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1. Introduction

In 1954 (1954 [1])*, ERICKSEN gave the solution to a substantial part of the
following fundamental problem: to determine the deformations that can be
produced in every isotropic, incompressible, hyperelastic body, by the application
of surface tractions when body forces are absent.

Suppose that the deformation from the undeformed state is determined by
the (sufficiently smooth) mapping

X*=x4(XY, a=1,2,3, A=1,2,3** (L.1)

where x* and X“ are the co-ordinates of the points of the body in its deformed and
undeformed states, respectively. Suppose further that the metrics of the co-
ordinates x* and X# are g, and G, .
In the absence of inertia and body forces the stress tensor must satisfy the
Euler-Cauchy condition
°3=0. (1.2)

The constitutive equation for an incompressible hyperelastic material is

a__ a az —1\a az a
ty= p5b+2—a—1—(c )b 2a—HCb, (13)

* See also (1965 [1], p. 337).
** We employ Latin indices to denote curvilinear co-ordinates and Greek indices to denote
Cartesian co-ordinates.
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where p is an arbitrary hydrostatic pressure, and

ox* ox®
cab=GAa—ax,, PP (1.4)
—ia ox* ox’
(™ b=GAB—é‘5(7W, (1.5)
and
det ci=1. (1.6)

The condition (1.6) ensures that the deformation tensor ¢ determines deformations
possible to an incompressible material. In (1.3), the scalars I, I, and III(=1) are
the elementary invariants of ¢~*, and Z =X (I, II) is the strain energy function. The
matrix {c,,} must be positive definite.

The tensor ¢ must be a metric tensor in Euclidean space. Thus the Riemann
curvature based on ¢ must vanish. When ¢ is referred to Cartesian co-ordinates
x*, a=1, 2, 3, thus

c=Cypi iy, (1.7)
the curvature tensor is given by
AR a=2( %cys 620,,7 _ 620” _ 62cﬂ‘, )
=6y axPox?  0x*9x® oxPoax® ox*ox

- dc dc dc dc dc dc
INAn Ba yA _ By ap ép ad
e [( ox’ + axP ax* ) ( ox° + ox* 6x”) (1.8)

_(ac“ + 0¢sn _ 6cﬁ,,) (ac,,, + 9cy,  0¢yy )] .
ox® axP ax* ax’ ox* ox*

A necessary and sufficient condition for the vanishing of R,;,; is the vanishing
of the six components Ry,12, Rp323, R31315 Riz235 Raszszis Rapqa-

ErICKSEN determined necessary and sufficient conditions for the existence of a
function p satisfying (1.2) and (1.3).

Suppose ¢ to be written in terms of its proper values in the form

c=cynnt+c,s5+c3 bb. 1.9
The invariants of ¢~! are given by

CHEIUESTUE SR | N S SIS | | SR S ST

ERICcKSEN’S analysis disclosed the following two classes.

Class A. The Invariants I and II Are Both Constant

By (1.10), the constancy of the invariants I and II is equivalent to the constancy
of the proper values c,, ¢;, ¢;3.

In this case the tensors ¢} ,. and (¢~ ')} ,. must be symmetric in the indices
a and e.
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While this category certainly includes homogeneous deformations, examples
have shown that it includes other deformations as well*. Although the principal
stretches are constant the local rotation need not be constant.

Class B. The Invariants I and IT Are Not Both Constant

ERICKSEN proved that necessary and sufficient conditions for the existence of
the function p satisfying (1.2) and (1.3) are the following.

1) The proper values of ¢ are each functions of a non-constant scalar U:

c;=c;(U), e3=c;(U), c3=c3(U); (L.11)
2) c1Crc3=1; (1.12)
3) c=c nn+c,s5+c3bb; 1.9)

4) the unit proper vectors n, s, and b are such that » may be taken to be normal
to the surface U(x*)=constant, so that

n=ygradU, '/l=|—gra%7|’ (1.13)
and s and b span the tangent plane to the surface U =constant:
s-gradU=0, (1.14)
b-grad U=0; (1.15)
5) (divm)n+n-gradn=F(U)|gradU|n, if c,%c;y; (1.16)
6) (divs)s+s-grads=H(U)grad U, if ¢c,=*c¢c;. 1.17)

ERICKSEN proved that, provided (1.16) holds, that is to say, provided ¢; #c¢;,
the only universal deformations possible within Class B are the following four
families of solutions:

1) Bending, extension and shear of a block.
2) Straightening, extension and shear of a sector of a cylindrical tube.

3) Inflation, bending, torsion, extension and shear of a sector of a cylindrical
tube.

4) Inflation or eversion of a sphere.
These universal solutions are discussd in detail in (1965 [1], Section 57, p. 186).
ERICKSEN also considered the case ¢; =c; under the special condition that
the vector s is complex-lamellar:
Q.=s-curls=0. (1.18)

* SINGH & PIpKIN (1965 [2]) give the universal solution
r=aR, 6=blogR+cO, z=dZ, a*cd=1.

SINGH & PIPKIN note that a special case of this deformation: a2c=1, 524 c2=1, was found by
KrLINGBEIL & SHIELD. A second special case due to Fospick,

r=aR, 6=586, z=cZ, atbe=1, b1,

is noted by TRUESDELL & NoLL (1965 [1], p. 338). This is an example of a deformation in which
the invariants of ¢ are constant. However, this particular deformation is a special case of category
3 of the four families of deformations possible under Class B.

10 Arch. Rational Mech. Anal., Vol. 36
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He proved that, in this case, the material must either be unstrained or else the
deformation is of Class A.

The general case of equal proper values, ¢; =c3, in which case the condition
(1.18) does not hold, remains to be considered. This paper is devoted to an anal-
ysis of this case.

We shall establish
Theorem 1.1. The only universal deformations possible in the case

ci=cC3=1 (1.19)
correspond either to
1) deformations in which n is constant,
or
2) deformations in which the vector-lines of s are circular helices mounted on
concentric circular cylinders, the cases where the helices reduce to concentric circles
or straight lines, being excluded.

Deformations for which 7 is constant belong to Class A. Deformations corre-
sponding to the vector-line geometries encompassed by 2) were considered by
ERIcKSEN for the case of distinct proper values. The present case thus becomes a
special case of that already considered. Theorem 1.1 thus tells us that the case

cy=c3=1n (1.19)

introduces no new families of deformations, provided # is not constant.

The present analysis, taken in conjunction with ERICKSEN’S work, will thus
establish the following result:

Theorem 1.2. The only deformations that can be produced in all homogeneous,
isotropic, incompressible, hyperelastic bodies by application of suitable surface trac-
tions alone, are homogeneous deformations, the four families of deformations cited
above, and non-homogeneous deformations in which the principal stretches are

constant and both ¢}, . and (¢~ 1)} ». are symmetric in the indices a and e.

Preliminary Discussion

A peculiar complication arises in the case when the proper values ¢, and c; are
equal. We lose the condition (1.16). ERICKSEN established the capital result that
(1.16) implied that the surfaces U(x*)=constant must be concentric spheres,
parallel planes or concentric circular cylinders*. In the absence of (1.16), we

* In particular, since the surfaces U(x*)=constant are parallel, the vector-lines of n are recti-
linear, and

curl n=0. (@)
Thus by (1.22), and anticipating equation (2.6) of Chapter 2,
divs=0, .46, ,=0. (b)
Anticipating equation (2.11) of Chapter 2, from (a) we have
curl n=—divb s+06,,6=0. ©

Thus, the parameters 8,  and 8, ; each vanish. The parameter 8, is the geodesic curvature of
the b-lines, its vanishing ensures that the surfaces U= constant are developables. They cannot be
concentric spheres. ERICKSEN proves this result by a different method.
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cannot in general discover the nature of the surfaces U(x*)=constant, indepen-
dently of the equations resulting from the vanishing of the curvature tensor, but
must glean this information from these equations themselves. *

By (1.13) the unit vector n is complex-lamellar, and
Q.=n-curln=0. (1.20)

Taking the dot product of (1.17) with s and noting that s is a unit vector,
so that

s-grads.s=0, (1.21)
we obtain
divs=H(U)s-grad U=0 by (1.14). (1.22)
By (1.17) and (1.22)
s-grads=H(U)grad U. (1.23)

When s - grad s is not zero, so that the vector-lines of s are not rectilinear,
from (1.13) and (1.23) we obtain

s-grads=H(U)|gradU|n. (1.24)
At the same time
s-grads=xk.n, (1.25)

where «, is the curvature of the vector-line of s and n is the principal normal. The
unit vector n of (1.9) thus points along the principal normal to the vector-line of s.
The unit vector b points along the binormal.

Since the principal normal to the vector-lines of s coincides with the normal
to the surface U =constant, the vector-lines of s must be geodesics on the surface
U =constant. The vector-lines of b are parallel curves on the surface.

Furthermore, from (1.24) and (1.25),
k,=H(U)|grad U|. (1.26)
When s - grad s vanishes, (1.14) and (1.17) give the two conditions

divs=0, (1.27)
and

H(U)=0. (1.28)

In this case, by (1.3), n is the normal to the surface U(x*) =constant. The vector-
lines of s are straight lines on the surface U(x*) =constant, they are simultaneously
geodesics and rectilinear asymptotic lines on the surface. The vector-lines of
b =s xn are again parallel curves on the surface.

The analysis we shall give will be valid even though the vector-lines of s are
rectilinear. Since s is of unit magnitude,

s-grads=wxs, (1.29)

* The case of s complex-lamellar, £2,=0, is an exception. In this case, the surfaces U(x*)=
constant are concentric cylinders or parallel planes. This result was proved by PriM (1952 [1]).
ERICKSEN analysed the case ¢, = c; under the condition 2,=0.

10*
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where
o=curls. (1.30)
From (1.23) and (1.28), we see that
curl (o x 5)=0. (1.31)

The vector field of s is a steady, isochoric, circulation-preserving field of
constant magnitude.

Collecting these results pertaining to the case ¢; =¢;, we have, from (1.9),
(1.10); and (1.19),

1
c=717ss+r/nn+11bb, (1.32)

where
n=n(U), (1.33)
and where

1) n points along the normal to the surface U(x*)=constant,
2) Q,=n-curln=0, (1.20)

3) the vector-lines of s and b are respectively geodesics and parallel curves on
the representative surface U(x*)=constant,

4) divs=0, (1.22)
5) curl(wxs)=0, where w=curls. (1.31), (1.30)

We require that the Riemann curvature tensor based on ¢ should vanish.

2. Background Material on Vector Fields

Before proceeding with the analysis, it is necessary to invoke some basic
formulae appropriate to the vector field s. These results have been derived in
. OF O0F J6F
earlier works (1969 [1], 1969 [2]). We employ the notation FTRNTE 6—th denote
the components of grad F in the preferred directions s, # and b.

We write

Q.=s.curls, Q,=n-curln, Q,=b-curlb, .1)
and our formulae pertain to the case
Q,=n-curl n=0, 2.2)
or, equivalently,
n=y grad U. 2.3)
For the isochoric vector field s under consideration we also have the condition
divs=0,,+0,,=0, 2.4

where
0,,=n-grads-n, 0,,=b-.grads-b. (2.5)



Universal Deformations in Elasticity 141

The -gradients of s, n, and b are represented by*

grad s= SnK,
nno,, +nb(Q2,—1,) (2.6)
—bnr, +bb8,,,
grad n= —ssx, +sb,
—nst, —nbdivb Q7N
bst, +bb(x,+divn),
grad b= —sn7,
—ns(Q,—t)+nndivh (2.8)
—bsb,, —bn(x,+divn).

In these formulae x; and 7, are the curvature and the torsion of the s-lines. 7, is
related to Q, and @, through

21,=0Q,~0Q,. (2.9)

From (2.6), (2.7), (2.8), we obtain

curls=Q s+x,b, (2.10)
curl n= —divbs+86,.b, (2.11)
curl b=(x,+divn)s—0,,n+Q, b. (2.12)

Since the divergence of each of these expressions must vanish, we obtain

02, | OKs L 0 (6,.+6,)+x,divh=0, (2.13)
s T5h
J —divh+— 0 —06,.divhb=0, 2.14)
s 55 One O :

J 5 2y +(k,+divn)divs—0, dive+Q,divb=0. (2.15)

5
(IC +divn)— 0,,s 55

The vector-lines of s and b are, respectively, geodesics and geodesic parallels
on the representative surface U(x*)=constant.

The parameter 8, is identified as the geodesic curvature of the b-lines; thus
) (2.16)

* In the ensuing analysis we shall assume that (2.2) holds. However, in the interest of giving
results of general reference value we shall not eliminate 8, in favor of 8, by (2.4), unless we
specifically state that we have done so. Thus, 8, is eliminated in the proof of Theorem 2.1 at the
end of this section and in the analysis towards the final proof in Sections 4 and 5.
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0, is related to the Gaussian curvature of the surface U(x*) =constant through the
Gauss equation

50bs 2 _
55 +6;,=-6G. .17
One also has
k+divn= —x;,, (2.18)

where «,,, is the normal curvature of the b-lines. x,, is related to the Gaussian
curvature of the surface through the equation

Kk (i, +diva)+12= —k,x,, +12=—G. (2.19)

The Mainardi-Codazzi equations are

0t, OK, _

5o t5p +206,7,=0, (2.20)
0Ky, , 0T, _
T-’-W-}_eb-?(xbu_xs)_o' (221)

From (2.13) and (2.20) we obtain the relation

]

5+ (5~ Q)=r,divb—20,,7,. (2.22)

For a point function F, the condition

SF OF oF
curl grad F=curl (s—aT+n—5;+b6—b) =0 (2.23)
leads to the commutation formulae
8%F 8*F 6F .. . OF SF
IR T L R T TR T (2.24)
8*°F  &*F SF
5550 obds O 5p> (2.25)

8F  8°F 8F OF 8F

Snos dson ooy T TR (2.26)

We write
o=curls. 2.27)

From the general representation for curl (w x v) given in (1969 [1]), we have, for
any vector field s of unit magnitude for which €, is zero,

curl (@ x s)=div(Q,s)s+[div(x,s)—0,,x,] b=0. (2.28)

Invoking the condition
divs=0,,+0,,=0, 2.9
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we obtain
Q.
W_O (2.29)
and
Ok _ _g « (2.30)
58 - ns's- .
Also, by (2.13)
oK, .
5h = s divb, 2.31)
and by (2.4), (2.22) and (2.29)
o1, .
3 =20,,1,+x,divh. (2.32)

When «, and t, are non-vanishing, we see from (2.30) and (2.32) that the
vanishing of 8, and div b is equivalent to the vanishing d«,/ds and 1,/5s. The
latter condition is necessary and sufficient for an individual s-line to be a circular-
helix. Again, by (2.31) the vanishing of div b is equivalent to the vanishing of
OKg/6b. By (2.4) the vanishing of 0, is equivalent to the vanishing of 8, ; thus by
(2.17) the Gaussian curvature G of the surface U(x*)=constant is zero. By (2.19)
OKy, /05 is zero, and by (2.21) 61,/6b vanishes. The vanishing of 8,, and div b is
thus a sufficient condition to ensure that x, and t, are each constant over the
surface U(x®); that is, to ensure that these surfaces are coaxial circular cylinders.
The vanishing of 8, and div b is also a necessary condition, for if these parameters
did not vanish, an s-line would not be a circular helix, nor indeed, by (2.11),
could the surfaces U(x*) =constant be parallel.

We collect these results as follows:

Theorem 2.1. Let s be a steady, isochoric, circulation-preserving vector field of
constant unit magnitude ; then the vector-lines of s are geodesics on the one parameter
Samily of surfaces U(x*)=constant, and

00,

3s =0, (2.29)
0K, _

55 = —0,,x,, (2.30)
OK, .

5b =—x,divh, 2.31)
o1, .

5 =20,,1,+x,divh. (2.32)

Provided k. and t, do not vanish, the vector-lines of s will be circular helices and the
surfaces U= constant will be coaxial circular cylinders, if and only if 0,, and divb
each vanish.
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3. Further Results for a Vector Field s for which 2,=0

The vector field defined by the title of this section is characterized by the
condition that its vector-lines are geodesics on the surfaces associated with a
normal congruence of n-lines. The binormals are tangent to parallel curves on
these surfaces. These conditions are of local validity only.

Leti,,x=1, 2, 3 be Cartesian unit vectors. Let s, n, and b, denoting the tangent
to the vector-line, the principal normal, and binormal, be represented alter-
natively by sz, f=1, 2, 3, with the additional convention that the gradient compo-
nents 8/8s, 5/6n, 5/0b are represented alternatively by §/5s%, B=1, 2, 3, respec-
tively. We may write

i,=0,55, 3.1

dap=0a,5(x"), (3.2)

where the matrix {a,,} is orthogonal. We may assert that {a,,} is the unit matrix
at the origin, but not in a neighbourhood. Thus we may take a,;=34,, after
taking gradients. From (3.1)

where

O=gradi,=grad(a,;s;)

=(grad a,;)s;+ a, grad sg. 3-3)
From (3.3)
s;-(grada,p)sp= —a,ps, - grads,
——a, 5L‘; ' (34
ds
From (3.4)
0 os
Waaﬂ:_aaﬂ_a—s—l;'.sp. (3.5)
Setting a,, =0,,, from (3.5) we obtain
é o5,
Wauﬂ=—.mosp. (3-6)
From (2.6), (2.7), (2.8), (2.18) and (3.6), we obtain the following relations:
sa 0 —x, O
{"ﬁ}= 6 0 -, (3.7
|0 0
[ a8 ens _(Qs_rs)
{55“;” }= 0 dive |, (3.8)
Q,~17,=—divh 0
[ 0 Ts ebs
{55";;" }= —1, 0 Ky | (3.9)
| Ops  — Ky 0

From (3.4)
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or
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52a,ﬂ 0a,p 08y Oa,, ds,
3o BT T |G et T g BrAds o -grads,
és, 08, é%s,
+s"'W 5s“’+5s"6s" ’
6%a P d0a,, 0sy Oa,, 08y, 05
af _ __ a8 00 a + u d .
556" [65“ 55 | o5t 5" sk BACS
os, 0s, é%s,
+s"._6—?— 5s"’+6s‘53“ S

(grads,)-s,=0,
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(3.10)

(3.11)

we note that the third and fourth terms on the right hand side of (3.10) vanish in

the case a=

B.

From (2.6), (2.7), (2.8), (2.18) and (3.10) we obtain the following relations:

oK
—2 _0%
Ks 55 T K
52(113 — Ok, 2, .2 ot
{ 557 }— ds —(G+T) 5s |
o1, 2
_TsKs 5S —Ts |
i oK N
—0,.%, —( o +(Qs—1,'s)rs) 6.7,
ia —_ 6Ks __0 _51'.3
dnés “P{ on ns¥s én |’
1 5Ts .
——dIV bk, Sn K (Q,—1,) divb 1:3-
R oK ]
TsKs - (“‘S*bi'*' obsts) —‘L'sz
i_a —_— 5KS ( + ) _513
6b5$ af(™ 6b Ks KbN TS 5b s
TS
_—KstN 'W_Bbsks KbNTs_
| 56,, 5 ,
—0,5%, s (X(Qs—‘ts)-kksdlv b)
82 00, . 5 .
{5s5n a“ﬁ}— Ss —(Q—197, 7,divh—0,,x, gleb—(Qs—ts)xs
o 5 .. )
_g(gs - Ts) + ensts —g le b dlv b Ty

(3.12)

(3.13)

(3.14)

,(3.15)
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52
(e

06,

6 —= (9

—(033+(Qs—

)%

—1.)divh

E(Q‘ —1)—0,,divb
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o

(ﬂ’y__

—((divb)*+62,)

o .
- (E{ divbhb+ O,S(Qs—ts))

o

on

_((Qs_ s) l'/d'.vb)z)

(@— )divb) —(%(Q,—rs)-{-o,,sdivb)—

divb—0,,(2,—

52
{5b5n "“"}=
0,s7,—0,,(2,— ( -0, div b) - (;—B—(Qs—ts)—ts div b)
650;" + Ky (2,—175) 0,5 7— 13, divh ;—bdivb+rs(95—rs)
g—b—(Qs T)— 0,5 Ky ( 6b 1Vb+9”0,,s) —(05(2,—15) + K, div b)
dt, 3 (50,,s N )_
Ts¥s os ds Ks Kon
82 o1, o
{maaﬁ}= (5 ) (Ks+Kb1v)ts 'S—S_Kbn_gbsxs >
66, 0Ky
5; _1,52 - 5; TsKpn
8% ) )
{6n5b “"’}=
HnsTs_obs(Qs_Ts) 61: s) KbN - (%-’_onsxbu)
on
(‘;T dlvb) 0,57, — Ky, divh ;EK,,N—@,,S@,,s
0 . 0 .
%—Obs+rsdwb — —(S—nn,,N—(Qs—ts) 7] —(0,4(Q,—1,) +K,,divh)
B dt, o0,
_(9:s+‘t:) 5b +0bstN —(_5—;;—"_1:st~)
82 ] dK
{W aaﬁ}:: (61;) obSKbN) _(‘t:s2 +K:N) 6;: +0bsts
00,, o
6;; +K bN s - (E Kbn_obsrs) _(B:s'l'xfn)
From (2.24)
62 da, da,,

62
{(51;5;1_

o

ondb

os

”}—divb{—‘saﬂ’";i}—x,m{

)

db

) |,(3.16)

,(3.17)

(3.18)

,(3.19)

. (3.20)

(3.21)
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From (3.7), (3.8), (3.9), (3.17) and (3.19), we find that (3.21) is equivalent to the
three conditions

5591;* +9% D Kpy— Q16 +(0,,—0,) divb=0,  (3.22)
i(Q— )—ie —(0,5— 0, )%, +(Q,—27)divb=0 (3.23)
6b s~ Ts 5" bs ns bs) by s Ts =V .

) é < a2 2
San TSy - divb—0,,6,,—(2Q;— 1) 1,—(div b)* — K;, =0. 3.24)

Equation (3.23) is not a new condition but may be derived from (2.4), (2.9),
(2.15), (2.18) and (2.21). Thus by (2.4), (2.9), (2.15), (2.18)

é é o
T —_gﬁ_ebs'l"ﬁ(gs_zts)_Kbu(ons+0bs)

+ 0, (s +14,) +(Q,—27,) divb=0,

and (3.23) follows when Jx,,/ds is eliminated in favour of §7,/6b through the
Mainardi-Codazzi equation (2.21).

From (2.25)
8? 52 0a,s
{(6s6b_6b5s)a"”}_ 6 {51; } (3.23)

From (3.9), (3.14), and (3.18) we find that (3.25) is equivalent to the three
conditions

oty  OK, _
st 5E 1,=0, (3.26)
5;;‘+x Kpy — T2 +02,=0, (3.27)
0Ky, , 0T, _
5 — b —+ 0, (), —K)=0. (3.28)

Equation (3.26) and (3.28) are identified with the Mainardi-Codazzi relations
(2.20) and (2.21), while by (2.18) and (2.19) equation (3.27) is the Gauss equation
(2.17). While (3.25) offers a proof of the Gauss and Mainardi-Codazzi equations,
it gives no new information.

From (2.9), (2.26)

2 2
{(_5z5s_—_5f(5n)a"ﬂ}=x {‘5;“”}%”{5 a,,}+(9 20{ } (3.29)

From (3.7), (3.8), (3.9), (3.13), and (3.15) we find that (3.29) is equivalent to the
three conditions

5Ks 59ns _ 2 2
50 59 +(2Q,-31)t,—xk;—6;,=0, (3.30)
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—Siss—(gs_rs)'*'enst+0bs(Qs_21s)+Ksdivb=05 (331)
oty 0 . .
30 +gs—d1vb—sts+0,,sdlvb+k,,N(Qs—215)=0. (3.32)

Equation (3.31) is obtainable by eliminating d,/6b between (2.13) and (2.20).
Also, equation (3.32) is obtained from (3.22) by eliminating 6 ,,/8b in favour of
6/6s div b by means of (2.14).

Our analysis has yielded three equations, which we believe to be new, express-
ing the normal gradients dx,/dn, d 7,/0n, 6Ky, /On in terms of the vector field para-
meters.* We have

Theorem 3.1. Given a vector field s such that the principal normal n to the vector-
lines is such that
Q,=n-curln=0,

with the consequence that the s-lines are geodesics and the b-lines are parallel curves
on the surfaces associated with the normal congruence of n-lines. For this vector
field, the normal gradients of the principal curvature x of the s-lines, the torsion t
of the s-lines, and the normal curvature i, , of the b-lines, are given respectively by

Sk, 86,

_ _ 2 2

S = = (2Q,=31) T+ K]+ 0y, (3.30)
0% _ _ 0 Givh+x,Q,—0,. divh—(Q,—27)K (3.32)
5n— s § Dés ns s Ts) Kby » .
dK, é . sopN2 o2

5nN =E div b+0ns ebs+(2 Qs_ts)Ts+(dlv b) +KbN : (3'24)

4. The Curvature Tensor
Consider now the deformation tensor

c=;12ss+11nn+qbb, (1.32)

where
n=n(U). (1.33)
The Cartesian components of ¢ are given by
caﬂ=ia'c'iﬂ’ (41)
* The relations (3.30) and (3.24) may also be derived by setting v=s and p=2> in the vector
identity
div(v - grad v—(div v)r)= — 21— %curl v - curl », ()

where Il is the second principal invariant of

=1(grad v+ (grad v)7). (b)
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where i, are given by (3.1). Then

1
ca9=aa1;7“31'9'“«2??‘132'1'“«3’7%3- 4.2

Our aim in this section is to derive, in intrinsic form, the six equations necessary
and sufficient for the vanishing of R,;,;, as given by (1.8), when c,; is given by
4.2).

We require that the vector field of s satisfy the following specific conditions:

divs=0,,+0,,=0, 0,,=—0,,, 2.4)
Q,=0, (2.2)

5;5’ =0, (2.29)

56’25 =-0,,x,, (2.30)

‘;’Z —x,divh, (2.31)

‘;’S = (2.32)

%:0, %=0. (4.3)

We now introduce the notation

1
CTI =?’ C;z='1, C§3=11, 4.4

and we represent the gradients §/3s, 6/6n, 6/6b alternatively by 6/6s%, o =1, 2, 3.
We write (4.2) in the form*

* * *
caﬁ=aa1Cllaﬂ1+aa2c22aﬁ2+aa3C33aﬂ3 a C‘“‘aﬁ” (4.5)
From (3.1) and (4.5)
9 c,g=1,-gradc,;=a 6 Cyp= c
ox’ «aB— %y af Ty s A Ve 55’ ap

sa (4.6)

ap ¥ * *
= CuuOp,ta,,—Cuulp,+8,,Con—i0a
5s)' up“pu op 58;' up“pp aptup 5sl Bu

* The underscore in (4.5) means that no further summation is implied. When a Greek sub-
script without underscore occurs repeated in a term, it is understood to represent a summation
over the range 1, 2, 3 as in (4.5).

) da,
In (4.14) a term like — 557 “( Js,_p)c” is summed on A, but nzot on 8. Again, in (4.14) aterm

62
like ( 35755 2 p) cg g is a single term, and in (4.15) a term like (m a, ,,_,) Cgaisa single term.
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Since we may take a,5 =0, at the reference point, from (4.6) we obtain

1 a=4.
0 « 00ss  0Ci,
Fr L T
OCaa
=2% by (3.15), (3.16), (3.17);
S
2) a%f.
0 08us x . 085, »
ox? T os pot o5t %2

From (4.3) and (4.4)

O 4201 b . 0 4 _On
on ' w3 én’ on 22 " 6n  on-

From (3.15), (3.16), (3.17), (4.7), (4.8), (4.9) and (4.10) we obtain

4.7)

(4.8)

(4.9)

(4.10)

(4.11)

, (4.12)

(4.13)

1
0 (i) 0

{%rc,ﬁ}= ——(n—;lz)rcs 0 R

B 0 0 0

[ ik Ous (1) —@=5) (1)
(Lo -af-y) o :

@5 (1) 0 on

o e e
{%Scaﬂ}= (’7—711‘2) Ts 0 0 s

(=)0 0 o
where we have eliminated 6, in favour of 0,, by (2.4). From (3.1), and (4.5),
_c’ixf%‘—c“” =i, grad(i, - grad c,z),

é )
=g [ g Ganctaann)]

o 0 * 52 *
= Wael _SS_)'(aa”CEE aﬂu)+:ssy_(ss§‘(aan c&ﬁaﬁu) s
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8 88,,\ » & . . O
= Wa“ 6s7 CEEapu'*'aau WCEE aﬂu+aa"C£EE-STapu
5 50”‘ * (S * 5
+W F cggaﬁu""aau wcgg aﬂu"'aaucun 55 Qg
) Sa, 4.14
(o) [ (52) 52 o

5 * 52 *
R vracy R M vy
)

é ) ]
+ aa:ﬂ F Yc;ﬁ"'( aau)c

0a,5 O *
59 o bt o\ Graer hn) ent G g

5a,u) x 0ag, 0 , 0ag, | « 82
+( 55 ) g Ty Caage T

22 a5 P
Once again there are two cases.

1) a=p. By (3.15), (3.16), (3.17), (4.9), and (4.14),

Pcea  Oa,, 5c;",+( 62 ) +( 8 ) . O
25 .= 22 a,le —a
ox'0x* o5’ on s?8s® ZE 22\ 465t Gan) Cus Sst

62 0 é 62
— +(—a5“) Cou—— Oapt Caay s Oua

(Ssyés8 22 \6s EE st 22 5s5765°
da,, dc¥, 2, (4.15)
= 22 ¢
8s? én  8sTost 22
52 da,, da
2 c* * ap gu)-
* (c'ﬂ s5es met TSy oy
2y akp.
62c,, o 08,5 x , 00, «
ox’ox* =(Wa”)( 5st ot 55t ”)
52 * 52aﬂ¢ *
+(5sy5s*’ a“ﬂ) "‘Et—ﬂ_(ésyés’)cEE (4.16)

0Gsp O x 0w O x 0G5 O .«
557 o6s° PBT s 5s7 BET 55 55t oo
dag, O et (6a,” 5a“+6aw 5a“\)‘

o5 FC os’ 65t ost &5

The relations (3.7), (3.8), (3.9), (3.12) to (3.20), may now be substituted in
(4.15) and (4.16), to yield the expressions for azc,,,,/axvax", required by the
formula (1.8) for the curvature tensor.
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From the relations (4.11), (4.12), and (4.13), and (4.17) to (4.22), we now
obtain, in intrinsic form, the six equations necessary and sufficient for the vanish-

ing of the curvature tensor given by (1.8):

Ry212=0
(ﬂ%+3) (;11—1,) Q§+4[50" +02,—37,(Q, 'cs)] (;1;, n

4 5211
-3

_10Ks6_n__ 10 (_(3_1)7'+ ~0
n° én 71t \on n on*
Ry323=0
! 2 1 on
~ @+ (1) 2+ (@) =021 (3=n) + 2 3
2 (6n\* . &*n
+F(757) ~257 =0
R3131=0
1 i 1 2 on
—-1)( - )Qf+4 T £ — K Ky, ( -~ )+ Ks—2Kp) 5
(? ra ( ba) pea —”-s( ) 5,
2 {dn 2_
N (ﬁ_n) =9,
Ry3253=0
6Q, 1 4Q. 61 on
(5’1 s s) (_’1_2 ’1)_7;3“3'1‘ 2(93 2Ts)6__0’
R2331=0
ot, 60, on
[}%— 5n +2K4, 0,,—divb(Q,— 21)] (—2- 11)+40,,55 =0,

or, equivalently, by (2.4), (2.9), (2.15), (2.18), and (2.21),

50,
“577(777 ) +46,, 510,

oty Ox,] (1 2divbh on _
[Zens(gs s)+ 6b] (‘;1'2—7!)"'——3—‘3*—0,

R3112=0

or, equivalently, by (2.4) and (2.20)

[+ Ouuc@20)] (rn) +-S SL=o0.

5. Proof of Theorem 1.1

(4.23)

(4.29)

(4.25)

(4.26)

(4.27)

(4.28)

Since the conditions (4.23) to (4.28) must hold in a neighbourhood, from (4.27)

we have

50, (1 86,, on ?n
0séb (*r?——")+4 ds on TR TT TS dsén =0,

(5.1)
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since

Again, since

we obtain, from (2.4), (2.25), (2.26), and (5.1),

593 1 50ns 5’1 2 6’1
"s75b (? ")+4 5s on  0ng, =0,

From (4.27) and (5.2),

Thus, either

in which case, by (4.3), and (4.3),, # is constant, or else

00,

2
53 _29ns
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(4.3),

(2.29)

4.3),

(5.2)

(5.3)

(5.4)

(5.5)

We assume that # is not constant. By (2.4), (2.17) and (5.5) the Gaussian curva-

ture of the surfaces U(x*)=constant must be given by

G=62,,

so that by (2.19),
K, tc,,N=1,'s2 +62,.

From (4.23) and (5.5),
1
(?+3) (%z—n) Q2 +12(02,+72 — Q1) (—12 n)
_ 10x, én (5n) 4 5%y —0
n° on on n° on 2 )
By (4.24),

(;65+2) (—12—'1) 02 +8(62,+2 —0,7,) (—l—z—ﬂ)

n
_ 4K, Sn 4 (51;) 4 &g
B on

n° on
Eliminating 625/6n? between (5.8) and (5.9), we obtain
5\ /1 1
1— )( )92+4 02,+12 -0, ( - )
(1=35) (=) 24 o

3 3

n> on n° én on

11*

—37—;——0.

_ 10x; 5n+41c,,N én 6 (611) —0

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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From (4.25) and (5.7),

1 1
—(1_?'—3') (7—’1) 4(0ns+r Qs'rs) ;12'—’1

n
2Ks 6_11_ 4KbN 5_”+ 2 (—5—11‘)2_0 (5-11)
n® on n° o6n n*\én)
From (5.10) and (5.11),
L Nozins. o1 1(5 )2_
(? ?])Qs+2ksan+—”— '571- =0. (5.12)

Taking the directional derivative of (5.12) with respect to s and invoking (2.29)
and (4.3);, we obtain

dx, On 8n 1 6n &y
ds 5n+ > 8sdn +71—3; dsén (-13)
whence, by (2.26), (2.30), (4.3), and (5.13),
1 69\ 69
0,5 (2 s+ — 7 Bn ) on =0. (5.14)
Since 7 is assumed to be not constant, (5.14) requires that either
0,,=0 (5.15)
or {5
n
(2 e H) —o0, (5.16)

or both these conditions hold.
Suppose that 8, , does not vanish; then since # is not constant, so that é#/én is

not zero, by (5.16)
2
2, S L (ﬂ’-) =0, (5.17)

s Sn
and by (5.12) and (5.17),
1 ) 2
-1} Q=0
(=
so that either # is unity or Q, vanishes. Equation (4.27) then shows that

46,31 —o, (5.18)
so that if 6,, does not vanish # must be constant.

We conclude that, for equations (4.23) to (4.28) to be satisfied in a neighbour-
hood, for non-vanishing 8,,, 7 must be constant. The only possible solution for
non-constant # must be associated with a vector field for which 6, vanishes.

When 6, vanishes, (2.30) requires that

0K, _
= (5.19)
Also, by (2.32) s
sk, divh. (5.20)

os
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By (4.28) and (5.20)
divh [5—”+1cs173 (—lz—n)] =0, (5.21)
on n
so that either
divb=0 (5.22)
or s .
" 3 =
g+’ (=) =0 ©2)

or both these conditions hold.
When div b vanishes, (5.20) shows that

01,
s

so that the vector-lines of s are circular helices and the surfaces U(x*)=constant
are concentric circular cylinders.

When (5.23) holds, (5.12) gives
( ! —n) Q-2uln’ (—11—11) +xin’ (—lz—n)2=0
;{2‘ s ] n s n s

or, if # is not constant,

0, (5.24)

Q=i 1+7°). (5.25)
Again by (4.27), since 8, is zero and 7 is not constant,
00,
b =0, (5.26)

Taking the gradient of (5.25) with respect to b, and using (4.3), and (5.26), we
obtain
3 6Ks
n kK

*ob

(1+n%=0,

so that by (2.31)
n’x2divb(1+n%)=0. (5.27)

From (5.27) we see that if # is not constant, or zero, either x, or div b must
vanish. When «, vanishes, the vector-lines of s are straight lines. According to the
convention discussed in the Introduction our basic formalism holds for x,=0;
however this case requires special consideration. When «, does not vanish, the
vanishing of div b and 6, implies once again that the vector-lines of s must be
circular helices and the surfaces U(x*) =constant must be circular cylinders.

So far, we have shown that either # must be constant, or the vector-lines of s
must be straight lines or circular helices mounted on concentric circular cylinders.
The latter case includes the case t,=0, x,+0, in which the helices become concen-
tric circles perpendicular to the generators. We may easily show that # has to be
constant in this case.

Our argument above (which is not predicated on 7, not vanishing) requires
that div b and 6, each vanish. From (5.7), since ; is not zero,

Ky =0. (5.28)
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Then by (3.32) Q.=0. (5.29)

ERICKSEN analysed this case. We may confirm his result. Thus by (5.10), for 4,,,,
7y, £ and k;,, each zero,

on 3 (6n 2_
while, from (5.12)
on 1 (5n\*_
2KSH+F(H) =0, (531)

It follows from (5.30) and (5.31) that 61/6n must vanish.
It remains to consider the case in which x, vanishes.
If n is not constant, equation (5.7) requires

124+602,=0, (5.32)
so that 0, and 7, must each be zero. By (4.28),
divbh dn

so that if # is not constant, div b must vanish. By (3.32) when 0, ,, 7, x, and div b

vanish,
Koy 2,=0, (5.34)

so that either Q; or x,, vanish, or both. When Q; and «; are zero, equation (5.12)
shows that 67/6n must be zero, so that # is constant. When x,,, «,, 0,,, and 1,
vanish, equations (5.10) and (5.11) reduce, respectively, to

) )25 (50)
1— —n) 22— (21} =o, 5.35
(=) Grr) 2= ©3)
and 1\ /1 2 (dn)\?
—(1- )( - )Q§+ (—i) =0. 5.36
(1-55) (=) o+ (5 39
By (5.35) and (5.36),
1\ [én\>
(1+?) (H) —o0, (5.37)
so that d#/én must be zero. Thus # is constant.
We have thus established

Theorem 1.1. The only universal deformations of a homogeneous isotropic
incompressible hyperelastic material due to surface tractions only, which correspond

to the case ci=c3=1, (1.19)

are

1) deformations in which n is constant,

2) deformations in which the vector-lines of s are circular helices mounted on
concentric circular cylinders, the cases where the helices reduce to circles or straight
lines being excluded.
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Theorem 1.1 shows that the only possible vector-line geometry corresponding
to non-constant 5 is the circular helical configuration which was analysed by
ERICKSEN for the case when the proper values are distinct (1954 [1], p. 480). The
case represented by (1.19) is thus a special case of that already considered.

We obtain

Theorem 1.2. The only deformations that can be produced in all homogeneous,
isotropic, incompressible, hyperelastic bodies by application of suitable surface trac-
tions alone, are homogeneous deformations, the four families of deformations cited
in the Introduction, and non-homogeneous deformations in which the principal
stretches are constant and both cb, . and (¢ ')} , . are symmetric in the indices aande.

Professor ERICKSEN has pointed out to us that our analysis may be applied to
one particular category of deformations of the class defined by Theorem 1.2.

We require that

dive=grad y. (5.38)
In the case
C1=C3=11, (1.19)
we have, by (1.32),
c=(517—11)ss+n1, (5.39)
where I is the unit dyadic, and # is constant.
By (5.38) and (5.39)
dive= (;12—11) [s-grads+sdivs]=grady. (5.40)

In this case we do not know that the vector-lines of s lie on the surfaces y(x*) =
constant. However, in the special case when they do so,

s.grad y=0; (5.41)

then, since # is constant, (5.40) yields the conditions

divs=0,,+6,,=0, 249
curl(w x5)=0, w=curls. (1.31), (1.30)
Also
1 -1
s-grads=x,n= (?—11) grady, for n+1. (5.42)

When =1, the material is unstrained. From (5.42), we see that a is parallel to
grad y and that the vector-lines of b=s xn lie on the surfaces y(x*)=constant.
Our formalism holds for this particular case.

From (2.4), (2.17), and (2.19)

60,

s = 02, +xc; K, — T2 (5.43)
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For dn/én=0, and 1, (4.23), (4.24), (4.25), and (5.43), give

(;15+ 3) Q2 +4[202,+x, Ky, +7,(27,—32,)] =0, (5.44)
(%+ 1) Q2 +4[0%,+12-0,7,]=0, (5.45)
(;15— 1) Q2 +4[Q,1,~x,x,,]=0, (5.46)
Equations (5.44), (5.45), and (5.46), imply
Q,=0,,=1,=0 (5.47)
and
KsKp,=0. (5.48)

The three remaining curvature tensor equations, (4.26), (4.27) and (4.28), are
satisfied by (5.47) for dn/on=0.

By (5.48) either k, or k;,, or both these curvatures vanish. When «; vanishes,
by (2.6) and (5.47), grad s=0, so that the s-lines are parallel straight lines. If «,
does not vanish, by (2.30) and (5.47)

0K,

ds

0, 1,=0,
so that the s-lines are concentric circles.
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