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1. Introduction 

Consider a fluid which has free energy* 1P(9) a prescribed function of density 
Q, and which occupies a fixed container .(2, w i th /2  a bounded region in R 3. I f  
we neglect all other contributions to the free energy, then the total energy Eo(r 
corresponding to a density distribution 9(x), x C I2, is 

Eo(e) = f W(e(x)) dx. (1.1) 
$2 

If  the fluid in $-2 has mass m, and fluid is neither added to - -no r  removed 
f rom--Q,  then the allowable density distributions must be consistent with the 
constraint 

f o(x) dx = m. (1.2) 
$2 

Following GIBBS, we postulate that the stable configurations of the fluid 
are those which minimize (1.1) subject to (1.2). Thus we are led to the problem: 

Iminimize the energy Eo(o) over all sufficiently regular fields ~ that satisfy 
~o [the constraint (1.2). 

Here we shall be concerned with situations in which ~p(~) is nonconvex, of  a 
form capable of  supporting two phases (Figure 1). In this instance the solution 
~a o is most easily described in terms of  the Maxwell-parameters 0~o,/3o, and/*o 
defined by the conditions 

w(flo) - w(~,o) = / ~ o ( f l o  - O~o), 
(1 .3 )  

~,o = w'(~,o) = V ( f l o ) .  

The line through (O~o, ~p(O~o)) and (flo, W(flo)) forms the convex envelope of  the free 
energy between 0~ o and flo (Figure 1). 

1 We assume isothermal conditions. Here ~p(~) is the free energy per unit volume; 
V~(~)/~ is the free energy per unit mass. It is important to note that W(0 +) < oo. 
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Fig. 1. Free energy W(Q) 

It is not difficult to show that if we restrict our attention to continuous 5, 
then ~o  has no solution for 0% < rn </3o. If  we take piecewise continuous 5, 
or more generally 5, ~,v(5)E LI(D), and assume that the length scale is chosen 
with 

volume (g-2) = 1, 

then the solution of ~o  is as follows: 
(i) for m ~ 0% or m _> flo there is exactly one solution, the constant field 

e(x) - -  m; 

(ii) for m E (O~o,/30) any  field 5 of the form 

/ ~o, x E/21 

e(x) = [/3o, x E ~ 2 ,  

Q = / 2 1 W  D2, 

f l O  - -  D /  

volume (Q,) /30 -- ~ 

m - -  0 %  

volume (/22) --/30 -- o% 

is a solution, and all solutions have this form. 
Thus for each m E (o%,/30) there are infinitely many solutions, some corres- 

ponding to sets /2i which are quite wild. This drastic loss of  uniqueness occurs 
because interfaces--jumps in density--are allowed to form without a correspond- 
ing increase in energy. 

A theory which attempts to overcome this difficulty was developed independent- 
ly by VAN DER WAALS [1893] and CAUN & HILLIARD [1958] and is based on an energy 
of  the form 

f + IVs(x) 121 dx. 
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Thus jumps in density are not allowed, but rapid changes are, and such changes 
are penalized in energy by the presence of the term I Vr 12. 

One problem with this theory is its difficulty, especially in space-dimensions 
larger than one. A second problem is that, because solutions are smooth, it is not 
a simple matter to locate--or  even define--an interfacial zone between phases. 

In this paper I present an alternative theory for problems of this type. This 
theory differs from its precedessors in two respects: 

(1) Jumps in density are allowed, but are accompanied by an interfacial 
energy. 

(2) The density distribution is not allowed to lie in the spinodal region [~.  92]. 
In fact, all we need assume is that ~0(~) is defined and locally convex on the inter- 
vals (0, ~,) and (t)2, c~); nothing need be said about the behavior of~0 on [r r 

For  fields ~ consistent with (2) we define complementary subsets 

&(e)  = {x~ Q: e(x) _-< 0,), 
(1.4) 

&(e)  = {x~ ~ :  ~(x) > Qd, 

Di(p) being the region in which the fluid is in phase i. The surface 

then represents the interface between phases, and we endow 6a(~o) with interfacial 
energy 

~I(e), 
where 

(i) I(9) is the area of 5r162 
(ii) (r is the interfacial energy per unit area. 
We are therefore led to an energy of the form 

S(e) = f ~o(e(x)) dx q- trI(r 
a 

and to the following problem: 

Iminimize the energy E(~) over all sufficiently regular fields ~ which have 
trange outside [~,, r and which satisfy the constraint (1.2). 

In Section 2 we give a precise statement of  problem ~ and list our assumptions 
underlying its solution. The main assumption we make is that tr be small, an assump- 
tion that should be in accord with the underlying physics. We make this assump- 
tion for convenience, as the solution for large tr is complicated and leads to in- 
stances of  nonexistence. 

We state our main results in Section 2, and prove them in Section 3. In parti- 
cular, we establish an existence theorem for problem ~ and show that solutions 
~(x) are piecewise constant with constant chemical potential' /* = ~o'(r 
thereby reducing ~ to finding the global minimum of the energy 8(/,) expressed 
as a function of / , .  We show further that, when the solution is considered a func- 
tion of  the parameter m, with/,m the corresponding chemical potential and Em 

1 This is the Euler-Lagrange equation for ~'. 
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the associated minimal energy, 

dEn 
tz'n = dm " 

We also prove that solutions O of ~ have minimal interface; more precisely, 
we show that ~(~)  has minimal area when compared to all other interfaces 

with 

volume ( ~ )  ---- volume (a'2~(r 

In Section 4 we give the general solution of ~ in R * ; in Section 5 we solve # 
completely for ~q the unit square in R 2 and ~0(9 ) piecewise quadratic. 

Our theory is also applicable to binary mixtures provided we identify ~ with 
the concentration of  one of the components, and restrict p to the interval 0 

~ 1. To allow for this and other applications we take the domain of ~0(~) to 
be a set of  the form (~1, ~,) kY (~2, ~2), wi th  - -  oo ~ ~1, ~2 <: + 0% and 
[r ~2] identified with the spinodal; and we do not assume that ~p(e)-+ oo as 

-+ z~, but rather allow these limits to be finite or infinite. 
Because of the constraint (1.2), problem ~ is invariant when 

~p(~) is replaced by ~ ( ~ ) -  ~p(Or O~o). 

We therefore assume, without loss in generality, that  

~o = O, ~(~o) = ~(/~o) = O, 

~p(Q) > 0, 0 4= ~o, flo, 

so that ~p(0) has the form shown in Figure 2. 

2. Assumptions. Main results 

Let .Q be a bounded, open region in R n with ~12 Lipschitz-continuous, and 
assume that the length scale is chosen with 

~n(/2)---- 1. (2.1) 

Here and in what follows, o~ k denotes k-dimensional Hausdorff  measure. 1 
We assume that the domain of ~p has the form 

= (,q, ~,)  v (Q~, ~2), 
(2.2) 

1 Roughly speaking, x 'a = volume, o'r = area, ~1  = length, X'o = number of 
points. 
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We assume ~ further that  (Figure 2): 

(A~) ~pE C2(~)  with W" > 0; ~P(~o) ---- ~P(8o) = 0, ~p(O) > 0 otherwise. 

It  then follows that  

O,o ~ (~1, ~) ,  80 ~ (~,  ~ ) .  
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Fig. 2. Free energy ~o(~) and ~p'(O) as functions of density 

By (A1), ~p' restricted to (~1, ~1) is invertible, as is ~p' restricted to (r ~t2); 
let o~ and fl, respectively, denote the corresponding inverse functions (Figure 2), 
so that  

o~(~o'(0)) --  0 for ~1 < 0 < ~2, 

8(~o'(Q)) = ~ for e~ < e < ~ ,  

o,(o) = ~o, 8(0)  = 80 .  

Further,  for  a nonempty  interval (/t,/~) o f  values of /~  the equat ion ~ , ' ( ~ ) = #  

has two solutions, namely ~ = o~(#) and ~ = 8( /0:  

~o'(off#)) = ~'(8(#)) = # .  (2.3) 

By an a d m i s s i b l e  f i e l d  we mean a function 2 Q C BV(g2) with 

Q(x) E ~ for  all x E s (2.4) 

For  8 admissible we write 

s%(e) :=  {x~ .Q: ~ < o(x) < ~1}, 

~ ( o )  :=  {x ~ O:e2 < ~(x) < ~} ,  

vi(e) :=  a~n(&(e)), 

1 Note that we make no assumptions concerning the behavior of ,# in the spinodal 
region [01, ~2]. 

2 BV(D) is the space of functions on s of bounded variation. The elements of  
BV(O) are actually equivalence classes of  functions that coincide almost everywhere. 
Since we shall not bother with this distinction, some of our statements are modulo a 
rearrangement on a set of ~n-measure zero. 
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and call e single-phase if either vl(p) = 0 or v2(9) = 0, two-phase if v1(9) > 0, 
v2(9) > 0. Since ~ E BV(g2), the sets -Qi(e) have finite perimeter. We writC 

5a(O) : =  0Or(0) • 0Q2(e) (2.5) 

for the interface between phases and 

I(e ) : =  ~ ,_ , (Se(#) )  (2.6) 

for the corresponding interracial measure. Finally, we call the field ~p'(#(x)) 
the chemical  potent ial  for ~. 

As before, the energy E(#) has the form 

E(#) = f ~0(#(x)) dx + ~I(~) (2.7) 
D 

with cr the interfacial energy per unit ~r and we consider fields 
consistent with the constraint 

f e(x) dx = m. (2.8) 
t2 

Here rr and m are prescribed with 

~r > 0, m E (~1, ~2). 

Within this framework, problem ~ has the following form: 

[minimize the energy E(r over all admissible fields ~ that satisfy the con- 
# ~straint (2.8). 

In discussing this problem we shall reserve the term solution for global mini- 
mizer. 

Note that for m G o r  o or m ~ f l o  the constant r  is the unique 
solution of  problem ~o (el  the discussion in Section 1) and, since this field satis' 
ties I(r = 0, it must also be the unique solution of  ~ .  We therefore have the 
following result, which allows us to concentrate our efforts on 0% < m </30.  

Theorem 2.1. For m <= 0% or m ~ flo, problem ~ has exactly one solution, 
the constant r ~ m. 

We henceforth restrict our attention to the range 

O~o < m < flo. (2.9) 

As we shall see, problem ~ leads, in a natural manner, to the following mini-  
mal-surface problem: 

[minimize ~;r (01"/5 ~)  over all sets F Q 0 which have finiteperimeter 
Ov [and which satisfy the constraint ~ n ( F )  = v, 

1 Here 012i(~) indicates the measure-theoretic boundary of -Qi(e). 
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with v 6 [0, I ] prescribed. When Cv has a solution, we write a(v) for the common 

value of  ovg,_l(8/" A g)) on solutions P. We call a(v) the minimal- inter face 
measure. Clearly, 

a(O) = a(1) = O, a(v) > 0 on (0, 1), 
(2.10) 

a ( v ) : a ( 1 - - v ) ,  0 ~ v ~  1. 

We say that an admissible field 9 has minimal  interface if g21(9)is a solution 
of 0~ with v = v1(9). Since 

(cf. (2.4)), this definition makes sense: admissible fields ~ with minimal interface 
are exactly those fields with 

I(9) ~ 1(7 ) (2.11) 

for all admissible y with vi(v) = vi(9). 

Remark. Problem Oo can have many solutions. For  example; let f2Q R 2 
be the unit square. Then (Figure 3): 

(i) for 0 < v < 1/:r there are four solutions, each of which is a quarter-disc 
consisting of the intersection of .(2 with a disc centered at a corner of f2; 

(ii) for 1/:r < v =~ 1 there are four solutions, each of which is the rectangular 
region lying between a side of  f2 and the line a distance v from the side; 

(iii) for v = 1/:r there are eight solutions, four of type (i) and four  of type 
(ii). 
Further, a(v) will generally not be C 1. Indeed, in the above example 

[(:~v)�89 0 < v < 1/~ 
a(v) / 1, 1/~ _< v _< �89 (2.12) 

O<v_< 1 

F 

1 1 ~ <-- v--- 7 

Fig. 3. Solutions of ~v for s the unit square in R 2 

The next theorem shows that problem 0 v is well-posed. The first sentence is 
due to MASSARI & PEPE [1974], GIUSTI [1981], and GONZALnZ, MASSARI, & 
TAMANINI [1983]. The remaining assertions--as well as all other theorems stated 
in this section--will be proved in Section 3. 
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Theorem 2.2. (Properties of  the  minimal interface). Problem O v has a solution 

for  each vE [0, 1], and each solution 1" has 8 [ ' f 5  ~ a C ~ surface. Moreover: 
(i) for  n =  1, a(v) = 1 on (0,1); 

(ii) f o r  n > 2, a(v) is HSlder continuous on [0, 1] with exponent (n --  1)/n; 
(iii) there is a constant C = C(I2, n) > 0 such that 

n -1  

a(v) > Cv " 

for  all sufficiently small v > O. 

Note that, by (i) and (ii), 

and that 

a(v) is lower semi-continuous on [0, 1] (2.13) 

a M " =  s u p  a(v )  < o o .  (2.14) 
0 ~ v ~ l  

To avoid tedious considerations of  special cases, and to insure that problem 
have a solution, we will henceforth asusme that a is small. More precisely, we 

suppose that 

(A2) gain < ~p(o~(/t)), ~p(fl(kt)) for /z  = #+, #-% 

an assumption which holds automatically when ~p(~) is infinite at the end points 
~1, 91, 92, u2. We are now in a position to state our main results. 

Theorem 2.3. Problem ~ has a solution. 

More important, we will show that each solution r of  ~ has constant chemical 
potential /, = / f r O ;  that the energy E(9) can be expressed as a function g(~) 
with 

r  : =  v,(t*) r(~,0,)) + v ,0 , )  ~(~(~,)) + ~a(vl(~)),  

fl(/~) - -  m 
v~(~) . -  fl(~) _ o,(~) ' 

m - -  o~( / , )  
v 2 ( / ~ )  : = / ~ ( / ~ )  _ ~ ( ~ )  ; 

(2.15) 

and that problem ~ reduces to minimizing ~' over the set 

U ---- (/* E (~, ~--): o~(#) ~ m --_< fl(/~)}. 

These facts are expressed precisely as 

(2.16) 

Theorem 2.4. (Properties of  solutions). Let  9 be a solution o f  ~ .  Then: 

(i) ~ has minimal interface; 
(ii) r has constant chemical potential t z, with # a global minimizer o f  o ~ over U; 

(iii) E(~) ---- g(#); 
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(iv) 9 is piecewise constant and o f  the form 

io,(~), x~ ~2,(9) 
9(x) = I~(~), x~ t72(9), 

vi(9) = vi(tz). (2.17) 

Conversely, any global minimizer oJ" g over U is the chemical potential of  a solution 
o f ~ .  

As a consequence of this theorem: 

all single-phase solutions are of  the form 9(x) -:-m. (2.18) 

Thus for m E [9~, 92] all solutions of ~ are two-phase, as m ~ ~ (cf. (2.4)). 
Less trivial consequences are the next two corollaries. There, for convenience, we 
call a solution 9 regular if a(v) is differentiable at v : v~(9). 

Corollary 1. I f  l~ is the chemical potential of  a regular two-phase solution o f  ~ ,  
then 

~(fl(/z)) -- ~(0r --/z[fl(/z) -- or = o'at(vlQz)). (2.19) 

Remark. Equation (2.19) is the analog of the Weierstrass-Erdmann "corner- 
condition" in the classical calculus of variations. 

Remark. Since ~P(9) is the free energy per unit volume, 

P : :  --~P(O) -k O~p'(e) 

is the pressure. For the problem without interfacial energy the Maxwell condition 
(1.3) yields the continuity of the pressure in ~2. In the present theory the pressure 
is constant in each phase, but need not be continuous across the interface. Indeed, 
i f we define Pi to be the pressure in ~i(9), then (2.19) yields 

Pl - -P2  --aa ' (v) ,  v :  vl(o). 

Note that for the example shown in Figure 3, 

1 
a ' ( v )  = - -  

r 

with r the radius of the disc, and 

t7 

Px -- P2 -- , 
r 

which is the classical relation between surface tension and pressure. For the specific 
problem considered in Section 5 there is a range of values of  v for which the mini- 
mal interface isflat. For this range it turns out that a'(v) = 0, which yieldsp~ = P2, 
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a result to be expected from equilibrium of forces. I believe that this result is 
generic. More precisely, I offer the following 

Conjecture. Suppose that a(v) is differentiable at v : roE (0, 1). Then 
a'(Vo) : 0 i f  and only i f  every solution of  the minimal-interface problem r is 
flat. 

To facilitate the statement of  our next result, we make explicit the dependence 
of ~ on m by writing ~ ---- ~(m), and, for each fixed m, we let 

Em : the m i n i m a l  energy, 

that is, the common value of E(9 ) on solutions 9 of  ~(m). 
Suppose that ~(m) has a single-phase solution--with chemical potential #m-- 

for all m in some open set. Then, by (2.18), Em ---- lP(m), so that, trivially 

dEm 
/2m - -  dm " 

The next result shows that this relation holds also for two-phase solutions. 

Corollary 2. Suppose that for all m in some open interval J, [A m iS the chemical 
potential of  a regular two-phase solution of ~(m), with/'~m fl differentiable function 
of  m. Then 

dEn 
~ m  : d m  (2.20) 

for all m E J. 

In the theory without interfacial energy the solution is single-phase for m ~ ~o 
and m ~ flo, two-phase otherwise. The next result shows that one effect of inter- 
facial energy is to increase this single-phase range. 1 

Theorem 2.5. There exists a ~ > 0 such that two-phase solutions of ~ are 
possible only in the interval 

O~o + 6 < m < flo -- O. (2.21) 

3. Analysis 

Proof of  Theorem 2.2. As noted previously, the chief assertion of the theorem 
(the first sentence) has already been established. Moreover, (i) is obvious. Thus 
we need only prove (ii). 

1 Cf. CARR, GURTIN, • SLEMROD [1984], Theorem 7.1, for a similar result within 
the VAN DER WAALS-CAHN-HILLIARD theory. 
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Assume n --> 2. Trivially, there is a constant C = 6', > 0 such that, for any 
ball B Q R n, 

n - - 1  
.,'g',,_~(OB) = C.~,,(B) q, q 

n 

Choose v E [0, 1) and let / '  be a solution of 0v. Then for all sufficiently small 
e > 0, ~ \ / '  contains in its interior a ball B~ of  JC~n-measure e, and Q~ = it' kJ B, 
satisfies 

~ , (Q~) : v + e, ~r F~ ~ )  = a(v) q- C8, q . 

Thus 

a(v + e) ~ a(v) q- Ce e, (3.1) 

and, since a(0) ---- 0, we have H61der continuity with exponent q at v = 0. 
Next, for v E (0, 1], (3.1) applied at 1 - -  v in conjunction with the last of  

(2.10) yield 

a(v -- e) "< a(v) + Ce q. 

Hence we have H61der continuity with exponent q also at v = 1, and, given 
any vE (0, 1), (3.1) must hold for all sufficiently small e, positive or negative. 

Next, each solution F of 6v has ~ ' , ( F )  ~ v and 8 F  A ~ a C ~ surface. 
Thus given any Vo E (0, 1] there is a ~ > 0 such that, for Vo --< v --< 1, each solu- 
tion F of  Ov contains in its interior a ball B = B(I ' )  with ~ , ( B )  = 6. Thus, 
given v E (0, 1), for all sufficiently small e 2> 0 some solution F~+~ of 0,+~ 
contains in its interior a ball B~ with ~ffn(B~)= e. Taking Q~ = Pv+~ \ B~ 
yields 

Therefore 

~.(Q~)  = v, ~/g~_l(OQ, ,% $)) = a(v + e) + C~ q. 

a(v) <= a(v -}- e) q- Ce q 

and, by replacing v by 1 - -  v, we see that this inequality holds for all small e, 
positive or negative. This fact with (3.1) yields the desired degree of  Holder 
continuity on (0, 1). 

To prove 1 (iii) note first that the Sobolev-Gagliardo-Nirenberg inequality 2 
implies the existence of a constant Co = Co(-Q, n) > 0 such that 

_ •  q 

(f i x,-iiq Co j 
for  any f E  BV(O), where 

n - - 1  
q ~ , f =  f f ( x )  dx.  

n 12 

1 This proof is due to R. KOHN (private communication). 
2 Cf., e.g., MEYERS d~ ZIEMER [1977]. 
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(Recall that ~ , ( ~ )  = 1 . )  Further, if we c h o o s e f t o  be the characteristic function 
of a solution F of the minimal-surface problem 0 o, then 

f f(x) dx = a~n(I') = v, 
I2 

f IVf(x)l dx  = a(v),  

If(x) - j l V  dx = vO - v)~ + ~v(1 _ v) <~ Co a(v), 

which yields the desired inequality in (iii). [ ]  

Our proof  of the remaining results will proceed as a series of  lemmas. 
Let us agree to use the terms: m-admissible field for an admissible field that 

satisfies the constraint (2.8); phasewise-constant f ield for an admissible field 9 
that is constant on f2~(O ) and on ~2(9). Consider the problem: 

~ .  [minimize E(O ) over all m-admissible phasewise-constant fields z which 
[have minimal interface. 

Lemma 3.1. 0 solves ~ <=> 9 solves ~*. 

Proof. Our first step will be to show that: 

given any m-admissible field 7 which is not phasewise constant] 
there is an m-admissible, phasewise-constant field ~ with~ (3.2) 
E(e) < e(7). l 

Thus let 7 be as in (3.2), write ~i----- g2i0'), let 

m, = Vi('~) -1  fT(x )  dx, (3.3) 
ni 

and take 

I ra1, x C 121 
~(x) = 

~m2, x E -Q2. 

Then ~ is m-admissible, since 7 is m-admissible, and 

1(0 = 1(7). 

Further, by (3.3) and the convexity of ~p on (~tl, ~1), 

f [~v(y) --  ~P(0)I = .f [~v(7) -- ~p(ml) -- ~p'(ml) (7 -- ml)] :> 0. 
-Qt -Qt 

Similarly, 

f [~(7) - '~(cO] ~ o. 
-Q2 

Moreover, since y is not phasewise constant, one of the above inequalities is 
strict, and E(Q) < E(7 ). Thus (3.2) is valid. 
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Let e be m-admissible and phasewise constant. If, in addition, Q is two-phase, 
then 

13. xE -Q~(o) 
e(x) = (3.4a) 

we, x ~ 02@ 

with 

Further, by (2.1), (2.6), and (2.8), 

v,(e) 3, + v2(e) 32 = m, 

v, (0  + v2(e) = 1; 
hence 

and, since vi(o) > O, 

v l ( ~ )  r 2  - -  m 
- - - - : V , ( T 1 ,  32) , 
T 2 - - 3 1  

m - - 3 ,  
v2(Q) -- - -  -- :  v2(r,, T2), 

3 2 - - T  1 

(3.4b) 

31 < m < 32. (3.5) 

On the other hand, ifQ is single-phase, then, necessarily, Q(x) = m with m C (o%, ~1) 
or m E (Q2, flo). In the former case vl(o) = 1, v2(O) = 0, and ~ trivially has the 
form (3.4) with 31 = m, r2 arbitrary. Similarly, for m E (~2, flo) we take v~ 
abritrary, 32 = m. Thus, letting 

T = {(vl, 32): ul < 3, < ~,, ~2 < "~2 < ~2, 31 ~ m =< r2}, 

we have the following result: 

every m-admissible, phasewise-constant field ~ admits/ 
the representation (3.4) with (3~, 32) E T. (3.6) 

Note further that, for such Q, the energy (2.7) may be written as 

E(r = ~v(zl, z2) + trl(o) (3.7) 
with 

~0(3,, 32) :=  v,(31, 32) ~0(3,) + v2(3,, 32) ~(32). (3.8) 

Next, for each (3,, 32) E T, let d(~h, z2) designate the class of all m-admissible 
fields of the form (3.4a), so that (3.4b) and (3.7) hold. Clearly, zr 32) contains 
at least one ~ with minimal interface. Further, since v~(o) does not vary over 
d(31, v2), (3.7) and the remark containing (2.11) imply that: 

the global minimum of E over zg(z,, r2) is assumed at, and / 
(3.9) only at, those ~ with minimal interface. / 

The results (3.2) and (3.9) together yield the desired conclusion. [ ]  
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Lemma 3.1 allows us to confine our attention to minimal interface fields 
of the form (3.4). On such 

I(~) = a(v~(p)) ------ a(v2(9)), (3.10) 

with a the minimal-interface measure, and the energy (3.7) reduces to a function 
e(vx, "r2) of  (r, ,  ~2): 

E(0 ) = ~v(~r,, "~'2) -]- aa(v~(z,, ~'2)) : : e(~'~, "c2). (3.11) 

Thus we are led to problem 

( ~ )  minimize e over T. 
In fact, we have 

Lemma 3.2. Problem ~ reduces to problem ~ :  

(i) I f  ~ solves ~ ,  then ~ has the form (3.4) with (~,  z2) a solution of ~ .  
(ii) I f  (~,  ~:2) solves ~ ,  then any minimal-interface field ~ of the form (3.4) 

solves ~ .  

Remark. The proofs of  Theorems 2.3 and 2.4 are quite simple for the special 
case in which ~0(~) is infinite at the end points u~, ~ 1,02, u2. In this instance e(z~, ~2) 
is lower semi-continuous, so that ~e has a solution. Further, for any two-phase 
solution (Zl,~:2), we write ci = vi(z~, z2) -1, note that v~(z~ + c : ,  ~:2 - c2e) 
is independent of  e, and equate to zero the derivative, at e = 0, of e(Zx + c : ,  
~ 2 -  e2e). This leads to ~o'(z~)----~P'(z2) and, subsequently, to the results in 
Theorem 2.4. 

We now divide the set (~1,~1) X(~2, ~2) into three sets: 

~21 ~ (('l~'l., "~'2): vt('t'2) > Vt('g'l)}, (3.12) 

_ r  = = 

Note that, by the discussion leading to (2.3), 

Z' = ((o~(/~), fl(/~)):/~ ~ # (~--).  (3.13) 

Further, since ~p" > 0, if we differentiate (2.3) we find that 

& > O, fi > O, (3.14) 

where we have used the notation 

df (3.15) 

Thus, on Z, ~2 increases with increasing ~ .  
Our next step will be to analyze ~(~1, ~2) on certain line segments in T on 

which vi(T1, r2) have constant values. This will facilitate our study of e(~l, T2), 
since the interfacial energy aa(v~(~, ~2)) is invariant on such segments. 
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Choose ().~,).2) E ~ and consider the line segment/consisting of all (31, z2) E T 
of  the form 

with 

T 2 - - ) . 2  = --k(31 --).1) 

k -- v1().1, ).2) 
v~().~, ).2)" 

We will refer to 1 as the v-constant line through ().~,).2). 
Let 

.M' = ((31, 1"2) E T: 31 ---- m or 32 = m}, 

so that ~ '  is vertical for mE (0~0, 9a), horizontal for m E (01, flo), 
for mE [0~, 02]. Further 

. g A S ~ O  f o r . ~ ' ~ O .  

(3.16) 

and empty 

(3.17) 

Lemma 3.3. 
(i) There is exactly one v-constant line through any given point of  1". 
(ii) The v-constant lines do not intersect ~g. 

(iii) Let I be a v-constant line. Then e(31, 32)--restricted to l--strictly decreases 
with31 on l f ' ~ 2 1  , strictly increases with31 on l f ' ~ 1 2 ,  and, i f  l f ~ S = ~ O ,  
has a global minimum at l #~ S.  

(iv) e(31, 32) ~ ~o(m) on J l .  

Proof Assertion (i) is trivial, while (ii) follows from the fact that one of  
vi(31, "c2) vanishes on ~ ' .  To verify (iii), let I be the v-constant line (3.16) and write 
vi = vi().l, ).2). Then 

hence 

for all (31, 32) E I. 

31v 1 -~-3262=). tv I - l - ) . 262=m;  

vi(31, 32) ---- vi (3.18) 

Next, W(3~, 32)--restricted to 1 and considered as a function of 3~--has the 
form 

~)l(31)  = V ) ( 3 1 ' / ( 3 1 ) ) '  / ( 3 1 )  = ).2 - -  ~ ( 3 1  - -  ) .1)"  

Therefore, using (3.8) and (3.18), 

d 
a3,  v,t(31) = bl[v/(31)  - v,'(32)], r2 = f ( 3 0 ,  

and, by (3.12), (iii) holds with e replaced by ~o. In view of (3.11) and (3.18), this, 
in turn, implies (iii) for e itself. 

Finally, (2.10), (3.4b), and (3.11) yield (iv). [ ]  
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The proof of the next lemma will make use of the inequality 

e(O~o, flo) ~ aam, (3.19) 

which follows from (2.10), (3.4b), and (3.11). 

Lemma 3.4. ; ~  has a solution, and all solutions lie on (S  A T) A ~g. 

Proof. By (3.14) and the properties of % 

f(#) : =  min {~(0~(/z)), ~0(fl(/z))} 

is strictly decreasing on ~ ,  0), strictly increasing on (0, ~ ,  and zero at kt = O. 

We may therefore use (A2) to establish the existence of numbers u E (/~, 0), 
fi E (0, fi) such that 

f(u_) = f(~) = aav .  
Let 

_~ = ~(u), ~ = t~(u), ~ = ~(~), ~ = ~(~) 

and write 

~*  = ((~1, 32) E S n T: _~ =< 3, =< ~). 

We will show that:given any (z l, %) E T \ (S* U ~ ) ,  there is a point (zl, ~2) E X* 
such that 

e($1, 32) < e(zl, "~2). (3.20) 

Since e is constant on J l  (cf  (iv) of Lemma 3.3), S* is compact, and e is lower 
semi-continuous (cf  (2.13)), this would imply that e have a global minimizer, and 
that all such global minimizers lie on Z'* ~J ~ ' ;  and this, in turn, wouldyield the 
validity of Lemma 3.4. 

Assume that 
m E (O~o, ~]. (3.21) 

We then have the situation shown in Figure 4, where T is the region (zl, m] • 

(52, z2). 
Let 

Our first step will be to show that 

e(21, 22) > e(o%, flo) for (2~, 22) E ~ .  (3.22) 

Choose (21, 22)E ~ .  Since y decreases on (xl, ~o) and on (52, flo), 

~(2~) _> ~(_~), ~(2~) => ~(~), 

and we may use (3.8) and the identity vt + v2 = 1 to conclude that 

~(2~, 2 9  =>f(O = ~a~. 
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tf 

\\ / \ \  

Fig. 4. The set T for the case O+o < m < ~. The v-constant lines have arrows indicating 
the direction of-decreasing y(zt, r2) 

Further, since 21, 22 =~= m, 
(3.19), 

which is (3.22). 
Choose 

v1(21, 22) ~ 0, I and a(vj(2x, 22)) > 0; hence, using 

e(~'l, 22) > ~0(~'1, ~'2) ~ e(o~o, rio), 

(,,, "r2) E T\  (Z* ~ ~'), 

and let / designate the v-constant line through O:l; r2). If  (~h, z2) E ~ ,  then (3.22) 
trivially implies (3.20). If  (~h, T2) ~ 9 ~, then one  of  the following is true: 

(a) l z% S* ~ 0; 
(b) I A ~ ~ 0. 

In case (a), (iii) of Lemma 3.3 implies (3.20) with ('~, 42) the point at which l 
intersects Z'*. In case (b), (3.22) and (iii) of  Lemma 3.3 imply (3.20) with (zl, ~r2) 
= (O~o,/5o). This completes the proof  for m E (So, ~]. The proof  for m in the inter- 
vals (~, Ol), [~1, 02], (~2,/5), and [/5, flo) is completely analogues and can safely 
be omitted. [ ]  - - 

Proof of  Theorem 2.3. This follows directly from Theorem 2.2 and Lemmas 3.2, 
3.4. [ ]  

Proof of Theorem 2.4. Let r be a solution of ~ .  Then (i) is a consequence of  
Lemma 3.2. Further, by Lemmas 3.2 and 3.3, Q has the form (3.4) with (*'1, z2) E dr' 
or (z~, z'2)E Z'(~ T. By (3.17), and since all points on dr' correspond to the same 
field (the constant with value m),we may assume that (~'1, ~2) E _r/% T. Therefore, 
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by (3.12)3, ~ has constant chemical potential, and, by (2.3) and (3.13), 

�9 ~ = ~O), ~ = ~O), /t c (/t,~), 

with/z the chemical potential. Thus 9 has the form (2.17), and b~ E U. Further, for 
fields of  the form (2.17) the energy E(9 ) reduces to 

sO,) :=  e(~(/t), fl(/t)), 

which is (2.15). Comparing (3.12)3 and (3.13) we see tha t / t  must be a global 
minimizer of # over U, since (r~, 32) minimizes e over Z'. Thus (ii)-(iv) are valid, 
and tracing the above steps backward, we also have the converse assertion in 
Theorem 2.4. [ ]  

The next lemma will be useful in proving the remaining results of Section 2. 
There (cf. (2.15)) 

~ O )  :=  ~(~@), ~(/t)) = ~x(/t) v(~O)) + ~ O )  ~'(~(/t)), 

G(/t) :----- ~P(~O)) --/tc~O), (3.23) 

g(#) : =  ~o(fl(/t)) --/ triO) , 

and we use the notation (3.15). 

Lemraa 3 .5 .  On [J: 
(i) iJ~ = - ~ 2  > O; 

(ii) ~ = (G - -  g)  ~)!; 
(iii) ~ O )  has a global minimum at # = 0 and iS strictly decreasing fo r  # < O, 

strictly increasing for  /t > 0. 

Proof. By (2.15), (3.14), and the identity v~ + v2 = I, 

~ = - ~ ,  = ( / / -  ~)-~ (v / ,  + v2ti) > 0, 

which is (i). Next, by (2 .3)and (3.23)2,3, 

6 = - ~ ,  k = - 8 .  

Also, since v:~  + v2fl = m, 

~r, O) = v~(/t) c O )  + v~O) gO) + t,m, 

which leads to (ii). Finally G(0) = g(0), as a(0) = O~o, fl(0) =/~0, while 

( G - - g ) "  = fl - -  or > O. 
Thus 

and, since ~ > 0, 

{ ~  0 for # < 0 

G(/t) --  g(/t) 0 for # > 0, 

(iii) follows from (ii). [ ]  

Note that, by (2.15) and (3.23)~, 

#O) = ~O)  + ~a(v~O)). (3.24) 
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Proof of Corollary 1. Since ~ is two-phase, c~ E ~/ and 

d(#) = 0. 

In view of  (3.24) and (i), (ii) of  Lemma 3.5, this implies (2.19). [ ]  

( 3 . 2 5 )  

In proving the remaining results of  Section 2 it is convenient to make explicit 
the dependence of  ~ ,  8, ~ ,  U, and vi on m by writing 

= ~(m),  e(/t) = o~(/~, m), 7t(/z) = ~(/z, m), U = U(m), vi(tz ) = vi(tt, m). 

By (2.16) the functions of  (/z, m) have domain 

((/~, m ) : #  < / z  < / ~ ,  o~(/~) =< m ~ flQ~)}. (3.26) 

Note that,  by (ii) of  Lemma 3.5 and the fact that  ~ (# ,  m) = ~o(m) for m = o ~ )  
or m = flU), 

T(#,  m) is bounded away from zero on any subset of  (3.26)] 
(3.27) 

with # bounded away from zero. / 

Proof of Corollary 2. By (3.25) and (2.15)2,3, 

08(/z, m) 
0/z -- 0 at /z ----/~m, 

~VI(~, m) Ov2(/t, m) 
r Om _ _  _ [ f l ( # )  - 

Thus, since 

E m =  8(/~m, m), 

if we write #m = 0C(/-~m), ~m = fl([dm) and use (2.15)I and (2.19), we find that  

dE,. _ 08~,  m) [ 

dm ~m ~ =urn' 

= -- (tim -- C~m) - I  [W(gm) -- ~(flm) + aa'(v,(#m, m))], 

= tz,,. [ ]  

Proof of Theorem 2.5. By (3.23)t and the identity v~ = 1 -- v2, 

~(# ,  m) ~ [ 1 -  v2(/~, m)] ~p(o~Q~)). 

Thus and by (2.15)3, (3.24), we are led to the inequality 

8(/z, m) -- ~p(m) ~ v2 --(fl -- o~) ~p(m) -- ~p(o0 ~p(o 0 -{- a 
m - - c ~  v2 .I 

for 

(3.28) 

v2 > O, where we have written ~ = ~(~), fl = fl(~), v2 ---- v2Q~, m)). 



206 M.E. GURTIN 

Suppose that there exists a sequence ( ink} , m k --~ Lx o as k -+ ~ ,  such that 
~ ( m k )  has a two-phase solution r for each k. Let #k be the chemical potential of 
Ck. Then, since ~)k must have lower energy than the single-phase solution, ~ ~ ink, 

0 ~ ~(/~k, mk) ~ ~(mk). 

But ~p(mk)--. ~ 0 as k - + c %  since mk--~O~o; hence W~k, m k ) ~  0, which with 
(3.27) lead to the conclusion that /t k -+ 0. Thus o~(/tk)-+ 0% and (2.15)3 implies 
v2(/~k, mk) ~ 0; hence (iii) of Theorem 2.2 yields 

a(,,~(~,k, mk)) 
---& (X~. 

V2(#k, ink)) 

The other terms on (3.28)--evaluated at (/~,, mk)--have finite limits as k -+ e~. 
Thus 

~P(mk) < g(/~k, mk) 

for k sufficiently large, which contradicts the assumption that ek solve ~(rnk). 
Thus there exists a 8x > 0 with no two-phase solutions of ~(rn) for 

E (0~o, ao + ~,]. A similar argument yields the nonexistence of two-phase solu- 
tions for mE[/30--~2,60) ,  for some t~2>O. [ ]  

4. Solution in R 1 

When n = 1 problem # is so simple we need not assume a small. In view 
of  Lemma 3.3 and the subsequent remark, ~ consists in minimizing e(31, 32) 
over T, where 

, ~0 ( 31 ,  3 2 )  - t- O', 3 1 ,  T 2 =t=m 

e ( % , 3 2 ) = t  m~p(), 3 1 = m  or 3 2 = m  

( e l  (2.10)~, (3.11), (i) of Theorem 2.2, and (iv) of Lemma 3.3). The minimum 
value of ~(31, 32) + a is a at (31, 32) = (So,/3o). Thus 

(i) for m E (O~o, e l )  ~'/ ( ~ 2 ,  f lO) the solutions are 
(a) the single-phase field q(x) ~ m if ~o(rn) ~ a, 

(b) the two-phase fields corresponding to (0%, rio) if ~o(rn) ~ a; 
(ii) for  m E [r q2] the solutions are 

(a) the two-phase fields corresponding to (So, flo). 

and q(1 -- x). 

Here for 
= (0, l) 

the two-phase fields corresponding to (So, t3o) are 

l ogO, 0 < x < s 

Q(x) = trio, s < x < l ,  

/30 - -  FH 

$ - -  flO - -  SO 
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P 

7. 

// 
/t 

4 

7. 

Fig. 5. The energy E m and chemical potential tim (solid lines) of  the global minimizer 
as functions of m 

Figure 5 shows the energy Em and chemical potential/~m o f  the global minimi- 
zers as functions o f  m, for  the case in which ~(~i), ~'(&) > or. 

5. A simple example in R 2 

Let  $2 be the unit  square 

.(2 = (0, 1)x(O, 1), 

so that  the minimal-interface measure a(v) is given by (2.12). 
For  the free energy we take the piecewise-quadratic function (Figure 6) 

[~ 2 1 1 
- - f  , ~ < e < z  

v,(e) = v,(e - 1), z- < e < ~-. 
3 5 (5.1) 

Thus 

while ~ 

so that  

with domain  

1 I 3 5 
~ 1 - -  4 '  ~1 = 7 '  Q 2 : ~ ,  ~ 2 : ~ ,  

~x(/t) = ,u, /3(,u) : 1 + g ,  

vl(/z, m) : 1 -t- # --  m, v2(,a, m) = m - - / , ,  
(5.2) 

/[g2 

~u(t ') = 5 -  (5.3) 

U(m) = (--�88 �88 A [m - -  I, m]. (5.4) 

1 Here, to make our discussion unambiguous, we shall use the notation (3.26) in 
which dependences on m are made explicit. 
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~,(Q) 

1 
-2- 

///////////// ,/////~ 
1 3 5 

o T ~- I T 

~ 0 17////7///////////I I 
Fig. 6. Free energy ~p(q) and W'(Q) for the example of Section 5 

We shall assume that  a is consistent with ( A 2 )  , which in the present circumstan- 
ces reduces to 

< 1/32.  (5.5) 

We shall restrict our  at tention to m E (0, 1) ----- (o%, flo), since we know the 
form of  the solution otherwise (Theorem 2.1). Further ,  the  symmet ry  of  ~v tells 
us that :  i fr  solves .q'(m), then 1 - -  p(x) solves -~(1 --  m). Thus we may fur ther  
restrict our  at tention to 

0 < m = < � 8 9  

Next,  to write an explitit relation for  a(v2(,u, m)) we note that,  by (2.10) and 
(2.12), a(v) is C 1 on each of  the intervals (0, I /n),  ( I /n ,  1 - -  l /n) ,  (1 - -  I /n,  I), 
but  not  differentiable across their mutual  boundaries.  Labeling these intervals by 
I"1, V2, V3 respectively, it is clear that v2(#, m) E V,. if and only if (/~, m) E Ai, 
where (Figure 7) 

A1 = {(/z, m)E A : # E  [m --  z~ -1, m]}, 

A2 = {(#, m)E A:/~E [m q- z~ -1 --  1, m --  n- l]},  
(5.6) 

A 3 ----- {(/.t, m)E A: / zE  [m - -  1, m -t- n -1 - -  1]}, 

a = (--�88 �88 x (0, �89 

Thus a(,u, m) = a(v2(tt, m)) is given by 

[ [:~(rn --  ,u)]~, (/~, m) E A1 

a(/z, m) = / 1, (/z, m) E A2 (5.7) 

/ In(1 - -  m q- #)]] ,  (/z, m) E A3. 
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T ' : Z = - .  
�9 " . ' . "  . . " �9 . . .  

~s~ - - : . . . ' - ' .  
.. �9 . . .  /.t=m--~- 

: . " . " ' ~  . . . '  " /~:m.• 

Fig. 7. The sets A i 
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By Theorem 2.4, (for each fixed m) problem ,~(m) reduces to minimizing 
8(#, m) over U(m), where, by (5.3), 

e(tz, m) = �89 2 § aa(t z, m). (5.8) 

Our first step will be to show that 

for any m E (0, �89 the global minimizer necessarily has /z ~ 0. (5.9) 

To see this note that a(/~, m) is constant in Az and strictly increases with decreasing 
# in A1 ; thus, by (5.8), g(#, m), for m fixed, cannot have a minimum in Aa or A2. 
The only other possibility is a point (#, m) in the interior of A3, and this, in turn, 

would require that ~(#, m) : =  (~/##) g(tz, m) = 0 at that m. If, in (5.8), we use 

the expression for a(/~, m) appropriate to A3, and set ~(/z, m) ~- 0, we find that 

a ~/~ (1 -- m §189 (5.10) 
/z - -  2 

But in A3, 

- � 8 9 2 4 7  1 - m + / z = > � 8 8  

hence (5.5) and (5.10) yield the contradictionary inequalities 

� 8 9  =-'--< 3--T" 
Thus (5.9) is valid. 

We may therefore restrict our search for global minimizers to those portions 
of A~ and A2 that lie in /z ~ 0. We begin by determining the points of A~ at 
which o b = 0. Within A1, 

o~(tt, m) = �89 t2 -t- a[~(m --/z)]~, (5.11) 



210 M.E.  GURTIN 

and d(/~, m) ~- 0 

where 

on the curve 

{ + 4~31, 
: =  (It, re)EAt:m=/z #--T., (5.12) 

The curve c# is asymptot ic  to m = / t  and m = 4).3//~ 2 and has a minimum value 
o f  m at 

# = 22, m = 32. 

Further,  

#(/~, m) < 0 for m < / t  4- 
4~ 3 

423 
~ 2 "  #(M, m) > 0 for  m > / t  + - -  

Finally, on A2, 
#(~, m) = �89 + 

and #(t~,m)>O for / ~ > 0 .  
Thus  we have the situation shown 1 in Figure 8, and it is clear that  the only 

candidates for global minimizers are:  

(i) the line A t = m  (with # < � 8 8  
(ii) the por t ion o f  the curve c# that  lies below # = 23, 

(iii) the por t ion o f  the m-axis between m = 1/~r and m = �89 
Thus for  each value o f  m we have only to see which of  these curves has lowest 

energy. 

22 / ( o,y 
/<o />o 

p ~ I 

1 
3), E ml -S 

Fig. 8. The behavior of 

";/= m- ~-- 

i Assumption (5.5) ensures that 32< n-1 and that ~# intersects the line /~= m -- ~-1. 
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/ i  

1 
4 

J J l l i , l l , J l I I ~ l l J l l  

mo m ,  _ m 

Fig. 9. The chemical potential which globally minimizes 9 ~ consists of the cross-hatched 
c u r v e s  

Em 

single" 
phtlse 

/ \ 

mO m ,  

f 

P 
/ 

/ 
/ 

/ 
/ 

/ 

Fig. 10. The energy E m and chemical potential /~m (solid line) of the global minimizer 
as functions of m 

Case 1: m E (0, 32]. Here  it is clear  tha t  the s ingle-phase solut ion # = m 
has  least  energy. 

Case 2." rn E (32, 1/zl]. F o r  this range the candida tes  are the lower po r t i on  of  
the curve ff and  the line /~ = m. C o m p a r i n g  the energy on these curves,  we find, 
af ter  some algebra,  tha t  / ,  ---- m has  least  energy for  m E (32, mo), they have equal  
energy for  rn ---- mo, and the lower  po r t i on  oft6 ' has least  energy for  m E (mo, 1/~), 
where 

mo = 2~ 32. 
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Case 3: m E (1/~, ml), where 

is the value of m at which ~ intersects the line # : m --  z~ -1 (Figure 8). Here the 
candidates are the lower part  of  cg and the m-axis; one can show that c~ has lower 
energy for m E (1/:t, m,) ,  the m-axis has lower energy for m E (m, ,  ml), and they 
have equal energy at m -~ m, ,  where m ,  E (1/~, m j) is the solution of  a compli- 
cated equation. 

Case 4: m E [ml,�89 Here the m-axis obviously has least energy. 
Thus we have found the global minimizer of  8 for each choice of  the parameter 

m; the result is shown in Figure 9. The corresponding minimal energy is shown in 
Figure 10. 

Acknowledgment. I gratefully acknowledge several important and stimulating discus- 
sions with JACK CARR, JERRY ERICKSEN, AVNER FRIEDMAN, ROBERT KOHN, VICTOR 
MIZEL, RONALD RIVLIN, JAMES SERRIN, MARSHALL SLEMROD, MAURIZ10 VIANELLO, 
and WILLIAM WILLIAMS. I am particularly grateful to AVNER FRIEDMAN and ROBERT 
KOHN for directing me to the literature on minimal surface problems, and to ROBERX 
KOHN for his proof of Theorem 2.2(iii). This research was supported by the Army Re- 
search Office and the National Science Foundation. 

[1893] 

[1958] 

[1974] 

[1977] 

[1981] 

[1983] 

[1984] 

References 

VAN DER WAALS, J. D., The thermodynamic theory of capillarity under the hypo- 
thesis of a continuous variation of density (in Dutch), Verhandel. Konink. Akad. 
Weten. Amsterdam (Sect. 1) Vol. 1, No. 8. 
CAHN, J .W. • J. E. HILLIARD, Free energy of a nonuniform system. I. Inter- 
facial free energy, J. Chem. Phys. 28, 258-267. 
MASSARI, U. & L. PEPE, Su una impostazione parametrica del problema dei 
capiUari, Ann. Univ. Ferrara 20, 21-31. 
MEYERS, N. G. & W. P. ZIEMER, Integral inequalities of Poincar6 and Wirtinger 
type of BV functions, Am. J. Math. 99, 1345-1360. 
GItJSTI, E., The equilibrium configuration of liquid drops, J. reine angew. Math. 
321, 53-63. 
GONZALEZ, E., U. MASSARI, & I. TAMANIN1, On the regularity of boundaries 
of sets minimizing perimeter with a volume constraint, Indiana U. Math. J., 32, 
25-37. 
CARR, J., M.E. GURTIN, & M. SLEMROD, Structured phase transitions on a 
finite interval, Arch. Rational Mech. Anal., forthcoming. 

Department of Mathematics 
Carnegie-Mellon university 

Pittsburgh, Pennsylvania 

(Received May 7, 1984) 


