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1. Introduction

In this paper we apply methods developed by FINN in [I] to study asymptotic
properties of solutions of equations

(1.1a) Aﬁ—iV@'ﬁ—V{):O, b = const.,
(1.41b) V-=—cp, ¢ = const.,
for a vector field @ (x) ={w,, ..., w,} and scalar field p(x) which are defined

in a neighborhood & of infinity in #-dimensional Euclidian space. The notation
in (1.1) is the usual one of vector analysis. By choosing particular values of

the constant ¢ and the constant vector b, we obtain from (1.1) the following
equations of fluid and solid mechanics (see, e.g., [2, 3]):

1) ¢=0, b=0 Stokes equations of hydrodynamics
i) ¢=0 Oseen equations of hydrodynamics
1ii) b=0 Equations of linear elasticity.

We assume in most of this paper, as is the case in the problems of mechanics
from which the equations are derived, that ¢=0. However, in some contex.s,
notably the basic Theorems 1 and 4, it is sufficient to assume ¢> —1.

The main result of this study consists in showing that under a surprisingly
weak growth condition at infinity, the solution admits a representation in terms
of a single surface integral over an inner bounding surface £. From this rc-
presentation we conclude that the solution tends to a limit (#,, p,) at infinity,
and the rate of decay of (#, ) to this limit is controlled by the asymptotic
properties of the fundamental solution tensor associated with (1.1). We de-
termine this tensor explicitly in §3. In §4 we apply our result to a discussion
of <olutions for which @ (®) vanishes on 2. These solutions are of importance
physically as steady fluid flows or as deformations exterior to a rigid body.
We obtain in particular a new clarification of the Stokes Paradox of Hydro-
dvnamics, which states essentially that in two dimensions a solution of the
{time-independent) Stokes equations in & which vanishes on 2 is necessarily
unbounded. Our result is sharp in all dimensions and shows that the singular



Certain equations of continuum mechanics 380

behavior of the solution is intimately connected with the forces exerted on X in
the motion. We obtain as special cases all earlier results on this and on related
problems which are known to us [¢f. 3, p. 301, 4,5, 6, 7]; the demonstrations
are in our opinion simpler and more natural than those previously employed.

The methods of this paper are not restricted to equations of the form (1.1),
but are applicable to any elliptic system for which the fundamental solution
tensor exhibits the qualitative properties needed in our demonstrations!. Equa-
tions with variable coefficients can also be treated, and it seems likely that a
general description of asymptotic behavior can be constructed along lines sug-
gested by N. G. MEYERS [8]. The particular choice of the equations (1.1) has
been based on the consideration that they are general enough to indicate the
scope of the methods, but not so-general as to cause the ideas to be obscured
by technical detail.

We remark that in the range of ¢ considered the system (1.1) is elliptic (the

characteristic determinant is (1 ~|—c)f_.§f>0 for c>-—1, ZE?>O) but not
1=1

strongly elliptic, hence not of a type for which boundary value problems have
been studied in recent literature. The properly set boundary value problem
requires prescribing ¢ (x) on the boundary, but not the pressure (), this
functlon being determined by the solution?. Correspondingly, in the material

L]t \\ould sufhcé for example, for the fundamental solution tensor to have the
property that for any prescribed positive integer %, all derivatives of sufficiently
high order (depending on %) of each component of this tensor behave at infinity
as O(r~®). Professor L. HorMaxneRr has communicated to us a proof of the follow-
ing equivalent condition, valid for any system with constant coefficients: Let P(D),

where D=(—iD,,..., —it D)), i =imaginary unit, denote the determinant of the
differential operators occurring in the system, and let, respectively, E==(§,, ..., §,),
T=(Z,....5,) be vectors 1n real or complex Euclidean n-space. Then the fundamental

solution tensor has the above stated property if and only if both the conditions

a) P(E)=0 for E=0,
and
b) Im§->cc if §—>oo on thesurface PE)=0,

are satisfied by the polynomial P. The representation theorems of this paper, and
the corresponding asymptotic estimates of the solutions, can be extended without
essential change to all systems which satisfy the conditions of HORMANDER.

Such systems include, for example, the linearized magnetohydrodynamic equations
oy oy
(- 08g) @,
| 'l'ol I l('ol
Vo =q

fee — 2 e — =u,

for which the essential features of Theorem 1 are easily scen to apply. In this case,
there is no Stokes Paradox, since the fundamental solution tensor vanishes at in-
finity for all » = 2.

? The existence of a solution corresponding to such boundary data has to our
knowledge been proved in the literature only in the special case c=b=0 (Stokes
ecquations), It seems likely that, starting with the solution of Obgvist 9] for this
case, the existence 1 the general case can be demonstrated by the continuity method,
using estimates of the type studied in [I0] and in [71I7. A direct demonstration

-
by the method of surface potentials in the case c=0, b arbitrary, has been given by
J. Saxprers m a work to appear shortly.
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of this paper no assumption is made on the behavior of the pressure, and the
regularity of the pressure at infinity is proved as a consequence of growth
assumptions on 0 (x) alone.

2. Notation and Definitions; the Integral Representation

The following notation will be used. We choose the origin O of our coordinate
system to be a point interior to £. The set of all points exterior to X is denoted
by &. Let 2 denote a sphere of radius R centered at O and enclosing X. We
denote by % the annular region bounded between X and Xp. The region
exterior to Xy is denoted by &.

Let @ (x)=[w,(x)] and T(x)=[T;,(®)] be, respectively, vector and tensor
fields defined in &. We define

@) =|Sut@],
T@) =, £ e

We write T;;=0(R® if there exists a constant 4 so that |T;;(@)| < A|x|* as
x—>o0; we write T;=0(R%) if |@|~*|T,;(x)| >0 as ®—>oco. Similar definitions
apply to vector and higher-order tensor fields.

Corresponding to a given vector field % (#) and scalar p(x), we define the
second order tensor field

6u; 314,-

2.1) T = (Tt} = — (1 — ) p &, + (oo 1 24)

6x,- ox;
1, i=j,
e
0, 11.

We also define the linear differential operators L# and M ¥ by the expressions

where

Li=A%—Vp—b-Vu,
ME=A%—Vg+b-VB.

For any vector fields # and ¥ and corresponding scalars p, ¢ satisfying the
conditions
(2.2) Viti=—cp, V-¥=—cq

in a region V with sufficiently smooth boundary S, we have always the identity
@3) J@ Li—u-M8)aV=[[F Ti—u %@ 7) b -%)]dS
where by ¥ - T u is understood the expression

- Tu=v{Tu};n,

M ={n} is the unit exterior directed normal on S, and summation is extended
over repeated indices.
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Let (@ —¥y) ={x;}. ¢ @ —y)={y;} denote an n xX»n matrix and an n-vector,
respectively, which become singular at 2=y in such a way that
6,5 =lim [ [Tx+x-%)]dS
where 2 denotes the surface of a sphere of radius » about @ as center and T’y
is formed by interpreting the components of ¢ as pressures. We obtain from
(2.3) the integral representation

(24) U@ =f(x - L —u-My)dV — [[x - To—1u -Ty—(ii-x (l;-ii)]dS.
v >

In (2.4), & appears as a parameter, the differentiation and integration being
performed with respect to .
Let now o (x) and y (& —y) be vector and tensor fields which satisfy (2.2)

and also the equations
L@f)=0, M(y)=0

for each column vector in the matrix (y,;), with ¥ as independent variable.
We have then the integral representation for the solutions of (1.1),

(2.:3) e (r) = — [ [x T# it Ty~ (i€ ) (b-7)]dS.

A similar reasoning lyields the representation for the scalar p(r),
(2.0) i) = — [ [ THE — i T4 — (i€ ¢) (b-3)1dS.
In forming 7'¢ we have introduced a “pressure”, y)*zl_; . |7( : )

3. Tke Fundamental Solution
The fundamental solution (), ¢} is determined from the equations

(3.12) T =—cy,
(3.1b) Aty = G2 46V, = 0y 8(y — ).
One puts (¢f. [12, p. 31])
(-2a) Y=, A+B-1)D,
" (3.2b) tn =04+ A+cb-V]®— m"'av;

Equation (3.1a) is then identically satisfied, while equation (3.1b) reduces to

(3.3) +8-P)[1+)A+cb- V)@ =5(y—a).
If b0, let b=|3|, = h'(ybr—-x)». A solution of (3.3) can be determined in
the form

(3.4) Sy—a)=} [[(1+9B,— B]dr

Arch, Rational Mech, Anal., Vol. 7 26
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where @, and @, are solutions of the equations

(35) A+b-NP=0y—=); [A+)A+cb-V],=dy—x).
If c50,

n—2 1>
- 1 b Y= bry —3bw-=
6.62) P=— (2] K%E(T)e ,
n—2 ¢ e
=1 ble] = bl ~3irg P W
(3.6b) P,= 3RO (4Wl1+clf) K,‘_;ﬁ(mr)e ,
while if ¢=0, the expression for @, is replaced by
(3.6¢) ¢2=2—1n-10g”; n=2,
”n
r{z
(3.6d) ¢2=_——‘(—i’—, n=3,

»
27t (n—2) "2

where r=|y—x| and K is a modified Bessel function of the second kind

(cf. [12, p. 36)); if b=0, eczluation (3.3) reduces to
(3.7a) U+ A4® =@y —x),

and we may take

n—2
{3.71b) D= (_;) : :""logr , mn=2and 4
8n*(2—.?)!(1+c)
and
53
(3.7¢) ="y, n=o0dd and # =even> 4.

16279 (14¢)

When these expressions are substituted into (3.4) and (3.2), the fundamental
solution tensor (y, ¥) is obtained explicitly. From (3.6) and (3.7) we may compute
formally all asymptotic properties of this tensor. However, for the principal
purposes of this paper we need only the following crude estimates as 7 —»oo,
easily obtained from the form of the expression?:

a) b=o0:
(3.8a) x| =0(logr), [¥|=0("), n=2,
(3.8b) x| =00""), |¥=00"", n>2,

(3.8c) |PRy|=00>""F), |FOW¥|=0("""F, k=1, nz2

where '™ denotes a k'™ iterate of the gradient operator.

3 Somewhat more detailed estimates in the case ¢=0 are given in [I11] and [13].
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b) b+ 0:
3.92) X|=00"%, |[¥]=0¢", n=2,
_ 1+ _2+k,
(3.9b) [Pyl =0(""), |pW¥|=0(""T), m=z,
e 1 -
(3.99) xl=0("7) [=0("%) sz,
ntk

(3.9d) |V<k)x|=o(f"'_zl‘+“k), ||7<k>tr|=o(r“2—j, k=1, n=3.

4. Statement of Results

In this section we state the main theorems of our paper. We prove these
theorems in §6. Because of the qualitative difference in asymptotic behavior

—-

which occurs, we discuss separately the case b=0. It is the singular behavior
of the solutions in this case which gives rise to the Stokes Paradox. The case

i;#: 0, and some theorems valid for every choice of l—;, are introduced later.

Case 1. l_;= 0.

Theorem 1 (Representation theorem). Let @ (x) be a vector field defined in
an n-dimensional neighborhood & of infinity and which satisfies (1.1) for some
scalar field p (x). Suppose that as r — oo, either

i) w(x) =o(r)
or

ii) [ |27 "+ 4V = o (log R)
or 7

il f|F#6|2r—"dV =o(log R).
SR

Then there exist vector and scalar comstants 0, and p, such that throughout &

(4.1a) W (x) = @, —-zf [x-Tw6—w-TyldS,
(4.1b) p@)=po— [ [ T & T$]dS.
The fields @ (@) and p (&) admit the asymptotic expressions
(4.22) (@) = %, + x @) - Z+0(*"),
“2p) . p@=to+b@ T+
where

T=— [ Tibds.
=

Theorem 1 is best possible, in the sense that “o0’’ cannot be replaced by “0”

in the hypotheses. We remark that the vector € can be interpreted physically
as the force exerted on the contour X in the motion or displacement.
26*
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A particular consequence of Theorem 1 is that

. . O(logr), n=2,
IW(.’B) “'wol = 2 gy
o™, n>2
with an improved behavior at infinity in case £=0. This observation bears
on our next theorem, in which we introduce a boundary condition on 2.

Theorem 2. Under the hypotheses of Theorem 1, if W (x)=0 on X, then 5#0
unless W(x) =0in & If n=3, then

(4.3) T-Wo=2[ (defwd)2dV +c(1 —¢) [ p2dV
& &
where def W denotes the matrix, s (—aiui iui’—)
2\ ox4 ox;
The physical content of (4.3) is that in any steady fluid motion past 2 with
adherence on the boundary, the work done at the boundary per unit time equals
the rate at which energy is converted into heat in the motion. Thus, in three

or more dimensions no energy is introduced into the flow at infinity. This is

not the case in two dimensions when I—;: 0. In the interpretation of ¢ (x) as
an elastic deformation, (4.3) asserts that the work done at the boundary due
to a constant deformation — #f, on X equals the potential energy of deformation
in the medium. A particular consequence of (4.3) is that in any fluid flow past
a rigid body X, or in any elastic deformation of a medium which surrounds X
and is stationary at infinity, the body necessarily experiences a ‘‘drag’ force
in the direction of 0,.

Theorem 3. Let @ (x) be a solution of (1.1) in &. If for some @&y,

o - o(logr), n=2,
w(®) — w,=

( ) 4] {0(72—n), 1l>2,
then T=0.

From Theorems 2 and 3 we obtain in particular the Stokes Paradox of Hydro-
dynamics. For if  (x) represents a two-dimensional fluid motion exterior to Z,

and if @ (x) is bounded, then necessarily £=0. But if the fluid adheres to X,

then {5(.1:) =0on X, hence E:{: 0, a contradiction. If ¢=0 our result is a strength-
ened form of the results in [3, 4, 5, 6]; if ¢> 0, we obtain a result which includes
the extension to this case by DurriN & NotrL [7].

Case 2. ;4:0.

Theorem 4. Under the hypotheses of Theorem 1, there exist vector and scalar
constants 16, and py such that throughout &,

(4.4a) i (@) =6, — [ [x- T — & Ty — (@) (b-3)dS,

(4.41) P@) =po— [ [ Ti# —i&- T — (&-¢) (b-#)]4S.
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The fields @ (x) and p(x) admit the asymptotic expressions

{(4.5a) ﬁ?(w)=z_l50-l—x~9—ik+0(r‘1), n=2,
(4.5b) a?,(w)=a=o+x-§z+o(f2), n>2,

- _ntl ’
(450 @) —po+ - W +0(r ¥ ),
where -

M=— [[Tw— (b -n)]dS

and —> _)—> —> - 2 >
Me=— [ [T —b@d-#) —w(b- n)]dS.
P

Theorem 5. Under the hypotheses of Theorem 1, if @ (x)=0 on X, then f:l:O
unless w0 (X) =0 in &. Also, for all n=2,

(4.6) T iy =2 (def@)2AV + c(1 — o) [ p2dV.
& &

The following theorems are valid for every choice of b. The first of them
includes the work of FINN & Nort [6] and of DurrFIN & NoLL [7] on the same
question.

Theorem 6 (Uniqueness theorem). Let @6 (x) be a solutton of (1.1) in & for
some scalar field p(x). Let w(x)=0 on X and suppose that as & —oo either
i) W@ -0
or
ii) [|#|2r~"dV =o(logR).
Sr

Then 6 (x)=0 in &.
With any fluid motion for which 6 (x) >, at infinity there is associated
the kinetic energy of disturbance from the uniform flow, E= [ |t6 — #,|2dV.
é

In any potential fluid motion, this quantity is always finite and can be used
as the basis for a variational approach to the study of such motions. The situation
is, however, quite different in the case of solutions of {1.1), as can be seen from
the following theorem4:

Theorem 7. Let n=2 or 3, and let W (x) be a solution of (1.1) which satisfies
the hypotheses of Theorem 1 and for which @ (x)=0 on X, 6 (®)E0 in &. Then
[ |8 (@) — @, |2dV = oo for every choice of i,.

&

5. Preliminary Lemmas

Lemma 1. Let u(x) be any Cartesian’ component of a vector field ¥ (x) which
satisfies (1.1) tn & for some scalar field p (x). Suppose that for all sufficiently large R,

(5.1) Jutr—dV < K(R)
_ FRrH
4 A theorem of this type has been proved also for the (non-linear) Navier-Stokes
hydrodynamical equations, in two dimensions by W. WoLIBNER [I4], and for the
three-dimensional case by Finn [15]. Important extensions of WOLIBNER'S results
to time-dependent motions of compressible fluids in two and in three dimensions
have been given by A. Krzvwickr [16].



396 I-DeE CrANG & ROBERT FINN:

for some real s. Then for any non-negative integer k,
|7 (@) =0 K]
where V® denotes the k™2 iterative of the gradient operator.
Proof (cf. [17]). One finds from (1.1) the following equation governing # ():
Liu={(1+c4 —¢b- v}{a —b. Viu=0.
If one defines the adjoint operator L, by

L={1+Q4+cb-V}{a+5-7},
one obtains the following identity for any scalar functions p and y in a region J:
(5.2) pLiy—yLp=divW

where N
W= (1+c)[pV(dy) — Ay Vo +dpVy —ypV(A¢)] —

—(1+2) [pV(b-Vy) +9pV(b-Vo) — bV -Vy)] +
+cblpb-Vy—pb-Vgl.
Let P be an arbitrary point of large magnitude in &. Construct a unit sphere

S with P as center and let @ be an arbitrary point of S. Let {(Q) be an infinitely
differentiable function defined in S such that

- 1
fO={y o 1o ri=h
Let us now put y=w% and ¢={D in (5.2); » and P being the solutions of
Lu=0, L, ®=046(P— Q).
Integrating (5.2) over the unit sphere S, we find
(5-3) u(P) = —”f u(Q) L, [{(Q) 2(P— Q)] dV,

where & is the annular region 1 <|P— Q|<2. We can differentiate the right-
hand side of (5.3) with respect to P, thereby obtaining a representation for the
derivatives of % (P):

V®u(p) = —df u(Q) L, [L(Q) VE D(P— Q)] dV,.
Thus, letting » denote distance to the origin of a reference system,
PO u(P)2< [u2r=dV [ r|L,[L(Q) VI ®(P — Q)|2adV,
Y o

by Schwarz’ Inequality. Thus for a suitable constant C,

[VRu(P) 2= C(rp+ 1) fu2r—*dV
FR+1

=0[r K()], Qe.d.
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Lemma 2. Let P(x) be a polynomial of degree m in &, and let s be a real number
such that J PAa)r—*dV =o(log R).
Sr

Then P(x) =0 tf s<n, and m<§j(s—n) if s>n.

Proof. We have P@) =a,(@) ™+ - +a,,

where the coefficients depend only on the position £2 on a unit sphere. We obtain
JPr@)r—sdV =fal "y 1drdQ + 0] [ A" 1y 1dydQ
Fr SR Fr

= k? f'r’”"”"‘l dr +0(1) + o[rAm—st7]
for some positive constant k2.
Suppose s<u. If then m=0, we shall have f Pix)r—*dV>ktlog R4+0(1),
a contradiction. Thus in this case P(x)=0. If on the other hand s> #, then
in order that er*"'"”f"‘ldr':o(logR) we must have 2m<s—n, q.ed.

Lemma 3. Let i () be a continuously differentiable vector-valued function on
and exterior to a unit n-spheve X, and let w(x)=0 on Z. Then

[|@pr-+0av < [|Vij2r—av.
SR Ed )

Proof. On an arbitrary ray through the center of X, we have
R
fl{é'zr—(»+2)rn—1dr= _ =i
2 2
1

R
+ | (@-w,)r2dr
/

R R
_S_Vf ]ﬁl’r“’drl/f |62 r2dr
i i
so that

R
- J | |"r‘("+*’r’"‘1cirSf|l7w]2 “rrldr,
i

and the result then follows by an integration over concentric spheres.

6. Proofs of Theorems

Proof of Theorem 1. By (2.5) % (&) has the representation @ (@) =, () -+ ¥,(x)
where

(6.1) @ (@) =— [[x- T —ib-Tx]dS,

6.2) ﬁ,(x):-f[x-rﬁ—ié-:rx]ds.

We show first that &, (@)= - 1+O(r“") We have, in fact,

®y(x)=—x() [T (y) Sy~ [ {x @—y) —x (#)] T% W) - (y) Tx(x—y)}dS,

—x (@) -T+0 (")
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since by the estimates (3.8¢)

[Ty|=0(@"" for yonl,

and
Ix@—y) —x@| =y - Vx®|
where
E=x—uy, 0sa=1,
so that

X @ —y) —x @] =06""
again by the estimates (3.8c).
To estimate 0, (x), we observe first that by Lemmas 1 and 3,
|[P® 4| =0 (r?)

under any of the hypotheses of Theorem 1 for any s>un+2. (In applying
Lemma 3, we may clearly assume that ¢ (®) vanishes in a suitable sphere.)
From the equation (1.1) we then find [Vp|=|4w|=0("?) for any such s, so
that |p (x)| =0 (r***'%). Now

(6.3) Wy(@)=—[[yx-Tw—w- Ty]dS
Y]

for any sufficiently large R. Since the left-hand side in (6.3) is independent
of R, so is the right-hand side. Similarly, we find

V® :——f[V‘“x-TfE——{E-TV"”x]dS

for any integer k, the integral bemg independent of R. But by the above esti-

+

mates and the estimates (3.8c), we see that for any k>°T", the integral over

2y tends to zero as R-»>oo. It follows that for any such k V&, (r) = O from
which we find that &, (x) is a polynomial of degree at most k-1, &, (x) =P, (x),
m=k+1. Thus, 16 (x) =€ (r)+ 6, () = ” P, (x)+o0(7) by the estimates (3.8a, b).
If @ (x) =o0(r), we conclude immediately P, (x)==const.= if,, from which the
stated representations of ¢ (x) follow, If

J | )2r— "2 41 =0 (log R),
Ffr

we observe (since |F,
that necessarily

(x)|2> c7? in a semi-infinite cone with vertex at the origin)

”l

f |B, (@)|2r~t2 4V = o(log R).

By Lemma 2, we have m<—”j——§~ -=1, i.e. B,(x)=const.=,. Finally, if

J|P#€|2r="dV =o0(logR), the result follows from the above discussion by use

R
of Lemma 3. The stated representations for p(x) are obtained similarly.

Proof of Theorem 2. Let us suppose T=0. Then by Theorem 1, @ ()=
W,+0(r'™"), p(@)=0,+0(r""), and (by the same proof) Vib(x)=0(r""), as
r —oo. Formal integration by parts, applied to the solution 6 (&) — @&,, establishes
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the relation

T, =0=2 [ (def B)2dV +c(1 —c) [ p2dV + § (i6 — w,) - T i dS.
fp Fr Zr

Because of the above estimates, the outer surface integral vanishes in the limit,
and we find

(6.4) 2 [ (def #)2dV +c(t — ) [ p2dV =0.
& &

If c<3, we verify easily, using (6.4), that def# =0 in &. Hence the motion
is a pure rotation. But #=0 on X, hence % (x) =0 in &. This result, however, is
true for every non-negative ¢. To see this, we observe that the divergence
theorem and the above asymptotic properties of w(x) imply (summation on
repeated indices)

aw,- 6w,- .
G (G m— e m)4s =0,

z

ow, dw; Voo dw, duy Ow; dwy\ ..
cﬁ(w"_ w”*')(axj ™ o "f) ds_f( ox; ox,  ox, ‘é;,-')d[ =0
z &

since w;=0 on 2. Adding this relation to (6.4), we find, using (1.1b),
J (P#)2dV + ¢ [ p2dV =0,
g &

and we conclude again # =20 in &.

If n= 3, the relation (4.3) can be obtained by the method used to prove (6.4),
the outer surface integral vanishing.in the limit because of the asymptotic
properties of the solution. For #=2 the volume integrals which occur are nec-
essarily infinite when i# 0, as can be shown by using Theorem 1 and the ex-
plicit knowledge of ¥ (x, y).

Proof of Theorem 3. By Theorem 1, it is sufficient to observe that if f# 0,
then

= O(logy), n=2,
' _{0(12—"), n>2.
This property is easily checked, using the explicit knowledge of x (x, y).
Proof of Theorems 4 and 5. These theorems are proved by the methods
used for Theorems 1 and 2, the differing estimates arising because of the different
properties of the fundamental solution tensor in the case b £ 0. We omit details.

Proof of Theorem 6. As in the proof of Theorem 2, we use the identity

f(Vw)deJrcprdV:cﬁ[ﬁ- 2w pa-a)|as.
*r Sr Ik

According to our assumptions, the estimates of Theorem 1 or of Theorem 4 must

hold with #,=0. It follows that the outer surface integral vanishes in the

limit. Hence V# =0 in &, from which = const. But #=0 on X, therefore

W(@®) =0 in &, g.cd.
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Proof of Theorem 7. We first observe that by Theorem 1 or Theorem 4
(W=0 on 2Z,)

(@) = iy + % (@) - E + B, ()

where 0, () has finite square integral over & except in the case n=2, b=o.
(The proof of this fact requires estimates on ¥ (&, y) which are slightly more
delicate than those indicated in §3, but is not difficult.) Putting the exceptional
case aside for the moment, we see that f |8 — @, |2dV is finite or infinite

according as f fx 2[’ dV is finite or 1nfm1te Denoting the components of T

by {f.}, the 1ntegrand becomes a quadratic form, |x-$[2=xﬁ Lielif- We adopt
spherical coordinates and observe that because of the symmetry properties of
%.;» the integral over a sphere centered at the origin of any term for which =%
must vanish. Thus, we need only consider an integral of a sum of squares. Each

of these terms has, however, an infinite volume integral unless £=0, as is easily

verified from the explicit expression for y. If £=0 on the other hand, we con-
clude from Theorem 2 or Theorem 5 that #(x) =0 in &.

It remains to discuss the exceptional case n=2, b=0. In this case we find
that if £=0, the ratio of the integrals, f [% - ilde and f|w1[2dV tends to

infinity with R. Thus we conclude again that f |#|2dV =oo unless £=0, but
again 2 0 implies by Theorem 2 that @ (x) = 0 in &, g.e.d.

This investigation was supported by the Office of Naval Research.
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