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1. Introduction 

In 1954 (1954 [1])*, ERICKSEN gave the solution to a substantial par t  of the 
following fundamental  p roblem:  to determine the deformations that  can be 
produced in every isotropic, incompressible, hyperelastic body, by the application 
of surface tractions when body  forces are absent. 

Suppose that  the deformat ion f rom the undeformed state is determined by 
the (sufficiently smooth)  mapping  

xa=x'(Xa), a = 1 , 2 , 3 ,  A = l , 2 ,  3,** (1.1) 

where x a and X a are the co-ordinates of the points of the body  in its deformed and 
undeformed states, respectively. Suppose further that  the metrics of the co- 
ordinates x a and X A are g~b and Ga B. 

In  the absence of inertia and body  forces the stress tensor must  satisfy the 
Euler-Cauchy condit ion 

f ~ = 0 .  (1.2) 

The constitutive equat ion for  an incompressible hyperelastic material is 

.~ d.r -x o t~X ~ 
t~= --POb + 2"~i-(e )b--2-~fi-Cb, (1.3) 

* See also (1965 [I], 13. 337). 
** We employ Latin indices to denote eurvilinear co-ordinates and Greek indices to denote 

Cartesian co-ordinates. 
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where p is an arbitrary hydrostatic pressure, and 

and 

OX A OX e 
Cab=GAB OX-------- ~ t3X~ , (1.4) 

(C-I)ab=GAB OX a OX b 
~gXA OX s , (1.5) 

det c~,= 1. (1.6) 

The condition (1.6) ensures that the deformation tensor c determines deformations 
possible to an incompressible material. In (1.3), the scalars I, II, and I I I ( =  1) are 
the elementary invariants of c-1, and X =X(I, II) is the strain energy function. The 
matrix {Ca~} must be positive definite. 

The tensor c must be a metric tensor in Euclidean space. Thus the Riemann 
curvature based on c must vanish. When c is referred to Cartesian co-ordinates 
x ~, a = 1, 2, 3, thus 

c = c~  i~ ip, (1.7) 

the curvature tensor is given by 

4R~p,a=2 ( ~2c~a 82c#, ~2 C~ty ~2C#, ) 
aX# ~X----------- 7 ! 8X~ ~X ~ aX# OX ~ 8X~ aX ~ 

+ ( c - l )  ~ 
ax O x  �9 

t ~ q -  ) (1.8) 

\ ax Ox p ax* ] [--b-Tx ~-~ Ox" Ox" ]J" 

A necessary and sufficient condition for the vanishing of R~a~6 is the vanishing 
of the six components R t 2 1 2  , R2323,  R3131 , R1223 , R2331 , R3112.  

ERICKSEN determined necessary and sufficient conditions for the existence of a 
function p satisfying (1.2) and (1.3). 

Suppose c to be written in terms of its proper values in the form 

c = c l  n n + c 2 s s + c 3  b b .  (1.9) 

The invariants of c-1 are given by 

I=-~-I +--~-1 + -~-1 , II=.-1 + .  1 - F - ~ I  III= 1 =1.  (1.10) 
C 1 C2 C3 C2C3 C3Cl ClC2 ' CLC2C3 

ERICKSEN'S analysis disclosed the following two classes. 

Class A. The Invariants I and H Are Both Constant 

By (1.10), the constancy of the invariants I and II is equivalent to the constancy 
of the proper values c 1, c2, c3. 

v and (c-1)~,~, must be symmetric in the indices In this case the tensors c~ 
a and e. 
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While this category certainly includes homogeneous deformations, examples 
have shown that it includes other deformations as well*. Although the principal 
stretches are constant the local rotation need not be constant. 

Class B. The Invariants I and H Are Not Both Constant 

ERICI(SEN proved that necessary and sufficient conditions for the existence of 
the function p satisfying (1.2) and (1.3) are the following. 

1) The proper values of e are each functions of a non-constant scalar U: 

C I = C l  ( U ) ,  c2=c2(U), c3=c3(U)" ~ (1.11) 

2) cl c2 Ca = 1 ; (1.12) 

3) c=c 1 n n + c  2 s s+c  3 bb; (1.9) 

4) the unit proper vectors n, s, and b are such that n may be taken to be normal 
to the surface U(x ~) =constant ,  so that 

1 
n=~b grad U,  ~k= [grad UI ' (1.13) 

and s and b span the tangent plane to the surface U=cons tan t :  

s .  grad U = 0 ,  (1.14) 

b .  grad U = 0 ;  (1.15) 

5) ( d i v n ) n + n . g r a d n = F ( U ) l g r a d U l n ,  if  c1 , c3 ;  (1.16) 

6) (d ivs ) s+s .  grads=H(U)  grad U,  if  c2 ~ (1.17) 

ERICI~SEN proved that, provided (1.16) holds, that is to say, provided cl =l=c3, 
the only universal deformations possible within Class B are the following four 
families of solutions: 

1) Bending, extension and shear of a block. 

2) Straightening, extension and shear of a sector of a cylindrical tube. 

3) Inflation, bending, torsion, extension and shear of a sector of a cylindrical 
tube. 

4) Inflation or eversion of a sphere. 

These universal solutions are discussd in detail in (1965 [1], Section 57, p. 186). 

ERICKSEN also considered the case ct =ca under the special condition that 
the vector s is complex-lamellar: 

g2 s = s .  curl s = 0. (1.18) 

* SINaH & Pn, Ic_rN (1965 [2]) give the universal solution 

r=aR, O=blogR+cO, z=dZ, a~cd=l. 

Sl~Gn & Pn, KrN note that a special case of this deformation: a2c= 1, b2+ c2= 1, was found by 
KLINGnEm & SnmLV. A second special case due to FOSDICK, 

r=aR, O=bO, z=cZ, a2bc~l, b~=l, 

is noted by TRtmSDELL & Not.t. (1965 [1], p. 338). This is an example of a deformation in which 
the invariants of c are constant. However, this particular deformation is a special case of category 
3 of the four families of deformations possible under Class B. 

10 Arch. Rational Mech. Anal., Vol. 36 
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He proved that, in this case, the material must either be unstrained or else the 
deformation is of Class A. 

The general case of equal proper values, cl =ca ,  in which case the condition 
(1.18) does not hold, remains to be considered. This paper is devoted to an anal- 
ysis of this case. 

We shall establish 

Theorem 1.1. The only universal deformations possible in the case 

c 1 = c a = r /  (1.19) 
correspond either to 

1) deformations in which ~l is constant, 
o r  

2) deformations in which the vector-lines of s are circular helices mounted on 
concentric circular cylinders, the cases where the helices reduce to concentric circles 
or straight lines, being excluded. 

Deformations for which r/is constant belong to Class A. Deformations corre- 
sponding to the vector-line geometries encompassed by 2) were considered by 
ERICKSEN for the case of distinct proper values. The present case thus becomes a 
special case of that already considered. Theorem 1.1 thus tells us that the case 

c1=c3=~1 (1.19) 

introduces no new families of deformations, provided r/is not constant. 

The present analysis, taken in conjunction with ERICKSEN'S work, will thus 
establish the following result: 

Theorem 1.2. The only deformations that can be produced in all homogeneous, 
isotropic, incompressible, hyperelastic bodies by application of suitable surface trac- 
tions alone, are homogeneous deformations, the four families of deformations cited 
above, and non-homogeneous deformations in which the principal stretches are 
constant and both c~, be and (c- l)~, be are symmetric in the indices a and e. 

Preliminary Discussion 

A peculiar complication arises in the case when the proper values cl and c a are 
equal. We lose the condition (1.16). ERICKSEN established the capital result that 
(1.16) implied that  the surfaces U(x~)=constant must be concentric spheres, 
parallel planes or concentric circular cylinders*. In the absence of (1.16), we 

* In particular, since the surfaces U(x~)= constant are parallel, the vector-lines of n are recti- 
linear, and 

curl n = 0. (a) 

Thus by (1.22), and anticipating equation (2.6) of Chapter 2, 

div s=Ons+Obs=O. (b) 

Anticipating equation (2.11) of Chapter 2, from (a) we have 

curl n= --divb s+Onsb=O. (c) 

Thus, the parameters Ons and Obs each vanish. The parameter Obs is the geodesic curvature of 
the b-lines, its vanishing ensures that the surfaces U= constant are developables. They cannot be 
concentric spheres. ERICKSEN proves this result by a different method. 
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cannot in general discover the nature of the surfaces U(x ~) =constant ,  indepen- 
dently of the equations resulting from the vanishing of the curvature tensor, but 
must glean this information from these equations themselves. * 

By (1.13) the unit vector n is complex-lamellar, and 

f2,= n .  curl n = 0 .  (1.20) 

Taking the dot product of (1.17) with s and noting that s is a unit vector, 
so that 

s .  grad s .  s = 0 ,  (1.21) 
we obtain 

div s=n(U)s ,  grad U = 0  by (1.14). (1.22) 

By (1.17) and (1.22) 
s .  grad s = H ( U )  grad U. (1.23) 

When s �9 grad s is not zero, so that the vector-lines of s are not rectilinear, 
f rom (1.13) and (1.23) we obtain 

s .  grad s=H(U)[grad UI n. (1.24) 
At the same time 

s .  grad s = Xs n, (1.25) 

where x s is the curvature of the vector-line of s and n is the principal normal. The 
unit vector n of (1.9) thus points along the principal normal to the vector-line of s. 
The unit vector b points along the binormal. 

Since the principal normal to the vector-lines of s coincides with the normal 
to the surface U=constant ,  the vector-lines of s must be geodesics on the surface 
U=constant .  The vector-lines of b are parallel curves on the surface. 

Furthermore, from (1.24) and (1.25), 

~:s=H(U) [grad U[.  (1.26) 

When s .  grad s vanishes, (1.14) and (I. 17) give the two conditions 

div s = 0, (1.27) 
and 

H ( U ) = 0 .  (1.28) 

In this case, by (1.3), n is the normal to the surface U(x ~) =constant.  The vector- 
lines of s are straight lines on the surface U(x ~) =constant ,  they are simultaneously 
geodesics and rectilinear asymptotic lines on the surface. The vector-lines of 
b = s • n are again parallel curves on the surface. 

The analysis we shall give will be valid even though the vector-lines of s are 
rectilinear. Since s is of unit magnitude, 

s .  grad s =to  x s ,  (1.29) 

�9 The case of s complex-lamellar, t2s=0, is an exception. In this case, the surfaces U(x~)= 
constant are concentric cylinders or parallel planes. This result was proved by PRIM (1952 [1]). 
EmCKSEN analysed the case c 1= c 3 under the condition ms= 0. 

10" 
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where 
to = curl s .  (1.30) 

F r o m  (1.23) and (1.28), we see that  

curl(o~ • s ) = 0 .  (1.31) 

The  vector  field of s is a steady, isochoric, circulation-preserving field of 
constant  magnitude.  

Collecting these results pertaining to the case cl =c3 ,  we have, f rom (1.9), 
(1.10)3 and (1.19), 

1 
c=-Tz ss + rl nn  + rl b b ,  (1.32) 

rl 
where 

~l=rl(U), (1.33) 
and where 

1) n points  along the normal  to the surface U(x ~) =cons tan t ,  

2) I2, = n .  curl n = 0 ,  (1.20) 

3) the vector-lines of s and b are respectively geodesics and parallel curves on 
the representative surface U(x ~) =cons tan t ,  

4) div s = 0 ,  (1.22) 

5) curl (to x s ) = 0 ,  where o~=curl  s .  (1.31), (1.30) 

We require that  the R iemann  curvature  tensor based on c should vanish. 

2. Background Material on Vector Fields 

Before proceeding with the analysis, it is necessary to invoke some basic 
formulae  appropr ia te  to the vector  field s. These results have been derived in 

fiF fiF 6 F  
earlier works  (1969 [1], 1969 [2]). We employ  the nota t ion  ~ s ' 6 n ' f i t  to denote  

the componen t s  of grad F i n  the preferred directions s, n and b. 

We write 
f2 s = s .  curl s ,  f2, = n .  curl n ,  f2 b = b .  curl b ,  (2.1) 

and our  formulae  pertain to the case 

12,= n - c u r l  n = 0 ,  (2.2) 
or, equivalently, 

n - ~  grad U .  (2.3) 

Fo r  the isochoric vector  field s under  considerat ion we also have the condi t ion 

div s = O,s+ 0bs= 0,  (2.4) 
where 

0n s = n .  grad s .  n ,  0 b s = b .  grad s . b .  (2.5) 
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The  g r a d i e n t s  o f  s, n, and  b are represented  by*  

grad  s = s n tcs 

ll ll On s 

- b n %  

grad  n= - s s  ~q 

- - n S O n s  

b s "c s 

grad  b = - s n z S 

- ns (12s -%)+nn  div b 

--bsOb~ - b n ( r ~ + d i v n ) .  

+ n / , ( f ~ , -  ~s) 

+bbObs, 

+ s b %  

- n b  div b 

+ b b (x~ + div n) ,  

141 

(2.6) 

(2.7) 

(2.8) 

In  these fo rmulae  x s and  % are  the  curvature  and  the tors ion of the s-lines. % is 
re la ted  to f2~ and f2 b th rough  

2z~ = f2~- 12 b . (2.9) 

F r o m  (2.6), (2.7), (2.8), we obta in  

curl  s = f2s s + x, b ,  (2.10) 

curl  n = - d iv  b s + 0 , ,  b ,  (2.11) 

curl  b = (x,  + div n) s - 0b ~ n + f2 b b .  (2.12) 

Since the divergence of each of these expressions mus t  vanish,  we obta in  

6~s 3x~ 
fis t---~--~-+I2,(O,~+Ob~)+x~divb=O, (2.13) 

- ~6s div b + ~ 0 , ,  - 0 b s div  b = 0 ,  (2.14) 

- ~ s  (tq + div 8 3 n) --~---~n Ob, + ~-ff Qb + (x, + div n) div s -  Ob, div n + ~b div b =O . (2.15) 

The vector- l ines of s and  b are, respectively,  geodesics and  geodesic paral le ls  
on the  representa t ive  surface U(xO =cons t an t .  

The  pa rame te r  0b, is ident i f ied as the geodesic curvature  of the b-lines;  thus 

Ob ~ = ~:bo. (2.16) 

* In the ensuing analysis we shall assume that (2.2) holds. However, in the interest of giving 
results of general reference value we shall not eliminate Obs in favor of Ons by (2.4), unless we 
specifically state that we have done so. Thus, Obs is eliminated in the proof of Theorem 2.1 at the 
end of this section and in the analysis towards the final proof in Sections 4 and 5. 



142 A.W. MARRIS & J. F. SmAU: 

0bs is related to the Gaussian curvature of the surface U(x ~) =constant  through the 
Gauss equation 

One also has 

60bs ~_02s=--G. (2.17) 
6s 

~:s + div n = - XbN, (2.18) 

where XbN is the normal curvature of the b-lines, xb, , is related to the Gaussian 
curvature of the surface through the equation 

2 x~(xs+ div n ) + ~  = - XsXb~+Zs = -- G. (2.19) 

The Mainardi-Codazzi equations are 

6 zs 6 x~ 
6s I---8-6-+ 20b~ % = O' (2.20) 

6 KbN 0 "~S 
6S ~-"~ -'[-Obs(xbN-If's)=O" (2.21) 

From (2.13) and (2.20) we obtain the relation 

6 
--~-s ( % -  f2s) = tcs div b - 20bs  V s . (2.22) 

For a point function F, the condition 

I 6F 6F . 6 F \  
curl grad F = curl ~s ~ + n ~ + a ~ )  = 0 (2.23) 

leads to the commutation formulae 

62F 
6 b 6 n  

O 2 F  6F 6F 6F (2.24) 
6 n 6 b  =g2~--6-f-div b--~--n -tc~N 6b 

= 6F 62F 62F --Ob~ , (2.25) 
6s3b  6 b f s  6b 

r 6 2 F  6F _ 6F _ 6F (2.26) 
6n6s  6s6n=XS-~-s +O""-~-+~2b 6b"  

We write 
= curl s.  (2.27) 

From the general representation for curl(o~ x v)given in (1969 [1]), we have, for 
any vector field s of unit magnitude for which ~2. is zero, 

curl (to x s) = div (f2 s s) s + [div (x s s) - 0b s xs] b = 0. (2.28) 

Invoking the condition 
div s = 0,, + 0b s = 0, (2.4) 
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we obtain 

and 

Also, by (2.13) 

6t2~ = 0  (2.29) 
6s 

r K s 
6 s - - 0,~ rs .  (2.30) 

r K s 
6b - xsdiv b,  (2.31) 

and by (2.4), (2.22) and (2.29) 

~ "C s 
6 s = 2 0,, % + x~ div b. (2.32) 

When x~ and rs are non-vanishing, we see from (2.30) and (2.32) that the 
vanishing of 0,~ and div b is equivalent to the vanishing ~Sxs/6s and 6 TJ6s. The 
latter condition is necessary and sufficient for an individual s-line to be a circular- 
helix. Again, by (2.31) the vanishing of div b is equivalent to the vanishing of 
6xJ fb .  By (2.4) the vanishing of 0,s is equivalent to the vanishing of Ob~; thus by 
(2.17) the Gaussian curvature G of the surface U(x ~) =constant  is zero. By (2.19) 
6 XbN/6S is zero, and by (2.21) 6 %/6 b vanishes. The vanishing of 0,~ and div b is 
thus a sufficient condition to ensure that x s and % are each constant over the 
surface U(x~); that is, to ensure that these surfaces are coaxial circular cylinders. 
The vanishing of 0,~ and div b is also a necessary condition, for if these parameters 
did not vanish, an s-line would not be a circular helix, nor indeed, by (2.11), 
could the surfaces U(x ~) = constant be parallel. 

We collect these results as follows: 

Theorem 2.1. Let s be a steady, isochoric, circulation-preserving vector f ield of 
constant unit magnitude; then the vector-lines of s are geodesics on the one parameter 

family of surfaces U(x ~) =constant, and 

6g2s 
6---7=0, (2.29) 

/ r  B 
6s -O,~xs ,  (2.30) 

(~ K s 
6 b = - tcs div b, (2.31) 

r "C s 
6 s - 20, s zs + x~ div b. (2.32) 

Provided x s and % do not vanish, the vector-lines of s will be circular helices and the 
surfaces U=constant will be coaxial circular cylinders, if and only if O.s and div b 
each vanish. 
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3. Further Results for a V e c t o r  F i e l d  s for  w h i c h  12 n---0 

The vector field defined by the title of this section is characterized by the 
condition that its vector-lines are geodesics on the surfaces associated with a 
normal congruence of n-lines. The binormals are tangent to parallel curves on 
these surfaces. These conditions are of local validity only. 

Let i , ,  ~ = 1, 2, 3 be Cartesian unit vectors. Let s, n, and b, denoting the tangent 
to the vector-fine, the principal normal, and binormal, be represented alter- 
natively by sa, fl = l, 2, 3, with the additional convention that the gradient compo- 
nents 6/6s, 6/6n, 6/6b are represented alternatively by 616s p, fl = 1, 2, 3, respec- 
tively. We may write 

i~ = a,p sp, (3.1) 
where 

a~p = a ~  (xr), (3.2) 

where the matrix {a,p} is orthogonal. We may assert that {a,p} is the unit matrix 
at the origin, but not in a neighbourhood. Thus we may take a , a = 6 , a  after 
taking gradients. From (3.1) 

0 = grad i~ = grad (a~p s~) 
(3.3) 

= (grad a~a)sp + a,a grad sp. 
From (3.3) 

From(3.4)  

s~. (grad a~p)sa = - a~p s~ . grad sp 

6 s ~  

= --a,u 6s a �9 

(3.4) 

-~s~ a~p sp= -a~p,s u �9 gradsp, 

~s~ 
6s a a~p= --a~u ~sx  . S p. (3.5) 

Setting a,~ =6,~,  from (3.5) we obtain 

6s ~ a ~  = --~sa . Sp. (3.6) 

From (2.6), (2.7), (2.8), (2.18) and (3.6), we obtain the following relations: 

6s J 0 ~ ,  (3.7) 
Ts 

r 
0 '" o~-'~ 0 = /  " ' ~ , " F  d i ; b  ] ,  (3.8) 

[12~- ~,'Z~- div b 

= - z ~  0 " . ( 3 . 9 )  

From (3.4) 
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so that 

or 

Since 

f2a~# s#=- - [  .~a~O fsO faro gradso+ 6s~, grads,  
fsa f s  ~ t 6s ~ f s  a ~'-gTs ~ s~" fs" " 

+su f s ,  f s ,  f2s,  ] 

" fs---r f ~  ~ J '  

f2a~# = _ [ . f a r o  fSo faro 3so f s .  
fsX f Y  ' L 3s" 6 7  ! f s  a 6s J' ~ ~ s  a "grads" 

+Su fS~, fS~ f2 S, ] 
�9 f ~  fs ,  ~ J  .sp. 

(3.10) 

(grad s~). s~ = 0, (3.11) 

we note that the third and fourth terms on the right hand side of (3.10) vanish in 
the case ~ =ft. 

From (2.6), (2.7), (2.8), (2.18) and (3.10) we obtain the following relations: 

.___~f 2 a~p ] _  

D 

2 f tq 
- -  l ( ,  2 f S Zs Ks 

2 2 6x2 -(x2 +'q) &r2 
6s f s  

f T's 2 
- -  T 2 �9 ~ xs 6s 

- -  1 

1 16x2 _,q),q) 
- o.,,~2 - [ -~ -n  + ( a ,  

6X2 
fn - O .  x2 

fT" x2(02-~) - d i v b  xs gin 

/ fx2 ^ \ 2 

fx2 6z2 
fib (X* + Xb")'r2 6 b 

fz2 
--XsXb" 6b Ob~X2 Xb"'q 

- 0.~ x~ f 0.2 
f s  

f 0.2 

6-~s f27%)+0"2% - ~ s  divb 

Ons Ts 

f~2 
gin ' 

div b % 

-~-s div b -  (t22-'r2) x2 

div b % 

(3.12) 

(3.13) 

(3.14) 

,(3.15) 
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-(oL+(as-~s) 2) 

66-~+ (tts- ~s) div b 

6-~ (fls-  ~ ) -  0.~ div b 

- 32 ) 
a. aj~ 

o.s ~,- o~s(as-*,) 

60.~ "f2 " 

6 
-gb-- ( s -  ~s)-  0.~ r~,, 

" t~2 ) 

O. s z s  - Ob s ( t ~ s  - -  Zs)  

f-~Ob~+ z~divb 

From (2.24) 

5 b 6 n  

- ((divb)2 + O~s) 

- (3~h- div b + O.s(a~- Ts)) 

6 
- (~--n-- (os - ~s) + o.s div b 

6-~ div b - O,,s ( ~ . -  Ts) 

-((as-~3 ~dvb) ~) 

O.s z s -  Xb~ div b 

-(~--~divb+O.sObs) 

6~s [60b~ +x ) 
Ts~s 6S -- \ t~S s~bx 

I 

16zs _ \ 6 

6 0  b s 2 6 KON 

t~ S - -  "~ s 6 S "~ s lCbN 

6 div b+ z~(t2s_~ ) 
6b 

- (Obs(g2s-- ",) + ~:b~ div  b) 

i 

/ 6 0 b s  ^ 

6 
O,,s zs-  rb~ div b 6 n Xb,, -- O.s Obs 

- (Ob s + ' rs )  6 b FOb ~ rbN -- -- zs ~CbN 

I ~ zs \ 6 r,b~ 
-~-~-b--~ -( ':+'~-)  ~b ~-o,,,, 

6 b  I-Xb,~T~ -- XbN--Obs~s - - (Obs+XbN) 

32 6 a~# . /r 

,(3.16) 

,(3.17) 

(3.18) 

,(3.19) 

(3.20) 

(3.21) 
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From (3.7), (3.8), (3.9), (3.17) and (3.19), we find that (3.21) is equivalent to the 
three conditions 

60.s 
fb  ~- +(t2s--2%)XbN--f2"xs+(O"~--Obs)divb=O' (3.22) 

fib (f2s-%)- Obs--(O"s--Obs)XbN+(f2s--2%)divb=O' (3.23) 

f f 
f n Xb~---~- div b - 0, s 0b s-- (2t2s-- %) %-- (div b) 2 - x~N = 0. (3.24) 

Equation (3.23) is not a new condition but may be derived from (2.4), (2.9), 
(2.15), (2.18) and (2.21). Thus by (2.4), (2.9), (2.15), (2.18) 

f f f 
f S Kb~r --'--~n Ob s + " ~ -  ( ['~s -- 2 Ts) -- KbN ( Ons + Ob s) 

+ Obs(Ks"[- KbN)+(['~s--2Ts) div b = 0 ,  

and (3.23) follows when fXbN/fS is eliminated in favour of f%/fb through the 
Mainardi-Codazzi equation (2.21). 

From (2.25) 

From (3.9), (3.14), and (3.18) we find that (3.25) is equivalent to the three 
conditions 

3% fxs 
t - - ~ - +  20bs %=0 (3.26) 

f s  

fobs 2 2 
~- xs XbN -- % + Obs = 0 (3.27) 

f s  

~:bJv ~ Ts 
3s +---~ff +Obs(xb'-xs)=O" (3.28) 

Equation (3.26) and (3.28) are identified with the Mainardi-Codazzi relations 
(2.20) and (2.21), while by (2.18) and (2.19) equation (3.27) is the Gauss equation 
(2.17). While (3.25) offers a proof of the Gauss and Mainardi-Codazzi equations, 
it gives no new information. 

From (2.9), (2.26) 

{ ( 6 2  62 fa~ ,  f 6 . 

From (3.7), (3.8), (3.9), (3.13), and (3.15) we find that (3.29) is equivalent to the 
three conditions 

f~:s f0"s §  2 0 , s=0,  (3.30) 
f n  f s  
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6 
6 s ( I2s -  %) + O. ~ f2~ + Ob ~ ( t2~- 2 %) + x~ d ivb  = O, 

6z s 
n 4- ~-s  div b - xs O~ + On ~ div b + xb~ (Q~-  2 %) = O. 

(3.31) 

(3.32) 

Equat ion  (3.31) is obtainable  by eliminating 6 xs/Jb between (2.13) and (2.20). 
Also, equat ion (3.32) is obta ined f rom (3.22) by eliminating 6 %s/~b in favour  of 
6/6s div b by means of (2.14). 

Our  analysis has yielded three equations,  which we believe to be new, express- 
ing the normal  gradients 6 xs/J n, 6 %/6 n, 6 XbN/6 n in terms of the vector  field para-  
meters .*  We have 

Theorem 3.1. Given a vector field s such that the principal normal n to the vector- 
lines is such that 

f2, = n .  curl n = 0 ,  

with the consequence that the s-lines are geodesics and the b-lines are parallel curves 
on the surfaces associated with the normal congruence of n-lines. For this vector 

field, the normal gradients of the principal curvature x~ of the s-lines, the torsion % 
of the s-lines, and the normal curvature Xb, ~ of the b-lines, are given respectively by 

6x~ _ 60,~ ( 2 f 2 s _ 3 % ) % + x 2 + 0 2  s (3.30) 
6n 6s 

6 ~  6 
3 n = - ~ - ~  div b + xsQs-O.~ div b - (  ~ -  2 %) x ~  , (3.32) 

6xb" - 6~divb+O,~Ob~+(2f2~-z~)z~+(divb)2+x2~ (3.24) 
fin 6b 

4. The Curvature Tensor 

Consider  now the deformat ion  tensor 

1 
C= n-~SS+ q n n + q  bb ,  (1.32) 

where 
r /= r / (U) .  (1.33) 

The  Cartesian components  of c are given by 

c~p = i~. c .  i~, (4.1) 

* The relations (3.30) and (3.24) may also be derived by setting v=s and v=b in the vector 
identity 

div(v �9 grad v--(div v)v)= --2IId--�89 v" curl v, (a) 

where IId is the second principal invariant of 

d=  {(grad v-l- (grad v)r). (b) 
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where i ,  are given by (3.1). Then 

1 
c~#=a~ l - ~ a o  l + a~2 N ae2 + a~a rla~3 . (4.2) 

Our  aim in this section is to derive, in intrinsic form, the six equations necessary 
and sufficient for the vanishing of R,prb ,  as given by (1.8), when c,a is given by 
(4.2). 

We require that  the vector field of s satisfy the following specific condit ions:  

d i v s = O . , + O b , = O ,  0.~= --Ob~, (2.4) 

f2 .=O,  (2.2) 

fia~ = 0 ,  (2.29) 
fis 

fi Ir s 
- - 0 , ,  x , .  ( 2 . 3 0 )  

fis 

fi K s 
- x, d i v b ,  (2.31) 

fib 

fi ~s 
fi s - 20.  ~ ~ + x~ div b ,  (2.32) 

fin = 0 ,  fin 
fi----s- fi b = 0.  (4.3) 

We now introduce the notat ion 

, 1 
, c33 = N,  ( 4 . 4 )  ~1~=7, c~2=N * 

and we represent the gradients fi/fis, fi/fin, fi/fib alternatively by fi/fis ~, ~ = 1, 2, 3. 
We write (4.2) in the fo rm*  

c~a=a~lc*xaa t  + a ~ 2 c * z a a 2 + a ~ s c ' ~ s a a 3  = a~,c~,,aau* . (4.5) 

F r o m  (3.1) and (4.5) 

d fi fi 
dx  r c~a = i r �9 grad c~a = arz ~ c~p = ~ c~# 

(4.6) 
fia~u . fi . . fi 

- fis h cu_~_aP~'+a~'-~s~cu_~'al~,+a~,c~_~_~s~aa~," 

* The underscore in (4.5) means that no further summation is implied. When a Greek sub- 
script without underscore occurs repeated in a term, it is understood to represent a summation 
over the range 1, 2, 3 as in (4.5). 

a { a a ~  . 
In (4.14) a term like -~-~s~ a~z/--z-zx-_~/csa is summed on 2, but not on p. Again, in (4.14) a term 

~2 \ o , - ,  --- ~(~ ,_) 
like ( ~ a =  ~] c~# is a single term, and in (4.15) a term like a~_ c*~_ is a single term. \os os / - -  
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Since we may take a,p =6,a  at the reference point, from (4.6) we obtain 

1) ~=fl. 

2) c~:~ ft. 

From (4.3) and (4.4) 

s , 6a~, 6c*~ 
c, =2c~ --~s~- 4 -- , s x ~ . . . .  fis h 

6c*, 
by (3.15), (3.16), (3.17); 

6s a , 

s ~ c,~ 6s - -  6s - -  

6 6scb_=o, ~+_=o, 
6 c* 2 6q 6 . 6 . 6q 

x x =- -~ 'J  6 n ' fin c22 =6-n-n c33=-~-n" 

From (3.15), (3.16), (3.17), (4.7), (4.8), (4.9) and (4.10) we obtain 

If> t 
( ' )  0 - ~/-~--~ x~ 0 

f xC t 1 ~# = - -  ~/---~-~ tc s 0 , 

0 0 

r/-~ 3n --0.~ q--~z  

~c (+~) +. 0 . + ,  ++ 

,~ ++,(+ +) 

s c 

( ')  -(~+-~+) ~--~ 

0 

6q 
6n 

( ')  ( ' t  
(+ ~)++ o o 

q -  On~ 0 0 

where we have eliminated 0b~ in favour of 0,~ by (2.4). From (3.1), and (4.5), 

s 
s r s c,p = i~. grad(i~ �9 grad c~a), 

_ 6 [ a ~ 6 _ ~ ( a ~ c ,  a ~ )  ] 
6S ~ 

= [ 6 a e ~  3 ~-~sr ] * 62 a * ( a~t, cu__~_ aa u) + ~ ( +,u c~_u_ ap u) , 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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=(a-~ao~)[ i6a"]  t~ 6s ~ ] 4_~ 
[ 6 , \ , 6ap.'l / 6 2 \ 

+ a,u ~-~sa cm,) aOu + c~_U-~s~ J + ~ 6s--"ff~6s~ a,a) c~tJ 

, a .  3a,  t J 6 c~_~_+ c'u_ 
-F 6 s ~ 6 s ~ 6 s x 

6a.p 6 , [ 6 2 . '~ 6 6atj , 

"+ 6 s ~ 6 s" -- 

( 6 a . z  ] , 6aa~ , 6 , 6aa~ , , 6 2 
+ \ 6s ~ ! e~_~_ 6s* + - ~ - s ~ C ' - ' - ~  +c'-'- 6s~6s ~ a a "  

Once again there are two cases. 

1) ~ =ft. By (3.15), (3.16), (3.17), (4.9), and (4.14), 

*_ 6 2 ( 6  a ) , 3 
OxrOx " - ' - ' - ~ =  6s ~ 6n \ 6 s  6s --] --  ~ ~-" c~-~--~Tsr a'-~' 

6 2 (__~_ ) , 6  , 6  2 
+ ~ c * ~ _ +  a~_. e._._-gTa~.+e~_~_ 6s:'6s ~ av, 

(6_~Ta, a ) [ (6a~ ,~  , [ 6 , \  , 6 
L\ 6s ~ ! - -  

6 [ ( 6 a . . ~  , 6 . 
+ a . .  (.~s~ C,, ) , 6 +"~7 L\ 6s" ] c~-z-aa~' - -  

(4.14) 

6a~2 6c*~ 62 
- -  - -  C *  

6s ~ 6n ~- 6s~Ss ~ ~-~- 

6 2 6a ~, 6 a v . ]  
* O~ ~ + C~l a . +2 c . .6s~Ss"  6 f i  3s" ] 

2) ~,/~. 

, 

- -  \Ss~6s~] -- 

6a.~ 3 c'~-~ 6a'tJ 6 c~-~ 6aa" 6 , 
4 3s ~ 6s ~ __ 6s ~ 6s ~ __ 6s ~ 6 s  ~ c.~ 

6 a , .  6 ( 6 a . .  6a,~. 6a.~. 6a,~.) 
4 3s" 6s ~c*'+c*~' 6s ~ 6s ~ ~ 6s -----~ 6s ~ " 

(4.15) 

(4.16) 

The relations (3.7), (3.8), (3.9), (3.12) to (3.20), may now be substituted in 
(4.15) and (4.16), to yield the expressions for a2c~p/ax~Ox ~, required by the 
formula (1.8) for the curvature tensor. 



W
e t

ab
ul

at
e t

he
 ex

pr
es

sio
ns

 
D

 
1 

_2
K

2(
_q

_~
_q

) 
x 

6 
1 

- 
'~

n 
(~

) 
1 

2~
 2 

-~
-q

 
-K

s a
n 

1 

0 6~
 

--
K

s 
O

n
 

(4
.1

7)
 

b~
 

F 

O
x 3

a 
J 

1 

6 2
 /

1\
 

~2
(_

~ 
) 

-2
(,~

 +
0,

0 
-~

 

6 
1 

[ 6
6-

~ +
 0,

s K
s +

 (t
2,

-2
%

)d
iv

 b
] 

2 
/1

 
\ 

6
2

q
 

2o
. t

-~
-,,

) +
~.

 

- 
[ ~-

-~ +
 0.

.(~
.+

 2 ~
bN

)] (
~-

-,)
 

1 
) 

6q
 

2
~

 
--

~
-q

 
-
~
 

6n
 

[~
n 

(t2
~-

 ~s
)- 

2 0
,s 

di
v b

] (
~

- 
q)

 

1 

1 
+3

~n
 

1 
2,O

ns
(r,

 ,
,) 

20
~,

, 
-1

%
, 

6n
 

, 
(4

.1
8)

 

(4
.19

) 

m
 



J - 
1 

=
 

-2
0,

,.
x.

(-
~-

q)
-O

 

~ 
fa

2c
,.1

 
I 

~0
2c

~,
 ' 

]_
 

-d
iv

b~
 

(+
) 

l 
1 

1 
~(

~-
~)

+~
(~

) 

2 
2 

fO
.. 

~ 
.l 

~
 +

~,
 +

-~
-~

 -(
~

-w
j 

1 
6 

1 

l 
6~

 
~o

~(
~_

.)_
o~

 

(Q
s-

 %
) x

s-
20

.~
 d

iv
 

6n
 J

 

-2
"q

O
.. 

-~
/ 

-d
iv

b 
fin

 

f ~
s 

i 
~ 

(~
-~

) 
-2

%
~

 
~-

-~
-t/

 +
%

6n
 

1 
/q

(O
s-

 %
) (

-~
-q

) 

-O
.s

 6
t/ 6n

 

-d
iv

 b
(g

2s
- 

60
.~

 ! 
2T

3-
-~

-] 1 

1 
6t

/ 
- 

20
,,~

(~
-'c

~)
 (

~-
~-

~)
 -

di
v 

b-~
-~

n 

~,
)-

 0
.~

- K
sx

~,
] 
~-

~ 
1 

_~
.o.

.(_
~_

,) 
6t

l 
"rs

 ~
n 

, 
(4

.2
0)

 

(4
.2

1)
 

(4
.2

2)
 

r~
 

o 



154 A.W. MARRIS & J. F. SmAU: 

From the relations (4.11), (4.12), and (4.13), and (4.17) to (4.22), we now 
obtain, in intrinsic form, the six equations necessary and sufficient for the vanish- 
ing of the curvature tensor given by (1.8): 

R1212--0 

\rl / \ q  / 

lOx~ 67 10 [67'~2• 4 62r/_t~ (4.23) 

R2323-0 

1 67 

+2167~ 2 , 6 2 7  a (4.24) ~-~!  - ~  ~ - ~ = v ,  

R3131 =0 
1 1 2 1 2 60 

(-~s- 1) (-~-~- 7) f2s + 4(~, Os- rs toby) (-~-~- 7) + ~s (xs- 2 rb~) 6n 
(4.25) 2 16q~ 2 

+ = o ,  

R1223=0 

1 -~n67 _2(Q _2~) 67 --h-r- 3-s (4.26) 

R2331=0 

b 6n t" 2tcb~ 0"~-div 1 

or, equivalently, by (2.4), (2.9), (2.15), (2.18), and (2.21), 

612 s 1 6q 

R3112~-0 

6s 6bj(~_~_7) .  2divb 67 ,, .---U- T~=v, 
or, equivalently, by (2.4) and (2.20), 

1 +--U- ~-}=0. 

(4.27) 

(4.28) 

5. Proof of Theorem 1.1 

Since the conditions (4.23) to (4.28) must hold in a neighbourhood, from (4.27) 
we have 

62 ~ - n  +4 ~40,~ =0, (5.1) 
Oshb 6s 6n 
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since 5 r /=  0, (4.3) 1 
55 

Again, since 
ff2s 
5s = 0 ,  (2.29) 

fr/ 
5--~-= O, (4.3)2 

we obtain, from (2.4), (2.25), (2.26), and (5.1), 

5f2 s [ 1 "~ fO.s 5r/ "s5-b-'t~/-'z-r/~+4 as 5n 

From (4.27) and (5.2), 

4025 ~--~n = 0 ,  (5.2) 

fOrts _ 2 0 2  
f s  ns: ~--~n = 0 .  (5.3) 

Thus, either 
5 r / = 0 ,  (5.4) 
5n 

in which case, by (4.3)1 and (4.3)2, r/is constant, or else 

60.s 2 
as =2o.+. (5.5) 

We assume that r/is not constant. By (2.4), (2.17) and (5.5) the Gaussian curva- 
ture of the surfaces U(x ~) =constant  must be given by 

2 G=O,s, (5.6) 
so that  by (2.19), 

2 2 x s XbN = Z s + 0,s. (5.7) 
From (4.23) and (5.5), 

1 1 ++,,(+ ,) 
(5.8) 

10x s fir/ 10 I f  r/ j2 4 52r/ _ 
r/~ an P-Fffn] +VY~n =~ 

By (4.24), 
1 1 

4xb,, 511 4 [fr/ ' i  2 4 62r/ (5.9) 
a. ~k-~-)+~-ff~-=o. 

Eliminating 52r//fn2 between (5.8) and (5.9), we obtain 

, + ) 
(5.10) lOxs 5r/ . 4xb~ &/ 6 [ f r /~  2 

- n 3 f -h -* - -~  an ~ - ~ 1  = 0 .  

II* 
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From (4.25) and (5.7), 

1 1 - (1 - ~-~) (~-~- ~/) O~z - 4 (0,z, + z~-  I2, z,) (-q--~- r/) 

(5.11) 2x~ 6q 4xb,, 6q 2 / 6rl \ 2 

From (5.10) and (5.11), 

g2~+ex'~-n + ~  \~n-] =0.  (5.12) 

Taking the directional derivative of (5.12) with respect to s and invoking (2.29) 
and (4.3)i, we obtain 

6K s 6• 62q 1 6~ 62~ 
6s 6n t-tq 6s6---------n t rl 6n --6s6n =0.  (5.13) 

whence, by (2.26), (2.30), (4.3), and (5.13), 

0,~ ( 2 x ~ + l  66~qn) 66~qn =0 .  (5.14, 

Since r/is assumed to be not constant, (5.14) requires that either 

0 , ,=0 (5.15) 
or 

1 &/ 
(2 x~ +-q-- -~-n ) = 0, (5.16) 

or both these conditions hold. 
Suppose that 0~ does not vanish; then since ~/is not constant, so that &l/6n is 

not zero, by (5.16) 
&l . 1 [&l'~ 2 ,qTh--+ } =0. (5.17) 

and by (5.12) and (5.17), 

so that either r/is unity or f2, vanishes. Equation (4.27) then shows that 
6~ 

40 . ,Tf f=o ,  (5.18) 

so that if 0.~ does not vanish ~ must be constant. 
We conclude that, for equations (4.23) to (4.28) to be satisfied in a neighbour- 

hood, for non-vanishing O.s, rl must be constant. The only possible solution for 
non-constant t/must be associated with a vector field for which 0.~ vanishes. 

When 0.~ vanishes, (2.30) requires that 

6 t% = 0. (5.19) 
6s 

Also, by (2.32) 

6s = x, div b. (5.20) 



Universal  Deformat ions  in Elasticity 157 

By (4.28) and (5.20) 
F(sr/ 3 1 

so that either 
div b = 0 (5.22) 

o r  

6n t-X~tl3 - r l  =0  (5.23) 

or both these conditions hold. 

When div b vanishes, (5.20) shows that 

(5"r s 
(55 = 0, (5.24) 

so that the vector-lines of s are circular helices and the surfaces U(x0 =constant 
are concentric circular cylinders. 

When (5.23) holds, (5.12) gives 

1 1 2 
0 

\ ' |  / 

or, if ~/is not constant, 
(5.25) 

Again by (4.27), since 0,s is zero and r/is not constant, 

(5f25 
(5 b = 0. (5.26) 

Taking the gradient of (5.25) with respect to b, and using (4.3)2 and (5.26), we 
obtain 

3 (5 tr 3 
q ~ . - F g - O + n  ) = 0 ,  

SO that by (2.31) 
r/3 ~ div b(1 +q3)=0 .  (5.27) 

From (5.27) we see that if t / is not constant, or zero, either ~c~ or div b must 
vanish. When x~ vanishes, the vector-lines of s are straight lines. According to the 
convention discussed in the Introduction our basic formalism holds for x ,=0 ;  
however this case requires special consideration. When tq does not vanish, the 
vanishing of div b and 0,~ implies once again that the vector-lines of s must be 
circular helices and the surfaces U(x")=constant must be circular cylinders. 

So far, we have shown that either ~/must be constant, or the vector-lines of s 
must be straight lines or circular helices mounted on concentric circular cylinders. 
The latter case includes the case Ts=0, x~:l:0, in which the helices become concen- 
tric circles perpendicular to the generators. We may easily show that r/has to be 
constant in this case. 

Our argument above (which is not predicated on ~ not vanishing) requires 
that div b and 0~s each vanish. From (5.7), since x s is not zero, 

Ir (5.28) 
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Then by (3.32) f2~---0. (5.29) 

ERICKSEN analysed this case. We may confirm his result. Thus by (5.10), for 0,~, 
%, 12~ and Xb~ each zero, 

\T n] =0,  (5.30) 
while, from (5.12) 

6 .  1 (ft/ 2 =0. (5.31) 

It follows from (5.30) and (5.31) that f t / / fn  must vanish. 

It remains to consider the case in which x~ vanishes. 

If t/is not constant, equation (5.7) requires 

2 2 % + 0n ~ = 0, (5.32) 

so that 0,~ and % must each be zero. By (4.28), 

divb fit/ _ 
~ = 0, (5.33) 

so that if t/is not constant, div b must vanish. By (3.32) when 0n~, %, x~ and div b 
vanish, 

xb~ f2~ = 0, (5.34) 

so that either 12, or xb~ vanish, or both. When f2~ and t% are zero, equation (5.12) 
shows that f t / / fn  must be zero, so that ~ is constant. When XbN , X~, 0n~, and % 
vanish, equations (5.10) and (5.11) reduce, respectively, to 

1 6 

and 
1 

~h-n ] = 0 .  (5.36) 

By (5.35) and (5.36), 

\ -~-]  = 0 ,  (5.37) 

so that f t / / fn  must be zero. Thus t/is constant. 

We have thus established 

Theorem 1.1. The only universal deformations of a homogeneous isotropic 
incompressible hyperelastic material due to surface tractions only, which correspond 
to the case 

c 1 =c  3 =t / ,  (1.19) 
are 

1) deformations in which t~ is constant, 

2) deformations in which the vector-lines of s are circular helices mounted on 
concentric circular cylinders, the cases where the helices reduce to circles or straight 
lines being excluded. 
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Theorem I. 1 shows that the only possible vector-line geometry corresponding 
to non-constant r/ is the circular helical configuration which was analysed by 
ERIC~EN for the ease when the proper values are distinct (1954 [1], p. 480). The 
ease represented by (1.19) is thus a special ease of that already considered. 

We obtain 

Theorem 1.2. The only deformations that can be produced in all homogeneous, 
isotropic, incompressible, hyperelastie bodies by application of suitable surface trac- 
tions alone, are homogeneous deformations, the four families of deformations cited 
in the Introduction, and non-homogeneous deformations in which the principal 
stretches are constant and both c b and ( e- 1)~ are symmetric in the indices a ande. a, be  , b e  

Professor ERICKSEN has pointed out to us that our analysis may be applied to 
one particular category of deformations of the class defined by Theorem 1.2. 

We require that 
divc = grad Z. 

In the case 

we have, by (1.32), 
C1 =C3=/'/, 

where I is the unit dyadic, and ~ is constant. 

By (5.38) and (5.39) 

1 
d ivc=( -~ -q ) [ s . g rads+sd iv s ]=grad  Z. (5.40) 

In this case we do not know that the vector-lines of s lie on the surfaces g(x ~) = 
constant. However, in the special case when they do so, 

s .  grad Z = 0; (5.41) 

then, since q is constant, (5.40) yields the conditions 

divs=O,s+Obs=O, 

curl(to x s) = 0, to = curl s.  
Also 

( 1 )  -~ 
s.  grad s = ~s n = ~ -  q grad X, for q ~e 1. (5.42) 

When t /= 1, the material is unstrained. From (5.42), we see that n is parallel to 
grad X and that the vector-lines of b =s  x n lie on the surfaces X(x~)=constant~ 
Our formalism holds for this particular case. 

From (2.4), (2.17), and (2.19) 

60,~ 2 2 
6 s = 0,s + ~:~ xb, , -  T~. (5.43) 

(5.38) 

(1.19) 

(5.39) 

(2.4) 

(1.31), (1.30) 
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For 6~!/6n =0, and t/~ 1, (4.23), (4.24), (4.25), and (5.43), give 

f2 s + 4 [2  0 . ,  + x ,  XbN + Z,(2Ts--  3 0 , ) ]  = 0 ,  (5 .44)  

2 , 2 ~ +4[On,+~, --r~,T~] =0, (5.45) 

( - ~ - 1 )  Q~ +4 [~ ,  z , -  x~ Xb~,] =0 ,  (5.46) 

Equations (5.44), (5.45), and (5.46), imply 

~ = 0, ~ = z .  = 0 (5 .47)  
and 

~:~ xb~, = 0 .  (5 .48)  

The three remaining curvature tensor equations, (4.26), (4.27) and (4.28), are 
satisfied by (5.47) for 6rl/6n =0. 

By (5.48) either x, or xb, , or both these curvatures vanish. When x s vanishes, 
by (2.6) and (5.47), grad s =0, so that the s-lines are parallel straight lines. If x~ 
does not vanish, by (2.30) and (5.47) 

tc s 
6s =0, ~,=0,  

so that the s-lines are concentric circles. 
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