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1. Introduction 
In this paper we apply methods developed by  FIN~ in [1] to study asymptotic 

properties of solutions of equations 

(t.t a) A ~ - -  b .  V ~  -- V p  ----- O, g = const., 

( t . t  b) V. ~ = --  c p, c = const., 

for a vector field ~ ( x ) =  {wl . . . . .  w,,} and scalar field p (x) which are defined 
in a neighborhood 8 of infinity in n-dimensional Euclidian space. The notation 
in (t.t) is the usual one of vector analysis. By choosing particular values of 

the constant c and the constant vector b, we obtain from (t.t) the following 
equations of fluid and solid mechanics (see, e.g., [2, 3]) : 

i) c -=- 0, b = 0 Stokes equations of hydrodynamics 

if) c = 0 Oseen equations of hydrodynamics 

iii) b = 0 Equations of linear elasticity. 

We assume in most of this paper, as is the case in the problems of mechanics 
from which the equations are derived, that  c_>0. However, in some contex.:~, 
notably the basic Theorems 1 and 4, it is sufficient to assume c > --  t. 

The main result of this s tudy consists in showing that  under a surprisingly 
weak growth condition at infinity, the solution admits a representation in terms 
of a single surface integral over an inner bounding surface ~'. From this rc- 
presentation we conclude that  the solution tends to a limit (w0, Po) at infinity, 
and the rate of decay of (t~, p) to this limit is controlled by the asymptotic 
properties of the fundamental solution tensor associated with (tA). We dc- 
termine this tensor explicitly in w In w we apply our result to a discussion 
of ~olutions for which i8 (x) vanishes on Z'. These solutions are of importance 
physically as steady fluid flows or as deformations exterior to a rigid body. 
We obtain in particular a new clarification of the Stokes Paradox of Hydro-  
dynamic% which states essentially that  in two dimensions a solution of the 
ttime-independent) Stokes equations in ~ which vanishes on ~' is necessarily 
mflJounded. Our result is sharp in all dimensions and shows that  the singular 
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behavior  of the  solut ion is i n t ima t e ly  connected  wi th  the  forces exe r t ed  on Z' in 
the  mot ion .  We ob ta in  as special  cases all ear l ier  resul ts  on this  and  on re la ted  
p rob lems  which are  known to us [c/. 3, p. 36t, 4;5, fi, 7]; the  demons t r a t i ons  
are  in our  opinion s impler  and  more na tu ra l  t han  those prev ious ly  employed .  

The  me thods  of this  paper  are  not  res t r i c ted  to equa t ions  of the  form ( t . t ) ,  
bu t  are  appl icab le  to  a n y  el l ipt ic sys tem for which the  fundamen ta l  solut ion 
tensor  exhib i t s  the  qua l i t a t ive  proper t ies  needed in our  d e m o n s t r a t i o n s k  Equa-  
t ions wi th  var iab le  coefficients can also be t rea ted ,  and  it seems l ikely  t ha t  a 
genera l  descr ip t ion  of a symp to t i c  behav ior  can be cons t ruc ted  along lines sug- 
ges ted  b y  N. G. MEYERS [8]. The pa r t i cu la r  choice of the  equat ions  ( t . I )  has 
been based  on the  cons idera t ion  t ha t  t hey  are general  enough to indicate  the  
scope of the  methods ,  bu t  not  so-general  as to cause the  ideas to  be obscured 
b y  technical  deta i l .  

We  r emark  t ha t  in the range of c considered ti le sys tem ( t . t )  is el l ipt ic  ('tile 

charac te r i s t i c  d e t e r m i n a n t  is (t-+-c) • ~" ) ~ , > 0  for c > - - I ,  ~ > 0  bu t  not  
l=-1  

s t rong ly  el l ipt ic,  hence not  of a t ype  for which b o u n d a r y  value  p rob lems  have  
been s tud ied  in recent  l i te ra ture .  The p rope r ly  set b o u n d a r y  va lue  p rob lem 
requires  prescr ib ing  i f ( x )  on the boundary ,  bu t  not  the  pressure p (x), this  
funct ion being de t e rmined  b y  the solution".  Correspondingly,  in the  ma te r i a l  

t I t  woukl sufficb, for example, for the fundamental  solution tensor to have the 
proper ty  tha t  for any prescribed positive integer k, all derivatives of sufficiently 
high order (depending on k) of each component of this tensor behave at  infinity 
as O(r-k). Professor L. H6aMAXDER has communicated to us a proof of the follow- 
ing equiwdent condition, valid for any system with constant  coefficients: Let P(D), 
where D =  ( - - i  D t . . . . .  - - t  D.,), i = imaginary unit, denote the determinant  of the 
differential operators occurring in the system, and let, respectively, ~-----($t . . . . .  ~) ,  
g = (-~t . . . . .  L,I be vectors m real or complex Euclidean n-space. Then the fundamental  
solutxon tensor has the above s ta ted proper ty  if and only if both the conditions 

a) P ( ~ ) = o  for ~==-o, 
and 

b) Im ~ - ~  if ~--~oo on the surface P(~)=0,  
are satisfied bv the polynomial  P. The representat ion theorems of this paper, and 
the corresponcling asymptot ic  est imates of the solutions, can be extended without  
essential change to all systems which sat is ty the conditions of H6RMANDER. 

Such systems include, for example, the l ineanzed magnetohydrodynamic equations 

I i~ - M  2 [ i~ : -  (~:"/~0) ~" 
I~ol I,~01] ='' '  L 

V.iF  ~ o  

for which the essential features of Theorem ! are easily seen to apply. In this ease, 
there is no Stokes Paradox, since the fundamental  solutaon tensor vanishes at  in- 
finity for all n > 2 .  

" The existence of a solution corresponding to such boundary da ta  has to our 

knowledge been proved in the l i terature only in the special case e = ~ = o  (Stokes 
equations). I t  seems likely that ,  s tar t ing with the solution of ODOVL~T -9! for this 
case, the existence m the general case can be demonstra ted by the continuity method, 
using est imates of the type studied in -lO] and in ~1l-~. A direct demonstrat ion 

by the method of surface potentials in the case c=0 ,  b arbi t rary,  has been given by, 
J. S&XDt.-Rs m a work to appear  shortly. 
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of this paper no assumption is made on the behavior of the pressure, and the 
regularity of the pressure at infinity is proved as a consequence of growth 
assumptions on ~ (x) alone. 

2. Notation and Definitions; the Integral Representation 
The following notation will be used. We choose the origin 0 of our coordinate 

system to be a point interior to 27. The set of all points exterior to 2: is denoted 
by 8. Let 27R denote a sphere of radius R centered at 0 and enclosing 27. We 
denote by ~r the annular region bounded between 27 and 27R. The region 
exterior to 27R is denoted by 8 R. 

Let ~ (x) : [w, (x)] and T(x) ---- IT 0 (x)] be, respectively, vector and tensor 
fields defined in 8. We define 

n 

[ r(x)l - ~. 

We write T~i=O(R~' ) if there exists a constant A so that  I ,;(x)l<Alxl as 
x---~oo; we write T i /=o ( /~  ) if as Similar definitions 
apply to vector and higher-order tensor fields. 

Corresponding to a given vector field ~(a~) and scalar p (x), we define the 
second order tensor field 

2 " '  0.;~ (2.t) T ~  = {T~} ,  i = -- (t - -  c) p Oil + ~0r + Oxi] 

where 
0~/={t, i=i,  

o, i4:i. 
We also define the linear differential operators L ~  and M ~  by the expressions 

L~=A~--Vp--g.V~,  

M ~ = A ~ - -  V q + g . V ~ .  

For any vector fields ~ and ~ and corresponding scalars p, q satisfying the 
conditions 

(2.2) V. "~ = --  c p,  V. ~ =  --  c q 

in a region V with sufficiently smooth boundary S, we have always the identity 

(2.3) f ( ~ . L ~ - - ~ . M v - ~ ) d V = f [ - i S . T ~ - - ~ . T ~ - - ( ~ . ~ ) ( g . n - ~ ) ] d S  
V S 

where by ~ .  T ~ is understood the expression 

il = / n  ) is the unit exterior directed normal on S, and summation is extended t tJ 
ovcr repeated indices. 
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Let X ( x -  y ) =  {Z,i}, dd ( ; r -  y ) =  {~Pi} denote an n •  matrix and an n-vector, 
respectively, which become singular at x = y  in such a way that 

=)imo ,f Erx + X(g.n) ds 
where Z', denotes the surface of a sphere of radius r about 0r as center and T x 
is formed by interpreting the components of ~ as pressures. We obtain from 
(2.3) the integral representation 

(2.4) i i ( x ) = f ( x . L - f f - - ~ . M x ) d V - - f [ x . 7 " g [ - - i i - T  x - ( i i . x ) ( g . i ~ ) ] d S .  
V .~ 

In (2.4), x appears as a parameter, the differentiation and integration being 
performed with respect to y. 

Let now ~ ( x )  and x i  x - y )  be vector and tensor fields which satisfy (2.2) 
and also the equations 

LCi() = 0, M(X) = o 

for each column vector in the matrix (Z,i), with !1 as independent variable. 
We have then the integral representation for the solutions of (1.l), 

(2.5) ,~ (.r) = - f IX" Tf~ -- ii:. T x -- ( ~ .  X) ( b* ~i)] dS.  

A similar reasoning yields the representation for the scalar p (.t), 

(2.6) p(.r) = -- f Ida. T,-~ -- i,". "~'~ -- (i~ ~. ~ )  (g. ~i)] as. 
b 

In forming T ,  we have introduced a "pressure", ~o*=g. V / ). 

3. The Fundamenta l  Solution 

The fundamental solution (X,d?) is determined from the equations 

(3.1 a) 

(~A.b) AZk , -- - -- 

One puts (c/. [12, p. 313) 

(L2a) ~o, = - -  

c Z k t  _ _  

a~o, + ~ .  VZk, = 6ki b(y -- ae). 
ayi 

a ( / t+g .v )q) ,  
cqy k 

0.2b)  Zk, - - -bk i [ ( t+c)  A-+-c-b .V]([  ) gy,~yk 

Equation (3.t a) is then identically satisfied, while equation (3.t b) reduces to 

(3-~) (_,t + ft. V) [(t + c) A + c g .  V] ~ = a (y  - -  x ) .  

K-(y--a~) A solution of (3.3) can be determined in If g :o, let b = l g l ,  3 =  b " 
the form 

,/  
0.4) ~ ( y - x )  = b. [0+c )  ~,~-- ~dd~  

Arch. Rational Mech. Anal., Vol. 7 2 6  



392 I -DEE CHANG & ROBERT FINN: 

where ~1 and  ~2 are solutions of the equat ions 

0-5) CA + g -  V) ~ = ,~(.q - -  x) ;  [(t + c) ,a + c g -  V] ~ ,  = , ~ ( y  - -  x ) .  

I f  c~=O, 

(3.6a) .-2 e_~-g.(y_=), 
2 

(3.6b) q~2= 2n( i+c)  \4z~ll+cl  r ~ K . _ 2 \ 2 l l + c l r  
2 

wlifle if c = 0, the  expression for ~2 is replaced b y  

0 .6c )  ~2 = 2-~  log r, n ----- 2, 

(3.6d) r = - -  :_ , n -->_ 3, 
2r~* ( n - - 2 )  r " - a  

where r = [ y - - x  I and K _  2 is a modified Bessel function of the second kind 
2 

(c/. [12, p. 36]); if b=O,  equat ion (3.3) reduces to  

(_3.7 a) 

and  we m a y  take  

(3.7b) �9 = 

and  

(3.7c) �9 = 

(1 + c) AA �9 = ~ 01 -- x ) ,  

n--2 
( - - t )  ~ r i - "  log r 

. n = 2 and 4 

t 6 n  s (I -t-c) 
n = o d d  and n = e v e n > 4 .  

When  these expressions are subs t i tu ted  into (3.4) and (3.2), the fundamenta l  
solution tensor  (g, W) is obta ined explicitly. F rom (3.5) and (3.7) we m a y  compute  
formal ly  all a sympto t i c  propert ies  of this tensor.  However ,  for the principal  
purposes of this paper  we need only the following crude es t imates  as r---~co, 
easily obta ined  from the form of the expression s: 

a) g = O :  

(3-8 a) Ixl = o Clog,), 

0 . 8  b) Ixl = o ( : - - ) ,  

(3.8c) I v(~)xl = o (, '-.-~), 

whcrc ~-.(k~ denotes a k th i terate  of the gradient  operator .  

I~1 = o (,.-'), . = 2,  

IW[ = o ( : - " ) ,  . >  2, 

I v(~)'~'l = o ( : - . - k ) ,  k > t ,  n > 2  

3 Somewhat more detailed estimates in the case c=O are given in [11] and [13]. 
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b) g .  0: 

(3.9a) IX l = O (r-t), I•l = O(r-'), n = 2, 

~-~ n ~ 2 ,  

(3.9c) [Xl = O ( r - ~ ) ,  [W[ = O(r--~-), n>_-3, 

[ I7(~)W] = O(r-  k ~ t ,  n > 3 .  

393 

4. Statement of Results  
In this section we state the main theorems of our paper. We prove these 

theorems in w Because of the qualitative difference in asymptotic behavior 

which occurs, we discuss separately the case b = 0 .  I t  is the singular behavior 
of the solutions in this case which gives rise to the Stokes Paradox. The case 

b=l=0, and some theorems valid for every choice of b, are introduced later. 

Case 1. b =  O. 

Theorem 1 (Representation theorem).  Let @ (x) be a vector field de]ined in 
an n-dimensional neighborhood ~ o] in]inity and which salis]ies 41.1) ]or some 
scalar ]ield p(x).  Suppose that as r---~oo, either 

Or 

Or 

i) ~ (x) ----- o (r) 

ii) f l ~[*r-~"+'l dV = o(logR) 
J R  

iii) f [ ~ z ~ ] ~ r - " d V =  o(logR).  
J R  

Then there exist vector and scalar constants wo and Po such that throughout g 

(4.t a) ~ ( x )  = ~ o - -  f IX" T ~  - - ~ .  T x ] d S ,  

(4.t b) p (x) = Po -- f [dd" T ~  -- ~ .  Td~] dS.  
Z 

The ]idds ~) (x) and p (x) admit the asymptotic expressions 

(4.2 a) ,* (x) = t~o + X (x).  ~ + o (r'-"), 

(4.2 b) p (x) ----- Po + d~ (x). ~ + ,  -"~ 
where 

~=- / TadS. 
23 

Theorem t is best possible, in the sense that  "o" cannot be replaced by " 0"  

in the hypotheses. We remark that the vector ~" can be interpreted physically 
as the force exerted on the contour E in the motion or displacement. 

26* 



394 I-DEE CHANG & ROBERT FINN: 

A particular consequence of Theorem t is that  

= J O 0 o g r ) ,  n = 2 ,  
I'~ (x) ---,~ol / O (r'-"), n > 2 

with an improved behavior at infinity in case ~ = 0 .  This observation bears 
on our next theorem, in which we introduce a boundary condition on 27. 

T h e o r e m  2. Under the hypotheses o/ Theorem 1, i] ~ (x)-----0 on ~, then ~ =~ 0 
unless ~ (x) =-- 0 in g. I~ n >= 3, then 

(4.3) ~" ~o  = 2 f (def ~)n dV + c(1 -- c) f pndV 

I I Ow, 3wj\ 
where def ~ denotes the matrix, -~ I-O~ i + O~-i)" 

The physical content of (4.3) is that  in any steady fluid motion past 27 with 
adherence on the boundary, the work done at the boundary per unit time equals 
the rate at which energy is converted into heat in the motion. Thus, in three 
or more dimensions no energy is introduced into the flow at infinity. This is 

not the case in two dimensions when ff----O. In the interpretation of ~ ( x )  as 
an elastic deformation, (4.3) asserts that  the work done at the boundary due 
to a constant deformation - -  wo on 27 equals the potential energy of deformation 
in the medium. A particular consequence of (4.3) is that  in any fluid flow past 
a rigid body 27, or in any elastic deformation of a medium which surrounds 27 
and is stat ionary at infinity, the body necessarily experiences a "drag"  force 
in the direction of wa. 

T h e o r e m  3. Let t-~(x) be a solution o / ( t . t )  in o ~. I / / o r  some wo, 

{~ (log r), n ----- 2, 
, ~ ( x ) - ~ o =  (r ~-"), ,~>2, 

then ~ = 0 .  

From Theorems 2 and 3 we obtain in particular the Stokes Paradox of Hydro- 
dynamics. For if t~ (x) represents a two-dimensional fluid motion exterior to Z', 

and if ~ (x) is bounded, then necessarily ~ = 0 .  But if the fluid adheres to 27, 

then ,~ (x) = 0 on ~, hence ~=t= 0, a contradiction. If c - -  0 our result is a strength- 
ened form of the results in [8, 4, a, 6] ; if c >  0, we obtain a result which includes 
the extension to this case by  DtrFFIN & NOLL [7]. 

Case 2. b4=O. 

T h e o r e m  4. Under the hypotheses o] Theorem t, there exist vector and scalar 
constants ~-~o and Po such that throughout d, 

(4.4a) ~ (.r) : ~-~o -- f Ix" T ~  --  ~ -  T x - -  ( ~ - X )  (b" 5)  dS, 

(4.4b) p(x)  = p 0 - -  f [ q , .  T ,~  -- ,~ .  T,I, -- (i~ �9 q,) (g .  i;)] aS .  
Z 
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The/ields ~ (x) and p (x) admit the asymptotic expressions 

(4.5 a) ~ ( x )  = ~0 + X. ~i + O(r-1), n = 2 ,  

(4.5 b) ~ ( x ) = ~ o + X . ~ l ~ + O ( r - ; ) ,  n > 2 ,  
/ -- n + l \  

(4.5 c) p (x) = Po + ~ "  ~l~* 4-. 0 (r ' ) ,  

where 
= - f - ( g .  a s  

and 
= - f - -  - -  a S .  

Theorem 5. Under the hypotheses o/ Theorem l, i~ ~ ( x )=  0 on ,F,, then ~ =  0 
unless ~ ( x )  =--0 in o a. Also,/or all n ~ 2 ,  

(4.6) ~" ~0 = 2 f (def ~)z  dV + c (t -- c) f p2 dV.  
8 ef 

The following theorems are valid for every choice of b. The first of them 
includes the work of FInN & NOLL [6] and of Durr lN & NOLL [7] on the same 
question. 

T h e o r e m 6  (Uniqueness theorem) .  Let ~ ( x )  be a solution o/ ( t . t )  in 8 [or 
some scalar/ield p (x). Let ~ ( x )=  0 on • and suppose that as x---> oo either 

i )  t (x) 

o r  

if) f [ ~ l ~ r - "  d V = o ( l o g R ) .  
J n  

Then ~ (x)=--0 in d ~. 

With any fluid motion for which ~ (x)-+wo at infinity there is associated 
the kinetic energy of disturbance from the uniform flow, E- - - - f [ i~ - -~o lsdV.  

In any potential fluid motion, this quanti ty is always finite and can be used 
as the basis for a variational approach to the study of such motions. The situation 
is, however, quite different in the case of solutions of (t .!) ,  as can be seen from 
the following theorem4: 

Theorem 7. Let n = 2  or 3, and let ~ ( x )  be a solution o/ (1.t) which satis/ies 
the hypotheses o/ Theorem t and/or  which ~ (x) = 0 on Z,  i~ (x) ~g 0 in o ~. Then 
f [w(x) - -wo[  d V = o o  /or every choice o/ Wo. 

5. Preliminary Lemmas 
Lemma 1. Let u (x) be any Cartesian'component o / a  vector [ield ~, (x) which 

satis/ies (t .l) in ~ /or some scalar/idd p (x). Suppose that/or all su/licientl y large R, 

(5.t) f u Z r - ' d V  < K(R) 
"#'R+t 

A theorem of this type has been proved also for the (non-linear) Iqavier-Stokes 
hydrodynamieal equations, in two dimensions by W. WOLXBNER [14], and for the 
three-ddmensional case by FINN [15]. Important extensions of WOLmNER'S results 
to time-dependent motions of cotripressible fluids in two and in three dimensions 
have been given by A. KI~ZYWtCK~ [le]. 
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/or some real s. Then/or any non-negative integer k, 

I vc~I ~ (x) l = O [,,/, K~(rl] 

where V Ck) denotes the k t~ #erative o/the gradient operator. 

Proof (c]. [17]). One finds from (1.t) the following equation governing u(x): 

= {(t - c g .  v } ( a  - g .  v } .  = o .  

If one defines the adjoint operator L, by 

one obtains the following identity for any scalar functions ~0 and W in a region or 

(5.2) ~0 Ll~o -- ~p L~ q0 = div I~ 
where 

= (t + c) [9 V(Ar) -- a r  e~  + A~0 V~0 -- ~o z(a  ~0)] - -  

- -  (t + 2c) [9 v ( g .  v~o) + ~0 v ( g .  v~) - g ( v ~ .  v~o)] + 

Let  P be an arbitrary point of large magnitude in o ~. Construct a unit sphere 
S with P as center and let Q be an arbitrary point of S. Let r (Q) be an infinitely 
differentiable function defined in S such that  

t for 1Q--PI-----�88 
r  o for I Q - P I > [ .  

Let us now put ~o=u and ~ = r  in (5.2); u and # being the solutions of 

L lu  = 0, L 2q~ = ~ ( P - -  Q). 

Integrating (5.2) over the unit sphere S, we find 

(5.3) u(P)  = -- f u(Q) Lz[r q~(P-- Q)] d V  o 

where ~1 is the annular region �88 ~ IP -- Q[ ~ ~. We can differentiate the right- 
hand side of (5.3) with respect to P, thereby obtaining a representation for the 
derivatives of u (P) : 

V ~k) u (P) = -- f u (Q) L, [r (Q) Vce k) q~(P - O)] d V o . 
at  

Thus, letting r denote distance to the origin of a reference system, 

I 171k'u(P)[' ~ f u Z r - ' d V f  rqL,  [r (Q) 17~ k~ 4 ( , 0 -  Q)IzdV 0 
ar a t  

by Schwarz' Inequality. Thus for a suitable constant C, 

IV ok) u (P)[' ~ C(r,,, + t) s f u " r - ' d V  
.~'R+t 

= 0 Jr' K(r)], q~e.d. 
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Lemma 2. Let P4x) be a polynomial o/ degree m in 8, and let s be a real number 

such that f P~4x) r -~ dV = o (log R). 
J n  

Then P(x)=--O if s<n,  and m< �89 il s>n.  

Proof. We have 
P4x) ---a,(g-2)r" + . . .  + a o, 

where the coefficients depend only on the position g2 on a unit sphere. We obtain 

/ p,(:e) r - ~ d V =  / a ~ r " - ' r " - a d r d f 2  +O[ f r " - ' - x r , - l d r d ~ ]  
�9 .'rn ,YtR .,r 

l, 

= k~ f r z"-`+"-x dr + O 4t) + o [r ~ ' - '+" ]  

for some positive constant k 2. 

Suppose s<n.  If then m ~ 0 ,  we shall have f PZ4x ) r -*dV>k i logR+O( t ) ,  
J ~  

a contradiction. Thus in this case P ( x ) ~ 0 .  If on the other hand s>n,  then 
R 

in order that  fr~"-'+"-Xdr--o(logR) we must have 2re<s- -n ,  q.e.d. 

Lemma 3. Let ~ 4x) be a continuously diI]erentiable vector-valued function on 
and exterior to a unit n-sphere ~, and let ~ 4x)= 0 on ~. Then 

f l~l'r-C"+')av < f l V~l'r-"av. 
J~R J R  

Proof. On an arbitrary ray through the center of 27, we have 

f -- . .  I.+ f 
1 1 

so that  
R R 

f lal',-cn+~l,'-ld, ~ / I  V~l.,--,--1 d,, 
1 1 

and the result then follows by an integration over concentric spheres. 

6. Proofs of Theorems 

Proof of Theorem 1. By 42.5) ~ 4x) has the representation ~ 4x) = ~l(x) § ~24x) 
where 

(6.t) wx4 x) = -- f [X" T ~  -- ~ .  TX] dS, 

C 6.2 ) wz4 x) = -  f Ix" T ~ - -  ~ .  TX] dS. 
xR 

We show first that  ~14x)=X.~+O4rX-") .  We have, in fact, 

~a(x) = --X(~)" f T ~  ~y) a s , - f  (b~ ( ~ - Y ) - X  (~}3 r , ~  ~ ) - ~  (y) r x (~--y)} a s ,  

=x (x). i + o  (,1-.) 
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since by the estimates (3.8c) 

tTx I  = O ( r  1-") for y o n Z ,  
and 

where 

so that  

I x ( *  - y )  - x ( * ) l  = l ,a. v x ( ~ ) l  

~ = x - - ~ y ,  0 ~ t ,  

Ix (x  - y) - x (*)1 --- o ( , * - " )  

again by the estimates (3.8c). 

To estimate w2(x), we observe first that by Lemmas t and 3, 

I Vl~) ~l  = o (,s/2) 

under any of the hypotheses of Theorem 1 for any s > n + 2 .  (Ill applying 
Lemma 3, we may clearly assume that ~ ( x )  vanishes in a suitable sphere.) 
From the equation (I.!) we then find IVPl =IA,~[ =0(,~/" 3 for any such s, so 
that  [p(x)l=O(rCs+2)'* ). Now 

(6.3) *T2 (x) = - -  ,f [ X  T ~  -- ~ .  T X ]  dS 
•  

for any sufficiently large R. Since the left-hand side in (6.3) is independent 
of R, so is the right-hand side. Similarly, we find 

V(k)ff'2(x ) = -- f [V(kl X - T ~  -- f~- 7"V(k'X] dS 
-"n 

for any integer k, the integral being independent of R. But by the above esti- 

mates and the estimates (3.8c), ,re see that for any le> s + 4  the integral over 
2 ' 

Z n tends to zero as R--~oo. It  follows that for any such k, VIk~f~.z(x ) =--0, from 
which we find that *vz (x) is a polynomial of degree at most k + 1, ~c2 (x) = P,,,, (x), 
m~< k + 1. Thus, ,~ (x) ~ ff'l (x) + ,-~, (x) ~ P,,, (x) + o (r) by the estimates (3.8 a, b). 
If ~ (x) = o (r), we conclude immediately P,,, (x) ~ const. = ~c0, from which the 
stated representations of ~ (x )  follow. If 

f l , ~ l * ,  -c"+* '  a~:  = o ( l o g n ) ,  
,/R 

we observe (since IP,,,(~)12> ~,* in a semi-inf inite cone wi th vertex at the origin) 
that  necessarily 

f Ip,, ' (x)12r-(,, +2, d V = o (log R). 
J n  

By Lemma2,  we have m <  n + 2 - - n - - I ,  i.e. P , , (x)- -=const .=~ 0. Finally, if 
- 2 

f lV~I*  r -"  d V =  o(logR), the result follows from the above discussion by use 
J R  
of Lemma 3- The stated representations for p(x)  are obtained similarly. 

Proof  of Theorem 2. Let us suppose ~ = 0 .  Then by Theorem 1, ~ ( x ) =  
i~o+O(rl-"),  p(x)=Tbo+O(r-") ,  and (by the same proof) 17w-~ (x) = 0  (r-"), as 
r -~  oo. Formal integration by parts, applied to the solution ~ (x) -- t-~ 0, establishes 
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the relation 

~'" ~0 = o ---- 2 f  (def ~)2dV + c(t -- c) f p~dV + ~ (~ -- ~o)" Ti~ dS. 
JR  JR .~R 

Because of the above estimates, the outer surface integral vanishes in the limit, 
and we find 

(6.4) 2 f (def ~ )  ~ dV + c (1 -- c) f p* d V = 0. 
dr 8 

If c <  3, we verify easily, using (6.4), that  def~----0 in 6 ~. Hence the motion 
is a pure rotation. But ~----- 0 on 2~, hence f f  (~) ~ 0 in g. This result, however, is 
true for every non-negative c. To see this, we observe that  the divergence 
theorem and the above asymptotic properties of w(x)  imply (summation on 
repeated indices) 

~1 0u' i Owi 
[ - d s  : o ,  

I f (  

since w~=0 on 2L Adding this relation to (6.4), we find, using (1.1 b), 

f ( V ~ p d V +  c fp~dV = O, 
8 

and we conclude again ~ ~ 0 in g. 

If n>_--_ 3, the relation (4.3) can be obtained by the method used to prove (6.4), 
the outer surface integral vanishing in the limit because of the asymptotic 
properties of the solution. For n =  2 the volume integrals which occur are nec- 

essarily infinite when ~'~= 0, as can be shown by using Theorem a and the ex- 
plicit knowledge of X(~r y). 

Proof  of Theorem 3. By Theorem t, it is sufficient to observe that  if ~ 0 ,  
then 

O (log r), n = 2, 
x ' ~ =  o(r~_~), n>  2. 

This property is easily checked, using the explicit knowledge of X(x, y). 

Proof  of Theorems  4 and 5. These theorems are proved by the methods 
used for Theorems t and 2, the differing estimates arising because of the different 

properties of the fundamental solution tensor in the case b ~  0. We omit details. 

Proof  of Theorem 6. As in the proof of Theorem 2, we use the identity 

f dv f p, v = [,*. - ds. 
J R  . fR  --~R 

According to our assumptions, the estimates of Theorem t or of Theorem 4 must 
hold with ~ 0 = 0 .  I t  follows that  the outer surface integral vanishes in the 
limit. Hence V ~  ~ 0 in g, from" which ~ ~ const. But  ~ = 0 on 2~, therefore 

(x)-----0 in ~,  q.e.d. 
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Proof  of  Theorem 7. We first observe that  by Theorem t or Theorem 4 
(~-----0 on 27,) 

= + 

where ~4~ 1 (2) has finite square integral over 4' except in the case n----2, b = 0 .  
(The proof of this fact requires estimates on X (2, y) which are slightly more 
delicate than those indicated in w 3, but is not difficult.) Putting the exceptional 
case aside for the moment,  we see that  f[~--~o[2dV is finite or infinite 

8 
according as f IX " ~  dV is finite or infinite. Denoting the components of 

8 
by {/i}, the integrand becomes a quadratic form, IX" ~[~-----Xii;~,~/i/k- We adopt 
spherical coordinates and observe that  because of the symmetry  properties of 
X,/, the integral over a sphere centered at the origin of any term for which/'=~ k 
must  vanish. Thus, we need only consider an integral of a sum of squares. Each 

of these terms has, however, an infinite volume integral unless ~ =  0, as is easily 

verified from the explicit expression for X. If ~ - - 0  on the other hand, we con- 
clude from Theorem 2 or Theorem 5 that  u~ (2) ~ 0 in d'. 

I t  remains to discuss the exceptional case n----2, b-----0. In this case we find 

that  if ~ ' * 0 ,  the ratio of the integrals, f [X.~[~dV and f [wi[ dV, tends to 

infinity with R. Thus we conclude again that  f [ l,dV=oo unless ~----0, but 

again ~-----0 implies by Theorem 2 that  ~ (x) = 0 in 6 ~, q.e.d. 

This investigation was supported by the Office of Naval Research. 
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