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1. Introduction 

In order to model fluid capillarity effects, the Dutch physicist KORTEWEG 
formulated in 1901 a constitutive equation for the Cauchy stress that included 
density gradients. Specifically, KORTEWEG proposed for study a compressible 
fluid model in which the "elastic" or "equilibrium" portion of the Cauchy stress 
tensor T is given by 

T ---- T(Q, 0, grad ~, grad E ~), 

( - - p + ~ d ~ + f l l g r a d r  l + 6 g r a d r  |  radE~, 
(1.1) 

where Q ~ Q(x, t) is the density of  the fluid at the place x at time t, where grad ~o 
and grad2r are, respectively, the first and second (spatial) gradients of  9 with 
respect to x (with A~ --~ tr (grad 2 p) ---- the Laplacian of  ~), and where p, ~, fl, 6, 
and ~, are material functions of  o and the temperature 0. To model viscous effects 
in the dynamic response of  his fluids, KORTEWEG added to the right-hand side 
of  (1.1) the classic form of  CAUCHY and PoISSON, i.e., 2(tr D) 1 + 2/~D, where 
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D is the usual stretching tensor of hydrodynamics, and where ;t and #, the usual 
viscosity coefficients, may depend on 9 and 0. 

In modern terminology, KORTEWEG'S form 0.1) is a special example of an 
elastic material of grade N in which, in order to model more complex spatial 
interaction effects in a material, the constitutive quantities (here T) are permitted 
to depend not only on the first gradient of the deformation, the strain, but also 
on all gradients of the deformation less than or equal to the integer N. Thus, in 
particular, KORTEWEG'S (1.1) gives the stress in a very special elastic material 
of grade 3, and in recent years such higher grade materials have been intensively 
studied [1-21]. In particular, theories of KORTEWEG'S type have been employed 
not only to model capillarity effects but also to analyze the structure of liquid- 
vapour phase transitions under both static [1 l, 12] and dynamic [13-17] conditions. 
A troubling aspect of all these higher-grade models, however, is that they are in 
general incompatible with the usual continuum theory of thermodynamics-- 
indeed, KORTEWEG'S model (1.1)is incompatible with conventional thermodyna- 
mics unless all the nonclassical coefficients, o~, fl, 0, and 7 vanish identically! 

To describe this incompatibility in more detail, let us identify the material 
particles of a continuous body ~ with the positions X E E they occupy in a 
fixed reference configuration B C= E, where E is a three-dimensional Euclidean 
point space. We recall then that in conventional continuum thermodynamics the 
material body 9~ is completely characterized by its process class P(&) which con- 
sists of certain ordered 8-tuples of functions, 

defined on B•  
linear momentum 

zr = {X, 0, e, 9, T, q, b, r} E P(~),  

which, for every subdomain P C_ B, 

the balance o f  energy 

satisfy the balance o f  

d fo~xdv= fTnda+ fgbdv, (1.2) 
dt e) oct Pt 

- •  f ~(~ + �89 ~) dv = f (x.  Tn -- q .  n) da + f e(&" b + r) dr, 
Pt OPt Pt 

0.3) 

and the Clausius-Duhem bwquality 

f - -  o~l dv ~ -- . - - ~  da + Q -~- dv , 
dt et - -  opt P 

(1.4) 

where, during the process ~r at the particle X at time t, 

(i) x ~-- z(X, t)E E is the motion, 

(ii) 0 = O(X, t) ( >  0) is the absolute temperature, 

(iii) e = e(X,  t) is the specific internal energy per unit mass, 

(iv) B ---- B(X, t) is the specific entropy per unit mass, 
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(v) T = T(X, t) is the (symmetric*) Cauchy stress tensor, 
(vi) q = q(X, t)E V is the heat flux vector, 

(vii) b = b(X, t)E V is the specific body force per unit mass, 
(viii) r = r(X, t) is the radiant heating per unit mass, 

where V is the translation space of E. In the axioms (1.2)-(1.4), x ~ - ~ - z ( X ,  t) 

denotes the velocity, St ~ x(S, t) for any S ~_ B, and n ---- n(x, t)E V is the 
outer unit normal to OPt. As earlier, 9 ---- 9(X, t) denotes the mass density which, 
by conservation of  mass, satisfies 

eg(x) 
9(X, t) - I det F(X, t) l '  (1.5) 

where 9R is a positive function given once and for all along with the body 
and the reference configuration B, and where 

F = F(X, t) ~ Vz(X,  t) 

is the deformation gradient** which we always take to be nonsingular. 
When sufficient smoothness is assumed and (1.5) is taken into account, it 

is easily shown that (1.2)-(1.4) are equivalent to the local conditions 

div T + 9b ---- 9~,  (1.6) 

9~ ----- T .  L - -  div q + 9r, (1.7) 

9(k - -  0~) - -  T .  L + q~ g ~  0,  (1.8) 
I /  

where g : grad 0 is the spatial temperature gradient and L : grad x : / ~ F  -1 
is the spatial velocity gradient. Moreover, a superposed dot (e.g., ~) denotes the ( 0  ) 
material time derivative of the indicated quantity i: ~ - ~ e ( X ,  t) , while the 

divergence operator in (1.6) and (1.7) is the contraction of  the spatial gradient 
operator grad (.). 

Now suppose we postulate a constitutive structure like KORTEWEa'S in (1 .1 ) -  
indeed, by (1.5), suppose we consider even the much more general casein which 
e, ~], T, and q are given functions of F, 0, VF, V2F, and g, i.e., 

e ~- ~(F, 0, VF, V2F, g), 

= ~(F, 0, VF, V2F, g), 

T : T(F, 0, VF, V2F, g), 

q --~ ~(F, 0, VF, V2F, g), 

* For the materials we study here, standard arguments show that this assumed 
symmetry of T is equivalent to the usual principle of balance of angular momentum. 
For the more general materials studied by DUNN in [31], the stress tensor T need no 
longer be symmetric. 

** Throughout our work "V" will denote differentiation with respect to the particle 
X in B while "grad" will denote differentiation with respect to the place x in B t. 
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SO our material is elastic and of  grade three. Then standard arguments* (or 
specialization of  results we obtain below) show that the inequality 0 .8)  forces 
e, 7, and T to depend on at most F and 0, and further, in terms of  the Helmholtz 
free energy ~p = ~(F, 0) ---- e - -  07, the relations 

~ --~o(F, O) and T = ~F(F,  O) F r 

must hold. In particular, T cannot depend on VF, V2F, or g, and this clearly 
rules out KORTEWEG'S model (1.1) unless ~ ~ f l  ~ - - - - - - y  I--0. 

What  is required then is a new, broader thermodynamic structure that admits 
nontrivial KORTEWE~ type materials and, more generally, materials of  arbitrary 
grade. While there are several such broader thermodynamic structures, we con- 
fine our attention in the present paper to a particularly simple and attractive 
one, which moreover does a minimum of  violence to the classic conceptual 
structure embodied in (1.2)-(1.4). Indeed, an important feature of  the theory 
we present here is that the purely mechanical principles of  linear and angular 
momentum balance, as well as the purely thermal Clausius-Duhem inequality, 
are preserved in their standard forms. ** In particular, for the materials governed 
by our theory, the net local force and the net local torque actions exerted on the 
boundary of  any subbody of ~ '  will be delivered in exactly the standard way by 
the symmetric Cauchy stress tensor T. 

All that we will modify, then, is the energy balance (1.3). Our idea is to 
follow a line of  thought for energetic calculations which is similar to one found 
useful by ERICKSEN [22] in his work on liquid crystals and which, in fact, was 
suggested (and discarded) by TouPIN [1] in his work on materials with couple- 
stresses. * * *  Specifically, for each process ~ we are going to posit the existence 
of  a rate of  supply of  mechanical energy, the interstitial working u : u(X, t; n), 
defined for all (X, t)E B •  and all unit vectors n, such that the balance of 
energy (1.3) for each subdomain P is replaced by 

d 
-~lfe(e§189 f ( T n . x §  d a §  f e ( b . ~ + r ) d v .  (1.9) 

t~Pt Pt 

Thus, in addition to the usual working Tn �9 ~r of the surface tractions Tn on 
8Pt and the flow of heat - - q  �9 n through ~Pt, we are allowing spatial interactions 
of  longer range to engender a rate of  supply u of  mechanical energy across every 
material surface in ~ .  

At the foundation level the interstitial density u is distinguished from x �9 Tn, 

* See, for instance, Theorem 1 of ERINGEN in [4] or the much more far-reaching 
theorem of GURTIN [3] o n  the impossibility of long range spatial interaction in any 
elastic material. For an early paper on the impossibility of certain spatial interactions 
in a purely thermal context, see the study [32] by COLEMAN • MIZEL. 

** We remark, however, that it is not clear to us that this much of the classical struc- 
ture can be preserved if internal interactions have sufficiently long range. In particular, 
genuinely nonlocal internal interactions would seem to us to render meaningless the 
usual concepts of stress and heat flux. 

*** Our idea is also related to certain aspects of the energetics of multipolar media; 
see GREEN & RIVLIN [33, 34]. 
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the working of the surface tractions, by the fact that we shall here require u 
to be objective* under a frame change,* i.e., 

u*(X, t*; v*) : u(X, t; v) (1.10) 

where t* = t --  a for a fixed, constant shift a in the time scale, and where 
v* ---- Q ( t ) v  for a time-dependent, proper orthogonal tensor Q = Q(t). The 
requirement that u be objective is central to the present analysis; we regard it, in 
fact, as a constitutive assumption that delimits the modes of interstitial working 
that may take place within the body. (In a theory of  polar media, for example, 
such objectivity for u would be unnatural, and (1.10) would require replacement 
by an alternative postulate, governing the transformation of  u under frame changes. 
Several such alternative postulates and the materials to which they give rise are 
studied in [31].) Also at the foundational level, the interstitial working u is 
distinguished from the influx of  heat, - -q  �9 n, in that it is only the latter quantity 
that appears in the Clausius-Duhem inequality. Additional properties of u, which 
will further distinguish it from both x .  Tn and - - q .  n as well as further 
motivate our interpretation of it as a rate of  supply of  mechanical energy, will 
emerge in a moment when we discuss constitutive structure. 

Now, in fact, u ---- u(X, t; n) cannot really depend on n in an arbitrary fashion: 
an analogue of  a standard theorem due to CAUCHY tells us that the balance law (1.9) 
can hold for all subdomains P C= B if and only if u(X, t; n) is linear in n, i.e., 
there must exist a vector field u ~- u(X,  t) with values in V such that 

u ( X ,  t; n )  = u ( X ,  t)  " n (1.11) 

for every unit vector n. It is in terms of this interstitial work flux u, rather than 
the scalar density u, that we shall henceforth formulate our theory, and we note 
straightway that (1.10) and (1.11) imply that u is objective, i.e., 

u*(X,  t*) : Q(t) u(X,  t), (1.12) 
under a frame change. 

It is interesting to look at our introduction of u in a more abstract way. In the con- 
ventional thermodynamics which is embodied in (1.2)-(1.4), the surface energy flux h, 
beyond that due to the working of the surface tractions, is just the heat flux q and is 
thus inextricably linked to the surface entropy flux j which is just q/O. Our introduction 
of the interstitial work flux u has severed this link since now h = q -- u while j is 
still given by q/O. Mathematically therefore our theory includes and is equivalent to 
either a theory in which h was kept equal to (interpreted as) the heat flux q but the entropy 
fluxj was taken to be given by q]O -- k, where k would represent a flux of entropy due 
to longer range spatial interactions, or a theory in which longer range spatial interactions 
resulted in neither h nor j having any simple dependence on (interpretation in terms 

* For an explanation of these concepts and their application to the other 8 quantities 
constituting a process z~, the reader should see the treatise [23]. In [23] the stronger 
postulate of objectivity under frame changes corresponding to both proper and improper, 
time-dependent, orthogonal tensors Q(t) is adopted. 
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of) the heat flux q (which, in fact, would then disappear from this theory*). Thus, al- 
though motivated differently, our theory has formal similarities to that of MOLLER 
[24].** 

It is also interesting to note that, while it has seemed natural to us to keep the (vec- 
torial) heat flux q and introduce the (scalar) surface supply u, one might wish to start 
not with the general fluxes, h and j ,  above of energy and entropy but rather with just 
scalar surface supplies, h = h(X, t; v) and j = j ( X ,  t; v), respectively. In this more 
general setting, Cauchy's theorem, applied to the resulting form of balance of energy, 
yields the existence of a flux h = h(X,  t) such that 

h(X, t; v) = h(X ,  t ) ,  v ; 

it does not however yield, when applied to the corresponding new form of the Clausius- 
Duhem inequality, the existence of a flux j = j (X ,  t) such that 

j (X ,  t; v) = j ( X ,  t) " v ,  

unless one makes the additional postulate that the function j (X ,  t; ") satisfies the condition 
j (X ,  t; - -v)  = -- j (X,  t; v), i.e., one must postulate that the internal surface entropy 
supply conforms with the law of "action-reaction". 

Fo r  us then, the process class P ( ~ )  o f  a body  will consist o f  processes zr which 
are certain ordered 9-tuples o f  functions on B •  

:z---- {x ,O,e ,~l ,  T, q, u , b ,  r}, 

with the physical interpretations and mathematical  properties we have discussed 
above, and which satisfy the balance o f  linear momen tum (1.2), the Clausius- 
D u h e m  inequality (1.4), the conservation o f  mass (1.5), and the balance o f  energy 
in the new form (1.9). Paralleling (1.6)-(1.8), it is easy to show then that  (1.2), 
(1.4), and (1.9) are, given sufficient smoothness and (1.5), equivalent to the local 
conditions 

div T + ~b ---- ~ ,  (1.13) 

~k ---- T .  L - -  div q q- div u q- ~r, (1.14) 

q ' g  
O ( k - - 0 ~ ) - -  T . L - - d i v u +  0 ~ 0 "  (1.15) 

* Note that, in terms of  this last alternative, our theory can be seen as a way ofre- 
introducing the heat flux q by defining q = Oj and then u = q -- h. The first alternative 
theory, of  course, is just the reintroduction of  the heat flux q by the identifications 
q ~ h  and then k - - - - q / 0 - - j .  

As these alternative but equivalent theories suggest, outside the traditional structure 
(1.2)-(1.4) the identification of the "real" heat flux is a rather subtle affair. 

** ER1NGEN also seems to have had in mind breaking the usual link between h 
and j ,  cfi (2.21) in [4]. However, except for suggesting chemical reactions, he gives little 
guidance for identifying such "non-simple processes." For a related discussion of these 
issues in the context of  mixture theory, but with a point of  view similar to that adopted 
here, see GURTIN & VARGAS [35], By nonlocal considerations, ERINGEN [25, 27] and 
ER1NGEN & EDELEN [26] have recently suggested a rationale for even more drastically 
altering all of the local balance laws (1.5)-(1.8). A very similar, but less specific, modi- 
fication was discussed in [28]. 
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In terms of  the Helmholtz free energy ~0 ---- ~0(X, t) ~ e -- 0~, the inequality 
(1.15) is readily seen to be equivalent to 

0(~b + rio ) -- T -  L -- div u + - ~  ~ 0. (1.16) 

We will refer to (1.16) as the dissipation inequality, and we will study the thermo- 
dynamic consequences of (1.3)-(1.16) for the constitutive structure arising from 
the assumption that e(X, t), ~I(X, t), T(X,  t), q(X, t), and u(X, t) are, for every 

E ?(~'), given by smooth functions of F, 0, VF, V2F, g, and I~, i.e., 

e = ~(F, 0, VF, V2F, g, b'), 

' / =  ~(F, 0, VF, V2F, g, F), 

T = T(F, 0, VF, V2F, g, F), (1.17),_5 

q = ~(F, 0, VF, V2F, g,/~), 

u = fi(F, 0, VF, V2F, g,/~). 

Of course, once ~(.) and ~(.) are given, the relation ~o _~ e -- 0~/ determines a 
function v~(.) such that 

V' = ~(F, 0, VF, V2F, g,/~). * (1.17)6 

The common, open domain J of  the response functions ~(.), ~(.), 7"(.), ~(.), 
~i(.), and v~(-) of (1.17) is a matter of  some delicacy. While the topological structure 
of J will be further delineated at the appropriate places in Sections 2 and 4 and 
in Appendix A, we observe here that Y constitutes a tacit restriction on the process 
class ? ( ~ )  since any process ~ in P(~)  must be such that its associated motion 
and temperature field, Z(', ") and 0(-, .), satisfy 

(VZ, 0, V2Z, vaz, grad 0, V;~) (X, t) C J 

for all (X, t)C B •  Accordingly, we will henceforth call two maps, Jr(', ") 
and 0(., .), a motion and a temperature field, respectively, only if  they conform 
with this restriction. 

The presence of  the strain rate ~+ in (1.17)5 is of  crucial importance for our 
entire theory and is suggested by our interpretation of u = u �9 n as a rate of supply 
of  mechanical energy due to spatial interactions of longer range than those 
reflected in the usual mechanical energy supply rate k �9 Tn ( =  (Trx) �9 n), arising 
from the working of the surface tractions. Indeed, based on the formal analogy 
to ( T r x ) . n ,  one might even want to require that the form 

u �9 n = t i (F,  0, 7 F ,  7ZF,  g,  F ) .  n 

�9 Note that for simplicity we study only the case where the response ]'unctions ~('), 
;/(9, 7"('), q('), fi('), and ~(.) are the same for each particle X E B. Thus, we suppose 
that the material of which our body ~ is composed is homogeneous and that B is one of 
its homogeneous reference configurations. Correspondingly, we henceforth assume that 
the function eR(X) of (1.5) is also independent of X. 
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be linear in /~, but we shall not make this assumption. Instead, in Section 2 we 

will prove that ti(.) can be at most affine in/~ and g; indeed, we will show that u 
decomposes into three distinct parts: 

u = ti(F, 0, VF, V2F, g, ~'), 
_ Srj~ + Qg  + wE (1.18) 

where • = V(F, 0, VF) is a third order tensor, where Q = ~9(F, 0, VF, V2F) 
is a skew, second order tensor, and where w E = wE(F, O, VF, V2F) is indepen- 

dent of  g and/~. Moreover, we will show that ~(.), the response function for the 
free energy, can depend on at most F, 0, and VF, 

~p = ~(F, 0, VF), (1.19) 

and that the tensor $r(F, 0, VF) is completely determined by ~(') and vanishes 
at a given point (F, 0, VF) if and only if ~v.e(F, 0, VF) vanishes (see our (2.7) and 

(2.8)). Thus, the "dynamic"  part  v = ~rF of u, besides involving the time rate 
of the strain F in a surprisingly simple way, also depends in an interesting fashion 
upon the sensitivity of  the Helmholtz free energy to local distortions of  the strain. 

The decomposition (1.18) tells us that there are three distinct mechanisms for the 
production of the interstitial flux u. While, for many materials, we believe the dominant 
(sole ?) mechanism to be that associated with the dynamic part W'~', we find it interesting 
that thermodynamics delivers a "static" part of u, u, ~ f~g + u, E, consisting of the 
"purely thermal" term Dg and the "equilibrium" term w E. Here we show that these two 
terms must be such that together they satisfy the relation 

qE .g  
div w = - -  

0 

for every motion-temperature pair (x, 0)(., .), where qE, the equilibrium heat flux, is 
given by 

qZ = qE(F ' 0, VF, ~72F) ~ ~(F, 0, VF, V2F, 0, 0). 

Thus, if the material does not support an equilibrium flux of heat (and so qE ~ 0) 
then w is divergence-free and thus drops out of the energy equation (1.14) and the dissi- 
pation inequality (1.16). Conversely, if the material does not support a static (i.e. rest) 
interstitial flux (and so w ~ 0), as would be the case if we postulated that 

/ ' = 0  ~ u = 0 ,  

then we see that neither can it support an equilibrium flux of heat.* 

As we have seen, in our theory the Helmholtz free energy turns out to act 
as a potential for the dynamic part  of  u. We shall also see that ~(.) fulfills its 
classic role of  acting as a potential for the entropy ~ and, in the "elastic" case 

when T(.) and ~(.) are independent of  ~', for the stress T. Indeed, in Section 2 we 
show that an entropy relation of  the classic form always holds in our materials, viz. 

= --~o(F, O, VF), (1.20) 

* We note that the following work can be materially simplified on a first reading 
if one adopts this postulate throughout. Indeed in this case several subsections and 
paragraphs set in pica type, as well as Appendices B and C, can be omitted. 
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and, in Section 3, we show that, in terms of the Cartesian components T0, Fi~, 
and F/r of, respectively, T, F, and VF, the following stress relation must hold 

whenever 7'(.) and ~(.) are independent of/~: 

(1.21) 

By (1.20) it is clear that, like the free energy, the entropy ~ and the energy 
e ---- ~p + 0~/ can depend on at most F, 0, and VF. Perhaps more interesting is 
the stress relation (1.21): it tells us that, while the stress T ---- T(F, 0, VF, V2F, g) 
in an elastic material of grade 3 can depend on all five of its arguments, it can 
depend on g and V2F at most affinely. 

In the general nonelastic or viscous case, matters are more subtle: while 

the entropy relation (1.20) continues to hold, the general dependence of T(-) 

and ~(.) on/~ now permits us to establish the stress relation (1.21) only at states 

of "local equilibrium," i.e., only at states (F, 0, VF, V2F, g, ~'~) where g = ff = 0. 
Thus, as in simpler theories,** the inclusion of viscous effects through constitu- 

tive dependence on/~ makes only a portion of the stress T determined by the free 
energy % 

In Section 4 we introduce a subclass of our general materials (1.17). These 
are the materials of Korteweg type and arise when the constitutive equations of  
(1.17) are specialized to 

e = "~(5, 0, d, S, g, L) ,  

~ : ~ ( ~ , O , d , S , g , L ) ,  

T =  T ( ~ , O , d , S , g , L ) ,  
( i  .22) 

q = q(9, O, d , S , g , L ) ,  

u = ~ ( o , O , d , S , g , L ) ,  

W = ~(5, 0, d, S, g, L), 

where d ~ g r a d s ,  S----S r~_grad  25, and L = / ~ F  - l - - g r a d x .  As is clear, 
such materials include more than the original proposal (1.1) by KORTEWEG. 
We shall find however that the form (1. l) is inconsistent with the thermodynamic 
structure laid down here unless fairly specific relations hold among its coeffi- 
cients. 

As in the more general case already discussed, thermodynamics requires 
that S, g, and L drop out of ~(.), ~(.), and ~(.). and indeed that 

v, = ~(~, 0, d ) ,  

~/---- --~o(O, 0, d), (1.23) 

= ~(e,  0, d)  - -  0~0(e, 0, d ) .  

* In (3.3) and (3.4) we give, respectively, alternative forms for T and for the Piola- 
Kirchhoff stress tensor T R associated with T. 

** See, for example, the study [29] by COLEMAN & MIZEL. 
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Further, for materials of  Korteweg type, the dynamic part u of the interstitial 
work flux u is just r Indeed, we shall show that 

u = --o2(tr L) ~a(O, 0, d) 4- ~(o, 0, d, S, g), (I.24) 

- -  + 7, 

where this last holds by mass conservation in the form ~ ---- --O (tr L). Moreover 
the static portion iv = 7(.) of u can also, for materials of Korteweg type, be 
shown to have a very specific structure. In fact, in addition to our earlier remark 
that iv is always divergence-free in any material that has a null equilibrium heat 
flux, the function 7(.) must (i) vanish identically i f  the material possesses a center 
of symmetry*, and, in any case, (ii) always depend on the local strain distortion 
in a rather simple and explicit way, in fact vanishing at any point where the local 
measure of distortion, d : grad ~, vanishes. See our (4.7). 

For  elastic materials of  Korteweg type (i.e., when T(.) and q(.) do not depend 
on the velocity gradient L), the general form (1.21) for the Cauchy stress reduces 
to just 

T ~- (_Q2~Q jf_ ~ d .  ~d Jr- ~2 div ~a) 1 -- ~ d | ~d, 
(1.25) 

= {--e2v~e + ~ div (Q~Pa)} 1 -- e d | ~a, 

a constitutive form that turns out to have several pleasant and highly desirable 
properties. While the reader should refer to Sections 3 and 4 for a complete 
treatment, we note here that, firstly, the form (1.25) avoids the overdetermined 
character of  equilibrium solutions that SERmN [18] found typically to hold for 
KOI~TEWEG'S original model (1.1). Secondly, since y is objective under a frame 
change, the function ~(~, 0, d) can depend on d only through its squared 
magnitude M ~ d �9 d. That is, 

~o ---- ~(9, 0, d) = ~P(9, 0, M), 

and so (1.24) and (1.25) take on the more explicit respective forms 

u = ~c d + ~ ,  (1.26)~ 

T ~-- (_~2~% + p div (c d)} 1 -- c d | d,  (1.26)2 

= (--~2~p0 + ~e~M + ~cog" d + 2~emd | d .  grad 2 ~ + ~cA~} 1 -- c d | d,  

where c ---- c(r 0, M) ~ 29~0M( ~, 0, M) is usually called the surface tension coef- 
ficient. We see from (1.26)2 that, in addition to entering into T only affinely, 
g and grad 2 ~ affect only the isotropic portion of the stress in any elastic material 
of Korteweg type. These materials are thus somewhat different from KORTEWEG'S 
(1.1): the form (1.26)2 has no term like KORTEWEG'S }' grad2 o and has delicate 
links among the coefficients that correspond to o~,/3, and ~ in (1.1). As we shall 
see in Section 4, the exact structural details of  (1.25)and/or (1.26)2 have important 
consequences for the theory and, we feel, suggest (1.25) as a model superior to 
KORTEWEG'S (1.1). Lastly, we remark that, even for viscous materials of Korte- 

* That is, if ~(-) is an odd function of d and g jointly. 
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weg type (for which L does not drop out of T(.) and ~(')), the forms (1.25) and 
(1.26)2 turn out to give the stress at any particle X that is in "local equilibrium" 
in the sense that g = L - - - - 0  at X. 

If we set p = p(e, 0) ~- Q2~o0(Q, 0• 0), a little manipulation shows that (1.26)2 c a n  

be written as 

T = --P(e, O) + ~coM + � 8 9  [c - -  ~co] d M  + ~cAQ + ~cog" d 

4- 2~CMd | d �9 grad2Q} 1 -- cd | d .  

The important special case where c is independent of M corresponds precisely to KORTE- 
W~'S original assumptions and yields here the specialization 

T = (--p(o, O) 4- ec A e 4- �89 (ee) e M 4- eCog" cl} 1 -- c d | d. (1.27) 

Comparing this with (1.1), we see that now 

= e c ,  #=�89 , ~ = - c ,  ~ , = 0 ,  

formulae noted earlier by AIFANTIS & SERR1N [11] for the connection they have with 
the variational theory of VAN DER WAALS. 

Finally, and as we have already indicated, there are several points in our 
analysis where thermodynamics and objectivity under frame changes are found 
to impose strong restrictions on the functional form of the interstitial work flux u. 
The precise representation theorems necessitated by these restrictions are devel- 
oped in our Appendices A, B, and C, and the techniques and results of  these 
appendices will, we feel, be found to be of interest in their own right. (This is, 
perhaps, particularly true of  Appendix C, which may be read independently of 
the rest of  our text.) 

We close this Introduction with a few brief remarks concerning the connection 
of  our work with some earlier theories that admitted gradients of deformations 
beyond the first into their constitutive equations. First, and closest to ours in 
generality, is the work of TouPIN in 1962 and 1964 on elastic materials with couple- 
stresses [1, 2]. In [1] TOUPIN formulated general laws governing the balance of 
linear momentum, angular momentum, and energy in a continuum capable of  
generating couple-stresses and spin momenta. TOUPIN was thus mainly interested 
in materials for which the usual symmetry of the Cauchy stress f a i l s - - i n  direct 
opposition to our point of view here. However, in his footnote on page 394 of 
[1], TouPIN apparently envisaged the importance of  at least the dynamic part u 
of  our interstitial work flux, though in fact he then proceeded to cast this term 
out of his analysis (apparently as not germane to higher gradient effects and/or 
couple-stresses). As our work clearly shows, however, the presence of u gives a 
very convenient mechanism for energy, entropy, and stress to depend on higher 
gradients of  the deformation, and thus the final sentence of TOUPIN'S footnote 
on page 398 of [1], namely 
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"Our  analysis shows that if  the energy depends on these higher derivatives 
of  the displacement, then, in general, the principal part  of  the couple-stress 
cannot vanish in such a material." 

seems to us to require modification. 
In his second paper, considering only static, mechanical effects, TouPIN [2] 

postulated a principle of  virtual work for an elastic material whose stored- 
energy density W per unit reference volume is to depend on both F and VF. He 
finds the resulting equilibrium equations and boundary conditions necessitated 
by this principle of  virtual work and identifies the quantity 

W~,~, -- (Wvt~),a (1.28) 

as the Piola-Kirchhoff stress in his material. As a glance at our (3.4) makes clear,* 
this is quite different from the Piola-Kirchhoff stress of  the materials we study 
here. Moreover, TOUPIN finds very nonstandard boundary conditions for his 
theory which, among other things, require that the stress tensor no longer deliver 
the surface tractions, even on arbitrary subbodies within his materials. Addi- 
tionally, TOUpIN'S form (1.28)fails to deliver symmetric Cauchy stresses even in 
materials that are nominally "fluid-like" (e.g., materials of  Korteweg type) where 
the concept of  couple-stresses would seem inappropriate. The theory we present 
here, even restricted to just elastic materials, thus seems to us to have several 
advantages over those of  TOUPiN. 

Restricting their attention to, in our terminology, rather special and essentially 
elastic materials of  Korteweg type, FIXMAN in 1967 [5], and FELDERHOF in 1970 
[6], also studied certain higher grade constitutive models. FIXMAN'S approach 
was to use a mechanical variational principle to find a certain "internal conser- 
vative force" which he then required to be the divergence of  the elastic stresses 
in his materials. He then inferred** that these stresses are of  the form 

( - -p  + 22[02 A o + ~U]) 1 - -  22~ d | d,  (1.29) 

where d = grad e, M ---- ] d[2, and 2 is a constant. This, of  course, is exactly 
the form that emerges from our (1.27) if we take c ---- 2;t0. 

FELDERHOF, on the other hand, used both a minimum principle and a varia- 
tional principle based on a certain Lagrangian to find, respectively, the equilibrium 
equations and the dynamic momentum equations that governed his materials. 
He then observed* * * that each of these two sets of  equations was compatible with 
a stress tensor of  the form 

- - ( p + c l a ~ A ~ + ( � 8 9  aM)l  + c l a d  |  +c l )  a~S, (1.30) 

where S : grad 2 ~, where a is a determined constant in his theory, but where 
cl is a completely arbitrary parameter. r While FELDERHOF did not resolve this 

�9 For comparison with our theory, we identify W with the isothermal stored-energy 
of the material. Hence W = eRW. 

�9 * See his equations (30) and (31). 
�9 ** See his equation (4.7) and note that FELDERHOF'S "pressure tensor" is the negative 

of our T. 
I" That is, the value of el does not affect the divergence of (1.30). 
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indeterminancy of  the stress, a glance at our (1.26)2 shows that the form (1.30) 
will be compatible with the thermodynamic structure laid down here only if 
cl ---- - -1 ,*  which results in the form 

(--p + ao~ A~ + �89 l -- a d  | d ,  (1.31) 

and this is precisely what emerges from our (1.27) if we take c ----- a. (We remark 
that FIXMAN'S (1.29) and FELDERHOF'S (1.30) and (1.31) are mutually exclusive, 
but that this is merely a consequence of their assuming slightly different forms for 
their respective energies' dependence on M = [grad ~ [2.) 

It is, perhaps, worth making explicit what is but tacit in FELDERHOF'S multiplicity 
of forms (1.30) for the stress: Since they can be stated without even any concept of inter- 
nal stress, virtual work principles like that of TOUPIN, mechanical variational principles 
like that of FIXMAN, and minimum and Lagrangian variational principles like those 
used by FELDERHOF are fundamentally unable ever to tell one what the stresses are in a body 
to which they apply. This, of course, may be viewed as a strength of these principles, 
since they are thus compatible with a multiplicity of materials, having different forms of 
stresses. Our point here, however, is that the most they can do in this regard is to suggest 
a form for the stress up to a divergence-free term--and they can do even this only if one 
is prepared to adjoin to them CAUCHY'S concept of stress and the momentum equations 
based on it. Thus, TOUPIN'S form (1.28), FIXMAN'S form (1.29), and even FELDERHOF'S 
forms (1.30) are all suspect to us: each of these forms may require the addition of a 
divergence-free form to give the "real" stress in their respective materials. 

Finally, there is the work of  BLINOWSKI [7-10] on (in our therminology) 
elastic materials of Korteweg type. Restricting his attention to isothermal pro- 
cesses, BLINOWSKI in [7] and [8] formulated an energy principle containing a 
surface flux term which was linear in L ---= grad x. BLINOWSKI'S isothermal energy 
principle thus contains a term like the dynamic part v of our interstitial work flux 
but, as we have seen, for materials of Korteweg type v must not only be linear 
in L but also of the very special form 

--(tr L) 02 v~a. 

As a consequence of his overly general form for v, BLINOWSKI was able in [7] 
and [8] to derive forms for the stress only up to divergence-free terms. * * In [9], 
however, working within a theory of mixtures and without giving any reason or 
discussing its connection with his earlier work, BLINOWSKI replaced his general 
form for v with 

(tr L) p ,  

where p is just a vector. Modulo terms that depend on the mixture, he was then 
able to find that p = --~2v~a as well as an explicit form for the Cauchy stress T. 
It was apparently this more specialized form (tr L ) p  which BLINOWSKI had in 
mind in [10], where he returned to the study of a single-component material and 
used a form for T equivalent to our (1.26)2. 

�9 Such thermodynamic compatibility would also require FELDERHOF to set Co = 1 
in his (2.7) so as to conform with our (1.23). 

�9 * In [8] he seems to assert otherwise but we are unable to follow his argument. 
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2. Thermodynamic Compatibility: General Results 

We seek now the thermodynamic restrictions imposed on the constitutive 
functions of (1.17) by the fact that every process n E P(~) must be such that the 
balance of mass (1.5), the balance of linear momentum (1.13), the balance of 
energy (1.14), and the dissipation inequality (1.16) must hold throughout ~. To 
find these restrictions we need to ensure that P(~) is sufficiently large; we thus 
adopt what is now in effect a classical point of view: Specifically, let any motion 
X(', ") and any temperature 0(., .) be assigned on B •  then 0.5) and the con- 
stitutive equations (1.17) enable one to calculate an associated density 0(', "), 
energy e(., .), entropy ~?(., .), stress T(., .), heat flux q(., .), interstitial work flux 
u(., .), and a free energy ~p(., .). Entering these fields into the balance laws (1.13) 
and (1.14), we may in turn calculate an associated body force b(., .) and radiant 
heating r(., .). We thus have produced an ordered 9-tuple of functions on B x R ,  
viz., and in a notation that anticipates our next axiom, 

~(x,0) ~{X, 0, e,~, T, q, u, b, r}; 

we call it the ordered 9-tuple induced by the motion-temperature pair (g, 0) 
and observe that it automatically meets balance of mass, linear momentum, and 
energy. 

We now make the fundamental hypothesis that every induced 9-tuple :t(z,0 ) 
is a process ,*  i.e., it belongs to the process class P(~), and so must (also) satisfy 
the dissipation inequality (1.16). This is an Axiom of Size on the process class 
P(~)  and ensures that P(~)  is suitably rich in processes. As a consequence, we 

may now assert that the response functions ~(.), r#(.), ~,(.), ~(.), fi(.) and 9(') of 
(1.17) must be such that, by the chain rule, 

0 [~(A) .  F + {~o(A) + ~(A)} 0 + evF(A) �9 VF + ~g(A) �9 g + y~v~r(A) �9 V 2# 

+ ~pi~(A). F] - -  7"(A) g - '  T .  F __ f i o ( A ) ' g  --  f i , (A ) .  (7 --  [tiF(A)• VF 

+ tlvF(A) • + tiv:r(A) •  + fi/~(A)• F - ' V +  0(A) "g < 0. (2.1) 
0 = 

must hold at every (X, t)E B •  for every motion Z(', ") and every temperature 

field 0(-, .). Here A ~ (F, 0, VF, v2F, g, F) E J and G ~-- grad 2 0, while for 
any two tensors of order n , / '  and ~ ,  we define P • 4)  to be the second order 
tensor such that (in Cartesian components) 

( r  • m) j = 

Also, in writing (2.1)we have used the fact that "V" and " ."  commute, e.g., 

VF ~ VF, etc. 
Let T denote the set of second-order tensors defined on the translation space 

V, and let T~ and T + denote those subsets of T consisting in, respectively, symmetric 
tensors and invertible tensors with positive determinant. Let T,~ denote the set 
of n th order tensors defined on V which are symmetric in their last n -- 1 places. 

�9 There is now a one-to-one correspondence between motion-temperature pairs 
(X, 0) and processes ~ E P(.~). We thus here make contact with other, alternative axio- 
matizations of thermomechanics that identify processes with (it, 0) pairs. 
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For a given point A in the constitutive domain J ,  we can always find a motion 
X(','), a temperature field 0(., .), and a particle-time pair (Xo, to) E B •  such that 

(F, 0, 7F,  V2F, g,/~) (Xo, to) = A,  

while at (Xo, to) the seven quantities 0 E R, VF E T3s, g 2/~ E T4s, g E II, ff E T, 
GETs, and V3FE Ts, are independent of A and arbitrary. It thus follows that 
(2.1) is essentially linear in these seven variables. We see therefore that (2.1) 
implies that, at each A E J ,  

(,o(A) + ;~(A) = o, 

~v,F(A) = O, 
and 

fg(A)  = o ,  

f~ (A)  = 0,  

~vu(A) " Vl} = (ti,c(A) x Vlb). F -tr ,  

ti~(A) �9 G = o ,  

(tlv=r(A) • VaF) �9 F - :  = O, 

(2.2) 

(2.3) 

where VF, G, and VaF in (2.3) are arbitrary elements of, respectively, T3,, T~, 
and Ts~. 

What remains now of the dissipation inequality is the restriction that 

{0vpF(A) -- T(A) F - '  T}./~ _ {t~F(A ) • VF + t~vF(A ) • V2F} �9 F -1T 

, i(A) . g  
-- rio . g  + ~ ~ 0, (2.4) 

which we will call the reduced dissipation inequality. 
The conditions (2.2)2,3,4 tell us that ~(.) is locally independent of V2F, g, and 

/~. We now assume that the domain or is of the form 5e' x T4s • Vx T, where 
5 a' is some open subset of T + •  x T2~ (and where for brevity we shall frequently 
set 50 = 6e '•  T4s). Although stronger than needed here and in subsequent 
arguments, this assumption endows or with sufficient connectivity properties to 
enable to us integrate (2.2)2,3,4 and so conclude that ~(.) is globally independent 
of VZF, g, and b 6, i.e., 

g, = ~(F, 0, VF). 

In addition, (2.2)t now shows that ~(.) enjoys the same independence and that in 
fact the entropy relation 

= ~(F, O, VF) = --fo(F, O, VF) 

holds. It easily follows that 

e ----- ~(F, 0, VF) = ~(F, 0, VF) -- O~oo(F, O, VF). 

Thus, U and e are completely determined by the response function ~(.) for the free 
energy. 
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The conditions (2.3)1,2,3 are harder to analyze; we begin with (2.3)~ which is 
of  overarching importance to all of  our subsequent results. In terms of Cartesian 
components, (2.3)1 is the requirement that 

~oe,~p(F, 0, VF)/'i~p 8 f '  (F, 0, VF, V2F, g, ~') Fp~'l",~ (2.5) 

for all 1-'i~ with P/~p = 1-'itj~,, and where we have used that ~(.) depends only on 
F, 0, and VF. If  we eliminate P ~  from (2.5) we find the equivalent condition 

since ~ri~p : ~rip~" In Appendix A we show, by using the objectivity of  u under 
a frame change, that the system of equations (2.6) is uniquely solvable for t~k 
and, indeed, taht 

(F, 0, VF, V2F, g,/~) = e(~pFkpoF~k'FipFjo -r ~oF/~pF, p -- fFi~pFjp }, (2.7) eP,  
where ~ei~p = ~ri~( F, O, 7F). We conclude at once that fi~ is independent of 

V2F, g, and/~; thus (2.7) is easily integrated, showing that fi(.) depends on F at 
most affinely, i.e., 

u = ~(F, 0, VF, V2F, g, F), (2.8) 

= St(F, 0, VF)/~ + fi,(F, 0, VF, V2F, g), 

where the Cartesian components Sriy~ of the third-order tensor V are given by 

the right-hand side of (2.7), and where (Vl~)i = S r u ~ .  As we show in Appen- 
dix A, V(F, 0, VF) vanishes at (F, 0, VF) if and only if~vF(F, 0, VF) vanishes there, 
i.e., the dynamic portion v of the interstitial work flux u vanishes identically only 
when the sensitivity of the free energy to local spatial variations of F is stationary. 

If  we now enter (2.8) into the remaining restrictions (2.3)2,3, we find that 
lb(.) must meet the conditions 

~g(F, 0, 7F,  72F, g).  G = 0, 

(I~72F(F , 0, VF, V2F, g) • VaF) �9 F - l r  : 0, 
(2.9) 

for all (F, 0, VF, V2F, g) in 5g • V, for all G E Ts, and for all 73F E Tss. As is 
well known (and as is easily proved with the more general techniques we introduce 
in Appendix C), the condition (2.9)j means that the dependence of  6,(.) on g 
can be at most affine, with skew linear part, i.e., 

~(F, 0, VF, V2F, g) : Qg + w E 

where Q = ~r~(F, 0, VF, V2F) is skew, and where w E : wE(F, 0, VF, V2F) 
= w la=0 is the "equilibrium part" ofw. Thus, (2.9)2 now becomes the requirement 



Thermomechanics of Interstitial Working 111 

that 

(QV~F(F, 0, VF, V2F)• | VSF)) �9 F - ' r  = O, 
(2.10) 

(w[,r(F, O, VF, VZF)• VaF) �9 F - ' r  = O, 

and we have proven that the interstitial work flux is of the form 

u = V F +  D g  + w E . 

As a consequence, the reduced dissipation inequality (2.4) has become the require- 
ment that 

(~)~F -- 7"F-t 7"}./~ _ g" V0/~ _ {VF • (F | VF) + VvF • (/~ | V 2F)}. F -a 7" 

-- ( QF • (g | VF) -? QVF• (g | V2F)) " F - a t -  ( wE• + WEF• V2F} " F-'T 

-- wE" g + ~ J  • 0, (2.11) 

where T(.) and @)  are evaluated at (F, 0, 7F,  V2F, g, F) E,  J where Q(.) 
and wE(') are evaluated at (F, 0, VF, V2F) E 5P, and where ~(.) and V (.) are 
evaluated at (F, 0, VF) C- 5 p'. We also note that the term g �9 glog is absent from 
(2.11) because Q is skew. 

By putting g = / ~  = 0 in (2.11), we see that, in addition to (2.10)2, wE(") 
must also satisfy 

{w~(F, 0, VF, V 2F)x VF + W~F(F, O, VF, V2F)• V ZF}" F- , r  ~ O, (2.12) 

for all (F, 0, VF, V2F) E 5C It now follows by a result of OLVER [36, 37] that 
equality must hold in (2.12), i.e. 

(WFEX VF + w~F• V2F) �9 F - ' r  ~ 0, (2.13) 

for all (F, 0, VF, V2F)(- ,~P. * We shall give an independent proof of this in 
Appendix B for materials of Korteweg type; here we just note that (2.10)2 and (2.13) 
together imply that 

div w E ~ w E. g, 

for every motion-temperature pair (Z, 0) (-, .). In particular therefore, (2.1 l) now 
takes the simpler form 

{ ~ v  - -  TF-1 r } . / ~  _ {VF • (F | VF)  + ~r vF • (/~ | V 2F)}.  F - '  T 

- -  g "V0/~ -- (QF•  | VF) + !@v~.• (g | V2F)} �9 F - ' r  

-  E-g + g =< o. (2.14) 

�9 It is useful to recall here that div(-)= J-~ V" ( J F - I ( ' ) ) ,  J ~ detF. From 
OLVER'S work, it now follows that (2.10)2 and (2.12) not only imply (2.13) but also com- 
pletely determine the structure of the function JF-IwE(F, O, VF, .). We do not require 
the explicit form of this function here but, for materials of Korteweg type, the reader 
may read it off from our (4.7). 
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If  we replace ~" and g in (2.14) by, respectively, hF and hg, h > 0, divide the 
resulting inequality by h and let h ~ 0, then we obtain an inequality which is 
linear in both t~ and g. Thus, it follows easily that for any tensor 

(O~F(F, 0, VF) -- T(F, 0, VF, V2F, 0, 0) F- i t}  �9 

= {~re(F, 0, V F ) •  | VF) + VvF(F , O, VF)• | V2F)}. F - ' r ,  (2.15)~ 

and for any vector g 

1 
~-  ~(F, 0, VF, VEF, 0, 0)" g 

= (12r(F, 0, VF, VEF) • (g | VF) + QvF(F, 0, VF, V2F) • (g | V2F)} �9 F - I t  

+ w~(F, O, VF, V2F) �9 g. (2.15)2 

The equation (2.15)1 may be solved to determine the equilibrium portion 

T E = TE(F, 0, VF, V2F) ~ T(F, 0, VF, V2F, 0, 0) 

of the viscous stress i'(.). The reader should turn to Section 3 for a discussion 
of  this equilibrium stress, since it is but the specialization, when g = 0, of  our 
formulae (3.2) (3.4) which turn out to give the response for the stress T in those 
of our materials which are elastic. The result (2.15)2 is easily solved for equilibrium 
heat flux 

qE = qE(F ' 0, VF, V2F) ~ q(F, 0, VF, V2F, 0, 0), 

which, in particular, need not vanish unless •(.) and wE(") are of  a structure 
special enough to make the right hand side of (2.15)2 vanish identically. In Sec- 
tion 4 we shall see that this is precisely what happens in materials of Korteweg 
type which possess a center of  symmetry. 

Before leaving (2.15)2 we note one further consequence of it, (2.10)1.2, (2.13), 
and the fact that ~2 is skew. Indeed, we see that, for any motion X(', ") and any 
temperature field 0(., .), we have that 

div w = div ~(V Z, 0, V2Z, VaX, grad 0), 

= div {Q grad 0 + wE}, 

1 (2.16) 
= -~- qE(V Z, O, V2Z, vax)  �9 grad 0, 

qE .g 

0 

which nicely relates the equilibrium heat flux to the contribution of w, the static 
part of  u, to the energy equation. In particular, if  the equilibrium heat flux is al- 
ways zero, then div iv always vanishes--w drops out of the energy equation! Addi- 
tionally, whether t/E is zero or not, we see that div iv vanishes whenever the tem- 
perature field is spatially uniform. 
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We now use (2.15)1,2 to reduce (2.14) further. We see at once that the reduced 
dissipation inequality now takes the form 

(T(F, O, VF, V2F, g, F) -- T(F, O, VF, V2F, O, 0)) F -1T" F .2[_ g.  "~To(F, O, VF) k 

1 
~-~-{~I(F,O, VF, V2F, g,k)--~(F,O, VF, V2F, O,O)}.g, (2.17) 

which, except for the term g .  V01 ~, does not explicitly involve any part of the 
interstitial work flux u. Further reductions of the inequality (2.17) now suggest 
themselves, but we defer them until Section 4 where they can be studied in the 
context of the classical assumptions concerning the structure of the viscous part 
of the stress. 

3. General Elastic Materials 

Suppose we apply the reduced dissipation inequality in the form (2.11) to 

those of our materials which are elastic in the classic sense that I"(-) and ~(.) 

are independent of lb. In this case (2.11) is then linear in F, and we therefore 
conclude that 

{ ~ F ( F ,  0, VF) -- T(F, 0, VF, V2F, g) F-tT} �9 i~ -- g .  Vo(F, 0, VF) F (3.1) 

-- (~FrF(F, 0, VF) X (i~ | VF) + VvF(F , 0, VF) (/~ | V2F)} �9 F -1T ~ 0 

for all (F, 0, VF, V2F, g) E ~ X V and for all tensors b', and where ~rij~(F , 0, VF) 
is given by the right-hand side of (2.7). We can solve (3.1) for the Cauchy stress 

T = I"(F, 0, VF, V2F, g), but, before doing so, we note one of the interesting 
consequences of (3.1), even in its implicit form. Specifically, since any of our 
materials, elastic or not, has been shown to satisfy e = ~ = ~ -- 0~0, where 

= ~(F, 0, VF), we conclude that always 

where we have also used the entropy relation, ~ = --~0- Further, u = V/~ + iv, 
and therefore the energy equation (1.14) for any one of our materials is just 

b- + + 08 

= T .  L -]- g "V0~' + (VFx(b" | VF) + VvFX (/~ | 72F)-~ V X 7 ]  ~} .F  - i v  

+ div iv -- div q + 9r. 

But, by (2.3)1 and (2.7), P~vF" V/~ = (VxV/~) .  F - l r .  Thus, when the material 
is elastic so (3.1) also holds, the energy equation is just 

QOr = --div q + 9r + div iv, 

1 
= --div q + 9r + -~- qE. g, 
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where we have used (2.16). Thus, regardless of the sensitivity of our materials 
to spatial interactions of  longer range, those that are elastic obey an energy equa- 
tion of  exactly the same form as that used in first-grade theories of  thermoelasticity 
(with the exception of  the presence of the term due to the equilibrium heat flux qE). 

We return to (3.1) and solve it for the Cauchy stress T. After a lengthy and 
somewhat tedious calculation, we find that, in terms of  its Cartesian components 
T is given by 

- + ( 3 . 2 ) ,  

--  {e(s ~ -t- s --  ~k,aF~,Fia)},k, (3.2)2 

where lower case Greek (Latin) indces have been used to denote the components 
of  the particle X (of the place x), and where a comma has been used to indicate 
partial differentiation. Now (3.2)~ is equivalent to 

Thus, if we recall that the Piola-Kirchhoff stress tensor T R associated with T is 
given by 

T R = I det F] TF -~r,  

we see that the representation (3.3) yields 

and after a little manipulation, this last line may be written in the form 

T R = OR[~Fi~ -- (v)ri~a),a q- ({~Fj~ Fp~ 1 -- ~FjzaFg 1} Fia),r (3.4) 

The forms (3.2)-(3.4) possess an interesting structure. First, of  course, is 
the fact that, as in the usual first-grade theory of  elasticity, the free energy response 

function ~(.) completely determines the response function for T(-). Second is the 

fact that, while T(F, 0, VF, V2F, g) can involve V2F and g, it can do so only as 
these two variables are produced by the indicated differentiations with respect 
to X ~ and X a. Thus g and V2F enter into the stress at most affinely. Third, note 
that, while we have always assumed the Caucby stress to be symmetric, nowhere 
in our analysis have we ever used this assumption. We see, however, by (3.2) 
that the symmetry of  T is precisely equivalent to the symmetry in i and j of the 
term 

* In deriving the compact expression (3.2)1 we used repeatedly the fact that ~(.) does 
not depend explicitly on the particle X. Similarly in going from (3.2)1 to (3.2)2 we have 
used the assumption that QR is independent of X. 
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Equivalently, the symmetry of  T is exactly the condition that 

~F(F, 0, VF) .  WF + ~vF(F, 0, VF).  WVF ---- 0 (3.5) 

for all (F, 0, VF) and all skew tensors W. But, as is well known and easily proven, 
(3.5) holds if and only if 

~(QF, 0, QVF) = ~o(F, O, VF) 

for all proper, orthogonal tensors Q, i.e., as in the usual first-grade theory of  
elasticity, the symmetry of  the Cauehy stress tensor is equivalent to the objectivity 
of  ~p(.) under a frame change for any of  our materials which are elastic. Fourth, 
note that the term 

( ~v ja~r~]  1 - -  ~oFjaar ~ ') F,.z 

whose divergence with respect to X a appears in (3.4) is skew in o~ and/3. Therefore, 
it contributes nothing to T~,~ and 

R TL,~ ---- On[(~r/~),~ -- (~F/~),~o]. (3.6) 

If we glance back at TouPIN'S form (1.28) for the Piola-Kirchhoff stress T R, 
we see at once that, in isothermal problems, our theory and Toupin's will yield the 
same field equation for linear momentum balance in an elastic material; it is only 
at the more subtle levels of  energetics (which restricts the stress power T .  L) 
and boundary conditions (which restrict the traction Tn) where differences be- 
tween the two theories' forms for the stress will manifest themselves. 

Fifth, and finally, if we compare the expression (3. I) for the stress in an elastic 
material to the expression (2.15)t for the equilibrium stress in one of our general 

materials, we see that they differ only in the term g .  Vo(F, O, VF)/~ in (3.1). 
Thus, with care being taken to set g = 0 in them, each of  the expressions 
(3.2)-(3.4) may also be used to calculate the equilibrium stresses in any one of  
the general materials of  Section 2. 

4. Materials of Korteweg Type 

In the present section we seek the specializations of  the results in Sections 2 
and 3 that occur when the constitutive equations of (1.17) are replaced by the 
simpler forms of  (1.22). Materials of this class will be said to be of  Korteweg 
type. Not surprisingly, the restrictions of  thermodynamics take much simpler 
forms for them. 

First, the results of (2.3)2.3,4 show that, for a material of  Korteweg type, 
the free energy ~o = ~p(Q, 0, d, S, g, L) can depend only on ~, 0, and d, i.e., 

~P = ~(e, 0, d ) ,*  (4.1) 

* Paralleling the discussion in Section 2, we now assume that the constitutive 
domain J of the response functions in (1.22) is of the form ow' • T s • V• T, where 5e' 
is an open subset of (0, ~ ) •  (0, oo)• V. 
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where d : grad 0. It then follows from (2.2)1 and the definition of the Helmholtz 
free energy ~p that ~/ and e are given by 

~ /=  ~(~, 0, d) = --~?0(e, 0, d), (4.2) 
and 

e = ~(Q, 0, d) = ~(~, 0, d) -- 0~0(e, 0, d), 
respectively. 

Second, we note that (1.5) implies that 

F -~ --QF~ilF#~IFjo~,; di = (grad 0)~ = 0,~ ~i = 

a simple calculation then gives that for materials of Korteweg type 

Thus, by (A.9) of Appendix A, we find that 

~h~ 0fi i = eg~,rk~, = --e2-~ai Ojk; 
OLjk 

hence u = ~(~, 0, d, S, g, L) must be of the form 

u = --02(tr L) ~a(~, 0, d) § W(0, 0, d, S, g), (4.3) 

= Q~Wd + W, 

where we have used conservation of mass in the form ~ : --~ (tr L). 
Consequently, for materials of Korteweg type, the dynamic part of the inter- 

stitial work flux u is just the simple term 0~v-?a, which we see vanishes for a particle 
X if and only if X is instantaneously experiencing no change in density or is in- 
stantaneously in a state (#, 0, d) at which ~Co, 0, .) is stationary. 

The restrictions (2.3)2.3, when specialized to materials of Korteweg type, show 
that the static part of u must be such that 

w~" G ~ 0 ,  
(4.4) 

~ , .  1" ~ O, 

for every G E T~, for every completely symmetric third order tensor T', and for 
all (0, 0, d, S, g) in ~ • V, where ~ ~ 5 ~' • T~. 

Also, of course, the reduced dissipation inequality (2.4) must hold for materials 
of Korteweg type. However, since it is rather cumbersome to specialize that 
inequality directly, we return to its original form (1.16) and enter the results 
of (4.1)-(4.4). This yields 

~(~e. b -}- Yd" d} -- T" L -- div (~Ot~V~d -[- ~)  + ~"  g < 0, 
0 

or, equivalently, 

[T(A) + e d | ~a + (02~e -- e div (eyed)) 1]. L -1- ~ .  d + ~0" g + ~d" S 

q(A). g > O, (4.5) 
0 = 
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where we have used mass conservat ion in the form ~ = - -o  tr L and the fact 

that  grad (~) ---- d + L ~ d, and where here, o f  course, A ---- (~o, 0, d, S, g, L). 
Let  ~Z = ~E(e, 0, d, S) ~ ~(0, 0, d, S, 0) and, in (4.5), set L = g ---- 0 to 

find the restriction (cf. (2.12)) 

wE(0, 0, d, S)"  d + wE(o, 0, d, S)"  S ~ 0, (4.6) 

for  all (Q, 0, d, S)E 5 a. In our  Appendices B and C this restriction on ~(.), as 
well as those due to (4.4), are analyzed in full detail. As a result o f  (i) these thermo-  
dynamic restrictions, (ii) the objectivity o f  u under  a frame change, and (iii) 
the assumption, which we henceforth make, that  the domain 5 a is o f  the form 
5 e " x  V•  for some open subset .9"' of  (0, o~) •  oo), it turns out  that  
~( . ) :  Sex  V---> V can be at most  o f  the form 

w - - - - ~ ( o , O , d , S , g ) ~ ( c o l d + o ~ 2 S d ) x g + r d X ( S d  ), (4.7) 

for  scalar-valued functions o~m, 092, and r o f  p, 0, and M ~ - I d l  2. Thus,  for 
materials o f  Kor teweg type, the purely thermal par t  of  w is just  (~ot d + o~2S d)  • g, 
while the equilibrium part  o f w  is just w E ~- r d •  d). By (4.7), we see at once 
that,  / f  the material  possesses a center o f  symmetry  for  w(.), i.e., if 

w(e, 0, - - d ,  S, - -q )  = - -~(o ,  0, d, S, g), 

then ~o~, to2, and r must  vanish identically, and so 

w ---- ~(o,  0, d, S, g) ~= 0. 

In other  words,  for any material o f  Kor teweg type which possesses a center 
symmetry,  the interstitial work flux u reduces to its dynamic par t  alone:  

U = omt) a. 

For materials of Korteweg type that do not possess a center of symmetry for ~(.), 
little can be said about the functions eJ1, co2, and r. However, a calculation based on 
(4.7) shows that 

w~ �9 d + T o .g  + Wd" S = (r o -- 2~olm + e~2,.,) g �9 d x ( S  d), (4.8) 

and hence, for any density field Q(x, t) and any temperature field O(x, t), 

div ~(e,  O, d, S , g )  : (r o -- 20~lm + to2o) g �9 d x ( S  d) 

where d = grad ~, S : grad 2 ~, and g = grad 0, and where we have used the fact 
~(.) satisfies (4.4). Upon comparing this last with (2.16), we also see that in materials 
of Korteweg type 

qE = qE(o ' 0, d, S) ~ q(9, 0, d, S, 0, 0), 
(4.9) 

= O(r o -- 2O~iM + to2,, ) d •  d). 
Thus, if 

ro -- 2c%~ t ~- 0920 ~ 0, (4.10) 

then div w drops out of the local laws (1.14)-(1.16) and the material cannot support 
a flux of  heat at any particle locally in equilibrium. Conversely, if (4.10) fails then a 
nonuniform density field will cause a flux of  heat (even when g = L = 0) at any place 
where grad 9 and grad2 ~ are nonzero (unless grad 9 happens to be an eigenvector 
of grad 2 Q). 
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By (4.8) and (4.9), we now see that the reduced dissipation inequality (4.5) 
may now he written in the form 

1 
IT(A) + e d | ~a + {e2~Q -- e div (~a)} 1]. L ~> ~-{~(A) -- ~(~, 0, d, S, 0, 0} .g 

(4.11) 

where A ~ (~, 0, d, S, g, L). If  we now take g = 0, replace L with hL, h > O, 
divide the resulting form of (4.11) by h, and let h ~ 0, we find that, in addition 
to the equilibrium heat f lux  relation (4.9), the following equilibrium stress relation 
must hold: 

T = 0, d, S, 0, 0), (4.12) 

: _{~2~Q _ Q~d" d -- ~Z[~aQ. d + ~dd" S]} 1 -- ff d | ~d, 

for any material of Korteweg type. The form (4.12) has many important properties 
which we shall discuss momentarily in the context of  elastic materials of  Korte- 
weg type. We merely observe here that, due to the presence of  the term ff d | V~d 
in (4.12), our material can support shear stresses in equilibrium.* 

Entering (4.12) into (4.11) yields 

( 7"(Q, O, d, S, g, L) -- 7"(~, O, d, S, O, O) -- ~2(~)dO " g) l )  " L 
(4.13) 

1 
"-0-(q(e, 0, d, S, g, L) -- q(Q, 0, d, S, 0, 0))" g, 

as our final form of the reduced dissipation inequality. Upon replacing g and L 
with, respectively, hg and hL, h =~ O, dividing the resulting form of (4.13) by 
h 2, and then letting h -+  0, we find that 

1 
~L" ( L | L) + ~g" (L | g) -- Q2(tr L) ~fldO " g ~ T ( ' q g  o (g | g) -]- "qL "(g | L)),  

(4.14) 

where the gradients TL, f , ,  q~., and ~, are evaluated at (0, 0, d, S, 0, 0) and 
where ~ao is evaluated at (~, 0, d). The inequality (4.14) is a quadratic form in 
L and g; as such, necessary and sufficient conditions for its satisfaction are just 

TL" (L | L) ~ 0, 

~g. (g | g) < 0, (4.15) 

4 [ T L ' ( L  |  - 1 ---0- % .  (g |  

�9 (L | g) -- pCo (tr L) (d .  g) -- -~- qL" (g | L) 

�9 It is easy to see, however, that (4.12) does not allow the material to support states 
of simple shear, in which 

T = ~ ( a @ b W b @ a ) ,  ~ 0 ,  

for perpendicular unit vectors a and b. 
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for all tensors L and all vectors g. In writing (4.15)3 we have used that, by objec- 
tivity, ~o ---= ~(~, 0, d) = ~p(~, 0, M), M = I d l ' ,  so that eV~a = e 2~0M d = c d, 
where c = 29v/M is the surface tension coefficient. 

The conditions (4.15) 1.2 are quite easy to interpret: (4.15)t is just the assertion 
that, at equilibrium, the viscosity tensor 1"~.(~, 0, d, S, g, L) is positive semi- 
definite; (4.15)2 just asserts that the conductivity tensor -~(~, O, d, S, g, L) is 
negative semi-definite under the same circumstances. The condition (4.15)3 is 
harder to interpret in any generality. We note only the form it takes in materials 

that (i) enjoy an initial separation of effects (i.e., Tg = qL = 0 at least in equi- 

librium), and (ii) have a viscosity tensor TL and a conductivity tensor qt such 
that the classical forms 

TL" (L | L) --:- 2 (tr D) 2 4- 2/,(tr D2), 

~g" (g | g) = _ ~  Ig[ 2, 

hold at least in equilibrium. Here D is the symmetric part of L, and 2, #, and x 
are given functions ofp, 0, and M. In this case, it is well known that (4.15)~ holds 
if and only if 3). + 2# ~ 0 and /, ~ 0, while (4.15)2 holds if and only if ~ --> 0. 
The condition (4.15)3 is now the requirement that 

4u{).(tr D) 2 + 2#(tr D:)} [g[2 >_ 020~(tr D)2 (d .  g)2 

for all symmetric tensors D, all vectors g, all vectors d, and all values of the argu- 
ments 0, 0, and M = [dl 2 of the functions c, ).,/,, and u. The necessary and suf- 
ficient condition for this particular form of (4.15)3 is easily seen to be 

4~{). 4- {/~} => 02e2oM. 

In particular, the dependence of the surface tension coefficient c on temperature 
is mildly regulated by the viscosities ). and/~ and by the thermal conductivity ~. 
Even more specially: if co is independent of M and if x, )., and / t  are bounded as 
M S oo, then we see easily that co in fact must vanish. Conversely, if Co =# o 
then neither ~ nor ;t q- az/~ can vanish unless M = 0. 

5. Elastic Materials of Korteweg Type 

Paralleling the analysis of Section 3, let us now consider materials of Korteweg 
type in which viscous effects are absent. Thus our material will now be assumed to 

be elastic in the sense that neither T(.) nor ~(.) depends on L. In this case the in- 

equality (4.11) is now linear in /~, and hence we find 

T = T(Q, 0, d, S, g), (5.1) 

= --{e2To -- e ta"  d -- e 2 [Tea" d 4- Tao" g 4- Tad" S]} 1 -- ~od | ~a, 

for all (~, 0, d, S, g) 6 ~ • V. All that now remains of the reduced dissipation 
inequality is the requirement that 

{q(0, 0, d, S, g) -- q(o, 0, d, S, 0)} -g  ~ 0, (5.2) 
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i.e., any excess heat flux over its equilibrium value is always directed against 
the temperature gradient. 

We have already observed in our Introduction how the stress relation (5.1) 
may be written in the form (1.27), which brings out the role of the surface tension 
coefficient c ~ 29~pM as well as drawing attention to the structural similarities 
and differences (5.1) enjoys when compared with KORTEWEG'S original proposal 
(1.1). In addition, the form (5.1) possesses another extremely important property. 
To exhibit it, let us rewrite (5.1) in the form 

T = 9(--9~e + div (9~a)} 1 -- 9d | (Va, 
(5.3) 

= 9(d iv (9~a) -- ( o ~  + ~o) 1 -- 9d | ~a. 

Therefore, we compute that, for any density field 9 -- 9(x, t) and any temperature 
field 0 = O(x, t), we have 

div T = 9 grad (div (9~a) -- (gv])o} + grad (9?) + {div (grin) -- (9~)0} d 

-- div (gV]a) d -- (grad z 9) (9~n), (5.4) 

= 9 grad (div (9~)d -- (gt))e} + (9~)0 g, 

= --9 grad # + (9~)o g, 

where, in terms of  the Helmholtz free energy per unit current volume 9% we have 
defined the (chemical) potential 

# ~ (9~a -- div (9~)Q- 

In terms of # and 9~, (5.3) may be written in the form 

T = ( 9 ~ - - 9 # ) l - - d  |  (5.5) 

The potential # thus not only determines a portion of  the stress--it also, 
by (5.4), essentially determines all of div T whenever the temperature field is 
spatially uniform. It follows that in isothermal problems the equations of motion 
(1.13) take the form 

- -  grad/z -}- b = ~, 

for any elastic material of Korteweg type; i.e., elastic materials o f  Korteweg 
type, when the temperature field is uniform, obey equations o f  motion of  the same 
general structure as those for the perfect fluid o f  Euler in a barotropic flow. More 
specially, we see that whenever the body force b is derivable from a potential, 
b = --grad if(x, t ) ,  the acceleration field will be a gradient, and, as a result, much 
of classical hydrodynamics will carry over at once to elastic materials of Korte- 
weg type. More specially still: whenever the temperature field is uniform, the body 
motionless, and b = --grad ~b(x), the equations of  equilibrium for out" material 
admit of  the first integral 

/~ + 4~ : constant -= k, 
i.e. 

div (9~)a -- (9~)e = 4,(x) -- k. 
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Thus, the equilibrium configurations of our material, instead of being governed 
by 3 third-order partial differential equations (div T = grad 40 for the single 
scalar field ~, which would usually result in ~ being overdetermined,* are in 
fact governed by a single partial differential equation of second order. 

Appendix A 

In this appendix we wish to show that if the interstitial work flux u 
u(F, O, VF, V2F, g, I~) is objective under frame changes and satisfies the restriction 
(2.6) on up, namely 

� 8 9  F~J ' + O Fi, ! 

then fik must be given by 

We begin by noting that (2.6) may be written in the equivalent form 

(2.6) 

(A.1) 

Next, we observe that the objectivity of u means that fi(.) satisfies the functional 
equation 

fi(QF, O, OVF, QV2F, Og, oie + QF) = Qfi(F, O, VF, V2F. g, 1~),** (A.2) 

for all (F, 0, VF, V2F, g, F) E ~ff and for all proper orthogonal tensor-valued 
d 

functions Q(z), where (~ ---- ~ -  Q(z). If  we take Q(z) = e ~W, where W is skew, 

and evaluate (A.2) at ~" = 0, we see that 

fi(F, 0, VF, V2F, g, i~ -k WF) = fi(F, O, VF, V2F, g, 1~) (A.3) 

for all skew tensor W. If we now in (A.3) replace W with hW, differentiate with 
respect to h, and evaluate at h : 0, we find that 

~ (F, 0, VF, V2F, g, F) WjkFk~ = 0 

* In [18], SERRIN has shown that precisely such overdetermination occurs for KOR- 
TEWEG'S form (1.1) unless a very special relation holds among the nonclassical coeffi- 
cients % t3, 6, and 7. 

** To assert (A.2), of course, requires that we assume Y is mapped into itself under a 
frame change, i.e., 

(F, 0, VF, VEF, g,/~) E Y ~ (QF, O, Q VF, Q V2F, Qg, OF d- Q~') E J .  
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for all (F, 0, VF, V2F, g, F) E J and for all skew W. Equivalently, 

~Fj~ Fk~ is symmetric in j and k. (A.4) 

Now set 

Hijk = ~.j~,Fk~, and Dijk = ~)~k~,~F,.o, Fyl~, 

so that (A.1) and (A.4) are, respectively, just the conditions that 

�89 q- Hjki) ---- DUk (A.5)1 
and 

Hijk is symmetric in j and k. (A.5)2 

By (A.5)2 we see that (A.5h may now be written in the form 

� 89  k -~- n j i k )  : Oiyk , .  (A.6) 

Note that DUk is automatically symmetric in i and j since ~Fk~ ~ = ~Fk~" 
NOW (A.6) just asserts that for each fixed k, k : 1, 2, 3, H~yk has Dijk as 

its symmetric part, i.e., 

Hij  k = Dij  k -}- Wi jk ,  (A.7) 

where each W~/~, k = 1, 2, 3, is skew in i and j. But by (A.5)2 Hok is symmetric 
i n j  and k, and this will let us calculate WVk in terms of the Dpqr. Indeed, by (A.5)2 
and (A.7), 

Dij  k "-~ Wi j  k = Hi j  k = Hik  ] : Diky-[-  Wikj, 
and so 

Wijk  - -  Wik)  : Diki  - -  Dilk. (A.8)l 

But if we permute indices in (A.8)1, we find that 

Wji  k - -  l/Vjk i = Djk  i - -  Dj ik ,  (A.8)2 
and 

W k f i -  W k i  j : Dki j -- Dkj i. (A.8)3 

Thus, upon adding (A.8)l , (A.8)2 , and (A.8)3, and exploiting the fact that WOk 
is skew in i and j, we find that 

2 Wkji : Dikl  - -  Dijk  -~ Djki  - -  Djik ~-  D k q  - -  Dkji, 

: 2Dik j -- 2Duk , 

where the last holds because D,y k is symmetric in i and j. 
We have thus proven that 

WUk : Dkij  - -  Dkj i ,  
and so, by (A.7), 

Hqk : DUk q- DkU - -  D~i. 
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But this last is exactly the assertion that 

8Fj--~ rk~ = 0 {~rk~F~Fj~ + ~5r --~'r,~Fk,Fj~}, (A.9) 

which, modulo multiplication by F~  1, is what we wished to prove. 
Before we leave (A.9), it is interesting to note that, while it trivially implies 

that fi/~ vanishes whenever ~ve vanishes, the converse of this is also true, i.e., 
~ vanishes only if ~bvF vanishes. Indeed, ifhF vanishes, then Hqk = 0 and hence 

Dij k -{- Dk U - -  Dkj i : 0 .  (A. I0) 

But, if we now permute indices in this equation 2 at a time, we arrive at 3 additional 
equations, each equivalent to (A.10). When all 4 of these equations are added and 
account is taken of the symmetry Dog = Dj~k, we find that 

Dqk -~ Dki j = 0", 

thus, by (A.10), we must have Dkj ~ = 0, and so ~vF must vanish as claimed. 

Appendix B 

In this and the following appendix, we analyze and solve the requirement of 
objectivity under frame changes and the restrictions (4.4) and (4.6) imposed by 
thermodynamics on ~(.): Y' • V-+ V, the static part of the interstitial work 
flux in a material of Korteweg type. Our analysis leans heavily on the structure 
of the set 6 e, the domain of ~ ( . , - , . , . ,  g). Accordingly, and as indicated in Sec- 
tion 4, we now assume that 6 a has the special form 

5 a : 5 a " x V x T s ,  

where 5 e'' is an open subset of (0, oo)x(O, oo). Thus, for each (~, O)E 5 a'', 
the function w ---- ~(Q, 0, d, S, g) is defined for every d and g in V and for every 
S ~ T , .  

Now, the thermodynamic restriction (4.4)2, that 

W,. P = 0, (4.4)2 

is of independent interest, as well as being somewhat intricate to analyze. That 
analysis is thus the subject of Appendix C, and we begin here with its central 
conclusion: the function w = ~(~, 0, d, S, g) satisfies (4.4)2 if and only if 
�9 (~, 0, d, �9 ,g) is of the form 

~ = w(e, o, a, s ,  g), 
(B.l) 

= a(e, O, d, g) + b(~, O, a, g) [s] + S*c(Q, O, a, g), 

for vector-valued functions a(.), b(-), and c(.), where S* denotes the adjugate* 
of the symmetric tensor S, and where b(e, 0, d, g) [-] is linear** and meets 
e.b(e,  0, d, g)[e | e] : 0 for every unit vector e. Since (B.1) tells us that 

�9 This is defined in Appendix C. 
�9 * This notation for linear functions is explained and motivated in Appendix C. 
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~(.) is a polynomial of  degree 
skew, can hold if and only if 

as(0, O, 
b e, o, 
S*cg(e, 

for all ( o , O , d , S , g ) E S P x V .  

2 in S, we see that (4.4)1, which states that ~g is 

d, g), 

a, g)[S], 

0, d, g), 

are all skew (B.2) 

Let us look first at (B.2)3 : If  we take S = 1, then (B.2)3 tells us that cg = --cff. 
Thus (B.2)3 now yields 

S*c~ = --c~S*r = q S * ,  

where we have used the facts that S* ---- S *r, since S is symmetric, and that cg = -- c~'. 
That is, (B.2)3 tells us that cg is a skew tensor that commutes with any symmetric 
tensor which is an adjugate. Even if attention is limited to symmetric S which are 
invertible, it is now quite easy to show that c~(Q, 0, d, g) must vanish identically, 
i.e., 

c = c(e, O, d). 

The remaining two restriction, (B.2)~,2, as we saw in Section 2, just mean 
that a(9, 0, d, .) and b(Q, 0, d, .) [S] are affine, with skew linear parts. Thus, (4.4) 
holds if and only if 

w = ~'(e, O, d, S, g), 

= P(e, 0, d) + Ol(e,  0, d) g + r(e, 0, d) [S] + Q2(~, 0, d) [S] g + S*c(~, O, d),  

= P(O, O, d) + o~l(e, O, d) • g + r(e, O, d) [S] + o~2(e, 0, d) [S] • g + S*c(e, O,d), 

(B.3) 

where we have introduced the axial vectors oJl and oJ2 which correspond to the 
skew tensors O1 and Q2, respectively, and where 

e . r ( ~ , O , d ) [ e  |  = 0 ,  
and 

e • r 0, d) [e | e] = 0, (B.4) 

for every unit vector e, since our original function, b(.) of  (B.1), satisfied 
e . b(e, O, d, g) [e | e] = 0. 

We now turn to the restrictions imposed on ~(-) by (4.6). Indeed, by (B.3), 
we see that w ~ = ~E(p, 0, d, S) ~ ~(~, 0, d, S, 0) is given by 

WE = P(e, 0, a) + r(e, 0, d) [S] + S*c(e, O, a). 

Consequently, (4.6) is just the requirement that 

p~(~, 0, d ) .  d + rQ(Q. 0, d) [S]. d + (S'co(o, O, d)) .  d 

+ Pa(O, O, d ) .  S + rd(~, O, d) [S]- S + Ca(O, O, d)" s*Ts  ~ O, 

(4.6) 
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for all (~, 0, d, S)E 6P"X V x T , ,  where r(.) satisfies (B.4)~. As we indicated 
earlier*, and, as we will now show, one consequence of (4.6) is that it holds if and 
only if its left-hand side vanishes identically. Additionally, we shall see that interest- 
ing chaining identities are imposed by (4.6) on the functions p(.), r(-), and c(.). 

First, since S = S r, the Cayley-Hamilton theorem yields S * r S  : S * S  = 
(det S) 1. Thus (4.6), which is cubic in S, holds for all S E Ts if and only if 

tr Ca(e, O, d) ~ O, (B.5)1 

and 
pe(~o, 0, d ) .  d q- re(Q, 0, d) [S]. d q- {S*ce(~, O, d)}. d 

-q- pal(O, O, d) " S q- rd(Q, O, d) [S]- S ~ 0, (B.5)2 

for all (~o, 0, d ,S )  E 6 e " •  Next, if we put S = o ~ e  |  or and 
e E V, a simple calculation gives that S* = 0, while rd(O, O, d) [e | e] �9 e | e 
is seen to vanish by (B.4)1. Hence, for S = 0~e | e, (B.5)2 yields that 

Po(e, O, d)  . d + ~{ro(e, O, d)  [e | e] . d + Pal(e, 0, d)" e | e) =>_ 0, 

for all (~, 0, d) E Se" / V, for all o~ E 1%, and for all e E V. It is thus clear that 
the coefficient of o~ in this last must vanish identically, or, equivalently, by the 
spectral theorem, 

re(Q, O, d)  [S]. d + Pd(~, O, d) " S ~ O, (B.6) 

for all (e, 0, d, S)E 5a"•  V• T~. The identity (B.6) means that the inequality 
(B.5)z has been reduced to the condition 

Po(e, O, d) . d + d . S*c~( e, O, d) + rd(e, O, d) [S]. S ~ 0. (B.7) 

Now replace S in (B.7) with S q-~e  | e; a simple calculation then gives 

o~[d. {Se | e + e | eS  --  S - -  (tr S) e | e + {(tr S) -- S .  e | e) 1) c e 

-t- ra[S] " e | e -}- rd[e | e l .  S] q- Po " d - I -  d .  S*c  e q- rd[S ]" S ~ 0 

for all 0~ E 1% and all unit vectors e E V, and where we have again used (B.4)I 
to set ra[e | e] �9 e | e ----- 0. It is clear that this last inequality can hold only if 
the coefficient multiplying o~ vanishes identically, i.e., by the spectral theorem, only, 
if 

d .  ( S l S  2 -~ S 2 S  1 - -  (tr S~) S 2 - -  (tr S2) Sa} 

+ {(tr Sl) (tr S2) -- tr (S~$2)) 1) c o q- raiSe]" S2 -k ra[S:]" $1 = 0 (B.8) 

for all (~, 0, d) E 5e" • V and for any two symmetric tensors Sl and S2. Upon 
selecting S1 ---- $2 ---- S in (B.8), we find that d .  S*c  o + ra[S ] �9 S ~ O, and thus 
(B.7) has been reduced to just the condition 

Po(e, O, d). d => 0 (B.9) 

for all (9, O, d) E 5 a'' • V. 

* See our discussion of the more general inequality (2.12). 
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Summarizing our discussion to this point, we see that p(-), r(-), and c(-) have 
been shown to satisfy (B.4)t and (4.6) if and only if the three identities (B.5)1, (B.6), 
and (B.8) and the inequality (B.9) hold (and then (4.6) reduces to just (B.9)). 
However, a little more is true: in (B.6) replace d with rd  and take S = d | d 
to find that 

d 
Pd(e, O, 7: d) " d ~ d -~ d " ~ p(e, O, v; d) = 0 

for all (Q, 0, d) E ~ " •  and for all z E R ,  since ro(e, 0, z d ) [ d  |  
vanishes due to (B.4)~. If  we now integrate this last equation from z = 0 
to z----l,  we see that 

d . p(0, O, d) = d . p(e, 0, 0). (B.10) 

Consequently, (B.9) holds if and only if d .  PQ(e, 0, 0) ~ 0 for all (~, 0, d) E 
5 p'' x V. Clearly, we must then have P0(e, 0, 0) =~ 0, and hence d .  P0(e, 0, d) ~ 0, 
i.e., (B.9) holds if and only if its left-hand side is identically zero. 

We now have shown that, as claimed, (4.6) holds if and only if its left-hand 
side vanishes identically and that this occurs if and only if the four chained 
identities (B.5),, (B.6), (B.8), and Po(~, 0, 0) = 0 are satisfied. 

Finally, note that, since fi(.) is objective under a frame change, its static part 
�9 (.) must also be objective. Hence 

~,(r O, Q d, QSQ ~, Qg) = Q~(Q, O, d, S, g), (B.11) 

for all (~, 0, d, S, g) E 6: x V and for all proper, orthogonal Q. In terms of the 
representation (B.3), it is easy to see that (B. 11) is equivalent to the five conditions: 

p(p, O, Q d) = QP(e, O, d), 

to~(~, 0, O d) = (det Q) Otot(e, 0, d),  

r(e, O, O d) [qSO r] = Or(e, O, d) [S], (BA2) 

to2(e, O, Q d) [QSQ T] =- (det Q) Qto2(e, 0, d) [S], 

c(e, O, O d) : Oc(e, O, d) ,  

for all (p, 0, d, S) E 5 t', and where det Q = + 1 since Q is proper. 
As is well known, the functional equations (B.12)1,2.5 are readily solved: 

p = p(~, 0, d) = P(e, 0, M) d, 

to, : tot(e, 0, d) : ~o,(e, 0, M) d, (B.13) 

c = c(e, 0, a)  = c(e ,  0, M)  a ,  

for scalar-valued functions, P, cot, and C of e, 0, and M = ld[ 2, defined on 
5 : " x [ 0 ,  oo). But now, when the restriction (B.10) from thermodynamics is 
applied to the form (B.13),, it follows easily that P(.) must vanish identically. 
Similarly, when the restriction (B.5)t from thermodynamics is applied to the form 
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(B.13)a, one finds that C(O, 0, .) must be such that 3C + 2MCM = 0; hence 
C(O, 0, M) ---- C(~, 0, 1) M -3/2, which is defined on 50" x [0, ~ )  if and only if 
C(') ~ 0. Thus we have shown that 

p(.) c(.) 0, 

and, as a consequence, the restrictions (B.6) and (B.8) are now just 

rE( e, 0, a) IS]. a ~_ o, 

rd(~, o, d) [SI].  S 2 -~- lrd(Q, 0, d) [$2]. S 1 0, 
(B.14) 

respectively, for all (t~, 0, d)E i f " ' •  V and for all symmetric tensors S, S~, 
and S2. 

The functional equation of (B.12)3,4 can also be solved; one finds that any 
function f -----f(d) [S], defined for vectors d E V and symmetric tensors S on V 
which is linear in S and satisfies the requirement 

f (Q d) [QSQ T] = Qf(d) [S] (B.15) 

for all proper, orthogonal tensors Q, must be of the form 

y = y(a) [sl = (S .  (F~ ~ + F2 a | a) ~ + r3s} a + F,  a •  a), (B.16) 

for scalar-valued functions F i, i----- 
When the representation (B.16) 

restriction (B.4)~ forces the terms 
F1 + F3 = F2 : 0. Therefore 

1 ,2 ,3 ,4 ,  of M = l d ]  z alone.* 
is applied to r(~, 0, d) [S], one finds that the 
corresponding to F1, F2, and F3 to satisfy 

r : r(o, 0, d) [S] : r d x (S d) -}- ra(S -- (tr S) 1) d,  

where the scalar-valued functions r and rl depend on o, 0, and M = ] d [  2 and 
are defined on 6e" •  [0, cx~]. When this form for r(.) is put into the restriction 
(B.14)2 with S1 = e ~  |  x and $ 2 = e 2  @e2, whe ree l  an d e2  are mutually 
perpendicular unit vectors pependicular to d, one finds that r~ must vanish iden- 
tically. Consequently, r(.) must be of  the form 

r = r(o. 0, d) [S] = r d • (S d), 

and, moreover, this form for r(.) satisfies the restrictions (B.14)1,2 identically. 
Lastly, when the representation (B.16) is applied to to2(o, 0, d ) [S]  and the 

restriction (B.4)2 is taken into account, one finds that the terms corresponding 
to FL, F2, and F ,  must all vanish. Hence, 

r : r O, d) [S] = r d ,  

* When (B.15) is required to hold for all orthogonal tensors, proper or not, the 
representation (B.16), without the term d x (S d), is a consequence of a more general 
theorem of NOLL [30], who studied the consequences of (B.15) for arbitrary functions 
jr = J'(d, S) in the case where Q can be any orthogonal tensor. The representation (B.16) 
appears to be new. 
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for a scalar-valued function 0) 2 of  O, 0, and M ----- I d l  2, which is defined on 
5r [0, oo]. 

Summarizing our results, we see that thermodynamics, the objectivity of  the 
interstitial work flux u under frame changes, and the assumption that 5e = 
6~"x  Vx  T,, together imply that  if(.) is at most of  the form 

w = ~(_o, 0, d, S, g), 

~- toL d •  + r d •  d )  + (-02(S d ) x g ,  

for scalar-valued functions o~, r, and ~2 of  0, 0, and M = Idl 2. We have proven 
the representation (4.7). 

Appendix C 

Let T~ denote the set of  symmetric second-order tensors defined on a three 
dimensional inner product space V. Let w ( . ) : T , - +  V be once continuously 
differentiable. We show here that, if  in addition 

w s ( s )  �9 r = o ( c .  1) 

for all S E T~ and all completely symmetric third-order tensors ~, then w(.) 
must be of  the form 

w ( S )  = a + b[S] + S ' c ,  (C.2) 

where a and c are constant vectors, where b[.] is a linear function* satisfying 
e �9 b[e | e] = 0 for every unit vector e, and where S* is the adjugate of  S.** 
Conversely, it is easy to see that  if  (C.2) holds then (C.I)  is satisfied. 

To begin the proof  that (C.1) implies (C.2), let us take F in (C.I) to be of  
the form r |  |  for r EV. In this case(C.1)  tells us that  

r .  w , ( S )  [r | r] = 0 (C.3) 

for any S E T ,  and any r E V .  I f  we r ep l aceS in (C .3 )  by S - k z r  |  we see 
that (C.3) asserts that 

d 
r . w ( S  + z r  | r) = O 

* Throughout this and our earlier Appendix B, we use square brackets to denote 
linear functions. Thus f[.] is a linear function of one variable, f[., .] is a bilinear functions 
of two variables, etc. Similarly, while we write ws(S)  for the gradient of w(.) at S, we 
will write ws(S)  [.] for the differential of w(.) at S. 

** For any second-order tensor A on the three-dimensional inner product space 
V, we may define the adjugate A* of A by 

A *  = A 2 -- I A  + H1,  

where I and H are, respectively, the first and second principal invariants of A. By the 
Cayley-Hamilton theorem, it then follows that 

A * A  = A A *  = (det A) 1. 
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for all T 6 R, for all vectors r, and for all symmetric tensors S. We thus see that 
r .  w ( S  + Tr | r) is independent o f  v, i.e.,  

r .  w (S  + ~r | r) = r .  w(S)  (C.4) 

for all 3, r, and S. 
Now differentiate (C.3) and (C.4) with respect to r in the direction r', yielding 

r ' . w , ( S )  [r | r] + r . w , ( S )  [r' | r + r | r'] = 0, (C.5) 

r' . w (S  + z r  | r) + r . w , ( S  + zr  | r) [~(r' | r + r | r')] : r' . w(S) ,  

respectively. In (C.5)2 replace S + "rr | r by S and subtract (C.5)1, multiplied 
by 3, from the result to obtain 

r' . w(S)  - -  rr '  . w , (S)  [r | r] = r' . w(S  --  vr | r) 

or, since the vector r' is arbitrary, 

w(S  + o~r | r) = w(S)  + ws(S ) [~r | r], (C.6) 

where we have replaced --3 by 0~.We remark that (C.6) holds for every symmetric 
tensor S, every vector r, and every real number o~; by repeated application of 
(C.6) we now complete the proof of the representation (C.2). 

We note first that (C.6) enables us to assert that w(.) is infinitely differentiable. 
3 

Indeed, if S' is any symmetric tensor, let ~] s;e~ | e~ be its spectral representa- 
i=1  

tion; by (C.6) it then follows that 
3 

w,(S)  [S'] = ~ {w(S q- s;e~ | e;) --  w(S)}, 
i = I  

and so ws(') [S'] is, for each S'  ~ Ts, continuously differentiable on T,. Moreover, 
the differential ws,(S) [S', S"]  of W,(S)  [S'] is easily seen to be symmetric in S' 
and S". Similarly, the third differential wss,(S) [-,-, .] is easily seen to exist and 
be symmetric in all three of its arguments. Higher-order differentials of w(.) 
also exist but we shall not need them. 

If  we successively take S = O ,  S = f l s  |  and S = f l s  |  |  
in (C.6), we find that 

w(0~r | r) = w(0) + w,(0) [~r | r], 

w(o~r | r + fls | s) = w(fls | s) + w,(fls | s) [o~r | r], (C.7) 

w(~r  | r + fls | s + y t  | t) 

= w(/3s @ s + ~,t | t) + ws(/3s | s + ~,t | t) [~r | r],  

respectively. We differentiate (C.7), and (C.7)3 with respect to 13 and evaluate 
the result at /3 = 0, so obtaining 

ws(~,r | r) [s | s] = w,(0) [s | s] + w,,(0) [o,r | r, s | s], 
(c.8) 

w~(e~r | r + ~,t | t) [s | s] = w,(Tt  | t) [s | s] + w,,(;,t  | t) [c~r | r, s | s], 



130 J' E. DUNN &, J. SERRIN 

respectively. Next, we differentiate (C.8)2 with respect to y and evaluate the result 
at y = 0, so concluding that 

w,,(o~r | r) [s | s, t | t] = w**(O) [s | s, t | t] + w,,,(O) [ocr | r, s | s, t | t]. 
(C.9) 

After some relabeling, (C.7)~.2 and (C.8)~ may be combined to show that 

w(~s | s + yt | t) = w(0) + w,(o) [/~s | s + ~,t | t] + w,,(0) [~s | s, ~,t | t]. 
(c.10) 

Similarly, after some relabeling, (C:8)1,2 and (C.9) may be combined to show that 

w,(fls | s + y t  | t) [r | r] = w,(O) [r | r] + w**(O) [r | r, y t  | t] 

-/- w,,(0) [r | r, fls | s] + w,,,(0) [r | r,/~s | s, y t  | t]. 
(C.11) 

If  we now put (C.10) and (C.11) into (C.7)a, we see that we have shown that 

w(~r | r -~ fls | s q- y t  | t) = w(O) q- w,(O) [~r | r q- fls | s q- y t  | t] 

q- w,s(O) [~r | r, fls | s] q- Wss(O) [o~r | r, y t  | t] (C.12) 

+ w,,(O) [//s | s, r't | t] + w,,,(O) [~r | r, ~s | s, ~,t | t], 

for any three real numbers ~, fl, and y and for any three vectors r, s, and t in V. 
Now, by the spectral theorem, any symmetric tensor S can be written as 

3 
S = ~ siei | ei for eigenvalues si and associated, mutually perpendicular, 

i--1 
eigenvectors % If  we substitute the spectral form for S into (C. 12), we see that for 

any S E Ts, 

w(S) : w(O) -~- Ws(O) [S] -[- (sis2) Wss(O) [el | e l ,  e2 | e2] 

+ (slsa) w,,(O) [e~ | el,  e3 | ca] + (s2sa) w,,(O) [e2 | e2, e3 | e3] 

+ (sls2sa) w***(O) [el | e, ,  e2 | e2, e3 | e3], (C.13) 

i.e., w(.) is at most a cubic polynomial form in the eigenvalues o f  S. But even more 
is true--indeed, 

w,,,(0) [e, | el,  e2 | e2, e3 | e3] : 0 (C.14) 

for every choice of mutually perpendicular unit vectors el ,  e2, and e3 in V. To 
see this we need only return to (C.3) and differentiate that equation with respect 
to S in the direction S'. We find that 

r .  W,s(S ) [r | r, S'] -~ O. (C.15) 

If  we differentiate (C.15) with respect to S in the direction S", we also see that 

r . w , , , (S )  [r | r, S',  S"]  = O. 
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In  this last line we now take S '  : s | s and S "  =- t | t and use the symmet ry  
of  w,,s (S)  [-, ", "]. We conclude tha t  ws~(S)  [r | r, s | s, t | t] is is perpen-  
dicular  to r, to s, and to t. A fbrtiori, when r, s, and t f o rm a basis for  V, 

w,,s(S)  [r | r, s | s, t | t] : O 

at  every S E T s .  We have proven  (C.14). 
Next,  let us take S '  = s | s in (C.15) and use the symmet ry  o f  w,~(S) [., .]. 

We conclude tha t  w,~(S) [r | r, s | s] is always perpendicular  to bo th  r and s. 
Thus,  for  any o r thonorma l  basis {ei; i---- 1, 2, 3} o f  V and for  every S E T s 

w,~(S) [ei | el, ej | ei] is parallel to ek (C.16) 

for  all i :4=j :4= k =~ i. In  addition, if  we differentiate (C.5) with respect  to S in 
the direction r |  and then invoke (C.15) with S ' - - - - r '  |  |  we 
find that  r' �9 w ~ ( S )  [r | r, r | r] : 0. Since r '  is arbi t rary,  this requires tha t  

w~s(S) [r | r, r | r] = 0. (C.17) 

at  every S E Ts and for  every r E V. 
3 

N o w  let (e i, i = 1, 2, 3} be any o r thonorma l  basis for  V. Since 1 = Y'~ ei | ei, 
i = l  

an easy calculation, based on the bilinearity and symmet ry  of  w~(S)  [., .], gives 

�89 [1, 1] = w,s(S) [el | e l ,  e2 | e2] -}- wss(S ) [e~ | e l ,  e 3 | e3] 
(c.18) 

+ w~,(S) [e2 | e2, e3 | e3], 

where (C.17) has been used to d rop  the terms ws~(S) [e i | ei, e i | ed, i = I, 2, 3. 
Thus,  by (C.16) and (C.18), 

w , ( 0 )  [ei | e~, ej | e A = (�89 [1, 1] .  ek} e~, (C.19) 

for  i @ j = [ = k + i .  
With (C.14) and (C.19), the representat ion (C.13) now becomes  

Iv(S) = w(O) -}- ws(O ) [S] q- (sls2e 3 | e 3 q- sls3e 2 | e 2 -t- s2sael | el} �89 ) [1, 1], 

which, with a ~ w(0), b[.] --~ w,(0) [.], and c = �89 [1, 1], is exactly the 
representat ion (C.2) which we were to prove  (since sls2e3 | e 3 -k sls3e2 | e2 q- 

3 
s2s3el | el  is jus t  the adjugate S* of  S = ~ siei | ei). The condit ion tha t  

i=1 

e �9 b[e | e] = 0 is, o f  course, just  the requirement  (C.3) at S = 0. 
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