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1. Introduction 

Several years ago ESHELBY [1] (1956), in a paper devoted to the continuum 
theory of lattice defects, deduced a surface-integral representation for the "force 
on an elastic singularity or inhomogeneity", wh ich - in  the absence of such 
defects-gives rise to a conservation law for regular elastostatic fields appropriate 
to homogeneous but not necessarily isotropic solids in the presence of infinitesimal 
deformations. Morevoer, ESrIELBY noted that his result, when suitably interpreted, 
remains strictly valid for finite deformations of elastic solids. 

The two-dimensional analogue of the conservation law alluded to above, 
asserting the path-independence of a certain line-integral associated with plane 
elastostatic fields, was independently discovered by RICE [2] (1968), who adhered 
to infinitesimal deformations but admitted the possibility of nonlinear stress-strain 
relations. The physical interpretation of this line integral advanced by RICE is 
based on the energetics of quasi-static crack extension. The work contained in [2] 
is intimately related to earlier investigations by SANDERS [3] and CHEREPANOV [4]. 

Apart from its inherent theoretical interest, the conservation law made explicit 
in [2] is of practical importance in connection with the direct asymptotic analysis 
of geometrically induced singular stress concentrations, such as those occasioned 
by cracks and notches. Applications of this kind, most of which pertain to in- 
elastic behavior, may be found in [2], [4], as well as in papers by HUTCHINSON [5], 
[6]. The two-dimensional conservation law given in [2] may roughly be stated as 
follows. Let (xl, x2) be rectangular cartesian coordinates and let/7 be a domain of 
the (xl, x2)-plane. Suppose u~, 7~p, a~a (~, fl = 1, 2) are suitably smooth functions 
defined on /7  that represent, respectively, the cartesian components of a displace- 
ment field, its associated infinitesimal strains, and the components of an equilib- 
rium field of stress corresponding to vanishing body forces. Thus assume 

7~p=u(~,p), a~p,p=0, aa~=a~p on / / .  (1.1) 1 

Further, let the stresses be derivable from an elastic potential in accordance with 
the constitutive law 

a~,p=dF(~)/dT~,p on H ,  (1.2) 

1 Here and throughout this paper summation over repeated subscripts is implied; subscripts 
preceded by a comma indicate partial differentiation with respect to the cartesian coordinates. 
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in which ? stands for the matrix [y~p], whereas 

F(~(x)) = W(x) for all x~H (1.3) 

is the strain-energy density at the point with the position vector x. Then, for 
every curve C that is the boundary of a finite regular closed subregion 1 of H, 

S (Wn~--spul~,~)dt=O, (1.4) 
c 

provided n is the unit outward normal vector of C and s the traction vector, 
that is, 

sp=ap,n, on C. (1.5) 

It should be emphasized that although (1.2) include as special cases the constitutive 
laws underlying the conventional linearized theories of plane strain and generalized 
plane stress, the validity of (1.4) is not contingent upon the linearity of the stress- 
strain relations (1.2). 

The conservation law (1.4) may be confirmed at once by means of (1.1), (1.2), 
(1.3), (1.5) together with the divergence theorem, and (1.4) is established in this 
manner in [2] 2. Such an ad hoe verification of (1.4), however, supplies no clue as 
to its analytical roots within the theory under contemplation and at the same 
time suggests the question whether there exist other such laws. 

In this paper we show that the conservation law (1.4), as well as its three- 
dimensional analogue, may be generated systematically with the aid of a theorem 
due to NOETn~R [7] on invariant variational principles in conjunction with the 
principle of stationary potential energy. This procedure, moreover, yields two 
additional conservation laws. The two-dimensional version of the first of these 
asserts that if (1.2), in particular, is form-invariant under a rotation of the coor- 
dinate frame, so that the material is isotropie, then also 

e, ~ (Wxp n~ + s, up - sp up, ~ xp) d • = 0. (1.6)3 
c 

Next, if the stress-strain law (1.2) is linear (though not necessarily isotropic), in 
which instance 

W= �89 a,~ ~,~, (1.7) 
one has in addition 

~ (Wn, x ,-s~u~. ,x ,)dt=O. (1.8) 
c 

We show further that, in a sense made precise, (1.4), (1.6), (1.8) together with 
their spatial counterparts are the only nontrivial conservation laws deducible from 
Noether's theorem in linear elastostatics. Finally, the application of Noether's 
theorem to finite elastostaties confirms that (1.4), (1.6), as well as their three- 
dimensional analogues, continue to hold for the nonlinear theory provided W 
and s are suitably redefined in this context. 

In Section 2, after some required preliminaries, we state and sketch a proof of 
a restricted version of Noether's theorem on invariant variational principles that 

a Thus C may be the union of several disjoint piecewise smooth closed simple curves. 
2 Actually, RICE [2] deals with the special case of (1.4) corresponding to ct= 1. 
3 Here e~O stands for the components of the two-dimensional alternator. 
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is sufficiently broad to cover our needs. We then specialize the theorem with a 
view toward its subsequent application to elastostatics. The expository part of 
Section 2 has been included primarily in order to render the present paper sensibly 
self-contained. 

In Section 3 we employ the results of Section 2 to deduce conservation laws 
in the three-dimensional equilibrium theory of infinitesimally deformed elastic 
solids. The three laws thus emerging, which reduce to (1.4), (1.6), (1.8) in two 
dimensions, are then proved independently by recourse to the divergence theorem. 
Here we also establish the completeness of the foregoing three laws for the fully 
linearized theory. Section 4 is devoted to conservation laws in nonlinear elasto- 
statics. 

We condude these introductory remarks by noting that NOETHER'S [7] scheme 
has previously been applied in other areas of mathematical physics 11 In contrast, 
its implications for the theory of elasticity appear to have gone unexplored. 

2. Preliminaries. A Special Case of Noether's Theorem 
and Some of its Implications 

Throughout this paper the symbols 8 and ~e" denote, respectively, a three- 
dimensional euclidean point space and its associated vector space. We call R a 
regular region if R is a bounded closed region in B and the divergence theorem 
holds for all suitably smooth vector fields defined on R. Accordingly, the regularity 
of a bounded closed region R is assured if its boundary aR is the union of a finite 
number of disjoint "dosed  regular surfaces", the latter term being used in the 
sense of KELLOGG [11]. 

Letters in boldface are reserved for tensors of positive order and for matrices. 
In the case of tensors of the first or second order such letters denote both the 
tensor and its matrix of scalar components in a fixed rectangular cartesian coor- 
dinate frame, unless they appear as arguments of functions; in the latter instance 
boldface letters are used exclusively to designate the appropriate component 
matrix. Specifically, if the symbol v stands for a vector, it also refers to the column 
matrix 2 [vi] of the components of v in the underlying coordinate frame. Similarly, 
if t represents a second-order tensor, it also denotes the 3 x 3 matrix [tij] of the 
components of t in the frame under consideration. On the other hand, v= [vi] 
and t = [tij] in the event that v or t are values of arguments of functions. 

In what follows we have occasion to deal with functions that depend on the 
cartesian coordinates, the components of a vector, the components of a second- 
order tensor, and on a scalar p a r a m e t e r - o r  on a subset of the preceding array 
of arguments. We now adopt a uniform notational scheme for the partial differ- 
entiation of such functions. To this end, let ~- be the space of all second-order 
tensors, let L be an open linear interval, and suppose F is a real number-valued 
function defined on the product-space 8 x ~e- x ~- x L, with the values 

F(x, v, t; ~l) for all (x, v, t; r/)e ,B x ~r x J -  x L. (2.1) 

1 See, for example, B~SEL-HAGEN [8], KRUSKAL & ZABOSKY [9]. Reference may also be 
made to CASTEN [10]. 

2 Latin subscripts are understood to range over the integers (1, 2, 3). 
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We then write 
0 

El(x, v, t; ?) =-~-7 F(x, v, t; r/), 

F,,,(x, v, t; vl) = g~- F(x, v, t; r/), 

(2.2) 
F,,j(x, t; r / ) = ~  F(x, v, t; r/), V, 

F'(x,  v, t; vl)=--~ F(x, v, t; r/), 

provided the foregoing differentiations are meaningful. Strictly analogous notation 
will be employed in connection with vector or tensor-valued functions and for 
higher-order derivatives. 

We are at present in a position to assemble the chief ingredients of the theorem 
that constitutes our immediate objective. Thus, suppose H is a real number- 
valued function defined on 8 x ~ x 3- that has the values 

H(x, v, t) for all (x, v, t )~8 x ~e- x ~". (2.3) 

Assume further H e ~  ~ (8 x ~ x oq-), so that H possesses continuous partial de- 
rivatives of all orders with respect to the elements of its matrix arguments on its 
domain of definition. Next, let D henceforth be a fixed open region in g and for 
every regular subregion f2 of D and all vector fields w~CgZ(D), let (P be the func- 
tional defined by 

{w} = j" H(x, w(x), Vw(x)) d~ ,  (2.4) 
f~ 

in which IZw denotes the component matrix [wi,~]. We shall refer to �9 so defined 
as an admissible functional for D generated by H. 

We now proceed to embed q) in a one-parameter family of functionals. For 
this purpose we first subject x and v in (2.3) each to a one-parameter family of 
transformations. We call f a regular family of coordinate mappings on D if f is a 
vector-valued function defined on D x L such that 

~ = f ( x ;  r/) for all (x, r/)~D x L, L = ( - r / o ,  r/o), (2.5) 

and f has the properties: 

(i) fefg2(D xL),  f (x;  0)=x  for each x6D; (2.6) 

(ii) f ( -  ; 17) is one-to-one on D for each ~leL with 

tp(~; q)= x for all (~, r/)eA, (pec~2(A), (2.7) 
where 

A = {(~, q) l r n~L}, (2.8) 

while D n is the image of D under the mapping f ( . ,  r/). It follows from (i), (ii) that 
the Jacobian determinant of f satisfies 

A(x; r/)---det [f~,j(x; q ) ]>0  for all (x, r/)eO• L, 
(2.9) 

A(x; 0)=1 for all x~D. 
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Next, we call h a regular family of vector transformations, provided h is a vector- 
valued function defined on ~ x L with 

heCg2(~e" • L), L=(-~/o ,  ~/o), h(v; 0)=v for all ve~". (2.10) 

Finally, let ~O be the vector-valued function defined by means of the composite 
mapping 

~(~; q)=h(w(q>(~; q)); q) tbr all (r q)~A (2.11) 

and, corresponding to each regular subregion 12 of D, introduce a one-parameter 
family of functionals q~, by setting 

q~{w} = I H({, (t(r q), V0(r q))d~r ( - q o < n < q o )  (2.12) 
f/. ~g 

for every vector field weCg2(D). Here 

Vqt (~; q) = [~,,, r162 n)], (2.13) 

whereas t2, is the image of • under the mapping f ( .  ; q). From (2.5), (2.6), (2.7), 
(2.10), (2.11), in conjunction with (2.4), (2.12), one infers easily that 

Vqt(~; q)[,=o = Vw(x) for all xmD (2.14) 

and that 
�9 ,{w}l,=o=~{w } for every w~C~2(D). (2.15) 

Hence �9 is the member of the family ~, that corresponds to r/=0 in (2.12). We 
shall address ~, as the family of  functionals for D associated with the functional q~ 
and induced by the families of mappings f and h. Moreover, we shall say that ~ is 
invariant at w with respect to f and h whenever 

�9 ,{w}=~{w} (-qo<q<qo) for every regular f2~D (2.16) 

and that �9 is infinitesimally invariant at w with respect to the given pair of mapping 
families, provided 

~b~(w}- 0--c~-q,,{w}[,=o=0 for every regular f2=D. (2.17) 

Evidently, c0 is necessarily infinitesimally invariant if it satisfies the stronger 
invariance requirement (2.16). 

The preceding auxiliary notions enable us to state concisely the subsequent 
restricted version of Noether's theorem 1. 

Theorem 2.1. Let D be a domain in g and let �9 be an admissible functional for D 
generated by H. Let f be a regular family of coordinate mappings on D and h a regular 
family of vector transformations. Suppose weCgZ(D) is a vector field satisfying the 
Euler equations 

H, ok(X)- ~--~ H.,kj(X)=O for all xeO, (2.18) 

1 See NORTHER 17] and GELFAND-For~N [12] (p. 176) for a more comprehensive theorem of 
the same type, which rests on a broader class of admissible functionals and involves more general 
mappings. 
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where 
X = (x, w (x), gw (x)). (2.19) 

Then �9 is infinitesimally invariant at w with respect to f and h if  and only if  w 
satisfies 

~xj [H(X)aj(x)+mk(X)H'tkJ(X)]=O for all xeD,  (2,20) 

where 
aj(x)=f j (x;  O) for all xeD,  

bj(v)=hs(v ; 0) for all ve,,r (2.21) 

mk(X)=bR(W(X))--aj(X)Wk, j(X) for all xeD.  

Further, (2.20) is equivalent to the conservation law in integral form asserting that 

l i t  (X) aj (x) + m k (x) H, tkj (X)] nj (x) d ~=  0 (2.22) 
S 

for every surface S that is the boundary of  a regular subregion of  D, provided n is 
the outward unit normal vector of  S. 

The hypothesis that w is a solution of the Euler equations (2.18) is, in turn, 
equivalent to the requirement that the functional 4{.} introduced in (2.4) be 
stationary at w with respect to a suitable class of variations of w. Indeed, as is 
readily confirmed, w eqr 2 (D) satisfies (2.18) if and only if, for every fixed regular 
region f2 c D, 

fig{w} = 0 ,  (2.23) 

the first variation of cb being taken over the class of all vector fields twice continu- 
ously differentiable on D that coincide with w on the boundary 01L The usefulness 
of Theorem 5.1 as a device for generating conservation laws in any particular 
branch of mathematical physics thus depends on the availability of an appropriate 
variational principle as well as on the existence of regular mapping families f 
and h with respect to which the stationary functional is infinitesimally invariant. 
We now sketch a 

Proof of Theorem 2.1. From (2.12), (2.11), (2.7), and (2.9) follows, for every t/eL, 

q~, {w} = ~1t(~, h(w(x); q), V0(~; q))A(x; q)dv x, (2.24) 

where ~ is related to x through (2.5). Differentiating (2.24) with respect to 1/and 
then setting q = 0, we infer, on making use of the abridged notation introduced in 
(2.19) and in view of (2.5), (2.10), (2.14), that 

�9 ~ {w} = I[H(X)A'(x;  O)+H~(X)f j(x;  O) 
f2 

, . , (2.25) 
+ H, v, (X) hj (w (x), 0) + H,~, (X) ~b,, ~, (x; 0)3 d v. 

On the other hand, (2.5) to (2.9) together with (2.10), (2.11), after elementary 
computations, furnish for all xeD, 

A'(x; 0)=fj, j(x; 0), 
' �9 - h' (2.26) , ,k(X)fi, j(X, 0). ~0~,~(x,0)- ~,v~(w(x);0)wk j ( x ) - w ~  ' �9 
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Substituting from (2.26) into (2.25) and noting that the resulting integrand is 
continuous on D, one finds that ~ {w} vanishes for every regular f2 = D if and only 
if for each x~D, 

H (X) fj, i (x; O) + H, j (X) fj(x; O) + H or (X) hj (w (x); O) 

+n,t , j(X)[hi,~w(x); O) Wk, j(X)-- ' " ' Wt.k(X).f~.j(X, 0)] =0.  (2.27) 

Next, because of (2.19) one has the identity 

Oxj [H(X)fj(x; 0)] (2.28) 

= n (X) fj, j (x; O) +fj  (x; O) [H j (X) + n, ok (x) Wk, j (X) + H, tk, (X) Wk, ij (X)']. 

With the aid of (2.28) and the auxiliary notation appearing in (2.21) one may 
write (2.27) in the form 

O xj [H (X) a t (x) + m k (x) H, tkj (X)] 
(2.29) 

+mk(X)[H, ok(X)--g~-~j H, tkj(X)]=O for all xeD.  

Evidently, if w is a solution of the Euler equations (2.18), equation (2.29) yields 
(2.20) as a necessary and sufficient condition that �9 be infinitesimally invariant 
at w with respect to the mapping families f and h. Finally, the equivalence of the 
conservation laws (2.20) and (2.22) is immediate from the divergence theorem. 
This completes the proof. 

Our next task is to show that if H in the preceding theorem is subjected to 
certain additional restrictions, there do in fact exist mapping families f and h 
with respect to which �9 is infinitesimally invariant at w. Further, we shall deduce 
the explicit form of the conservation laws emerging from these particular mappings. 

Theorem 2.2. Let D, q~, H and w salisfy the same hypotheses as in Theorem 2.1. 
In addition, let 

H(x ,v , f )=M(t )  for all (x,v, t)egx~e'x~--.  (2.30) 

Then the Euler equations satisfied by w reduce to 

Oxj M'tk1(Vw(x))=O for all xeD,  (2.31) 

is invariant at w with respect to the pair of mapping families 

f (x;  ~/)=x+~/~ for all x~D (~=constant), 

h(v; t/)=v for all ve~l r (-r/o<r/<~/o), (2.32) 

and the corresponding conservation law becomes 

S [M(17w(x)) n ,(x)-  Wk, ,(X) M.t~(gw(x)) nj(x)] d a = 0 .  (2.33) 
S 
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Moreover, if  M for every orthogonal matrix q obeys 

M(qtqr)=M(t )  for all te3-,  

then �9 is invariant at w also with respect to 

where 

(2.34) 1 

and this pair of mapping families gives rise to the conservation law 

~,jk [M ( Vw (x)) Xk nj (x) + Wk (X) M. ,j, (Vw (x)) n, (x) 

s -Wp,~(X)XkM.,~,(Fw(x))n~(x)] da=O" (2.37)3 

Finally, if(2.30) holds and M for every real constant ~ obeys 

M ( x t ) = ~ 2  m(t)  for all t e ~ ,  (2.38) 

so that M is a homogeneous function of the second degree, then �9 is infinitesimally 
invariant with respect to 

f (x ;  r / ) = ( l + q ) x  for all xeD,  

h(v; r/)=(1-�89 for all ve~ r ( - r /o<r /<r /o) ,  (2.39) 

and the corresponding conservation law takes the form 

{M(Fw(x)) x, n , (x) -  Ix i WR, ,(X) + �89 WR(X)] M,,kj(Vw(x)) nj(x)} d a = 0 .  (2.40) 
S 

The three pairs of mappings introduced in the foregoing theorem trivially 
involve regular families of coordinate mappings on D and of accompanying vector 
transformations. Evidently, f in (2.31) represents a family of translations, f in 
(2.34) defines a family of rotations of the coordinate system, while f in (2.38) 
corresponds to a family of scale changes. We now turn to a 

Proof of Theorem 2.2. The restriction on H imposed by (2.30) clearly reduces 
(2.18) to (2.31). Also, for the particular mappings (2.32) one draws from (2.9), 
(2.7), (2.11) that 

a ( x ; r / ) = l  

r162 r / )=r  

r/)) 

for all (x, tOeD x ( - r /o ,  r/o), 

for all (q, r/)eA, 

for all (q, r/)eA. 

(2.41) 

Now (2.30), (2.41), together with (2.4), (2.12) yield, for every regular f 2 c D  and 
each r /e(-r /o,  r/o), 

�9 ,{w}= S M(V~(r r/)d~r SM(Vw(x) )dv=~{w} ,  (2.42) 
f l  n ~ t~ 

1 If p is a second-order tensor or a 3 • 3 matrix, we write pr  for the transpose of p. 
2 The symbol 1 stands for the second-order unit tensor and for the 3 x 3 idem matrix [Jiyl. 
3 eij k stands for the usual three-dimensional alternator. 

f (x;  r/)=q(r/)x for all xeD,  
(2.35) 

h(v; r/)=q(r/)v for all v~e" (-r /o<r/<r/o)  , 

q~C~2(L), qqT=l  on L, q ( 0 ) = l ,  L = ( - q o ,  r/o), (2.36) 2 
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so that r is invariant at every weCg2(D) with respect to the particular mappings 
(2.32). Further, from (2.32), (2.21) follows 

aj=6~j, mk=--6~jWk, j on D (/fixed),  (2.43) 

if ~ is chosen to be the unit base vector in the x~-direction, and substitution from 
(2.43), (2.30) into (2.20) furnishes (2.33). 

Next, suppose (2.30), (2.34), (2.35), and (2.36) hold. Proceeding as above one 
arrives in the present instance at 

A (x;/7) = 1 for all (x, q)~D x (-qo,  t/o), 
tp(~; r/)=qr(t/)~ for all (~, t/)eA, (2.44) 

~(r t/)=q(t/)w(tp(q; t/)) for all (~, t/)ea. 

On the other hand, here 

�9 ,{w} = SM(q(t/)Vw(x)qr(t/))dz*= SM(Vw(x))d~,=cb{w} (2.45) 
g2 f~ 

for all regular f2 c D and each r/~ ( - g o ,  t/0). Hence <b is invariant at every w e cg2 (D) 
with respect to the pair of mapping families (2.35). By virtue of (2.36), 

q~'k (0) = -- q;,i (0), (2.46) 

SO that qj k (0) admits the representation 

qj k (0) =/~p j k ep, (2.47) 

where e is a constant vector. Upon choosing e coincident with the unit base vector 
in the x:direction, one finds from (2.35), (2.21) that 

aj ( x ) :  ,F, i j k Xk' 

mk(X)=SijpXjWk,  p(X)--F.ijk Wj(X ) for all xeD. (2.48) 

Substitution from (2.48) into (2.22), after elementary manipulations, leads to 
(2.37). 

Lastly, assume (2.38) holds in addition to (2.30) and let f ,  h be given by (2.39). 
Then (2.9), (2.7), (2.11) imply 

a(x; t/)=O +t/)3 

~,(r t / ) = - -  
l+t/ 

(~; t/) = (1 - �89 t/) w (~/(1 + t/)) 

In these circumstances (2.12) gives 

{ 1 -t/12 gw(x)) (I +t/)3 d~. = ~ M  \ l + t /  

1 Here we suppose, say, t/o < 1. 

for all (x, t/)eD x ( - t / o ,  t/o), 

for all (q, t/)eA, 

for all (~, r/)r 

( - -qo<t/<t /o) ,  

(2.49) ~ 

(2.50) 
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and thus 
�9 ~) {w} =3 j- [2M(Fw(x))- M, ,, ~(Fw(x)) w,, j (x)]  d a. (2.51) 

I /  

But (2.38) assures that 

2M(t)-M. t,j(t) tlj=O for all te~ ' .  (2.52) 

Consequently, �9 is infinitesimally invariant at every weC~2(D) with respect to the 
two mapping families (2.39). Incidentally, it is evident from (2.51), (2.52), and 
Euler's theorem on homogeneous functions that the hypothesis (2.38) is also a 
necessary condition for the infinitesimal invariance of �9 with respect to the 
mappings f and h under consideration. 

Noting that now 

aj(x)=xj, ink(X)= --�89 j(X ) for all xeD, (2.53) 

one easily confirms the conservation law (2.40) on the basis of (2.22), (2.30), and 
this completes the proof. 

The preceding proof of (2.40) suggests that one may generate a more com- 
prehensive conservation law by replacing (2.38) with the broader assumption that 
M is a homogeneous function of arbitrary non-zero degree and by modifying the 
mappings (2.39) accordingly. While this is indeed true, such a generalization of 
(2.40) is of no particular interest for our purposes. 

3. Conservation Laws for Infinitesimal Deformations of Elastic Solids 

With a view toward applying the results established in Section 2 to the equi- 
librium theory of elastic bodies in the presence of infinitesimal deformations, we 
summarize here the pertinent field equations and constitutive relations governing 
the theory to be considered. In this connection we shall confine our attention to 
mechanically homogeneous solids and shall assume that the body forces vanish 
identically. 

Thus let D e 8  at present be the open region occupied by the interior of the 
body in its undeformed configuration and call [u, ?, a], in this order, the displace- 
ment vector-field, the infinitesimal strain tensor-field, and the stress tensor-field, 
all of which are taken to be defined on D. The strain-displacement relations and 
stress equations of equilibrium then become 

7u=u<i,j), ~u.j=O, au=trj~ on D. (3.1) t 

To these field equations we adjoin a constitutive law by postulating the existence 
of a scalar-valued elastic potential F, defined on the space 6 a of all symmetric 
second-order tensors, such that FeCg ~176 (5,') and 

a u = F  r,~(V) on D, F ~u(0) -0 ,  (3.2) 2 

with the understanding that the elements ~ j  and 7j~ of the symmetric matrix 
argument 3' = [~0] are to be treated as mutually independent as far as (3.2) is con- 

1 If t is a second-order tensor, we write t(ij) and tHj ] for the components of the symmetric 
and of the skew-symmetric part of t, respectively. 

2 The second of (3.2) serves to insure that the stresses vanish in the undeformed state. 
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cerned. Further, we adopt the notation 

F(~(x)) = W(x) for all x~D, (3.3) 

so that W represents the strain-energy density (as a function of position) asso- 
ciated with the elastic potential F. It should be emphasized that while, in accord- 
ance with our initial agreement in Section 2, tr~j and ~ j  in (3.2) refer to the com- 
ponents of stress and infinitesimal strain in the fixed underlying cartesian coor- 
dinate frame, the function F is frame-dependent unless the mechanical response 
of the material is isotropic. In the latter instance F is form-invariant under ortho- 
gonal transformations of the cartesian coordinates and this invariance is equivalent 
to the requirement that 

F(q ~ q T) = F(~) for every orthogonal q and all 7 E Se. (3.4) 

We say that [u, ~, tr] is an elastic state with infinitesimal deformations on D, 
corresponding to the elastic potential F, if FeCC~ uEcg2(D) and (3.1), (3.2) 
hold i ; we call such a state isotropic if, in addition, (3.4) is satisfied. 

For future reference we cite next the restrictions upon the structure of the stress- 
strain law (3.2) arising from the isotropy requirement (3.4). When (3.4) is imposed, 
F(~,) can involve the strain tensor only via its principal scalar invariants, so that 
in this case 

F(r) = ~e(l~(r), 12(r), I3 (~)) for all r~SP, (3.5) 
where 

ll(~)=Tkk, I2(~)=�89 
(3.6) 

13(~)=det~=~eijk%,s~ip~jrTks. 

On the other hand, from (3.5), (3.6), and (3.2) one finds readily that 

trlj=Al(l(r))3ij+Az(l(~))(3ij)~kl,--~ij)+�89 o n  D, (3.7) 

with 
Ak=cqtll/Cllk, / = ( I t ,  I 2 ,  I 3 ) ,  A I ( 0 ) = 0 ,  (3.8) 

the last of (3.8) being a consequence of the second of (3.2). 

Although the constitutive law (3.2) is not necessarily linear, it includes as a 
special case the stress-strain relations of the classical linear theory of elasticity, 
where 

tTij=Cijkl~)kl O11 D, Cijkl=Cjikl:Cklij (3.9) 

and F(~) is the quadratic form 

l'(?)-----�89 for all ~5e .  (3.10) 

Here c is the elasticity tensor, which is constant by virtue of our assumption of 
homogeneity and is required to be invertible 2. If, further, the response is isotropic, 
c is an isotropic fourth-order tensor and admits the representation 

Ci jkl= ~ ~i j~kl-J- ~(~ik t~jl-~t~il~jk) , (3.11) 
1 The state so defined might more appropriately be referred to as hyperelastic (in the termi- 

nology of TRU~OELL & NOLL [13]) since we presuppose the existence of an elastic potential. 
2 Thus, the determinant of the 6 x 6 coefficient matrix appropriate to the system of linear 

algebraic equations appearing in (3.9) is assumed to be non-zero. 

15 Arch. Rational Mech. Anal., Vol. 44 
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in which 2 and/~ denote Lam6's modulus and the shear modulus, respectively. In 
this particular instance (3.9) reduces to 

trij=2tS~i~kk+2#'~j on D, (3.12) 

whereas (3.10) becomes 

F(~)=�89 for all ~e5~. (3.13) 

Observe on the basis of (3.6) that (3.13) may be written as 

r(r)=�89 for all 7~Se, (3.14) 

which is the form assumed by (3.5) in the present circumstances. Consequently 
(3.8) here yields 

Ax(I(r))=(2+2/z) 7kk, A2(I(r)) = --2/t,  A3(I(r))--0, (3.15) 

and hence (3.12) is consistent with (3.7). 

We agree to call [u, ~, a] a linear elastic state on D corresponding to the elasticity 
tensor e, provided uecg2(D) and (3.1), (3.9) hold; we shall say that such a state 
is isotropic if, in addition, (3.11) is in force. 

At this stage we turn to the following theorem on conservation laws pertaining 
to elastostatic fields with infinitesimal deformations. 

Theorem 3.1. Let D be a domain in g and let [u, ~, a] be an elastic state with 
infinitesimal deformations on D, corresponding to the elastic potential F. Let W 
be the strain-energy density associated with F. Then, for every surface S, with the 
outward unit normal vector n, that is the boundary of  a regular subregion of  D, 

S (Wn~-sjuj ,~)d~t=O, (3.16) 
S 

where s is the traction vector on S, i.e., 

si=trijnj on S .  (3.17) 

If, moreover, [u, ~, a] is isotropic, then also 

Sl~ijk(WXknj-i-SjUk--SlsUp, jXk) d~t=O. (3.18) 
S 

Finally, i f  [u, ~, a] is a linear (not necessarily isotropic) elastic state on D, one has 

S (Wxi  n~- sj u j, ~xi-�89 si ui) d ~ =  0. (3.19) 
S 

Proof of Theorem 3.1. The foregoing theorem is an almost immediate consequence 
of Theorem 2.2. To confirm this claim, choose M and w in Theorem 2.2 in accord- 
ance with 

M(t)=r(symt) for all te~ -, w = u  on D, (3.20) l 

as is evidently legitimate. Then, from (3.2) together with the first and the last of 
(3.1) follows 

M, tkj(17w)=F ~ks(~)=akj on D. (3.21) 

Throughout the remainder of this paper sym t and skw t are used to denote the symmetric 
and the skew-symmetric parts of a second-order tensor t. 
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Therefore the Euler equations (2.31) now reduce to the stress equations of equi- 
librium 

akj, j=O o n  D, (3.22) 

which hold true by virtue of the second of (3.1) since [u, y, a] is an elastic state 
on D. Next, note on the basis of (3.4) that M defined in (3.20) satisfies condition 
(2.34) if [u, ~,, a] is isotropic. Also, M meets the requirement (2.38) whenever 
[u, ~,, a] is a linear elastic state on D, as is clear from the first of (3.20) and (3.10). 

Finally, observe that (3.2), (3.3), (3.16), (3.20), (3.21) imply 

M(Vw)=W on D, M tk~(Vw)nj=Sk o n S .  (3.23) 

These equations, in turn, in conjunction with the second of (3.20), reduce the 
conservation laws (2.33), (2.37), and (2.40) to (3.16), (3.18), and (3.19), respectively. 
The proof is now complete. Note that all three laws are applicable to isotropic, 
linear elastic states. 

It is apparent from (2.4), (2.30), (3.1), (3.3) and the first of (3.20) that the 
admissible functional for D generated by the particular choice of H underlying 
Theorem 3.1 is given by 

{w} = �9 {u} = S F(~(x)) d v = ~ W(x) d ~ (3.24) 

for every regular region f2cD.  Consequently, O{u} is the total strain energy 
stored in g2 as a result of the deformations associated with the elastic state at hand. 
The variational principle (2.23) in the present instance is accordingly a restricted 
version of the principle of stationary potential energy. 

For the purpose of arriving at a convenient coordinate-free form of the three 
conservation laws asserted in Theorem 3.1 we introduce the rotation vector field 
belonging to u by setting 

to=�89 on D (3.25) 
and note the identity 

SjUj, i=~i jSj '~-Ei jkSj(D k o n  S, (3.26) 

which follows easily from (3.25) and the first of (3.1). In view of (3.26), the vectorial 
conservation laws (3.16), (3.18) may now be written as 

(Wn - ) , s - s  ^ to)d~=0, (3.27) 1 
$ 

[ (Wn-~ , s - s  A to) ^ x +  s A U] d ~ = 0 ,  (3.28) 
s 

while the scalar law (3.19) is equivalent to 

[ ( W n - v s - s  A tO). X--�89 U] d g = 0 .  (3.29) 
s 

Clearly, (3.16), (3.27) are the three-dimensional counterpart of the two-dimensional 
conservation law (1.4); on the other hand, (3.18), (3.28) and (3.19), (3.29) are found 
to be reducible to (1.6) and (1.8), respectively, in the special case of plane strain. 

I If ~t and  p are  vectors,  Gt A P and  ~t. p s t and  for  their  vector  p roduc t  and  scalar  product ,  
respectively; if Gt is a second-order  t ensor  and  p a vector,  ~tp denotes  the  vector  with the  com-  
ponents  O~tj ~j. 
15" 
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Although, as we have seen, the three conservation laws under consideration 
may be generated systematically with the aid of Theorem 2.1, it would appear 
useful to include here also a confirmation of these laws that is entirely independent 
of Noether's theorem on invariant variational principles. This leads us to the 
subsequent. 

Direct Proof of Theorem 3.1. Let R denote the regular region in D of which S is 
the boundary and let Qi first stand for the surface integral appearing in the left- 
hand member of (3.16). Then, from (3.17) and the divergence theorem, 

Q, = I {W., -  [ajk U j, ,]. k} d ~,. (3.30) 
R 

But, by hypothesis and (3.1), (3.2), (3.3), 

w ,-[a tkuj,,],k=aJk  jk,,-atkuj,,k=atkE jk-ili,k],  
=ajk[3'jk--U(j,k)].~=O on D, (3.31) 

whence Q i=0  and thus (3.16) holds t. 

Next assume [u, ~, a] is isotropic and let Ql now designate the left-hand member 
in (3.18). Consequently, (3.17) and the divergence theorem furnish 

Q[-= I 'I~i jk ( [  WXk], j "Jr" [aj  m Ilk -- ap m ilp, j Xk], m} d . .  (3.32) 
R 

Bearing in mind (3.1), (3.2), (3.3), as well as the skew-symmetry of the alternator, 
one finds that (3.32) reduces to 

Qi = I ei jk(amjilk,  rn--amk ilm, j) d~.  (3.33) 
R 

Since [u, ~, a] is at present isotropic, (3.7) must hold. Therefore, writing A k in 
place of Ak(I(~)), one has 

am j ilk, m -- am k ilm, j = A 2 (~ra k ilm, j -- ]~ m j ilk, m) 

+�89 m--ekrsilm, j) o n  D. (3.34) 

Further, using the first of (3.1) and the skew-symmetry of e~l k one concludes 
after elementary computations that 

ei j k (]lmk Urn, j - -  ]Jm j ilk, m)= 2~i j k ~mk ]3 m j = 0  , 

eijkl~mpqTprYqs(ejrstik, m--ekrsUm, y)=4empq~mr~prYqs=O o n  D. (3.35) 

Equations (3.33), (3.34), (3.35), in turn, yield Q t = 0  and this confirms (3.18). 
Finally, suppose the elastic state [u, ~, a] is linear and let Q stand for the left 

member of (3.19). Then, in view of (3.17) and the divergence theorem, 

Q = I { [WXi] , i - -  [aJk ilj, i Xi ~- �89 ili], k} d v. (3.36) 
R 

Under the present hypothesis, 

W=�89 on D (3.37) 

1 This is in essence the same argument as that employed by RICE [2] to verify (1.4). 
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because of (3.3), (3.9), (3.10). Moreover, (3.37) and (3.1) enable one to replace 
(3.36) with 

Q =�89 i Tjk-- ajk Yjk, i) xi d~. (3.38) 
g 

But the integrand in (3.38) vanishes identically on D as a consequence of the 
linear stress-strain law (3.9). Hence Q=0  and (3.19) is valid. This completes the 
independent direct proof of Theorem 3.1. 

It is clear from the first proof of Theorem 3.1 that the three conservation laws 
for an elastic state [u, ~,, a] with infinitesimal deformations on D, asserted in 
Theorem 3.1, may be generated systematically with the aid of Noether's theorem 
(Theorem 2.1) on invariant variational principles. This method of deducing (3.16), 
(3.18), (3.19) depends on choosing the functional ~ in Theorem 2.1 as the total 
strain energy stored in any regular subregion of D and upon the fact that �9 is 
infinitesimally invariant at u with respect to the three special pairs of mapping 
families introduced in Theorem 2.2 under the assumptions concerning [u, ~, a] 
made in Theorem 3.1. The question then arises whether there exist mappings 
other than those listed in Theorem 2.2 with respect to which �9 is infinitesimally 
invariant at u. If so, there would exist additional conservation laws 1, beyond 
those claimed in Theorem 3.1. The completeness theorem to which we proceed 
presently supplies a partial answer to the question just raised: it says, roughly 
speaking, that for linear elastic states the answer is negative but for a trivial 
exception. 

T h e o r e m  3.2. Let f be a regular family of coordinate mappings on ~ and let h be 
a regular family of vector transformations. Let D be a domain in 8 and assume c is 
an invertible fourth-order tensor satisfying the symmetry relations 

Ci j k l=Cj i k l=Ck l i j .  (3.39) 

Suppose H is the function defined by 

H(x ,v , t )=F(symt)  for all (x,v,t)eo~•215 (3.40) 
where 

F(symt)=�89 for all t~g 7-, (3.41) 

and let �9 be the admissible functional for D generated by H. Suppose, further, 
is infinitesimally invariant at u with respect to f and h for every linear elastic 

state on D corresponding to the elasticity tensor c, and that such is the case for 
every D ~ 8 and for every isotropic invertible c consistent with (3.39). 

Then f and h must obey 

f ' ( x ;  O)=-a(x)=ar+~x+xx for all x e 8 ,  
(3.42) 

h'(v; O)=-b(v)=[J+~v-2 v for all vE~e', 

where x is a scalar constant, �9 and [3 are vectorial constants, while ~ is a skew- 
symmetric second-order tensor. Moreover, ~ =0 if c is not necessarily isotropic. 

1 We leave aside the broader question as to the existence of conservation laws that follow 
from generalizations of Theorem 2.1 and of such laws that are not encompassed by NOm'HER'S [7] 
original theorem. 
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If p = 0 ,  # = 0, x = 0 ,  the functions a and b appearing in (3.42) reduce to the 
"infinitesimal ingredients" f ' ( .  ; 0) and h'(. ; 0) of the two mappings f and h 
defined in (2.32), which lead to the conservation law 1 (3.16). When ~=  p = 0  and 
K=0, one recovers from (3.42), on setting #=q ' (0 ) ,  the infinitesimal ingredients 
of the mapping pair (2.35) that gives rise to the law (3.18). Further, for ~ = p = 0 ,  
# = 0 ,  and x =  1, (3.42) yields the infinitesimal ingredients of the two mapping 
families (2.39) by means of which (3.19) is generated. This leaves only ~=0,  ~b=0, 
r = 0  in (3.43) to be accounted for. Choosing fl coincident with the unit base 
vector in the x~-direction, and bearing in mind (3.2), (3.17), (3.40), (3.41), one finds 
that (2.22) at present furnish 

Ssd~z=O. (3.43) 
s 

Since the vanishing of the resultant force of the tractions acting on S is immediate 
from the hypothesis that [u, 3', o] is an elastic state on D and hence conforms to 
the stress equations of equilibrium, the conservation law (3.43) is both trivial and 
redundant 2. 

It is clear from the preceding observations that Theorem 3.2 indeed assures 
the essential completeness of the three pairs of mapping families introduced in 
Theorem 2.2 within the context of linear elastostatics. We turn now to a 

Proof of Theorem 3.2. Take H in Theorem 2.1 to be the function characterized 
by (3.40), (3.41), (3.39) and take w = u  on D. Then, for every D e 8  and every 
linear elastic state [u, 3', a] on D corresponding to the elasticity tensor c, as well 
as for every invertible c consistent with (3.39), the vector field u satisfies the 
Euler equations (2.18) on D because of (2.19), (3.1), (3.2), and (3.10). Further, 
since, by hypothesis, the admissible functional for D generated by H is infin- 
itesimally invariant at u with respect to f and h, (2.20) must hold, provided w in 
(2.21) is replaced by u. 

Now choose, in particular, D = 8  and take [u, ~, a] to be the linear elastic 
state on 8 corresponding to c given by 

Ui(X)=pikXk, ~ij(x)=P(ij), aij(X)=CijklP(kt ) for all x ~ 8 ,  (3.44) 3 

where p is an arbitrary constant 3 x 3 matrix, so that ~ and o are a homogeneous 
field of infinitesimal strain and stress, respectively. In this instance (2.20) are 
readily found to assume the form 

Cijktp~kO[�89 (3.45) 

Next, suppose (3.45) holds for every invertible isotropic c with the symmetries 
(3.39). Then, in particular, (3.45) must hold if c is given by (3.11) with 2 = 0  and 

1 Note from (2.21) that only the infinitesimal ingredients of land  h enter (2.22). 
2 In order to arrive at the equally redundant conclusion that 

fxAsd~=O 
S 

on the basis of NOETHER'S scheme, it is necessary to generalize Theorem 2.1 slightly by permitting 
h to be position-dependent. 

3 Throughout the remainder of this proof the position vector x is understood to range over 
the entire space g. 
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/~ > 0. This special choice of c, in turn,  reduces (3.45) to 

p~j) [p<~j) a , . , ( x ) - 2 p i ,  a,. j (x)  + 2 p ,  j bi, v, (p x)] = 0 .  (3.46) 
Setting 

pij~--St~ij (e>0)  (3.47) 

in (3.46) and subsequently dividing by 52 , one arrives at  

a t , ,  (x) + 2 b . . . .  (e x) = 0 .  (3.48) 

Also, in view of the cont inuous  differentiabili ty 1 of b on 8 ,  
O 

lim bp, v~ (e x) = bp, vq (0) - bp, ~ ,  (3.49) 
~ 0  

the second of which merely defines convenient  auxiliary notat ion.  Hence  passing 
to the limit as e--, 0 in (3.48) and al ternatively taking e = I, one is led to the relation 

o 

a, , ,  (x) = - 2 b . . . .  (x) = - 2 b . . . . .  (3.50) 

between the traces of the matr ices [a~,j] and  [b~,~j], bo th  traces being now known 
to be cons tant  on 8 .  

Equa t ion  (3.46) is an identity in p and  m a y  accordingly be differentiated with 
respect  to Qpq. Carrying out  this differentiation and thereafter  once again adopt ing  
the special choice (3.47) of p, one obtains  upon  division by 5, 

2tSp~a,, , -ap,  q (x ) -3aq ,  p(x)+bp,, ,~(ex)+ 3bq,,,~(~x)=O. (3.51) 

F r o m  (3.51), (3.49), in turn,  follows 
O O 

2 ~p q a , , ,  - ap, q (x) - 3 aq, p (x) + bp, vq + 3 bq, ~ = 0,  (3.52) 
whence 

o 

atp ' qj(x) = btp ' ~] .  (3.53) 

Combin ing  (3.52) with (3.53) and (3.50), one draws 
o o 

ap, q (x) = bp, ~ - ~p ~ b . . . . .  (3.54) 

which implies the constancy of [a~,j]. Further ,  (3.51) with 5 =  1, in conjunct ion 
with (3.54), furnishes 

o o 

bp, ,,~ (x) + 3 bq, ,,,, (x) = bp, ,,~ + 3 bq, ,,,, (3.55) 
and thus 

o 

bp, vq (x) = bp, v .  (3.56) 

Consequent ly  [bp,oo] is also constant .  

At  this stage we substitute f rom (3.54) into (3.46) and,  af ter  trivial compu ta -  
tions, are led to 

(PijPrj--PjiPjr) bi, v, = 0  for  all cons tant  p .  (3.57) 

1 Recall from (2.21) that b(x)=k'(x; O) and bear in mind the smoothness requirement im- 
posed in Section 2 on "regular families of vector transformations". 
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Differentiation of this identity with respect to pp~ gives the matrix equation 

d p - p d = O  foral l  p,  P = [ P i i ] ,  d=[b~,vj)] .  (3.58) 

Since d is symmetric, there exists an orthogonal matrix q such that q d qr  is diagonal. 
Choosing p =  qT, we gather from (3.58) that 

dqT=qT d, q d q r = d ,  (3.59) 

whence d is diagonal. Thus [b~,os) ] is a diagonal matrix. This conclusion, together 
with (3.58), implies that 

b(i,v,)=b(j, vs) (nosums),  b(i, vj)=O (i=l=j), (3.60) 

and (3.60), (3.54) furnish 

a(i,i)=a(j,i ) (no sums), a(i,i)=O (i:4=j). (3.61) 

In view of (3.61), we may set 

a(i , j)~'r6ij ,  ati, j ] -~) i j ,  (~ji -~ - -~ i j ,  (3.62) 

where x is a scalar constant and ~ a constant skew-symmetric matrix. Moreover, 
combining (3.62) with (3.54), (3.56), one has 

K 
b(~, oj) = --~- 6ij, bti, ~s] = g?ij. (3.63) 

Therefore, 
ai, j (x)=rf i j+dai j  for all x ~ g ,  

b~, ~j(v) = x (3.64) 
- - f f i j+dJ~ j  for all v E ~ .  

Finally, upon integrating (3.64), one arrives at 

ai(x)=~z+dpijxj+rxi  for all x e S ,  

x (3.65) 
bi(v)=fli-k-~ljt~j--~l) i for all v e ~ ,  

in which gt and fl~ are real constants. This confirms the conclusions (3.42). 
It remains to be shown merely that ff~j=0 if (3.45) must hold for every (inver- 

tible) not necessarily isotropic elasticity tensor c. To this end suppose, in particular, 
e is the anisotropic fourth-order tensor with the components 

Cijk|=]~(Oikfjldl-6i16jk)~l-86imfjmOkm(~lm (no sum), (3.66) 

where # > 0 ,  8>0.  This special choice of e evidently conforms to the symmetry 
requirements (3.39); moreover, for sufficiently small values of e, the tensor e so 
chosen is invertible ~. Substitution from (3.64) and (3.66) into (3.45) reduces the 
latter equation to 

P,,,, P(,,)q~, m = 0 for every constant p (no sum on m). (3.67) 

x Observe that (3.66) wi th /z>O defines a perturbation of an isotropic elasticity tensor that 
is positive definite and hence invertible. 
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Now take m = 1 and choose p in accordance with 

[p,.,.] = o o 

0 
(3.68) 

From (3.67), (3.68) and the skew-symmetry of ~b follows tp12=0. One finds by 
strictly analogous means that ~b23 and ~31 must also vanish. Hence ~ = 0  in the 
present circumstances and this completes the proof. 

The statement of Theorem 3.2 involves the implicit assumption that the two 
mapping families f and h are independent of the elastic constants. It is not difficult 
to show that the conclusions (3.42) appropriate to isotropic linear elastic states 
remain valid even if f and h are permitted to depend on the shear modulus p and 
on Lamr's modulus 2, provided 2 and ~ satisfy certain inequalities that are auto- 
matically fulfilled if the associated elastic potential is positive definite. 

4. Conservation Laws for Finite Deformations of Elastic Solids 

In preparation for a derivation of conservation laws applicable to elasto- 
static fields involving finite deformations we cite here certain results from the 
nonlinearized equilibrium theory of homogeneous hyperelastic solids. As far as the 
requisite kinematics I is conerned we again denote by D the open region occupied 
by the interior of the body in its undeformed configuration and call x the position 
vector of a generic point in D. A deformation of the body is taken to be given by 
the transformation 

y = ~ ( x ) = x +  u(x) for all xeD, (4.1) 

in which u is the displacement field and the mapping ~cg2(D). Further, we 

assume that this mapping is one-to-one and that its inverse iec~2(D), where D is 
the image of D under Y. Accordingly, 

x=~(y)=y-u(Yc(y)) for all y~D, (4.2) 

with the understanding that ~ and ~ are referred to a common rectangular cartesian 

coordinate frame. Let F and F designate the deformation-gradient tensor fields 
associated with ~ and i ,  respectively, so that 

F=V~ on D, F=172 on D. (4.3) 
3' Y 

Further, put 

J = d e t F  on D, J = d e t F  on D, (4.4) 

whence J and J stand for the Jacobian determinants of the mapping ~ and of its 
inverse ~. Then, 

F(x)F(~,(x))=l, J(x)=l/J(~,(x))>O forall xeD. (4.5) 

1 See, for example, TRtrESOELL & TouPrN [14], Chapter B. 
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From (4.4), (4.5) follows 

* ^ 1 
F,j(y(x))=2---j~(x) eipqejrsF, p(x)F~q(X ) for all xeO, (4.6) 

which implies the familiar identity 

0 * 
dx~ [J(x)  Fjk(~(x)) ] =0  for all x~D. (4.7) 

Next, we define the symmetric deformation tensor fields C and G by setting 

C(x)=Fr(x)F(x) for all x~D , 
, ( 4 . 8 )  x 

G(y)=F(~c(y))fr(ic(y)) for all yED, 
and introduce the Green-St. Venant strain-tensor field 7 through 

~ = � 8 9  on D. (4.9) 2 

In view of (4.1), (4.3), (4.8), and (4.9), one has the usual displacement-strain 
relations 

Yij=Uti, j)-4-�89 iUk. j o n  D. (4.10) 

Next, we recall that the stress equations of equilibrium, which express the 
balance of linear and angular momentum, in the absence of body forces take the 
form 

zij, j=O, zy~=zij on D, (4.11) 

provided -c is the conventional Cauchy stress tensor, regarded as a function of 

position on D. The preceding field equations are accompanied by the constitutive 
law appropriate to a hyperelastic solid, which may be written as a 

1 * 
z~j(y)= j(~(y)-------~ F, rpq(~(~(y)) F~p(YC(y))Fj~(~c(y)) for all yeD.  (4.12) 

Here F is the stored strain energy (elastic potential) per unit undeformed volume 
as a function of the strain tensor defined in (4.9). We assume F e f f  ~176 (5P), where 5a, 
as before, stands for the space of all symmetric second-order tensors, and empha- 
size that all elements of the matrix 7=  [Vii] in (4.12) are to be treated as mutually 
independent in performing the required partial differentiations. Moreover, 
because of (4.12), (4.3), and the second of (4.11), one has the symmetry relations 

F, rpq0,)=F rqp(~) for all ?eSe.  (4.13) 

In the special case of an isotropic medium F is form-invariant with respect to 
orthogonal transformations of its matrix argument, i.e., 

F(q~qr)=F(~) for every orthogonal q and all ? e 9 ' .  (4.14) 

1 Note that C here stands for Green's deformation tensor. 
2 Observe that 7 was the infinitesimal strain field in Section 3. The fact that some of the 

symbols introduced there are now given a different meaning ought not to cause confusion since 
the current section is entirely independent of Section 3. 

3 See, for example, RivuN [15], p. 174. 
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In these circumstances (4.9) furnish 

F(~,)=~(I1(r forall  ~ , ~ ,  C=2~ ,+1 ,  (4.15) 

where 11, 12, 13 are the principal scalar invariants of a symmetric second-order 
tensor defined in (3.6). Also, (4.8), (4.15), (4.12) lead to the well-known representa- 
tion of the stress-deformation law for isotropic hyperelastic solids 1: 

"Cij=rl(I ) Gij+~,2(I ) Gik Gjk+~,3(l)(~ij on D, (4.16) 
where 

I-(I1(C),I2(C),I3(C)), C-C(~:(y)) forali  yeD, (4.17) 

while the scalar coefficients 2~ i are given by 

~'1 ;~33 [6~IP' (~'~2 1 [/1 32 63~a12, .~.3 = 2 ]//~3 a-~3"~ =- - - -~ ' -1  + 11 , ? 2 =  (4.18) 

For our purposes it is essential to introduce, in addition to the Cauchy stress 

field �9 on D, the Piola stress field 2 a on D, which is related t o ,  by means of 

a,j(X)=J(x)Fjk(~(X))~,k(~(X) ) for all x~D. (4.19) 

On account of (4.19), (4.5), and (4.13), the constitutive law (4.12) implies 

aij=F,y~,,(r)Fu, on D. (4.20) 

From (4.19), (4.3), (4.5), and (4.7) one draws the known identity 

aij ' j(x) = J(x) T~j. y(~(x)) for all x~O. (4.21) 

According to (4.21) and (4.5), the first of the equilibrium equations (4.11) gives 

aij, j=O on D. (4.22) 

In contrast to z, however, the stress field a is in general not symmetric. 
For future convenience we now adopt the following definition. We say that 

[u, ~, a] is a finite elastic state on D, corresponding to the elastic potential F, if 
F~Cr162 u~cK2(D) and (4.10), (4.13), (4.20), (4.22) hold with F given by (4.1), 
(4.3); we call such a state isotropic if, in addition, (4.14) is satisfied. Further, we 
refer to W as the strain-energy density associated with the elastic potential F, 
provided 

W(x)=F(~(x)) for all x~D. (4.23) 

The foregoing definition of a finite elastic state derives its motivation from the 
fact that the Cauchy stress field ~ belonging to a in the sense of (4.19) necessarily 
conforms to the equilibrium equations (4.11), as well as to the constitutive law 
(4.12). To see this, note from (4.19), (4.5) that 

�9 ,j(y)=J(y)Fyk(~t(y))trik(~C(y)) for all yeD. (4.24) 

1 See, for instance, RIVtJN [15], p. 180. 
2 See TRtrr~sD~LL & Torn'iN [14], p. 553. 
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Substituting from (4.20) into (4.24) and thereafter invoking (4.13) and the last 
of (4.5), one recovers (4.12). The second of (4.11) is immediate from (4.12) and the 
postulated symmetry relations (4.13). Finally, the first of (4.11) is a consequence 
of (4.22) and of the identity (4.21). 

Having disposed of these expository preliminaries, we may proceed to 

Theorem 4.1. Let D be a domain in ~ and let [u, ~, tr] be a finite elastic state on D, 
corresponding to the elastic potential F. Let W be the strain-energy density associated 
with F. Then, for every surface S, with the outward unit normal vector n, that is 
the boundary of a regular subregion on D, 

S ( W n l -  sj u j, i) d~z= O, (4.25) 
S 

where s is the Piola traction vector on S defined by 

si = a~j nj on S.  (4,26) 

If, moreover, [u, ~, a] is isotropic, then also 

S •i j k ( W X k  nj + sj U k --  Sp Up, j Xk) d~ = 0. (4.27) 
$ 

Proof of Theorem 4.1. This theorem, which is evidently an analogue for finite 
deformations of Theorem 3.1, like the latter, is readily established through a 
suitable specialization of Theorem 2.2. Thus choose M and w in Theorem 2.2 by 
setting 

M(t )=F( �89  for all t ~ " ,  w = ~  on D, (4.28) 

where ~ is the deformation belonging to the displacement field u in the sense of 
(4.1). Then, in view of (4.3), (4.8), (4.9), (4.13), and (4.20), 

M,t~j(17w)=Frjm(~)Fkm=akj on D. (4.29) 

Since the Piola stress field a satisfies the equilibrium equations (4.22), equations 
(4.29) guarantee that the Euler equations (2.31) hold true for the choice of M 
and w specified in (4.28). Further, by virtue of (4.14), (4.28), M conforms to 
(2.34) if [u, ~, a] is isotropic. 

Next, from (4.28), (4.3), (4.8), (4.9), (4.23), and (4.26), (4.29) one infers that 

M(17w)=W on D, M t~(17w)nj=s~ on S. (4.30) 

Now, substitution from (4.30) and the second of (4.28) into (2.33), because of (4.3), 
leads to the conservation law 

~ (Wni -F j i s j )  dct=O. (4.31) 
S 

Similarly, the law (2.37) yields for the isotropic solid 

ei j k ( W X k  nj + sj Yk --  Fp j s p xk) d a = 0. (4.32) 
S 

Finally, invoke (4.1), (4.3), as well as (4.22), (4.26), and the divergence theorem 
to verify 

Fjz=fj~+uj, i on D, ~slda=O. (4.33) 
S 
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Equations (4.33) reduce the conservation law (4.31) to the desired form (4.25). 
At the same time, the law (4.32), which is valid only for the isotropic elastic solid, 
may be written in the form (4.27), because of (4.1) and (4.33). The proof is now 
complete. 

We note that (4.25) and (4.27) are identical with (3.16) and (3.18), respectively, 
but for the change in the meaning of the symbols W and s. Indeed, as has become 
apparent, the two conservation laws (3.16), (3.18) in Theorem 3.1, which pertain 
to elastic states with inf ini tes imal  deformations, remain strictly applicable to  f i n i t e  
deformations of hyperelastic bodies provided W is interpreted as the appropriate 
strain-energy density per unit undeformed volume, whereas s is taken to stand 
for the Piola traction vector. On the other hand, (3.19) in Theorem 3.1 has no 
immediate counterpart in finite elastostatics. The two vectorial conservation laws 
(4.25) and (4.27) clearly admit the coordinate-free representation: 

S [ W n - ( V u ) r s ]  d a = 0 ,  (4.34) 
S 

{[Wn--(Vu)Ts] ^ X +S ^ U} d a = 0 .  (4.35) 
S 

It would seem useful to establish the foregoing results independently, without 
recourse to Noether's theorem. For this purpose we include the subsequent 

Direct Proof of Theorem 4.1. Denote by R the regular subregion of D that has S 
as its boundary and let Q~ temporarily designate the left-hand member in (4.25), 
Then, from (4.26) and the divergence theorem, 

Q, = I { W , -  [trik u j. i], k} d~ .  (4.36) 
R 

By virtue of (4.23), (4.20), (4.22), together with (4.1), (4.3) and (4.8), (4.9), one has 
the identity 

W i - [trig US. i].k = I]. , jk  (?) ?J k., -- F r~m (?) Fj m Fj i.k 

= ~ YJk (?) [~)J k, i-- Fmk Fm/. j] (4.37) 

=�89 d o n  D .  

Since the function within brackets in the extreme right-hand member of (4.37) is 
skew-symmetric with respect to (j, k), while its coefficient-according to (4.13)- 
is symmetric in these two indices, one concludes that the integrand in (4.36) 
vanishes on D. Hence Q~--0 and thus (4.25) follows. 

Suppose next [u, ~, o] is isotropic, so that (4.14), (4.16) hold, and let Qi at 
present stand for the surfaceintegral in (4.27). Appealing once again to the divergence 
theorem one draws, on account of (4.22) and the skew-symmetry of the alternator, 
that 

Qi = ~F.ijkEXk(W j--~Tpmllp, jm)"~tTjmldk, m--GpkUp, j] d~'. (4.38) 
R 

On the other hand, (4.23), (4.20), (4.10), together with (4.3), (4.1), justify the 
identity 

~, j -GpmUp,  jm=F,,fpq(V)[Tpq, j-Frql~lr, jp] 

=�89 qj__Uq, pj..~Uk, pUk, qj__Uk, qUk, pj] " (4 .39)  
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The extreme r ight-hand member  of (4.39) vanishes on D because of (4.13) and the 
skew-symmetry of the function inside the brackets. Consequently,  (4.38) may be 
replaced by 

Q i = S •i j k (O'j m Uk, m - -  O'm k Urn, j )  d ~'. (4.40) 
R 

For  convenience set 
1 

]..ljk=-j'-(O'jraUk, ra--amkUra, j) on D,  (4.41) 

where J is the Jacobian determinant  defined in (4.4). Then (4.19), (4.1), (4.3), and 
(4.5) furnish 

pjk = Fmp"CjpUk, m--Fkp ZmpUm, j 
, . . (4.42) 

= f~,,,,fm,,'c j , , - -  tm j  fkp  r,,,,,='c j k - -  Fmj tk,,'Cm,, . 

Further ,  (4.16), (4.8), (4.5) imply 

Fmj Fkp'r,,,p=,S1 Fm.j Fmk + E2 F,,.i F,,,,.Fs,.Fsk +,S3 6.ik, (4.43) 

where Z,i=-,S,i(I). Now, in view of (4.42), (4.43) and the symmetry of the stress 
field �9 asserted in (4.11), one has 

~jk:J.lkj o n  D, (4.44) 

whereas (4.40), (4.41), (4.44) give Q i = 0 .  The confirms (4.27) and concludes the 
direct proof  of the theorem under consideration. 

The completeness issue associated with the two conservation laws supplied 
by Theorem 4.1 appears to be considerably more  complicated than the analogous  
question in the linearized theory, which is answered by Theorem 3.2. 

The results communicated in this paper were obtained in the course of an investigation 
supported under Contract N 00014-67-A-0094-0020 of the California Institute of Technology 
with the Office of Naval Research in Washington, D. C. 
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