( i ) - (vi i )  on f(x,u) a 
subsequence with the properties (4.4)-(4.6) can be selected from any sequence of 
functions satisfying the conditions (4 .1) -  (4.3). 
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First we show that  W is a compact  subset of L 2 (~). 

Lemma 4.1. Let f(x,u) satisfy condition (ii) and suppose that f(x,u) is con- 
tinuously differentiable in u for each x~f2. Suppose also that J (2u)  is continuously 
differentiable in 2 for fixed ueH 1. Then Ill ull12 is uniformly bounded as u ranges 
over W. 

Proof. If u ~ W then 
0_< ~ (Jr lgrad u ]2 +F(x, u)) dx<=d, 

0__<�89 < d -  $ g(x, u) dx. (4.7) 

First suppose that  F(x, u) is bounded below. Then  there is a constant  M >  0 such 
that  F(x, u)> - M .  F r o m  (4.7) we have that  

O<�89 meas (f2). 

To  prove Lemma  4.1 in case F(x,u) is not  bounded  below, note  tha t  if u~ W 
then 

0 = J (2 u) 14=1 ~ {I grad u 12 +f(x, u) u} dx. (4.8) 
1/ 

F r o m  (4.7), (4.8), and condit ion (ii) we have 

�89 ~cuf(x,u)dx+ ~{cuf(x,u)-f(x,u)}dx (4.9) 

< d + c (111 u III 2) 2 + g .  meas ([2). (4.10) 
Hence 

O<(�89 meas (f2) 

for  all u~ iV. Since O < c < � 8 9  the proof  of L e m m a  4.1 is complete. 

Let  us give some examples of functionsf(x,u) for  which condit ion (ii) is satis- 
fied. 

(1) Suppose that  

f(x, u)= ~ ai u i (4.11) 
i = 1  

where the functions a~=ai(x) are bounded and measurable on f2. We have 

r u l + I  

F(X, u)= Z al 
~=1 i + 1  

and so 
r c 1 

cuf(x,u)--F(x,u)=i~=lal(x) [ --/--~-]-] u '+1. 

Suppose that  r is even and that  a,_ l(x) > 6 on f2, where 6 is some positive number.  
Taking c = (r + 1)- 1 we get 

o r -  1 Ur 
cuf(x,  u)--F(x, U)= - -  Flower order  terms.  

r(r + 1) 

This polynomial  in u is bounded above for  x~12 and all real u. 

11 a Arch.  Rat ional  Mech. Anal. ,  Vol. 30 



162 D.H. SATTINGER: 

More generally (ii) holds for functions of the form 

f(x, u)=  i a~ui+P( x, u) 
i = 1  

where a,_ l(x) > 6 on t2 and I up (x, u) [ < C~ + C2 I u [v for all x s  f2, where C1 and Cs 
are positive constants and p < r. 

(2) Suppose that F(x, u)--*- oo as u ~ ___ oo for all x ~ .  Let F satisfy the con- 
dition that there exists a number u.  > 0 such that F(x, u) < 0 for all [ u l > u.  and 

F(x, u2)<F(x, ua) (/12 ] l/c (4.12) 
\ / / 1 ]  

whenever 0 < u,  =< u~ < Us or ul < us _-< u,  < 0. The number c above satisfies 0 < c < �89 
Then condition (ii) is satisfied. 

To see this, consider the case where u >_- u, .  (The case where u < - u,  is similar.) 
Since F < 0  for u ,  __<u 1 <Us we have by (4.12) 

F(X, U2) > ( U2 ) 1/r 
F(X, Ul) = \ ul ! 

and, since the logarithm is an increasing function, 

F(x, u2) > 1  log u2 
log F(x, Ul) = c u 1 

This inequality may be written in the form 

2 f(x, s) ds 
F(x,s) dS>=l ~ s 

Since this holds for all u 1 and u2 such that u, <= u2 it follows that 

f(x, u) > 1 
F(x, u) = cu 

Thus cuf(x,u)-F(x,u)<O for all u>u, .  u>u,  and, by a similar argument, 
for u < - u ,  as well. Since cuf(x,u)-F(x,u) is bounded if [u[ < u ,  condition (ii) 
follows immediately. 

A consequence of Lemma 4.1 is that W is compact in L2 (~2). In fact, from the 
variational inequality 

<__!__ 1 Ilulh= 1 /~  Illullls (4.13) 

o 

valid for all usH 1, where/a 1 is the first eigenvalue of the Laplacian (see (1.8)), it 
follows that Ilull 1, s is uniformly bounded as u varies over W. The compactness of 
W in L2 (~2) now follows from the Sobolev imbedding theorem (Lemma 1) for the 
space Wl'2(fl). 

Now let {u~} be a sequence of functions satisfying conditions (4.1)-(4.3). 
From (4.2), (4.3), Lemma 4.1, and (4.13) it follows that there is a constant C such 
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that 

for all t _->0. From (4.1) it follows that Uk~l ,2(f2)  for all T > 0 .  

~ ~Uk,~ 
By the diagonal method a subsequence {Uk,} is constructed such that [ ax~ J 

converges weakly in L 2 (~2r) for i=  0, . . . ,  n and {Uk, } converges strongly in L 2 ([2r) 
for every T >  0. Since some subsequence of a strongly L2 convergent sequence 
converges pointwise a.e. we may assume that {ur} converges a.e. on ~2 r for all 
T > 0. Now let u(x, t) be the strong L 2 limit of {Uk, } on L 2 (12r) for each T > 0, and 

let ui, i =  0, ..., n be the weak limits of theL2 weakly convergent sequences : ~ uk, 
For each T > 0 and for every bounded measurable function r/ [ ~ xt J" 

T 

lim S Sluk'--ul2dxdxo =0, (4.16) 
k ' ~ O  0 

[ I  Ouk, r 
lim rldxdxo= ~ ~ut~ldxdxo, i=O, ..., n. (4.17) 

k'-~O 0 f l  ~ X l  o n 

The limit function ue&l,  2 (Or) for all T > 0 and its weak derivatives are the func- 
tions ui, i = 0  . . . .  , n. 

Conditions (4.4) and (4.5) are satisfied by the subsequence {u k } and its limit u 
constructed above. In the following lemma we give sufficient conditions on the 
non-linear termf(x,  u) so that (4.6) will hold also. 

Lemma 4.2. Let {u~} be a sequence of functions satisfying conditions (4.1)-(4.3). 
Suppose that u is the L 2 limit of u k in the sense (4.16) and let lira Uk=U a.e. in I2~. 
Let f(x,  u) satisfy conditions O) and (v ) -  (vii). Then (4.6) holds. 

Proof. For almost all (x,t)et2~ we have limf(x, uk)=f(x,u), sincef(x,u) is con- 
tinuous in u for all x~f2. 

In ease n =  1 we have from (4.14) that 

lu(x, Ol <Vl--~[~ lu'12 dx]�89 <=const. 

for all t > 0; here l(t2) denotes the length of the interval f2. Therefore If(x, u) l < Mp 
where Mp is a positive constant, and (4.6) follows by the Lebesgue dominated 
convergence theorem. 

In case n > 2 it follows from conditions (vi) or (vii) that for any p > 1 there are 
constants C~ and C~ such that 

[f(x,u)lP<C'~+C'21ul ~ 

In case n = 2 we take p to be any number greater than unity. In case n = 3, p is 
chosen so tha tpq  < 6. This is possible by condition (vii). From Sobolev's inequality 
(1.5) and (4.14) it then follows that the integrals 

T 

~ I f (x ,  Uk)l~ (4.18) 
O l /  

l i b  Arch. Rational Mech. Anal., Vol. 30 
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are uniformly bounded as k ~  oo for any T > 0. The limit theorem (4.6) now follows 
from Lemma 1.4. Q.E.D. 

From (4.18) and Fatou's lemma it follows that f(x,u)eLp(f2r) for all T >  0, 
where p is some constant greater than unity. Since meas(t2r)< +oo Ll(t2r)c 
Lp(t2r) andf(x ,u)  is integrable. 

5. Approximation by Systems with a Finite Number of Degrees oi Freedom 

The existence of a weak solution of the boundary-initial value problem (13.1)- 
(0.3) can now be proved using the analytical machinery developed in sections 1 - 4 .  
The solution is approximated by functions of the form 

k 

Uk(X , t)= ~, q,(t)~i(X) (5.1) 
i = 1  

where the {@~} are the eigenfunctions of the Laplacian. (Cf. (1.8).) The coordinates 
qi(t) are solutions of a non-linear system of ordinary differential equations. We 
denote by ag k the class of functions u lying in the subspace spanned by {~1, ..., ~kk}. 
For each t > 0, Uk e Jlk" 

Substituting the linear combination Uk into the functionals K and J, we get the 
expressions for kinetic and potential energies 

K ( ~  . . . . .  qk)=~ �89 - ~ -  dx=�89 (5.2) 

J(ql  . . . . .  qk) = S �89 + F(x, Uk)dX 
(5.3) 

k 2 

= E It, q-~--~+ SF(x,  ql ~kl+ "'" +q*d/k)dx 
i = 1  

by the orthogonality relations (1.9). The Lagrangian for this k-dimensional system 
is the function 

L(ql, ..., qk; ql, ..., qk)=K(ql,  ..., :tk)--J(ql, . . . ,  qk). 

By the principle of least action, the ordinary differential system satisfied by 
ql, " ' ,  qk is 

d aL aL 
- - = 0 ,  i = 1 , . . . , k ,  

dt O(h Oqi 
hence 

.. OJ 
qi+-~a.  =0 ,  i=  1, ..., k. (5.4) 

It is easily seen that 

8J 
Oq~ =t~,q,+ i f ( x ,  ql G +  "" +qk#,)~O~dx. 

s 

Denote points in k-dimensional Euclidean space E k by q= (ql, ..., qk). From 
our assumptions concerning the local minimum of the potential functional J it 
follows that the function J(q)=J(ql ,  ... ,  qk) in (5.3) is positive in a neighborhood 
of the origin, that J (0)= 0, and that J has a local minimum at q = 0. A potential 
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well Wk is constructed in E k with depth dg in the same way W was constructed in 
~ 1 H . Thus, for q4=0 we let 21 =21(q) be the first value of 2 at which J(2q) begins to 

decrease. Then 
dk = inf J(21 q) (5.5) 

q * O  

where the infimum in (5.5) is taken over all q~E k. 
We have immediately from (5.5) that dk>d. In fact dk is obtained by taking the 

infimum of J(;~l u) only over ue~'~.Since dis obtained by taking the infimum over 
class i/1, the larger it follows immediately that d<dk. The potential well IVk is 

defined by 
(q: qzE for 1}. 

It is clear that IV e IVk. 
Now let q(t) satisfy the differential system (5.4) and the initial conditions 

q (0) = qo = (ql o, q2 o ..... qk 0), 

,i(O)=,io =(,i,o . . . . .  ,ho). 
(5.6) 

Assume that qo ~ W and that the total energy (kinetic plus potential) is less than d; 
that is, 

~= l ~ +  J (qo) < d < dk. (5.7) 

Then the initial value problem (5.4), (5.6) has a global solution which remains in IV 
for all t _-> 0. 

The existence of a global solution of (5.4) and (5.6) is a consequence of the 
energy equality 

k "2 

E ~ +  J(ql, ..., qk) =const.  (5.8) 
i = 1  

which follows immediately from the differential equations (5.4). In fact, the set W 
is a bounded set in E k. Thus there is a constant b > 0 such that the initial data (5.6) 
satisfy ]qio[ < b; moreover, from (5.7) we have I~o1< 1/~-d. It can be shown under 

0J 
the assumption thatfu (x, u) is continuous in u that the functions ~ are Lipshitz 

continuous functions of qi, i =  1, ..., k. (See the proof of Lemma 3.1.) Therefore 
the initial value problem (5.4)-(5.6) has a local solution for some time interval 
0 < t _< 6. The constant 3 depends on the constants b, d, and the moduli of Lipshitz 

0J 
continuity of the functions - ~ - .  The solution q(t) so constructed is unique and 

remains in W for 0 < t __< 6. For, if q(t) passes out of W at time t = tl then we must 
have J(q(G))>d; but this violates the energy equality (5.8) and the fact that the 
total initial energy is less than d (5.7). Therefore q(~)~ W and (5.7) is satisfied at 
time t = &  The above argument may be repeated, and the solution can thus be 
extended to the time interval ~ < t <2b.  Continuing in this way, it is seen that (5.4), 
(5.6) does in fact have a global solution which remains in Wfor  all t =0.  
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The initial conditions (5.6) appropriate to the k tu approximation of the solution 
of (0.1)-(0.3) are determined as follows. Let the initial data U(x) and V(x) in 
(0.3) have the orthogonal expansions 

oo vo 

V(x)= Z ~,q,,(x) V(x)= Z t~,r 
i = 1  i = 1  

Let Uk and Vk denote the orthogonal projections of U and V into the space -//k. 
That is 

k 

V~(x)= Z 6,q,l(x) V(x)= Z/~, q,,(x). 
i = 1  i = 1  

We have that [I Vk- VII 2 -~ 0 as k ~ oo ; assume that Ue/?/1 and that II Uk-- u II a, 2 
0 as k ~ oo. We take the initial conditions (5.6) to be 

q i O = ~ i ,  q i o = ~ i  �9 ( 5 . 9 )  

Now let Ue W, V6L2(~ ) and let 

E(U, V)= S{�89 Vl2 +�89 lgrad UI2 + f ( x, U)} dx. 

The quantity E(U, V) is the total energy of the initial data. The initial value 
problem (5.4), (5.7) has a global solution if Uk~ W and E(Uk, Vk)<d. 

Suppose that E(U, V)<d. If J is continuous in the strong topology of /?/1 
then for sufficiently large k E(Uk, Vk)< d. In fact, by Lemma 3.3 limJ(Uk)= J(U) 
and therefore lim E(Uk, Vk)=E(U, V)<d. Moreover, there must be an infinite 
subsequence {Uk,} such that Ukle W. For, suppose that Uk(EW for all but a finite 
number of integers k. Then there is a sequence {2k} such that J(2k Uk) > d. Since 
0 < 2k < 1 some subsequence, say 2k., is convergent; let 20 = lim 2k,. NOW 0 < 4o < 1 
SO that J(2o U) < d. On the other hand, II 2~, Uk-- 40 U [I 1,2 --' 0 as ~ k' --, m;  and 
this implies that limJ(2k, Vk,)=J(2o U) by Lemma 3.3. This is a contradiction, and 
therefore there must be an infinite subsequence { Ukl} such that Uk, ~ W. 

We assume therefore that there is a sequence {kl} tending to infinity such that 
Uk,e W and E(Uk,, Vk,)<d for all kl. The corresponding solutions of (5.4), (5.9) 
exist for all time for each kl. From the energy equality (5.8) we see that the func- 
tions {uk,(x,t)} satisfy the conditions (4.1)-(4.3). In section 4 it was shown that 
there is a subsequence which tends to a limit u in the sense (4.5), (4.6) (see also 
(4.16) and (4.17)). Let us show that u satisfies (2.1) and (2.2). We denote the sub- 
sequence of approximate solutions by {urn}; let Nm be the dimension of the cor- 
responding system of ordinary differential equations. 

We first show that (2.2) is valid for test functions of the form 

n (x, t) = c i ( t )  r (5. to) 

where Ci(t) vanishes identically for sufficiently large t. Let i be fixed and let m > i. 
Multiplying the ith equation of (5.4) by Ci(t ), integrating over [0, oo), and using 
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the orthogonality properties (1.9) of the functions {~ki}, we get 

oo 

0 =  ~ {~,+#,q ,+  ~ f(x,  um)~idx) C,(t)dt 
0 fl 

~ Nm Nm } 
= oo s t,=z +,+s(x.  cx,)o,(x  xa, 

oa l. Ot V2Um+f(X'Um) Ci(t)~i(x)dxdt" 

Now integrating by parts we get 

7 (x'O)rl(x'O)dx+ 7 t~t i~=tSx ~ tgxl-f(x,u,,)r I dxdt=O. (5.11) 

OUm 
Now let m tend to infinity in (5.11). We take um(x,O)= Urn(x) and ~ ( x , 0 ) =  

Vm(x). By (4.5), (4.6), and the fact that II r/m- VII2 and IIUm- Ullx,2 tend to zero 
as m tends to infinity, the limit function u and its weak derivatives ui, i = 0  . . . .  , n 
satisfy (2.2) for any r/of the form (5.10). 

By linearity u satisfies (2.2) for any test function of the form 

,Tk = c x ( o  r + . . .  + c , ( t )  g,k(x). (5.12) 

Now let ~/(x, t) be any function in Sa. Let r/be approximated by linear combina- 
tions (5.13) and suppose that the norms 

, = ,  , - ! d x 

tend to zero uniformly in t on 0 < t < oo as k tends to infinity. Then r/k tends uni- 
formly to ~/ on g2~ as k tends to infinity. If n = 1 this is obvious. If n = 2, 3 the 
statement follows from the representation 

r/(x, t)= J" G(x, y) Ayq(y, t) d y , 
D 

where G(x,y) is Green's function on the domain I2, and the fact that 

SIG(x,y)12dy<const., xef2. 
D 

For, by Schwarz's inequality 

[ 17 (x, t ) -  r/k(x, t) I ~ I G (x, y) i" I A y (r/-  qk) [ dy 
D 

__<const. , a x / '  

Now (2.2) holds for each of the approximations r/k. Letting k tend to infinity 
and using the fact that the partial derivatives of ~/k tend strongly in the L 2 norm to 
those of r/, we see that (2.2) is valid for the test function r/as well. 
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To show that u and its weak derivative Uo satisfy (2.1) we first note that 

~ i / Ou, Oil\ 
oo "+u'wc) eyd,=- V.(x).dx 

for any t/~ ~ .  Letting m tend to infinity, we see that (2. I) is satisfied by u, Uo and U. 

It remains to show that the energy inequality (0.5) is valid. First note that (0.5) 
holds for the approximations {urn}. Since Um tends to u in L 2 (f2T) for any T > 0, we 
have that 

lim S Slu,~(x,t)-u(x,t)12dY dt=O 
m ~ o o  G O 

for any measurable set G of finite measure in [0, ~ ) .  In the same way in which 
Lemma 3.3. is proved it can be shown that 

lira J ~F(x, um)dxdt= ~ ~F(x,u)dxdt. 
m ' 4 ~  G O  G O  

a Ur~ 
On the other hand, since the derivatives ~ x~ tend weakly to the weak derivatives 

us, i = 0  . . . . .  ~/, we have 
aura 2 

~lu,12dxdxo<~ S ~x, dxdt, i = 0  . . . . .  n.  
G O  G f2 

Therefore for any set G of finite measure in [0, oo) 

$~ E +F(x,u) dxdt<lim ~ \Oxi] 
G O l i=0 .I m~oo G Q i=0 

V2 n } 
2 t~ c o l  i=1~--~-~ / +F(x,U) dxdt 

: l i r a  ~nj ( (V')2 ~ ( 0 U s ]  2+F(x ,U~)}  dxdt 

Hence 
= E (U, V). meas (G). 

f n //2 ] E(v, u)dx , at>_-O. 
G i=0 ) 

Since this holds for arbitrary sets G of finite measure the integrand must be positive 
for all t except possibly a set of measure zero. If necessary, the weak solution and 
its derivatives may be modified on a set of measure zero in [0, oo); (0.5) then holds 
everywhere. 

6. Examples 
Let us consider as a special case the equation 

u , -  ~7~ u + ~uP =O (6.1) 

where p is an integer and T is a constant. In case n = 1, 2 no other restrictions are 
placed on p;  but if n = 3 it is assumed that 1 < p < 5. In the last part of section 6 it 
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is shown that (6.1) has a global solution for any initial data with finite energy if 
V>0 a n d p  is odd. However, i fp  is even or i f p  is odd and ~<0,  then the energy 
integral associated with (6.1) is no longer positive definite, and so the question of 
the existence of global solutions of (6.1) is non-trivial. 

The equation for the stationary solutions of (6.1) is 

X7 z u = ~ u p. (6.2) 

It is easily seen that the functional J has a local minimum at Uo =0.  In case n =  1, 2 
the assumptions ( i ) -  (vi) are satisfied and there is a potential well W of positive 
depth at the origin. 

Let us show that d > 0  in case n=3 .  We first show that for Illullh sufficiently 
small J '  (4 u) > 0 for 0 < 2 < 1. In fact, 

J ' (2u)= f. (2lgradul2 + 2PyuP+ l) d x = 2  ((l[I u 1112)2+r 2 p-1 S u p+ ~ dx) .  
D s 

By Sobolev's inequality (1.5) 

l r 2P- l S uP§ ~ dxl  < C( lll u llh) p§ ~ 

for some positive constant C. Since p +  1 >3,  J ' ( 2 u ) > 0  for all 0 < 4 <  1, provided 
that III u II12 is sufficiently small, say I11 u[l[ 2 --< ~. Now if J '  (2 u) > 0 for 0 < ;l < 1 we have 

[. ~,u p+~ dx>= - [. Igradul2 dx; 

hence 

J(u) = S (  -Igradu[2 ~-y--p--~]dxUP+~ 

> ( 1  
= 2 

Thus d is positive. 
Using the fact that 

p - 1  
1 S [gradu] 2dx> 2 ( p + l )  

p u  ~ 
0s 2 , 

it can be shown that [llu][12 remains bounded as u varies over W. (See the proof of 
Lemma 3.2.) A global solution of (6.1) can therefore be constructed using the 
approximation method discussed in sections 1 -  5, provided that the initial data 
are sufficiently close to the origin in the energy norm. Note that the relationship 
(6.3) has allowed us to weaken assumption (vii) slightly. 

The equation 
u t t -  ~TZ u + u2=O (6.4) 

is an interesting special ease. Suppose that n--- 1. Then the domain I2 is an interval 
(0, l), and the non-linear boundary value for the stationary solutions of (6.4) in 
this case is 

u"=u  2, u(O)=u(l)=O. (6.5) 

U p+I  l 
F ( u ) = r  = f (u)  (6.3) 

p + l  p + l  
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In addition to the trivial solution Uo-0  the boundary value problem (6.5) also 
has a solution which is convex and negative on the interval (0,l) [7]. Let this 
solution be denoted by w. 

The stationary point w is not a stable equilibrium of the functional J. In fact, 
the second variation of J at w is 

Since w = 0 on O~ it is an admissible variation; and furthermore 

0=s'(~ w) G 1= I w3 dx<O 
g~ 

since w < 0 on ~. 

Thus the potential energy functional J associated with (6.4) has two stationary 
points: a local minimum at Uo- 0 and a saddle point at Uo =- w. The point w is at the 
top of the "pass" leading out of the potential well at the origin. We have, by (6.6), 
that 

d=S(w)=~ ~ I w'l 2dx. 
D 

Equation (6.4) has a global weak solution provided that 

0<~flAu'12 (Au) 3] 
+ : T - j "  dx <d 

for 0 < 2 < 1 and 
ON ~.Q IV2_ [U' [2-  U3~ 

I,-~--+---y-+-3- ) dx<d. 

Finally we consider the case wheref  is a function of u only, and F(u) is positive, 
convex, and even. The functionf(u)  is therefore odd, and F ( 0 ) = f ( 0 ) =  0. Referen- 
ces for the following remarks may be found in [6]. 

A function F satisfying the above assumptions is called an N-function. It is 
said to satisfy the A2-condition if there exist constants k > 0 and Uo > 0 such that 
F(2u) <kF(u) for all u ~  Uo. A necessary and sufficient condition that F satisfy the 
A 2 condition is that there exist constants c > 0 and Uo > 0 such that 

uf(u) < c for all u > Uo. (6.7) F(u) 

It follows from (6.7) that for all U>Uo 
F(u)< F(uo) (-~o ) c. 

Let us show that the boundary-initial value problem (0.1)-(0.3) has a global 
weak solution whenever the convex positive function F satisfies the A 2 condition 
(provided, of course, that the energy of the initial data is finite). 

Let G be the N-function complementary to F. The functions F and G are 
connected by the relation 

I u I f (I  u I) = F ( u )  + G(f (I  u I)). (6.8) 



Nonlinear Hyperbolic Equations 171 

The class of real-valued measurable functions on Qr (T > 0) for which 

T 

p(u;F)= S SF(u)dxdt 
O ~  

is finite is denoted by Lr(Dr) and is called an Orlicz class. We denote by L*(Dr) 
the class of all measurable functions u for which 

T 

~uvdxdt< +oo 
01"2 

for all veLa(Dr). The class L*(Dr) contains the class Lp(Dr), and L*(DT) is a 
Banach space relative to the norm 

flullP= sup uvdxd t .  
p (v; G)=< I 

The Banach space L* (Dr) is called an Orlicz space. 

Now let ~J (Dr)  denote the completion of ~1,2 (Dr) (see section 1) under the 
norm 

The Banach space ~a(D) consists of functions u which possess weak derivaitves, 
which vanish on 0s and which belong to the Orlicz space L*(Dr). 

A sequence of approximate solutions is now constructed as in section 5. The 
initial data is subject to the condition of finite energy E(U, V)< + 0o. The poten- 
tial well in this case is infinitely deep. The approximate solutions {urn(x, t)} satisfy 
the energy equality 

,____o1\-~/] +F(u,3 dx=E(Um, I'm). (6.9) 

An discussed in sections 4 and 5 a subsequence {Urn,} is selected for which the 
derivatives converge weakly and which converges in L2 (QT) for all T > 0 to a limit 
function u(x,t). It is assumed that lim u,,,(x,t)=u(x,t) a.e. in Doo. In order to 
prove the existence theorem we must establish the convergence theorem 

T T 

lim ~ Sf(Um,)qdxdt= S Sf(u)qdxdt (6.10) 
m ' ~ m O  .q 0 

for all hounded measurable t /and all T > 0. 

Now by (6.8) and (6.9) we see that the integrals 

T 

~ G(If(um,)l) dx dt (6.11) 
0 

are bounded as m' tends to infinity provided that the integrals 

T 

~lf(um,)l.]um, ldxdt 
0 Cl 
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are uniformly bounded. The boundedness of these integrals, however, follows 
from (6.7) and the energy equality (6.9). 

The N-function G satisfies the conditions of Lemma 1.3. Therefore from the 
boundedness of the integrals (6.11) it follows that the functions {f(Um,)} have 
uniformly absolutely continuous integrals. The convergence theorem (6.13) is 
now proved in the same way that Lemma 1.4 was proved. 

Thus (0 .1)-  (0.3) always has a global solution (for finite initial energy) whenever 
F(u) is positive, convex, and satisfies the/X 2 condition. Note that the above analysis 
applies to arbitrary dimensions and that the growth condition (vii) has been con- 
siderably weakened. 

The method indicated in this paper should be regarded as a general approach 
to existence theorems for non-linear equations of evolution. For example, the same 
method should work equally well for parabolic equations or systems. It is also 
possible that the existence of solutions of non-linear elliptic boundary value 
problems of the form 

V2u=f(u) U = 0  on ~f2 

might also be proved by the method of approximation by systems with a finite 
number of degrees of freedom. 
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