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1. Introduction 

This note is concerned with the propagation of waves in a variety of media - 
perfectly elastic, elastic, thermo-elastic and visco-elastic. For each of these media 
it is shown that there is a very simple yet quite general connexion existing between 
the speeds of the waves which may propagate. This connexion is also universal, 
in the sense that it is independent of the symmetry of the material, so that the same 
connexion holds for all materials of the given class. 

Of course, such connexions are of value to the experimentalist. For, he may use 
them as a check on his measured data. Or, he may test them in a material without 
knowing the values of the parameters which describe that material. If the experi- 
mentalist finds for a particular material that this universal connexion is not 
satisfied then he may conclude that the constitutive equation used as a basis in 
the derivation of the universal connexion does not adequately describe the defor- 
mations of the particular material. 

Previously [1, 2] universal connexions have been obtained for waves in finitely 
deformed isotropic elastic and viscoelastic solids. These connexions have related 
to principal waves. There is no such limitation on the connexion derived here nor 
is it restricted to isotropic materials. 

It is of interest to note that in general the universal connexion of the type derived 
here is not valid for incompressible materials, and hence afortiori is not valid, 
in general, for internally constrained media. 

2. Classical Linear Elasticity 

First, homogeneous anisotropic elastic bodies are considered and the universal 
connexion derived in some detail. Then the bases for the result in other media are 
briefly sketched. 

In the classical linear theory of homogeneous elastic bodies the stress-deforma- 
tion relation takes the form 

r j=Ci jkl ~Uk/~XI, (1) 

all quantities being referred to a fixed rectangular Cartesian coordinate system x. 
In this system the components of the (symmetric) Cauchy stress tensor are denoted 
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by a~j and the components of the constant elasticity tensor by Cijkl. These con- 
stants satisfy 

Cijkl~---Cjikl=Cijlk~-Cklij. (2) 

The displacement u has components us given by 

u=  x -  X, ui(X, t )= x~ -  Xi, (3) 

where x is the position vector at time t of the particle initially at X. The equations 
of motion are 

tri j /SX s = p t~ 2 uifl9 t 2, (4) 
or, using (1) give 

c~ j ~t d 2 uk/dX~ ~ Xj = p a 2 u~/~ t 2, (5) 

where p is the density, and body forces are neglected. 

The displacement 
u ,=A ,  e x p l ( N j X j - c t ) ,  N j N j = I ,  (6) 

represents a plane wave polarised along A, propagating in the direction N with 
speed c. Inserting (6) into (5) gives the propagation condition: 

(Ci jkl Nj Nt-- p c 2 (~ik) Ak-~O. (7) 

Hence in order that A is not zero trivially, the secular equation 

det (ci j k I Nj N t - p c 2 6 ik) = 0 (8) 

must be satisfied. This cubic in c 2 has three real roots [3] in view of the symmetry 

Ci jkl Nj Nl-~Ck jil Nj Ni, ( 9 )  

which follows from (2). Moreover, the corresponding amplitudes A are orthogonal 
[3]. Thus, in general, three plane waves, polarised in three mutually perpendicular 
directions, may propagate in every direction in the material. 

Denote the squared speeds of propagation of the three waves which can propa- 
3 

gate in the direction N by c~ (N), ~ = 1, 2, 3. For any given N, the sum ~ c~ (N) 
may be read off from (8). In fact, ~= 1 

3 

p ~ c~ (N) = trace (ci j kS N~ Nl) = C i j il Nj Nr (10) 
~=1 

Now choose M and P to be two unit vectors such that N, M, and P form an ortho- 
gonal triad. Then 

3 

p ~ {c2~(N)--}-c~(M)-k-c2~(P))=cijit(NjNt+MjMt-}-PjPt)=cijij, ( 1 1 )  
o~=l 

since 
~ j t = N j N I +  M j M t +  PjPr (12) 

The right hand side of (11) is independent of N, M and P. Hence if R, S, T is 
another orthogonal triad of unit vectors, then 

3 3 

{ c ~ ( N ) + c ~ ( M ) + c ~ ( P ) } =  Z {c~(R)+cZ,(S)+c~(T)} �9 (13) 
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Equation (13) gives a relation between the wave speeds corresponding to two 
pairs of triples of orthogonal directions. It is a universal connexion since it is not 
dependent upon the C~jkt which determine the properties of the material. It holds 
for all homogeneous elastic materials, irrespective of their symmetry, whose 
deformations satisfy the constitutive equation (1). 

Clearly, to check equation (13) the experimentalist does not need to determine 
the elastic constants of the material. If equation (13) is found to be invalid for a 
particular material it may be concluded that the deformations of the material in 
question do not satisfy the constitutive equation (1). On the other hand, it should 
be noted that if equation (13) is found to be valid experimentally for a given 
material it may not be concluded that the deformations of that material satisfy the 
constitutive equation (1). For, it has not been shown that the materials whose 
constitutive equation is (1) are the only ones for which the relation (13) is satisfied. 
In fact it will be seen in the following sections that (13) holds for a wider class of 
materials. 

Clearly, from (13) if (N, M)  is any pair of orthogonal directions and (R, $) is 
any other pair of orthognal directions coplanar with (N, M), there follows the 
universal connexion 

3 3 
{c 2 (N) + c 2 (M)} = ~ {c 2 (R) + c~ z (S)}. (14) 

at=l  c t=l  

3. Small Deformations Superimposed on Large 

Turning now to the theory of small deformations superimposed on large, 
suppose that a perfectly-elastic material of arbitrary elastic symmetry is in static 
equilibrium in a state of arbitrarily large static deformation. If the body is now 
subjected to an infinitesimal time-dependent deformation e u, where e is a constant 
so small that its squares and higher powers may be neglected in comparison with 
first degree terms, the equations governing the superposed deformation are of the 
form [4, 5] 

0 / aUk \ t~ 2 Ul 
OXj [d'~kt-~t )=P--oi~-' (15) 

in the absence of body forces. Here dijk~ are functions of the large static defor- 
mation and of the strain-energy function of the material and have the symmetry [5] 

di jk l=dkl i j ,  (16) 

and p is the material density in the state of large deformation. 
Consider first the case when the body is initially homogeneous and the large 

deformation is homogeneous. Then d~jkt and p are constants and the equations 
(15) reduce to 

dijkl 0 2 Uk/gX t OXj =pg2  Ui/Ot 2, (17) 

which are of the same form as (5). If it is now assumed that u~ is given by (6), then 
from (16) 

dijklNjNl--,-f't~m~r mr ( 1 8 )  --~kjil  a'j ~l, 
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and the roots c 2 of the secular equation are real. The universal connexion (13) 
and its corollary (14) follow as in w 2. The connexion is now universal in the sense 
that it is valid for any strain-energy function and for any basic static large homo- 
geneous deformation. 

For homogeneously deformed homogeneous isotropic compressible elastic 
materials ERICKSEN* has shown that the squared speeds of propagation of the 
three principal longitudinal waves are 

p-tOtJOlog2,, ~= 1, 2, 3, no sum, (19) 

whilst the squared speeds of propagation of the six principal transverse waves are 

22, (t, - ta)/p (2~ 2 - 2~), ~, fl = 1, 2, 3, no sum. (20) 

Here ;t, are the principal extension ratios of the basic homogeneous deformation 
and t, are the principal stresses necessary to maintain the body in the state of 
homogeneous deformation. It follows from (13), (19) and (20) that if (N, M, P) 
is any triad of mutually orthogonal unit vectors, then 

3 3 3 

P X {c~(N)+c~(M)+c~(P)}= X Ot,/Olog2,+ X 2~(t,-tp)/(2~-2~). (21) 
~ = 1  ~ = 1  ~ , # = 1  

It may be noted that for Cauchy-elastic bodies the symmetry relation (16) is 
not valid in general [6]. Hence (18) no longer holds and consequently there is no 
assurance that these plane waves can propagate in every direction [6]. The univer- 
sal connexions (13) and (14) still hold, but clearly only make sense for those pairs 
and triples of directions along which three waves may propagate. 

4. Acceleration Waves 

Now consider the case when the di j  k l are not constants but functions of position 
as for example when the body is inhomogeneous or when the large static defor- 
mation is inhomogeneous. Of course, in general, sinusoidal plane waves cannot 
propagate in the material [6], but acceleration waves may do so. 

Let ~(Xa, t ) = 0  be the wave-front across which ~2Ui/at2 has a discontinuity 
as the particle XA is traversed, whilst ui, OudOt, 8udOXj are continuous. Then 
from (15), in order that an acceleration wave propagate in the material, the secular 
equation 

det {d, j kS (X) (O~/OXj) (Oq~/OXt) - p (O~/O t) 2 fitk} = 0 (22) 

must be satisfied [7]. Note that the local speed V of the acceleration wave, i.e. its 
speed relative to the material, and the unit normal Ni to the wave-front are given 
by [8] 

v =  - (0~/0 t) {0~/0x,  0~ /0x ,} -  ~, 

N, = d~/OX, { O~/OX~ O~/OX,}-~. (23) 

Hence equation (22) may be written 

det(dijkt Nj N~-pV 2 61k ) =0, (24) 

* See reference [1 ]. 
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which is similar to (8). The argument goes through as in w 2, and the universal 
connexions (13) and (14) are also valid at each particle of the material for acceler- 
ation waves. 

5. Linear Viscoelasticity 

Next consider the propagation of a damped linearly polarised sinusoidal wave 
in a linear viscoelastic solid. Let the stress aij  in the material at time t be given by 

t 

ai j=gi jk l  ekt+ S f iJkl(t--z)ekl(Z) dr '  (25) 
- o o  

where egt(z) is the infinitesimal strain at time z, defined in terms of the displace- 
ment components ui(z) through 

2 ekl(O = a U k (z)/c~Xt + ~ u I (z)/c~Xk. (26) 

ekt denotes ekl(t), giykl are material constants a n d f ~ j k t ( t - - z )  are material func- 
tions. It can be shown [9] that the damped sinusoidal wave 

ui (~) = Ui exp i co ( Sj Xj - z), (27) 

where S is the slowness and U is a constant, will propagate in the material provided 

(hi jkl Sj  S l - ,Ot~ik ) U k =0, (28) 
where 

h i j k t=g l j k l+  j f i j k z ( t - - z ) e x p t t o ( t - - r ) d r .  (29) 
- o o  

Equation (28) leads to the secular equation 

det(hi jkl Sj S l - p 3 s k )  =0. (30) 

If attention is restricted to the case when planes of constant phase are also 
planes of constant amplitude, then S is of the form 

S i = S N i = ( 1 / c )  N,, (31) 
and equation (30) becomes 

det (hi j k l Nj Nl - p c2 t~ ik) = 0. (32) 

The universal connexions (13) and (14) are obtained again. Of course these uni- 
versal connexions are meaningful only for those pairs and triples of directions along 
each of which three waves may propagate. 

Similar results hold for sinusoidal small amplitude waves propagating in a 
finitely deformed homogeneous isotropic viscoelastic solid. The results may be 
read off from Equation (31) of the paper by HAYES & RIVLIN [2]. 

6. Linear Thermoelasticity 

In the classical linear theory of thermoelasticity the Helmholtz free energy A 
measured per unit mass may be written [10] 

2A=aO2/To + 20 bi jt~ui/~3Xj + mi jkl(aui/c3Xj) (COUk/aSl), (33) 
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where a, b t j = b j t  are constants, and mi. ik  t a r e  constants with the symmetries (2). 
To + 0 is the temperature of the body, initially at uniform temperature To. The 
heat conduction equation and the stress deformation relation are given by 

qi = -- atj t30/dXj, 
(34) 

a t j = b i j 0 + ra i j k I ~ Uk/dXl, 

where q is the heat flux vector and a i j = a j t  are constants. In the absence of heat 
sources and body forces the equation of motion and the energy equation are [10] 

a 80/a t + T O b i j 02 ui/SX j 8 t = asy 0 20 /SX i ~Xj, 

bt j ~ O/aXj + mt j k, 02 Uk/SXt 8Xj = p 02 ut/8 t 2. (35) 
Now taking 

u, = Ai exp t co ( SNj  Xj  - t), 
(36) 

0 = 0 exp l co (SNj  Xj  - t) 

in (35), the propagation conditions 

T o S c o b u A i N j + ( c o a i j N i N j S 2 - t a )  O=O,  
(37) 

( S 2  mijk  I Nj N I - p ~ik) ak -- (iS bik Nj/CO) 0 = 0 

are obtained. The secular equation is 

det ~Pr.=0, F, ~ = 1 , 2 ,  3,4, (38) 
where 

tIJik=mijklNjNl--pC2t~ik, i , j , k , l = l , 2 , 3 ;  

~ 4 =  ~ , i =  - tb i~Njc / co ,  i , j =  1, 2, 3, (39) 

~44 = - t ( a i  j Ni N j ( . o - a  lc2)/co 2 r O, 

and I have written c=  1IS. 

The secular equation (38) is a quartic in c 2 so that four waves may possibly 
propagate in any direction N. Denote their squared speeds by c 2 (N), F =  1, 2, 3, 4. 
From use of (39) it is easily seen that 

4 

c~ (N)  = A j ,  Nj N,, (40) 
F = I  

where 
pa  A j r=  a m , j n +  To btj b n - l P  co a jr = p a  Atj .  (41) 

By use of the same argument as before (w 2) it follows that 

4 4 

E {C2r(N)+c2r(M)+cZr(P)}= E {c~r(R)+c2(S)+c~(T)}, (42) 
F=I F = I  

where (N, M, P)  and (R, S, T) are any two triads of mutually orthogonal unit 
vectors. Also 

4- 4 

{c~- (N) + crZ(M)} = E {c~-(R) + cr2 (S)}, (43) 
F = I  F = I  
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where (N, M)  is any pair of orthogonal unit vectors and (R, S)  is any other pair 
of orthogonal unit vectors coplanar with the pair (N, M). 

7. Internally Constrained Media 

It is now shown that universal connexions similar to (13) and (14) are not 
valid in general for incompressible materials and hence afortiori are not valid in 
general for materials subjected to internal constraints. 

The constitutive equation for an incompressible homogeneous elastic body in 
classical linear elasticity theory is 

aij = - p 6ij + kij k I ~ Uk/OXt, (44) 

where p is an arbitrary hydrostatic pressure to be determined from the equations 
of motion and boundary conditions, and kijkt  are constants with the symmetries 
(2). Since the material is incompressible 

OudOX~=O. 
Consider the plane wave 

ui= Ai exp t( Nj X j - c  t), 

p = P e x p t ( N ~ X j - e t ) .  

The equations of motion (4) with (44) give 

k i j k  I Ak Nt Nj + tPN i = p C 2 Ai, 
whilst by (45) 

AiNi=O. 

From (47) and (48) the propagation condition is 

( kijkl Nj Nl-- kr jkl Ni NrNj Nl-- p cZ 6ik) Ak =O. 

This leads to the secular equation 

det {kr j ki Nj Nl (6 i , -  N~ N,) - p c 2 6, k} = 0. (50) 
Of course 

det {krjkl Nj Nl(6ir - N i Nr) } = 0, (51) 
since 

(45) 

(46) 

(47) 

(48) 

(49) 

Clearly this sum depends upon N in a quartic fashion. The previous argument is 
not valid here. A simple example will illustrate the point. 

identically. Thus there are only two possible non-zero speeds for a given direction 
N. Their sum of squares is 

2 
P 2 c2~(N)=krjrINjNt-ki jktNiNjNkNl �9 (53) 

det (6i, - Ni Nr) = 0, (52) 
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Consider the incompressible elastic material with constitutive equation 

all = - P + k l l  ul, 1 q- k12 u2, 2"]- k13 u3, 3, 

0"22 = - - P  "4- k12/gl,  1 "1- kl I 1/2, 2 -'1- k13 U3.3, 

0-33 = -- P + k i  3 Ul, 1 "4- k13 u2, 2 -{- k33 u3, 3, 

0-12 = k66 (u l ,  2 + t/2, 1), 

0"13 = kss (Ul ,  3 +/./3, 1), 

0"23 = kss(t /2,  3-[-u3, 2), 

(54) 

where the k's are constants and ut, s-OudOX s. Choose two sets (N1, N 2) and 
(N3, N4), of orthogonal coplanar unit vectors, where 

N 1 = (1, 0, 0), N2=(O,l,O), 1/5N3=(1,-1,0) ,  

V2 N4 = (1, 1, 0). (55) 

It is easily seen that two waves can propagate along each of these directions. 
The corresponding amplitudes ,4 and speeds of propagation are given by 

N1 :A =(0, 1,0), pc2=k66; A=(0, 0, 1), pc2=k55; 

N2:A=(1, O,O),pc2=k66; A=(O,O, 1),pc2=ks5; 
(56) 

N3:V2A=(1,  1,O),2pc2=kla-k12; A=(O,O, 1),pc2=k55; 

N4:]/2A=(1, - 1 ,  0), 2pc2=ktl-k12; A =(0, 0, 1),pc2=k55 . 
Thus 

2 
2 2 

{Ca (N1)  + ca (N2)} = 2 k s 5 + 2 k66, 
at=l 

z (57) 
2 2 

{C a (N3)  "4- c a (N4)  } = k 11 - kl 2 -'1- 2 ks5 , 
~t=l 

and hence 
2 2 

E {ca2(N1) "f" ca 2 (N2)} =1:: E (r (N3)  ..~ c 2 (N4)}. (58) 
a=l  a= l  

Thus universal connexions similar to (14) do not hold in general. 

8. Concluding Remarks 

The universal connexions (13) and (14) obtained here for mechanical waves 
may also hold good for other types of waves. 

For example, in the case of light propagation in non-magnetic biaxial crystals 
[11 ] the secular equation for the phase velocity V is Fresnel's equation: 

N z N 2 N 2 
1 ~ 2 ~ 3 _ _ F t  

~ - - r  v--TS~_ 2 -r V-~S~_ a - , , .  (59) 
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Here N is the unit vector in the direction of propagation of the wave and d~ are 
constants. I t  is easy to obtain the universal connexion 

2 2 
{V2(N) + V2(M)} = E {V2(R) + V2(T)}, (60) 

where (N, M )  and (R, T) are two pairs of coplanar orthogonal unit vectors. 

The situation for the ray velocity V is slightly different. It  satisfies 

N 2 a  2 N 2 k  2 N2c 2 
1 ~ 2 ~" j 3 _ _ n  ( 6 1 )  

where N is now the direction of the ray and a, b, c are constants. A relation of the 
form (60) is not valid in general. Rather, write ~ '=  1IS. Then 

2 2 
{S 2 (N) + S 2 (M)} = ~ {S 2 (R) + S 2 (T)}. (62) 

~ = I  ~ = 1  
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