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Abstract 

From the mathematical formulation of a one-dimensional flow through a 
partially saturated porous medium, we arrive at a nonlinear free boundary 
problem, the boundary being between the saturated and the unsaturated regions 
in the medium. In particular we obtain an equation which is parabolic in the 
unsaturated part of the domain and elliptic in the saturated part. 

Existence, uniqueness, a maximum principle and regularity properties are 
proved for weak solutions of a Cauchy-Dirichlet problem in the cylinder {(x, t): 
0 --< x --< 1, t => 0) and the nature, in particular the regularity, of the free boundary 
is discussed. 

Finally, it is shown that solutions of a large class of Cauchy-Dirichlet problems 
converge towards a stationary solution as t -+  oo and estimates are given for 
the rate of convergence. 

1. Introduction 

During the last two decades a great deal of progress has been made on the 
mathematical analysis of flows through porous media [1, 2, 3, 5, 6, 9, 10, 11, 12, 
14, 15, 18]. Much of this work, however, has been concerned with flows which 
were either completely saturated or completely unsaturated. In this paper we 
shall consider the flow of a fluid in a porous medium which is only partially 
saturated. This leads to a free boundary problem, the boundary being between 
the saturated and unsaturated regions. In the context of ground water flow this 
interface is called the water table. 

Consider a homogeneous, isotropic and rigid porous medium filled with 
a fluid. Let q denote the macroscopic velocity of the fluid and c the volumetric 
moisture content. If  ~ is the moisture content at saturation, we have 0 _< c ~ ~. 
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Then the flow is governed by the continuity equation 

and Darcy's law 

~C 
8-~ + div q = 0 (1.1) 

q = --K(c) grad qb, (1.2) 

where K is the hydraulic conductivity and ~ the total potential (hydraulic head) 
(cf. BEAR [4], p. 488, RAmS and GARDNER [17]). If  absorption and chemical, 
osmotic and thermal effects are ignored, ~ may be expressed as the sum of a 
hydrostatic potential ~p due to capillary suction and a gravitational potential 
[4]. Thus, if we choose the z-coordinate along the gravity vector, we may write 

= ~p + z. (1.3) 

Eliminating q and �9 from (1.1)-(1.3) we obtain 

~-~ = div (K(c) grad ~p) + K(c). (1.4) 

Between the variables c and y there exists an empirical relationship which can 
be quite complicated because of hysteresis effects. However, we shall ignore these 
effects and assume that we may write c = c(~p), where 

(i) if ~p <Z 0, 0 ~ cop) < ~ and c is strictly increasing; 

(ii) if ~p > 0, cop) = L 

Equation (1.4) now becomes 

~---~ cop) = div (D0p) grad ~p) + ~'z D0P)' (1.5) 

where D = K o c. Note that in the saturated region (1.5) reduces to 

A~p = 0. 

Thus, equation (1.5) is of elliptic type in the saturated region and of parabolic 
type in the unsaturated region. Across the boundaries between these regions one 
would expect c and q to be continuous. 

In this paper we shall restrict our attention to one-dimensional flows for 
which K(c)~ Ko. Then (1.5) becomes 

(cOp)), = Wxx, 

where subscripts denote differentiation, and Ko has been set equal to unity. 
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Let Qr -- {(x, t) : 0 < x < I, 0 < t _-< T), where T is some fixed positive 
constant. Then our object is to study the Cauchy-Dirichlet problem 

(e(u)) t : Uxx in Qr (1.6) 

(I) |u(0, t ) = - l ,  u(1, t ) = + l  for 0 < t _ - - < T  (1.7) 
/ 

[c(u(x, 0)) : Vo(X) for 0 <~ x ~ 1, (1.8) 

where the function c: [--a, oo) ---> [0, 1] (a ~ 1) satisfies the following hypotheses. 

Hla.  c(s) is Lipschitz continuous and strictly increasing on [--a, 0]. More- 
over dc(s)/ds > 0 whenever it exists on (--a,  0); 

Hlb.  c(s) = 1 for s _> 0. 

As regards the initial value Vo, we assume that there exists a function Uo: 
[0, 1]--~ ]R which satisfies the hypotheses 

H2a. Uo is Lipschitz continuous on [0, 1]; 

H2b. Uo(0) -- --1, uo(l) = +1  and Uo(X) >= --a on [0,1], such that 

e(Uo(X)) = Vo(X) for 0 --< x --< 1. (1.9) 

It should be observed that since e'(s) = 0 for s > 0, u0 is not uniquely deter- 
mined by Vo. 

One approach to Problem I is to assume the existence of an interface x -- ((t), 
to solve (1.6) on both sides of it and then to patch the solutions together at the 
interface, using the continuity of e and q = --ux. This leads to a condition from 
which the function ~ then can be determined [7]. 

Another approach is to define a class of weak solutions on the entire cylinder 
~gr, to establish their existence, and to show that they have properties, which 
are to be expected of  physical flows [13]. It is this second approach which we shall 
adopt in this paper. 

Inspired by the class of weak solutions defined by OLEINIK, KALASHNIKOV 
and Ytn-LIN for the porous media equation [14] we introduce the following 
notion of weak solution. 

m 

Definition. A function u(x, t), defined a.e. in Qr, will be called a weak solu- 

tion of Problem I if c(u) E C(Qr), u possibly redefined on a set of  measure zero, 
(ii) u -  u E L2(0, T;//01(0, 1)), where ~ ( x ) - - - - 2 x -  1 and (iii) u satisfies the 
identity 

1 

f f (r - r dx dt = f dp(x, O) Vo(X) dx (1.10) 
QT 0 

for all CECI(Q.T) which vanish for x : 0 , 1  and t = T .  
The plan of the paper is the following. In section 2 we prove the existence of 

a weak solution. This is done by approximating c and Uo by sequences of  smooth 
functions (Cn} and (U0n} such that c~ >= 1/n for all n ~ 1. For  each n ~ 1, 
the equation (cn(u)) t = uxx is now uniformly parabolic and has a unique smooth 
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solution u, which satisfies (1.7) and the initial condition u(x, 0) = U0n(X), 0 
x =~ 1. We then extract a subsequence u~,, which converges weakly in L2(0, T; 
Hi(0, I)) to an element u, which is then shown to possess all the properties of  
a weak solution. 

In section 3 we establish the uniqueness of weak solutions and a maximum 
principle for the concentration c(u). Then in section 4 we discuss the regularity 
of  weak solutions. 

Let v = c(u), where u has been chosen so that v E C(Qr). Suppose there 
exists a point J E  (0, 1) such that Vo(X) < 1 on [0, J) and vo(x) ----- 1 on [J, 1]. 
Then we show in section 5 that there exists a function r [0, T] -+  (0, 1) such 
that for each t E [0, T]: 

v(x, t) < 1 for 0 ~ x ~ r 

v(x, t) = 1 for ~(t)--< x <-- 1. 

Thus, ( defines the interface in Problem I. Subsequently we derive a number of 
properties of this function (. 

Finally, in section 6 we show that if ~(x) ---- 2x -- 1 then 

v(x, t) ~ v(x) :~ c(~t(x)) as t -+ cx~ 

uniformly on [0, 1], and we give two estimates for the rate of convergence. 
It is a pleasure to acknowledge a number of fruitful discussions with Ph. CL~- 

~,mNT and J. VAN KAN. 

2. Existence 

We begin by approximating the function c in equation (1.6) by a sequence 
of  smooth, strictly increasing functions (cn}. 

Lemma 1. Suppose c: I--a, oo) -+ [0, 1] satisfies hypotheses Hla ,  b. Then there 
exists a sequence (cn} C C~176 and a constant K >  0 such that 

(i) cn(s) --~ c(s) as n -~ cx~ uniformly on bounded subsets o f  I--a, oo); 
(ii) 1/n ~= c~(s) ~ K on R for all n >= 1; 

(iii) i f  c is concave, then c'~'(s) ~ 0 on R for  all n >= 1. 

Proof. Let ~:R--~ ( - - o o ,  1] be a uniformly Lipschitz continuous extension 
of  c to 1~ such that ~ E C1( - oo, --a) and U(s) = constant and positive for 
s < - - a .  Let ~E C~(R) be a nonnegative function such that Q(s)= 0 for 
I sl --> 1 and f 9(s) ds = 1. Then for each n >= 1, we set r = nr and 
we define 

c,(s) : - -  s + f ~ll,(r --  s) ? r -- dr. (2.1) 
n R 

Clearly c, E Coo(R), and we assert that (cn) has the desired properties. 
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The first property  follows f rom the Lipschitz continuity of  ~ and the second 
one f rom the monotonici ty  of  b. Let 2E [0, 1] and st, s2ER.  Then, 

cn(~s~ + (1 - ~) s2) 

1 { 2 s l + ( 1 - - 2 )  s 2 } + f ~ , l n ( r  2s, (1 2) s2)-c(r  1 )  dr 
n R 

n R 

R 

where we have used the fact that  i f  c is concave, it is possible to choose an exten- 
sion ~ which is also concave. Thus 

Cn(2S, + (1 - -  2) s2) ~ 2e.(sl) + (1 --  2) c,(s2). 

Since cn E C~(R)  this establishes the third property.  
Next,  we approximate Uo by a sequence of  smooth  functions {Uon}. Set 

- - 2 - - U o ( - - x ) ,  - - l  < x < O 

~o(X) = {Uo(X), o _< x < 1 
J 
[2 --  Uo(2 --  x), 1 < x <  2 

and define for n ~ 1: 

2 

Uon(X) = f Oiln(x -- y) t~o(y ) dy, 0 <-- x <-- 1. 
--1 

(2.2) 

Lemma 2. Suppose Uo satisfies hypotheses H2a,  b and ~ E C~(R) is a non- 
negative function with support in [--1, 1] such that f ~(x) dx ~- 1, O(--x) = 9(x) 

R 

and x~'(x) <= 0 for x E R. Then the sequence {Uon) Q C~ 1]) defined by 
(2.2) in which ~lln(x) = no(nx) has the following properties: 

(i) Uon(X) ~ Uo(X) as n ~ oo uniformly on [0, 1 ]; 
r t  t t  

(ii) Uon(0) = --1, U0n(1) ----- 1, U0n(0) = U0n(1) = 0 for all n ~ 1; 

(iii) i f  Uto ~) and Uto 2) both satisfy H2a,  b and u~0 t) => U~o 2) on [0, l], then u~ ~)vn =>'-o,(2) 
on [0, 1] for  all n ~ 1. 
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Proof. Parts (i) and (ii) follow from the continuity of 2o and the symmetry 
.,(1) . (2) Then properties of 2 0 and r (iii) Define w ----- h~o ~ --  fito2) and wn = -0n - - - o . .  

2 

w.(x) ---- f Oll.(x -- y) w(y) dy, 0 ~ x <~ 1. 
--1 

It is clear that wn(x ) ~ 0  if  1 /n<- -x<- - l - -1 /n .  Thus, choose xE(0 ,1 /n ) .  
Then we can write 

0 x + l l n  

wn(x) = f ~lln(x -- Y) w(y) dy q- f O,l,(x -- y) w(y) dy 
x - -  l/n 0 

x + l l n  

---- f (~,tn(x -- Y) -- ~lfn(x § Y)} w(y) dy >= 0 
O 

in view of the asymmetry of w and the properties of ~. Similarly, 
for x E (1 --  1/n, 1]. Hence ..(1) > .  (2) [0, 1]. ~On ~ UOn o n  

We now consider for each n E N the problem 

wn(x) >= o 

[c~(u) u, = u~x in Qr  

I(n) /u(O, t) --- - l ,  u(1, t ) = - k l  for O < t ~ T  

[u(x, O) = Uon(X) for 0 --< x _< 1. 

(2.3) 

The properties of the functions en and Uon guarantee that Problem I(n) has a unique 

solution un E C2+l(Qr) A C~176 

Lemma3.  Let m = m a x { l u o ( X ) { : O < _  x ~  1} 
0 _ < x ~  1}. Then 

[un(x, t) l ~ M -~ max (m, 1} and 

r 

and L = ess sup (]u0(x)]: 

Lu.x(x, t)l ~ Z 

for all n E tff and all (x, t) E -Qr. 

Proof. The bound on u, is an immediate consequence of the maximum prin- 
ciple. To obtain the bound on unx, we first derive a uniform bound on Unx at the 
parabolic boundary /'7" of  Qr. Let [u01 "< L a.e. on (0, 1), then it follows from 

t 

(2.2) that [u0n [ ~ L on [0, 1] for all n >-- 1. Now consider the functions w• = 
--1-4-Lx.  Then w_ =< un =< w+ on -Pr- Since w+ and w_ both satisfy (2.3) it 

follows from the maximum principle that w_ <--un ~ w+ in Q_.r, and hence 
]un~(0, t)] _< Z for 0 _< t --< T. In the same way we obtain that [u,~(1, t)] =< E 
for 0 ~ < t _ < T .  Thus ] u n x [ ~ L  on F z f o r  all n ~  1. 

Next, we differentiate (2.3) with respect to x. Putting z = unx, this yields 

z t ~ a(x, t) Zxx --k b(x, t) z:,, 

�9 - -1  " ' - - 2  where a = (c.(u.)} and b = - -c .  (u.) c. (u.) u.x. In view of  the properties 

of u. and c. it follows that a and b are uniformly bounded in Q'r, and z E C2'I(Qr) 
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A C(Qr). Hence, by the maximum principle 

max I z(x, t) I --~ max t z(x, t) l < L, 
Qr -- r r  ---- 

which proves the second estimate. 

Remark. By a slight modification of the proof of Lemma 3 one can prove the 
following result: If  Uo(X) >: ~ > 0 a.e. on (0, 1) then 

U,x(X, t) >= 

for all n E H and all (x, t)E ~)r. 
Set 

w n = u n -- ~t, 

where ~ -= ~(x) = 2x -- 1 on [0, 1]. Then it follows from Lemma 3 that (wn} 
is a bounded sequence in the space/_,2(0, T;//o1(0, 1)). Hence there exists a sub- 
sequence {w~,} which converges weakly to an element w E L2(0, T;//01(0, 1)). Let 

u : w -f- ~ (2.4) 

then we shall show that u has all the properties required of a weak solution. 
Plainly u possesses the second property. Let us next turn to property (i). For 

convenience we write 

Vn(X , t) : Cn(Un(X , t)) n E I~ (x, t ) E  QT. 

Lemma 4. The sequence (vn) is uniformly Lipschitz continuous with respect to 

x and uniformly Hiilder continuous (exponent 1/2) with respect to t in Qr. 

Before proving Lemma 4, we establish an auxiliary result. 

Proposition 1. Let f E C1([0, 1]) have the following properties: 

L~ L (i) I f ' l  < .4 on [0, 1], (ii) f ( x )  dx <= e for any a, b E [0, 1]. Then 

If(x) I < max {2~, ~/~-~} for  0 < x < 1. 

The proof is elementary, and we shall omit it. 

Proof  of  Lemma 4. By Lemma 3, and the properties of {c~}: 

Iv.xl = I~;(u.)l lu.xl < KL in Qr. 

Hence, {v,} is uniformly Lipschitz continuous with respect to x in L)r. 

Define the rectangle R = (a, b)• (tl, tz) C Qr, and integrate (2.3) over R. 
This yields 

b t2 

f {v.(x, tz) - v.(x, t,)) dx = f {U.x(b, t) - -  unx(a, t)} at. 
a gt 
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Hence by Lemma 3 

Vn(X, t2) - -  Vn(X, tl)} dx ~ 2L It2 -- t,I. 

We now apply Proposition 1 with 

f ( x )  : Vn(X , t 2 )  - -  Vn(X , q ) .  

Since [f'l ~ 2KL, we may conclude that for It2 - t l  I small enough 

Ivy(x, t2) --  v.(x, fi) l <: 2 ]/KL It2 - t 1 [~ 

for all x E [0, 1]. 
It follows from Lemma 4 that the sequence (vn} has a convergent subsequence, 

denoted again by {v/,}, such that 

v u ~ v as # -+ c~ in C~(Qr), (2.5) 

where fl E (0, 1), and v E C~ 

Lemma 5. Let  u and v be defined in (2.4) and (2.5) respectively. Then v = c(u) 

a.e. in Qr. 

Proof. Define 
: ((x, t )E Qr: v(x, t) < 1} 

: ((x, t) E Qr: v(x, t) : 1}. 

(i) Let (Xo, to) E ~ ,  and set 2 0 :  1--V(Xo, to). Define N r = { ( x , t )  EQT': 
I x - Xo ] + I t - to I < r). In view of  (2.5) there exists a no ~ 1 and a r > 0 
such that 

1 - - 3 6 < = v ~ < = 1 - - 6  in NQ 

for all # ~ n o .  For each n--> 1, we may write 

u.  = c ~ l ( v . ) .  

Moreover, in view of the assumptions on c: 

max {l(Cn'(S))'l: n >-- 1, c(--a) + 6 <_ s <_ 1 - -  6} : cg(6) < oo.  

Hence, if we set In = [c(--a) + 6, 1 --  6], then 

I~., - ~., ] < ~(6)  I v~, - v~, [ + max ] c~a(s) -- c~'(s) ] 
= sEI6 

if(6) I v , , -  oral + ff ( +  6) max [c~,~(r)- cu,(r)], <_ 
- -  --a~_r~_O 

for/~,/~2 large enough. Hence {uu} is a Cauchy sequence in C(NQ), and therefore 
converges to an element u* E C(NQ). I n  view of the continuity of c this implies 

that v : c(u*) in _N~. 
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Note that as /~ ~ 0% w~, ~ w in L2(Qr) and hence u~, ~ u in L'(Qr).  Let  
~bE C~(Ne).  Then 

(~, u , ) , ,  ~ (~. u)L2 as ~ ~ 

by the weak convergence of {u~,} and 

(t~, llls)L 2 -'->" (r U*)L2 a s  /.z ~ og~ 

by the uniform convergence of  u~, in 1V e. Therefore 

(~', U)L~ ---- (4', U*)L~ 

for any ~ E C ~ ( N  e) and hence u = u *  a.e. in ~Te. Thus v----c(u) a.e. in N e 
and hence, because (xo, to) was an arbitrary point in ~ ,  v = c(u) a.e. in ~ .  
(ii) Let e > 0 and let 

~ ,  = {(x, t) E QT: v(x, t) > 1 - -  e). 

By (2.5) there exists an nt E tff such that if /t >= n~ 

v~,> 1 - - 2 e  in ~ , .  

Hence, if # ~ na, 

ut, = c;'(v~,) ~> c~-1(1 --  2e). (2.6) 

Let ~b E C~~ be nonnegative. Then (2.6) and the weak convergence of  {ut, } 
imply that 

0 ~ lim (~, uv --  c~~(1 -- 2e))z= : (~b, u --  c-1(1 --  2e))z=. 

Thus 
u ~ c-1(1 - -2e)  a.e. in ~ , .  (2.7) 

Because ~ ( ~ ,  for any e > 0, it follows that (2.7) holds in ~ for any e > 0 
and hence, letting e tend to zero we obtain 

u ~ 0  a.e. in ~ .  

This implies that c(u) = 1 a.e. in ~ .  Since v = 1 in ~ we have proved 
that v = c(u) a.e. in ~ .  This completes the proof  of  the lemma. 

Thus by Lemma 5 and (2.5) u has property (i), and it remains to verify that u 
has property (iii). 

Let ff E Cl(~)r) be a test function, i.e. it vanishes at x = 0, I and at t = T. 
Then, because un is a classical solution of  Problem I(n) we have 

1 

f f (4,xu,x - ~,,c,(u.)) dx dt : f ~,(x, o) Cn(UOn(X)) dx. (2.8) 
QT 0 

If  we pass in (2.8) to the limit through the subsequence {uu} and use (2.5) we 
obtain 

1 

f f {r - 4,,v} dx ,it = f r O) Vo(X) dx. 
QT 0 
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Since, by Lemma 5, v = c(u) a.e. in Qr, it follows that u satisfies (1.10) and hence 
possesses property (iii). 

Thus the function u defined by (2.4) is indeed a weak solution of Problem I. 
This completes the proof of the existence theorem: 

Theorem 1. Suppose that the function c satisfies hypotheses H1 a, b and that 
v o is such that there exists a function Uo which satisfies H2a, b. Then there exists 
a weak solution o f  Problem I. 

3. Uniqueness and a Maximum Principle 

In this section we shall establish uniqueness of the weak solution u defined in 
the previous section, and a maximum principle for the concentration. 

Theorem 2. Let  the function c satisfy hypotheses H1 a, b. Then Problem I has 
at most one weak solution. 

Proof. Let ul and u2 be two weak solutions of Problem I. Then if we substitute 
them into (1.10) and substract, we obtain the identity. 

f /  [rbx(Ul - -  u2)x -- rbt(C(Ul) - -  c(u2))] dx dt ---- 0 (3.1) 

for all ~b E C 1 (Qr) which vanish at x : 0, x =  1 and t = T. It follows from a comple- 

tion argument that (3.1) continues to hold if $ is taken from the set H l(Qr) A C(~)r) 
and vanishes at x = 0 ,  x :  1 and t----T. Hence, for any t lE (0 ,  T], (3.1) 
holds if we substitute 

//' 
4~(x, t) = (Ul(X, s) - -  u2(x, s)} ds, 0 <~ x <_ 1, 0 <= t < tl 

it0 0 < _ x < ~ l ,  t ~ < ~ t < _ T  

and we obtain 

1 

I f (r 0)} 2 dx + f f  (ul - u2) {e(ul) --  c(u~)} dx dt = O. 
2 0 Qt~ 

Since both integrals are nonnegative, it follows that both must vanish, and hence 
that 

2 d {ulx(x, s) - -  u2x(x, s)}  ds = 0 a.e.  o n  [0, 1], (3.2) 

Let us write w = ul - -  u2, and let z(a, b) denote the characteristic function 
of the interval (a, b) ~ R .  Then utilizing the fact that t~ is an arbitrary point in 
(0, T], it follows from (3.2) that 

f f z(x,, x2) z(tl, t2) wx dx dt = 0 
QT 
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for arbitrary intervals (xl, x2) ( (0, 1) and (tl, t2) C (0, T). Hence wx ---- 0 
a.e. in Qr. Because, by property (ii) of weak solutions w E L2(0, T;/-/01(0, 1)), 
this implies that w = 0 a.e. in Qr, and hence that u~ = u2 a.e. in Qr. 

Corollary. By Lemma 5, the uniqueness of u implies the uniqueness of the con- 

centration v = c(u) in Qr. 

Theorem 3. Suppose the function c satisfies hypotheses H1 a, b and Vol and Vo2 
are such that there exist functions Uol and Uo2 which satisfy H2a, b. Let u~ and u2 
be the weak solutions of Problem I, corresponding to, respectively Vol and Vo2. 

Then, i f  Vol >= Vo2 on [0, 1], it follows that c(ul) >= c(u2) a.e. in Qr. 

Proof. By (1.9) 

C(Uo,(X))~C(Uoz(X)) on [0, 1]. (3.3) 

We shall show that Uol and Uo2 can be chosen so that 

Uo1(X) ~ Uo2(X) on [0, 1]. (3.4) 

Suppose at a point Xo E (0, 1), 

Uol(Xo) < Uo2(Xo). (3.5) 

Then it follows from the monotonicity of c that 

C(Uo,(Xo)) <= C(Uo2(Xo)). 

In view of (3.3) only equality can apply, and this is only compatible with (3.5)if 
Uol(Xo) >= 0 and hence Uo2(Xo) > 0. 

Thus (3.4) can only be violated at points in (0, 1) where both Uo~ and Uo2 
are nonnegative. However at these points we may modify Uo~ and Uo2, provided 
they remain nonnegative and Lipschitz continuous. Thus, at points where Uo2 ~ 0, 
we redefine Uo2, so that Uo2 = 0, except for a sufficiently small interval (1 -- 6, 1]. 
Then, in view of the Lipschitz continuity of Uo~, we can achieve inequality (3.4). 

Let uin be the solution of Problem I(n) with initial value Uoin (i =- 1, 2). Then 
by (3.4) and Lemma 2, Uol, => uo2~ on [0, 1 ] and hence, by the maximum principle 

ul~ ~ u2n in Qr 

for every n ~ 1. This implies, by the monotonicity of e, that 

c,,(u,,,) >= c,,(U2n) in Qr 

for every n--> 1 and hence, by (2.5) and Lemma 5, 

c(uO >= c(u2) a.e. in Or- 

Because c(ul) and c(u2) are uniquely determined by Vol and Vo2 the theorem is 
proved. 
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4. Regularity 

In this section we derive three results about the regularity of weak solutions 
of Problem I. 

Theorem 4. Let  u be the weak solution o f  Problem I, in which c and Vo satisfy 
the hypotheses imposed in Theorem 1. Then u E Lz(0, T; H2(0, 1)). 

Proof. Let e E (0, ~-) and Q*r = (e, 1 - e) • (e, T]. Let u~ be the solution of  

Problem I(n). Then un E C~176 and hence, if we multiply (2.3) by u~t and 
integrate over Q~-, we obtain 

f f c'~(u,) u 2, dx  dt = [u,,u,,]~-* dt + T (x), e) dx  

- T /  uL(x, T) dx. 

At this point we let e -+ 0 +. Because u~ E C2+l(QT) and unt(O, t) = u,t(1, t) = 0 
for t E [0, T], we obtain in the limit 

T 1 1 1 
, 2 d x d t < ~ - ( l ~  '2 f f e.(u.)u., = uo.dx 

o o 

or because ]c~(s) l=<K for all s E R  and n ~  1, 

g ! 

u2 d ,2 dx .  f f nxx dx  dt < - -  UOn 
aT = 2 

Remembering that u n and u,x are uniformly bounded with respect to n in ~)r, 
it follows that the sequence (un} is bounded in L2(0, T; H2(O, 1)). This implies 
that there exists a subsequence of {uu} which converges weakly to an element 
fi E L2(0, T; H2(0, 1)). Plainly fi = u. 

In the region 9 ,  where v < 1, the equation is parabolic and u can be shown 
to be a classical solution of Problem I. This is the content of the following theo- 
rem. We shall impose an additional condition on the function c. 

H I  c. The restriction of c to [--a, 0] belongs to C2([--a, 0]) and c " ~  0. 

Theorem 5. Let  u be a weak solution o f  Problem I, in which c and Vo satisfy 
the hypotheses imposed in Theorem I and Hlc .  Then u is a classical solution o f  
equation (1.6) in the region 

: ((x, t) E QT: V(X, t) < 1}. 

Proof. Let (Xo, to) E ~ .  Then, because v E C(Qr), there exists a neighbour- 
hood N o C ~  of (Xo, to) a n d a  ~ l > 0  such that v <  1 - - 3 ~ i  in No. Since 
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as # - +  oo in C(Qr), there exists a #o :> 1 

185 

such that if /~ ~/~o 

(4.1) 

v~--+ v 

v u ---- cu(u~,) > 1 -- 261 in ~7o. 

By Lemma 1 (i) there exists a /21 ~ 1 such that if /, ~ / i t  

[ct,(s ) -- c(s)] < 6 x for s E [--M, M]. (4.2) 

Thus, if /, ~ / z *  = max {/to, #1}, it follows from Lemma 3 that 

c(uu) > 1 -- 6x in No. (4.3) 

In view of  the fact that c E C2([--a, 0]) and c" > 0 on [--a, 0) (4.3) implies 
the existence of a constant 62 > 0 such that if /z ~ /**  

- - e  ~ u~, <_ --62 in No. (4.4) 

We now consider equation (2.3), writing it as 

ut ---- av(x, t) Uxx, (4.5) 

where 
au(x, t) = {c'~(uu(x, t))} -1 . 

Since c' > 0 on [--a, 0), there exists a 63 > 0 such that 

c'(s) >: 63 for s E I--M, --62]. (4.6) 

Let b be a concave extension of c to R, as in Lemma 1. Clearly we may assume 
that b E C2((-- oo, 0]). Then for s E [--a, 0] 

"n I (  1 e'.(s) - -  e'(s) = __1 + f ~l/n(z) b' s + z --  - -  ~'(s) dz. (4.7) 
n -- l /n 

Because ~ is concave, the integral in (4.7) is nonnegative and hence 

c'~(s) --  c'(s) >: 1 for s E [--a, 0]. (4.8) 
n 

Thus, by (4.4) and (4.6) we have that if # >--#* 

63 .< c'~(u u) ~ K in No (4.9) 

and hence 

1/K ~ a~, < 1/63 in No. 

Therefore the coefficient a~, is uniformly bounded away from zero in No 
and hence (4.5) is uniformly parabolic i f /z  is large enough. 

By Lemma 4, v,E C~ and hence, in view of (4.9) ut, E C~ as 
well. Therefore a~, E C~ and it can easily be verified that the norm of aj, 
in C~ is uniformly bounded with respect to/z. By standard regularity theory 
([8], p. 64) this implies that there exists a neighbourhood N1 C No of (xo, to) 
such that the solution u u of (4.5) belongs to C2+I(N1) , the norm being uniformly 
bounded with respect to # ~ #*. Hence there exists a subsequency of(uu} 
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which converges in C2+C~(~/1) (0 ( o~ , ( 1 )  to an element u* E C2+~(571). It is clear 
then that u* = u a.e. in NI and satisfies (1.6). 

Whereas the definition of a weak solution and Theorem 4 supply information 
about the dependence of u on x, we have as yet very little information about the 
dependence of u on t outside the region ~ .  In the following theorem we partially 
fill this gap, however only at  the expense of an additional condition on Uo. 

H2c. Uo E C2+r([0, 1]) (0 < y ~ 1), Uo'(0) = Uo'(1) ---- 0 
and 

U'o'(X) >= --uc'(uo(x)) on [0, 11 

for some u > 0, whenever Uo(X) # O. 

Theorem 6. Let u be the weak solution of  Problem I in which c and Vo are such 
that hypotheses H1 a-c  and H 2 a - c  are satisfied. Then there exists a function u*: 

QT--> R such that u*-----u a.e. in QT and 

u*(x, tl) --  u*(x, t2) ~ --u(t~ -- t2) 

for all (x, t~), (x, t2) E QT such that 0 <~ t2 <: t~ ~ T. 

Proof. Let u~ be the solution of Problem I(n) in which the initial function Uon 

has been replaced by Uo. Then Un E C2+r({ffT) and hence 

Cn(Uo(X)) Unt(X, O) = Uo'(X) on [0, 1]. 

In view of H2c and (4.8) this means that 

Unt(X, 0) > --~ on [0, 1]. 

At the lateral boundaries we have unt(O, t) = untO, t) = 0, hence u~t > --u 
on the parabolic boundary F r  of Qr for every n >- 1. 

Since u,E C~176 we may differentiate (2.3) with respect to t. Writing 
u~t ----- q, this yields the equation 

1 c'~'(u.) 1 , , q2 > 
qt = cn(un) qxx c~(u~) = ~ qxx, 

because of the concavity of Cn. Since q E C(QT-) and q > --~ a l o n g / ' r  it follows 

from the maximum principle that q > --~ in Q7-, i.e. 

u~t(x, t) > - u  for (x, t) E Qr, n >- 1. (4.10) 

For  any n >_ 1 and (x, t) E {~r we define 

t t 

w,(x, t) = f Un(X, s) ds, w(x, t) = f u(x, s) ds, 
0 0 

where u is the weak solution of Problem I. Since (u~,} converges weakly to u in 
L2(0, T; Hi(0, 1)) it follows that w, converges weakly to w in Hi(0, T; HI(0, 1)). 
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But HI(0, T; HI(0, 1)) is compactly imbedded in C(Qr). Hence w~ converges 

strongly to w in C(Qr). 
Next we define for n ~ 1 

z.(x, t) = w.(x, t) + ~t2/2, 

z(x, t) = w(x, t) + ~tz/2. 

Then for each xE [0, 1], it follows from (4.10) that 

Znt t = Unt -~- ~ ~ O. 

Hence the function z,(x, .): [0, T]--->R is convex for any n ~ 1 and any 

xE [0, 1]. Since z~---> z in C~.r) this implies that z(x, .): [0, T]--->R is also 
convex for any x E [0, 1]. Thus, the right derivative ~+z(x, t)/~t exists for all 
t E [0, T) and is nondecreasing with respect to t. 

Now we define for (x, t) E [0, 1] • [0, T) 

c5+ 
u*(x, t) = ~ z(x,  t) - ~t .  

Clearly u* = u a.e. in Qa,. Moreover if 0 ~ tz <= tl < T 

u*(x, tl) q- gtx ~ u*(x, tz) q- xt2. 

To complete the proof we define 

O- 
u*(x, T) = -~  z(x, T) -- ;r 0 <-- x <-- 1 

and we obtain, in view of the convexity of z(x, .) for 

~- ~+ 
u*(x, T) -k ~tT = -~  z(x, T) >= -~-~ z(x, tz) = u*(x, t2) -k ~tt2, 

whenever t2 E [0, T), and x E [0, 1]. 

Remark. In what follows we shall often refer to u* as the weak solution of 
Problem I, in the cases that hypothesis Hl  a-c and H2a-c  are satisfied. 

Remark. The convexity condition H2c imposed on Uo is reminiscent of the 
convexity condition introduced by ARoNSON [3] and, more recently KrqEgR 
[12], to derive an equation for the interface in the Cauchy problem for the porous 
media equation 

ut ----- (u'%,x, x E R, t > 0 

u(x, O) = uo(x), x E  R .  

In this problem the condition is: (u~-l(x))" :> --g at points x E R ,  where 
Uo(X) > O. 
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5. The Interface 

Let u be a weak solution of Problem I and v = c(u) the associated concentra- 
tion profile. As in the proof of Lemma 5 we set 

: {(x, t) E Qr; v(x, t) < 1) 

: { ( x ,  t )  E v(x, t) = 1). 

It is immediately clear from Lemma 3 that 

(0, L- l ) •  T] C ~ and [1 -- L- l ,  1)• T] C ~ .  (5.1) 

For each t E [0, T] we define 

(-(t) sup {x E (0, 1) : (~, t) E ~ for all ~ E [0, x)} 

(+(t) ----- inf{x E (0, 1): (~, t)E ~ for all ~E (x, 1]}. 

Then, in view of (5.1), 

L -1 ~ (-(t) ~ (+(t) ~ 1 -- L -1 for 0 <-- t --< T. 

In this section we shall show that if (-(0) = (+(0), then ( - ( t ) =  (+(t) for 
all t E [0, T], and hence, that there exists a function (: [0, T] ~ (0, 1) such that 

= ( ( x , t ) : 0 < ~ x < r  0 < t ~ T }  (5.2) 

t ~ = { ( x , t ) : ( ( t ) ~ x <  1, 0 < t = < T } .  (5.3) 

This function ~ will be called the interface. Having proved its existence, we shall 
derive a few properties. 

TlaeoremT. Let the hypotheses H l a - c  and H2a, b be satisfied. Suppose 
(-(0) = ~+(0). Then there exists a function ~: [0, T]-+ (0, 1), such that ~ and 

are given by (5.2) and (5.3). 

Proof. Clearly it is enough to prove that (-(t)  ~ (+(t) for t E [0, T]: Thus, 
suppose to the contrary that for some z E (0, T], (-(-c)< ~+(3). Then, since 

v E C(~gr), there exist numbers xl, x2 E [~-(3), ~+(3)] such that x~ "~ X2, 
v(xl, 3) = v(x2, 3) = 1 and v(x, 3) < 1 on (xl, x2). 

For e > 0, let I, denote a subinterval of (xt, x2) in which v < 1 -- e, and 
let G~ be the component of the set ((x, t) E Q,: v(x, t) < 1 - e} which is connected 
with I,. Finally let / ' ,  denote the part of the boundary of G, for which t < 3. 
It follows from the continuity of v that I,, G~ and F, are nonempty for e small 
enough. 

Let / u  denote the parabolic boundary of Qr. Then, for e sufficiently small, 
we distinguish the following two cases: 

(i) F~F~ FT = 0. Since v E C(Qr), this implies that V lr ~ = 1 -  e. Moreover, 
because G~ C ~ ,  it follows from Theorem 5 that in G~, v satisfies the equation 

v,  = 
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in a classical sense. Here, c - t  denotes the inverse of c, which is well-defined for 

the values taken on by v in G,. 
Let min v(x, t) ~- V(Xo, to) < 1 -- e. Then because v ]1-, = 1 --  e, (Xo, to) 

is either an interior point of  G, or it lies on a segment of the line t ---- 3, which is 
part of  the boundary of G~. In both cases we can apply the maximum principle 
{[16], p. 169, Theorem 2} to show that v(x, to) = V(Xo, to) < 1 --  e for all x 
on the line segment t = to which lies in G, and contains the point (xo, to). 
Plainly this contradicts the fact that v fr~ = 1 - - e .  Therefore v [~, ~ 1 - - e  

and in particular v ]~ ~ 1 - - e .  Thus we arrive at a contradiction. 

(ii) /'~ (~ Fr  + O. Since v [rd~or = 1 -- e there exists a point (Yc, t) E F r  (~ 11, 
such that vQc, i ) =  1 - - e .  Because v(O,t)----c(--1) and v(1, t ) =  1, tE[O,T] 
it follows that for e sufficiently small, t = 0 and ~ E (0, ((0)). By assumption 
Vo < 0 on [0, ((0)). Hence there exists a ~ > 0 such that Vo(X) < 1 -- ~ on 
[0, ~1. 

Let d, denote a curve in G, which connects (~, 0) with an arbitrary point 
(x3, T) of  1,. Plainly v le, < 1 --  8. Then, we consider the domain D enclosed by 
the arcs 

dx = { ( x , t ) : t = 0 , 0 - - < x - - < . ~ }  

d2 ----- {(x, t): x ---- 0, 0 --< t _< T} 

d 3 = { ( x , t ) : t = T ,  0 - - < x ~ x z }  

and d,. Let {vu} be the sequence which converges to v in Ca(Qr) (cf. (2.5)). Then 
there exists a #*=> 1 such that if #=>/~*, v~,< 1-- t5 /2  on d~kYd2tYf,.  

It now follows from the maximum principle that v u < 1 --t9/2 in f f a n d  in parti- 
cular at the point (x,, 3). Hence v(x~, 3 ) <  1 - -~ /2  < 1, and we have again 
obtained a contradiction. 

In what follows, we shall always assume that r = g+(0), and that 
and ~ are given by (5.2) and (5.3). 

In N the weak solution u is a classical solution of  equation (1.6) by Theo- 
rem 6. If  Uo satisfies the convexity condition H2c, we can say in addition that u x 
is continuous up to ~(t). 

Theorem 8. Let u be the weak solution of  Problem I, in which c and Vo are such 
that hypotheses H l a - c  and H 2 a - c  are satisfied. Then for each to E (0, T] 

lira Ux(X, to) exists. 
xfr 

Proof. Consider the sequence {wn} defined by 

1 
w.(x, t) = u.(x, t) + -~  ~K{x -- ~(t)} 2, 
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where u# is the solution of  Problem I(n) (with Uo~ replaced by Uo). Then, by the 
proof  of Theorem 6 

W#xx = U.xx + uK > u(--c'.(u.) + K} >= O. 

Let (Xo, to) E ~ .  Then, by the proof  of Theorem 5, Wuxx(Xo, to) ~ Wxx(Xo, to) 
as /~ ~ oo and hence 

Wxx(Xo, to) > O, 0 < Xo < ((to). 

By Lemma 3 it follows in a similar manner that 

Therefore 

wx(xo, to) ~ L A- uK, 0 ~ Xo < ~(to). 

lim ux(x o, to) = lira wx(x o, to) exists. 
xo~r xo~'r 

In the next theorem we discuss the nature of the weak solution u in the sa- 
turated region ~ .  

Theorem 9. Let u be the weak solution o f  Problem I in which c and Vo satisfy 
the hypotheses o f  Theorem 1. Suppose that ~(t) is continuous on an interval (a, b) 
( (O, T]. Then 

x --  ((t)  
u(x, t) -- 1 -- ~'(t) ~(t) --~ x <~ 1 (5.4) 

almost everywhere on (a, b). I f  in addition hypotheses H1 c and H2c are satisfied, 
(5.4) holds for all t E (a, b). 

Proof. Define the set A = {(x, t) E Qr: ((t) < x < 1, a < t < b}. This set 
is open because ~ E C(a, b). 

Let bE C~(A). Then, because c ( u ) =  1 in A, the integral identity (1.10) 
yields 

O =  f f { 4)xux --  ~bt} dx dt --- f f ~bxux dx dt . 
A A 

By Theorem 4, u E L2(0, T; H2(0, 1)). Hence 

f f 4,Uxx dx dt = O. 
A 

Thus uxx = 0 a.e. in A from which (5.4) follows almost everywhere on (a, b). 
Next, we assume that H1 c and H2e are satisfied. By the first part of  the theo- 

rem there exists a set E, which is dense in (a, b), where (5.4) holds. Let to E (a, b) \ E. 
We shall show that (5.4) also holds for t = to. 

Let {t~} C E A (a, to) be such that t,,-+ to as n---> oo. Let x E (~(to), 1). 
Then by the continuity of ~, x E (~(t~), 1) for n large enough and hence, by Theo- 
rem 6 and (5.4): 

x --  ((t~) 
u(x, to) ~ 1 ((t.)  -- g(to -- t.). 
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I f  we now let n tend to infinity we obtain 

x - ~(to) 
u(x, t o )  > ( 5 . 5 )  

= 1 - r 
Next,  suppose  there exists a poin t  x l  E (((to), 1) a t  which we have strict 

inequali ty in (5.5), i.e. 

x l  - r 
U ( X l ,  to )  = ~- e,  

1 - -  ( ( t o )  

where e > 0 .  Let  { tm}C(to ,  b) F~E be such tha t  t in-+to as m - + o o .  Then  
by Theo rem 6 and (5.4) for  m large enough 

x l  - -  r > Xl --  r 
+ e - ~ ( t , .  - t o ) .  1--((t,n) = 1 - - ( ( t 0 )  

Lett ing m tend to infinity, we obtain a contradict ion.  
T o  Complete this section we derive a few regulari ty propert ies  of  the inter- 

face ((t).  We begin with an auxiliary lemma.  

L e m m a 6 .  Let  hypotheses H l  a--c and H2a ,  b be satisfied. Let  (Xo, to)E 
and suppose that there exists a positive constant or sueh that 

r to) = {(x, t) E QT: t = to - -  c~(Xo - -  x), 0 < x < Xo} ( ~ .  

Then there exist positive constants fl and m such that 

U(X, to) ~ fl(1 - -  eC~m(x~ 0 ~ X ~ X o 

and Xo = ~(to). 

Proof .  Let  D denote the open triangle enclosed by x =- 0, E~, and t ---- to. 
Then,  because u < 0 on t~, it follows f r o m  Theo rem 7 that  u < 0 in D, whence, 
by Theo rem 6 u is a classical solution of  the equat ion 

Uxx -- c'(u) u t = 0 in D.  

Define the function w(x, t) = fl[1 - -  e"te-t~176 where fl and m are posi-  
t ive  constants ,  which we shall select in due course. We have 

Wxx - -  C'(U) W t : (--(o~m) 2 -~- C'(U) m} e m{t-t~ 

(--(a~m) 2 + Kin} e mu-t~176 < 0 

i f  we choose m > K/o~ 2. 
A l o n g ~  we have w-----0 and along ( x = 0 }  

w(0, t) = fl[1 - -  e ~(t-t~176 >= fl[l - -  e ~ ~  > --1 

fo r /3  sufficiently small. 
Set z = w - - u .  Then  

z~x -- c'(u) zt < 0 in D 
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and z ~ 0 along the parabolic boundary  o f  D. Let  D~ C D be the triangle 
enclosed by x --  0, g~ and t = to - -  e, where e E (0, ~xo). Then, by the maxi- 

mum principle, z >= 0 in D~ and in part icular  

u(x, to -- e) ~ w(x, to -- e) for  0 <-- x --~ Xo - -  e/a, 
o r  

v(x, to -- e) <= c(w(x, to - -  e)) for  0 --~ x --< Xo - -  e/o~. 

I f  we now let e tend to  zero and use the fact that  v E C(Qr), we obtain 

v(x, to) ~ c(w(x, to)) for  0 <-- x --< Xo 

f rom which the result follows. 
We are now in a position to prove the first regularity result. 

Theorem 10. Let  the hypotheses H1 a - c  and H 2 a - c  be satisfied and suppose 
is continuous on (0, T) \ {tl . . . . .  tN} (tk E (0, T), k ----- 1, 2 . . . . .  N) ,  such that 

((t~-) = lim ((t)  and (( t  + )  ---- l!m ((t)  k = 1, 2 . . . . .  N 
t t t  k t~t k 

exist. Then ~ is continuous on (0, T). I f  ~(T-) exists, then ~ E C((0, T]). 

Proof .  Let  ti E {tk). Since v E C(Qr) it follows that  ( ( ( t h ,  h) E ~ and hence 

((ti) =< min ( ( ( t i ) ,  (( t+)).  (5.6) 

(i) Suppose (( t  +)  < (( tZ).  Then,  by (5.6) 

~(t,) < ~(ti-). ( 5 . 7 )  

Since ~ is continuous on (ti-1, t~) (or  (0, t l)  if i ----- 1), there exists a constant  
o~ > 0 such that  E~(((tT), ti) Q ~ .  Hence by Lemma 6, ( ( tT)  = ((h) which 
contradicts (5.7). 

(ii) Suppose 
((ti-) < ( ( t+) .  (5.8) 

Let  (z~}C (t~-l, ti), such that  rn---~ ti as n---~oo. Then, because ( E  C(h- l ,  ti) 
we obtain, using Theorems 6 and 9: 

x - ~(~. )  
u(x, t) ~ 1 -- ~(~) u(t --  ~',) (5.9) 

if x E [~(l',), 1] and t ~ r , .  Let  (Zm} C (ti, T) such that  rm-+ t~ as m--* o~. 
Then  (5.9) implies that  

~(~, .)  - r  
0 - >  u ( ~ . ,  - ~ . )  

- -  1 - -  r  
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if ((rm) ~ ~(~,). In view of  (5.8) this will be the case o f m  and n are large enough. 
Hence if we let m and n tend to infinity we obtain 

0 >-- (( t+) --  ( ( t7)  
- -  1 - -  r  ' 

which contradicts (5.8). 
Thus, ((t +) = ((tT) whence ~ is continuous at t = 6. It follows that ~ E 

c(0 ,  T). 
Finally, if ( (T)-  exists, it is clear that ((T) ~ ((T-) and it follows from the 

argument given in case (i) that in fact ( ( T ) =  ((T-). 
In Theorem 10, we assume a certain degree of  regularity of  the interface (, 

and we proved on the basis of this a stronger regularity result. In the following 
theorem we shall make no initial regularity assumptions about ~. Instead we 
impose a monotonicity assumption on uo. 

Theorem 11. Let hypotheses H1 a-c  and H2a, b be satisfied, and let vo be such 
that Uo can be chosen to satisfy the condition u~(x) ~ ~ > 0 a.e. on (0, 1). Then 

~ C([O, r]).  

Proof. It follows from the remark after Lemma 3 that u,x ~ 3 in Qr for all 
n ~  I. Hence u x > 6 i n  ~ .  

Let T E [0, T], and xa, x2 E (0, ((T)) such that xl > x2. Then 

and therefore 
u(xl,  3) - u(x2, 3) >= ~(x, - x~), 

u(x2, 3) <= - ~ ( x l  - x 9  + u(x~, 3) < - ~ ( x l  - x2), 
or  

v(x2, 3) < c ( - ~ ( x ~  - x~)). 

Hence, if we let xl tend to r we obtain in view of the continuity of  c. 

v(x2, 3) < c(--~(r --  x2)), 0 < x2 < ((~). (5.10) 

Now suppose ~ is discontinuous at t = to. Then there exist a constant e > 0 
and a sequence (tk} Q (0, T) such that tk-+ to as t--+oo with the property 

1r - r l -->_ e > 0 for all k ~ 1. 

Let {te) and {tk,, ) denote the elements of {tk) such that 

r <= r --  e (5.11) 
and 

r >= r + e. (5.12) 

Suppose t k , -+ t  o as k ' --+oo.  In view of(5.11) 

v ( ( ( t o ) -  e, tk, ) ----- 1 for all k' 
and hence 

v(C(to) -- e, to) = 1 

which is impossible in view of the definition of ((to). 
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Next, suppose that tk,,--> to as k"---~oo. By (5.10) and (5.12) we h~ve for 
each k"  

v(((to), tk,,) < c(--t~(((tk,,) -- ~(to))) ~ e(--dt0 

Hence, letting k"  tend to infinity we obtain 

v(r to) <: c(--Oe) < 1 

which is again incompatible with the definition of ~(to). 

6.  Behaviour as t - +  oo  

Consider the stationary problem corresponding to Problem I: 

Uxx=O, 0 < x <  1 

u(0) : - - 1 ;  u(1) : 1. 

Plainly the unique solution ~ of  this problem is given by 

~ ( x ) = 2 x - - 1 ,  O<--x<-- l .  

In this section we shall show, that if u is a weak solution of Problem I, then 

c(u(x, t)) ---> c(~(x)) as t ~ oo, 

uniformly with respect to x E [0, 1]. In addition we shall derive estimates for 
the rate of convergence, first in terms of a weighted Ll-norm and then in terms 
of  the supremum norm. Finally, if u0 => (5 > 0 for some ~ > 0, we shall show 
that 

1 
C ( t ) - - - ~ - - - - O ( I c - ' ( 1 -  aYe'e-at)I) as t - + o o ,  

where 2 and aY" are constants defined in Theorem 13. 

Lemma 7. Let ut and u2 be weak solutions of  Problem I, corresponding to the 
initial values Vol, respectively Vo2. Suppose Vol >= Vo2 and the conditions o f  the 
maximum principle (Theorem 3) are satisfied. Then 

1 1 
f ~(X) (C(Ul(X , t ) )  - -  C(U2(X, t ) ) )  d x  ~ e -~2,1K f ~7(x) {Vol(X) - -  Vo2(X)) d x  

o o 

for  t >: O, where rl(x ) -~ sin z~x. 

Proof. Let unx and Un2 be the solutions of Problem I(n) with initial values 
uo~l and Uo~2. As we saw in the proof  of  Theorem 3 it is possible to choose u01 
and u02 such that Uo~1 ~ uon2 for all n ~ 1. Subtracting the equation for u~t 
from the one for u~2 we obtain 

{Cn(Unl ) - -  en(Un2)} t = (Unl - -  Un2)x x in Qr. (6.1) 
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We multiply (6.1) by B(x) = sin ~x and we integrate over (0, 1). This yields 

d 1 1 
- ~ :  ~/(e.(u.1 ) -- cn(u.2)) dx ~- _~2o f "l(u.1 -- u.2) dx. (6.2) 

However, because by construction u0.1 ~ u0.2, and hence u.~ >= u.2 we have 
for each n ~  1, 

Cn(Unl ) - -  Cn(Un2 ) ~ K(um --  u.:). 

Hence, writing 

we obtain 

and therefore 

1 
ep(t) = f ~(c.(u.1) - c.(u.9} dx 

0 

~2 
f f ' ( t )<  - - - - .  if(t) 

= K 

r  g r e -€ 

Passing to the limit we obtain, in view of Lemma 5, the desired estimate. 

Theorem 12. Let the conditions o f  Theorem 1 be satisfied, and let u be the 
weak solution of  Problem I with initial value vo. Then there exists a constant r 
which only depends on vo, such that 

1 
f v (x)  ]e(u(x, t))  - e(fi(x)) ] dx < ~ e - '2 i lk  t ~ O, (6.3) 

0 

where ~(x) -~ 2x -- 1. 

Proof. Define two initial values v + and v~- such that 

v + ~ max (v0, c(fi)}, Vo ~ min (v0, c(u--)) 

and such that there exist corresponding functions u + and u~- which satisfy H2a, b. 
This is clearly always possible. Let u + and u -  be the weak solutions of Problem I, 

emanating from v +, respectively v~-. Then, by Theorem 3, we have in Qr 

c(u +) >-_ max {c(u), e(u--)) 

c(u-) <= min {c(u), e(fi)), 
and hence 

l e(u) - c(u--)l<= e(u+) - -  c(u-) .  

Lemma 7, applied to the solutions u + and u- now yields (6.3). 
The integral estimate obtained in Theorem 12 can readily be turned into a 

pointwise estimate by means of Lemma 3 and the following proposition. 
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Proposition 2. Let f E Hi(0, 1) have the following properties: 

( i ) f ( 0 ) : f ( 1 )  = 0  and f ( x ) ~ O  on (0, 1); 

(ii) If'[ <: A a.e. on [0,1] and 

1 

(iii) f f(x) sin ztx dx <: e. Then 
o 

i 3 \I13 
If(x)l<= ~--~-A%) forO<--x<-- l .  

We leave the proof to the reader. 

(6.4) 

Theorem 13. Let the conditions of Theorem 1 be satisfied, and let u be the 
weak solution of Problem I corresponding to the initial value Vo. Then 

[c(u(x, t)) -- c(u(x)) [ <= fit"e -at 0 <-- x <-- 1 t ~ O, (6.5) 

where J :  = K2(L + 2)2~ and 2 = ~2/3K. 

Proof. Define 
w(x, t) = [c(u(x, t)) -- c(~(x))]. 

Then w(., t) satisfies the hypotheses of Proposition 2, with A = K(L + 2) on 
[0, oo). Thus (6.5) follows from Theorem 12 and Proposition 2. 

We conclude this section with an estimate for the behaviour of ((t) as t ~ c~. 

Theorem 14. Let H l a - c  and H2a, b be satisfied, and let Vo be such that Uo 
can be chosen so that u'o(x) >: ~ > 0 a.e. on (0, 1). Then there exists a constant 

~ 0 such that 

I~ ( t ) - -+1<=9,c - I (1 - -~ f ' e -~ t ) ] ,  t > O .  

Proof. Fix t > O. Suppose r >-- {. Then, because ux => ~ in ~ we obtain 

v 

On the other hand, by Theorem 13 

~ ( 1 )  _ y:e_at,  (6.7) 

where ~ ---- c(u-). Thus (6.6) and (6.7) together imply 
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or  
1 1 

((t) ---~-=< ----~-c-t(1 --a'ffe-at). (6.8) 

Next, assume that 

or  

and therefore 

((t) < ~. Then, by Theorem 13 

v(((t), t) --  ~(((t)) ~ :/de -at 

v(((t)) ~ I --  ~re-at 

1 1 
((t) -- - -  > - -  c - l ( l  -- :Yale-at). (6.9) 

2 : 2  

{1 1} 
Setting ~ = max -~-,-~- we obtain from (6.8) and (6.9) the desired estimate. 
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