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1. Introduction 

It is known [17] that the equation 

(1.1) A u - u + u 3 = O  

in R 3 has a positive radially symmetric solution u=  91~C2c~L4. (All function 
spaces considered here consist of real valued functions on R3; except that we 
omit the argument R 3, our  notation for these spaces is standard and follows that 
of [11].) In this note we show that 9~ is unique, that is, there is precisely one posi- 
tive radially symmetric solution of (1.1) which belongs to C2c~L 4. (Here radial 
symmetry is to be understood only as radial symmetry with respect to the origin 
in R3.) Moreover we show that for uEH ~, u =I=0 

(1 .2 )  J ( ~ o l ) < J ( u  ) 

unless 

(1.3) u (x)=2  91(X+Xo) 

for some non-zero real 2 and x o e R  a. Here J is the Rayleigh quotient associated 
with (1.1), 

(1.4) d(u) = (j'(I grad u l 2 + u 2) d x)2/S u 4 d x 

(when not explicitly denoted, the range of integration is always understood to 
be R3). The expression on the right in (1.4) is meaningful for ueH*,  u=l=0; such 
functions will henceforth be referred to as admissible functions. 

The equation (1.1) is considered in [10], where it is asserted that there exist 
functions vn(r)eC2[O, oo), n = l ,  2 . . . . .  such that for each n, o n has exactly n - 1  
isolated zeros in [0, oo), decays exponentially as r o o o ,  and 9n(x)=vn([xl) is a 
solution of (1.1). A rigorous proof of the existence of vl was given by NEI~ARI [17]; 
the proof of the existence of vn, n >  1, was given by RYDER [21]. BEGGER [1] has 
proved the same results using the Lyusternik-Schnirelman theory. We have 

6 Arch. Rational Mech. Anal., Vol. 46 



82 C.V. COFFMAN: 

proved the main result of this note in order to answer some questions which are 
raised in [20] but are not satisfactorily answered there. We also demonstrate the 
equivalence of several variational characterizations of the non-positive radially 
symmetric solutions of (1.1). 

2. Preliminaries 

We seek solutions of (1.1) subject to the "boundary condition at infinity" 

(2.1) u e L  4. 

The problem (1.1), (2.1) is equivalent to the integral equation 

(2.2) u(x) = j  g ( x -  t) u3(t) dr, 
in L 4, where 

(2.3) g(x)=(4rc) -1 Ixl -a e -Ixl 

We list below a number of facts, most of which are standard or are obtained 
routinely by standard methods. The details, as well as a more complete bibliog- 
raphy concerning equation (1.1), will be found in [3]. 

First, concerning the space H a , we have the following results: 

a) C~ is dense in Ha. 

b) I f  u~H a then v = l u l ~ H  a and 

lula,z--ivh,~. 
c) I f  u~H a then u~L 4 and 

(2.4) l u 10.4<2-* I u la,2. 

d) Let V denote the subspace of H 1 consisting of radially symmetric functions. 
The embedding V ~ L 4 is compact. 

Except for the constant, the inequality (2.4) follows from [14, Lemma 2, p. 11 ], 
or from a more general inequality of NmENBERG [18], which is quoted as [11, 
Theorem 9.3, p. 24]. One can obtain the constant in (2.4) by using the represen- 
tation u = g . w  where w = - A u + u ;  by a) it suffices to prove (2.4) for ueC~.  
The assertion d) follows in a straightforward way from the Sobolev imbedding 
theorem and the inequality 

4n j Iv(x)]4dx<_-2p -alvll,24 
Ixl~p 

for w V, p>O. 
Concerning the convolution operator x: u - ~  g ,  u, where 

(g �9 u) (x) = ~ g ( x -  0 u (t) dt 

and g is given by (2.3), we have the following results: 

e) l f  u~L a/3 then v = g * u E H  a ~ L  4, ~ u v dx>O unless u=0 ,  and v is a weak 
solution of 

(2.5) - A v + v = u .  
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f )  I f  u~L l c~L ~~ then v=g  , u has bounded continuous first derivatives and 

lim v (x) = 0. 

g) I f  u~Llc~L~ 1 then v = g , u ~ C  2 and v satisfies (2.5). 

h) Let X and Y denote the subspaces of  L 4/3 and L 4, respectively, consisting of  
radially symmetric functions. Then Y= X* and x : X ~ Y is compact. 

The first assertion of h) is obvious, and the second follows immediately from 
d) and e).  

Remark. For consideration of the equation 

A u - u + l u l P - 2 u = O ,  

one replaces L 4 by L p and L 4/3 by L q where p -  1 + q -  1 = 1. If 2 < p < 6, then c), d), 
e), and h) remain valid in this more general case (except for a change of the 
constant in (2.4)); e) and h) of course fail for p = 2. 

3. Minimization of J 

For  u s L  4, u:~0, we define a(u) by 

(3.1) (a(u)) (x) = c S g (x-- t) u 3(t) d t 

where c ~  0 is chosen so that v = a (u) satisfies 

(3.2) ~ v 4 d x = 1. 

This is possible since u~L 4 implies u 3 ~L4/3; thus by e), g ,  (u3)~L 4 and is non-zero. 
It is clear that up to positive factors the fixed points of a are precisely the non- 
trivial solutions of (2.2). From e) above it follows that a actually maps L 4 into H 1, 
and thus by c), a can also be regarded as an operator in Hi\{0}. In particular it 
follows that an L 4 solution of (2.2) must belong to H I. 

Lemma 3.1. Let u be an admissible function with 

(3.3) 

Then a(u) is admissible and 

(3.4) 

with equality only i f  a(u)=u.  

S u 4 d x = l .  

J(a(u))<J(u)  

Moreover a (u) ~L ~~ and v = a s (u) has bounded 
continuous derivatives and satisfies 

(3.5) lim v(x)=0 ;  
ixl-.oo 

finally a 3 (u)~ C 2. 

Proof. The admissibility of a (u) follows from e). By e), (3.1) and (3.3), w = a (u) 
satisfies 

c=c S u 4 d x = S  (grad w . grad u + wu) d x <  lu ll,21 w h,z .  

6* 
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By e), (3.2) and (3.3) 

(3.6) S (Igrad wl2 + w2) d x = c  S wu3 dx<clwlo ,4  lul~. ,=c.  

Combining the above inequalities we get 

Iwh,2<lull,z, 
which, in view of (3.1) and (3.3), implies (3.4). From the way in which the Schwarz 
inequality was used, it follows that equality can hold only if w and u are pro- 
portional. By (3.2), (3.3) and (3.6) the constant of proportionality in this case 
must be I. To obtain the boundedness of a (u), one applies the Schwarz inequality 
to (3.1) and then uses the inequality [14, p. 12] 

Su 6 dx <48(S [grad u 12 dx)a; 

see also [11, Theorem 9.3, p. 24]. The remaining assertions follow immediately 
from f )  and g). 

Lemma 3.1 has the following corollaries. 

Lemma 3.2. I f  v~L 4 is a solution of  (2.2) then veC 2, v has bounded first deriva- 
tives, and v satisfies (3.5). 

Lemma 3.3. I f  u is any (radially symmetric) admissible function, then there is 
a (raaially symmetric) admissible function veC  2 which is positive, has bounded 
first  derivatives and satisfies (3.5) and " 

(3.7) J(v)<J(u).  

Moreover, unless u itself has the same properties and is a solution of  (2.2) (to 
within a positive factor), then v can be chosen so that inequality (3.7) is strict. 

Proof of Lemma 3.3. Except for positivity and the assertion about radial 
symmetry, the result follows immediately from Lemma 3.1. It suffices to prove 
the positivity assertion for continuous u; we replace such a u by l u [, whence by b) 

J(I u I)--- J(u). 

By continuity u and l ul must vanish at some point of R 3 unless u is already of 
one sign. If the latter is not the case, then since g is positive, o(I u [) will be positive; 
we cannot then have o(lul)--lul, and therefore J(o(lul))<J(lul)=J(u). The 
assertion concerning radial symmetry follows from the observation that o pre- 
serves radial symmetry. 

Theorem 3.1. Let 

There exists a tp ~ ~ V with 
2t = inf {J(u): u admissible}. 

J(~01)=21. 

For u e H  t, J(u)>21 unless u is o f  the form (1.3). 

Proof. That J attains an infimum in the class of radially symmetric admissible 
functions was shown by NEHARI [17]. This also follows from the assertion d) 
of Section 2. 



The Equation zt u-- u + u 3 = 0 85 

Suppose now that u e H  ~ but that no translate of u is essentially radially 
symmetric. For  the purpose of showing that J (u)> 21, we can suppose by Lemma 
3.3 that u is positive and of class C 2, and that u(x)~O as [xl ~ oo. By the Schwarz 
symmetrization procedure (see [19] or [16, Section 8]) we can produce a radially 
symmetric admissible function v with J ( v ) < J  (u). This shows that the infimum 
of J over all admissible functions is the same as its infimum over the radially 
symmetric ones and therefore that this infimum is attained. The final assertion of 
the theorem follows from Theorem 4.1 below. 

Remarks. 1. The problem of minimizing J is essentially that of finding the 
"best constant" for the imbedding H ~ ~ L  4. Our application here of the Schwarz 
symmetrization is similar to that of MOSER in his paper [15] on imbedding of 
Sobolev spaces in Orlicz spaces and the determination of a best imbedding constant. 

2. Let g2 be a proper subregion of R a which contains balls of arbitrarily large 
radius, that is, such that 

sup dist(x, t~t2) = oo. 
t~ 

For  the purpose of finding non-trivial solutions of (1.1) which belong to H~ (t2), 
the direct method must fail. This is perhaps a trivial observation; it is obvious 
that the infimum of J over non-zero functions in Ho~ (~2) is 2~, but, by the trivial 
extension of functions on 12 to all of R 3, Ho I (t~) can be regarded as a subspace of 
H 1. It is then an immediate corollary of Theorem 3.1 that J does not attain its 
infimum in Ho ~ (~); of course this already follows merely from the fact that a 
necessary condition for J to attain its minimum in Hi\{0} at u is that u satisfy 
(1.1). 

3. For  consideration of the more general equation 

A u - u + l u l p - 2 u = O  

(see the remark at the end of the preceding section), we note that the principal 
difference is in the general case of Lemma 3.1. That is, when u eL p, 2 < p < 6, and p 
is near 6, boundedness is not necessarily obtained with a single iteration of a. 
However it is obtained after some finite number of iterations for any p on the 
indicated range (an upper bound for this number depends only on p). 

4. A Uniqueness Theorem 

It is easily seen that the C 2 radially symmetric solutions of (1.1) are of the 
form 

u(x)=lxl-Xw(Ixl) ,  x~O, 

where w is of class C 2 on [0, oo), w(O)=O, and w is a solution of 

(4.1) W"--W-I-r-2w3=O, ('=d/dr). 

To prove the uniqueness assertion concerning r it suffices therefore to prove 
that (4.1) has at most one positive solution satisfying 

(4.2) 0< l im r -  1 w(r )<  oo, lim w(r) =0.  
r - ' * O  r "*  (30 
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The technique by which this will be proved is similar to that used in [6] and [7] 
to prove similar uniqueness theorems; the general approach was originally sug- 
gested by a work of KOLODNER [13]. 

We shall consider the "initial value problem" 

(4.3) lim r -  t w(r) = a 
r " * 0  

for (4.1). The problem (4.1), (4.3) manifests most of the features of a regular initial 
value problem. The basic facts concerning (4.1), (4.3) are summarized below; the 
proofs are more or less routine and will be omitted. 

Lemma 4.1. For each a > 0  the equation (4.1) has a unique solution w=w(r ,  a) 
which is o f  class C 2 on (0, oo) and satisfies (4.3). The partial derivatives ~ w(r, a)/~a 
and aw' (r, a)/aa exist for all positive r and a. aw(r, a)/aa coincides on (0, ~ )  with 
the solution 6 = ~ (r, a) o f  the regular initial value problem 

(4.4) ~" - 6 + 3 r -  2 w 2 ~ = O, ~ (0) = O, 6' (0) = 1, 

with w=w(r ,  a); Ow' (r, a)/da=6' (r, a). 

It is clear that a solution of (4.1) which satisfies (4.2) belongs to the one-para- 
meter family w=w(r ,  a), a>O;  we therefore formulate our uniqueness result as 
follows. 

Theorem 4.1. There is at most one positive value of  a for  which 

w(r ,a)>O, O < r < o o ,  (4.5) 

and 

(4.6) lim w (r, a) = 0. 

Theorem 4.1 is implied by the following lemma. 

Lemma 4.2 . / )  I f  a > 0 and w (r, a) > 0 on (0, zl)  with w (zl, a) = O, then 6 (za, a) < O. 

ii) I f  a>O and w(r, a) satisfies (4.5) and (4.6), then 

(4.7) lim e-  r 6 (r, a) < 0. 
r --~ oo 

Proof of Theorem 4.1. We assume Lemma 4.2. Let A denote the set of positive 
values of a for which w(r, a) has at least one zero in (0, ~ ) .  If aeA  and z t = z  I (a) 
is the least positive zero of w(r, a), then, by Lemma 4.1 and the implicit function 
theorem, zl is a differentiable function of a on A and 

w'(zl, a) dz l /da + 6 (Zl, a)=O. 

Since w'(zl ,  a ) < 0  it follows f r o m / )  of Lemma 4.2 that d z J d a < O  on A; there- 
fore z 1 moves monotonically to the left as a increases. Thus if A is non-empty it 
is a semi-infinite interval. We next show that if (4.5) and (4.6) hold for a=al ,  
then A is non-empty and al is the left endpoint of A. This will clearly imply 
Theorem 4.1. Let al be as above and let a2>al;  we shall show that if a 2 - a l  is 
sufficiently small, then the assumption 

(4.8) w(r, a2)>0  on (0, oo) 
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leads to a contradiction. We put wi=wi(r, a), i=  1, 2. By our assumption on al 
and ii) of Lemma 4.2, we can choose ro > 0 so that 

(4.9) 

and 

(4.10) 

3r -2w2<l /2 ,  r>=ro 

6(ro, aa)<0,  6'(ro, a l ) < 0 .  

From Lemma 4.1 and (4.10) it follows that if az>al,  and a 2 - a l  is sufficiently 
small, then 

(4.11) w2(ro)<wl(ro), w'2(ro)<W'l(ro). 

We put v = w l -  w2, so that v satisfies 

(4.12) v "--v  + r-  2 (W2 + Wl w2 + w2) v=O. 

We suppose that w2 = w(r, a2) satisfies (4.8) and that 

(4.13) 0 < w 2 < w l  

on [to, rl) for some r l > r o  (there exists such an r I by (4.11)). From (4.11), (4.12) 
and (4.9) it follows that v is positive and convex on [ro, r l) ;  moreover, from (4.11), 
v ' ( ro)>0 so that v is increasing on [r o, r0 .  Thus (4.13) holds at r=r~; hence by 
a standard argument we conclude that (4.13) holds on [ro, OO) and that v is in- 
creasing there. The inequality (4.13) on [ ro ,~)  implies that 

lim (w 2 + wl W2 + W2) = 0. 

Using this fact and the monotone character of v, we conclude from asymptotic 
integration of (4.12) [12, Corollary 9.2, p. 381], that v grows exponentially as 
r ~  ~ .  From the definition of v, this is clearly a contradiction of (4.6) for a=a 1 
and (4.8). We conclude therefore that (4.8) cannot hold for a 2 > a  I and a 2 - a  1 
arbitrarily small; therefore a2eA for all a 2 > a  I with a 2 - a  1 sufficiently small. 
This completes the proof of Theorem 4.1. 

The proof of Lemma 4.2 will be based on the sequence of lemmas to follow. 
We shall assume that w=w(r ,  a) satisfies the assumptions either of i) or of ii) 
of Lemma 4.2, and we shall let z 1 denote the least zero in (0, ~ )  if the first of 
these assumptions holds and put  zl = oo if the second holds. 

Lemma 4.3. Let a > 0  and let w=w(r ,a)  either vanish at least once in (O, oo) 
or satisfy (4.6); then a> ]/2, w(r, a)=r for precisely one value r=r o in (0, zl), and 
w'(ro, a)<0 .  

Proof. The function v(r, a)=r-1 w(r, a) satisfies 

(4.14) v " + 2r - I  v ' - v  + v3=O 

and 

(4.15) lim v(r, a)=a, lim v'(r, a )=0 .  
r"~O r-~O 
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U p o n  differentiating the funct ion  

4~(r)=v'Z+�89 2 (v=v(r,  a)) 

and using (4.14), we conclude that, for a >  0, ,~(r) is a strictly decreasing function 
of r. Since - v Z <  ~(r), it follows from the monotone character of �9 that if ~(ro) 
is non-positive for some ro in [0, oo), then v does not vanish in (to, oo) and 
lira inf vZ(r)>0. If O<a<V~, then from (4.15) it follows that 4~(0)<0 and that 

r . . .~  oo 

w neither vanishes on (0,o o) nor satisfies (4.6) (since (4.6) clearly implies 
lim v(r)=0). 
r ..-~ O0 

Suppose now that w(r, a) were to satisfy the hypothesis of Lemma 4.3 but 
that for ro z (0, z,), w (ro) = ro while w' (to) > 0. Since w is convex  as long as 0 < w < r, 
this assumption would imply the existence of an r, with ro<rl<zl  such that 
w(rl)=rl, so that the assertion concerning the sign of the slope where w crosses 
the 45 ~ line reduces to the assertion that there is a single such crossing in (0, zl). 
Suppose that there were two such crossings, ro, r,. We would then have V(ro)= 
v ( r 0 = l ,  and we can assume 0 < v < l  on (ro, r,). There is then an r3z(ro, r,) 
with v'(rs)=0, but then ~ ( r s ) < 0  (with �9 defined as above). This implies, as indi- 
cated above, that w cannot vanish on (rs, oo) nor satisfy (4.6). Thus theassumption 
that w(O-r can vanish twice in (0, zl) has led to a contradiction, and the proof 
of the lemma is complete. 

For  w=w(r, a) as in L e m m a  4.3, it fo l lows  from that result that there will 
exist posit ive numbers  ct, t ,  y which are, respectively, the least posit ive values of  
r for which  

w ' ( r ) =  1, w ' ( r )=0 ,  w(r)=r.  

Moreover ,  by L e m m a  4.3, 0 < c c < f l < y < z l ,  r<w(r) on (0, y) and O<w(r)<r on  
(~, zl) ;  finally w is concave  o n  (0, ~) and convex  o n  (y, zl). 

We  shall require the fo l lowing  identities which are valid for  w=w(r ,a) ,  
6=~(r,  a): 

(4.16) (w' 6-r~' w)'= 2r - 2 wa 6, 

(4.17) ( w ' ~ ' - w " 6 ) ' =  - 2 r - 3  w3 6, 

(4.18) (r(w' 6' - w" 6 ) -  w' rJ)' = - 2 w tS, 

(4.19) ((w' - 1) c5' - w" 6)' = - r -  a r (w - r) 2 (2 w + r), 

(4.20) [ r ( ( w ' - l ) 6 ' - w " ~ ) - ( w ' - l ) 6 ) ] ' = r - X  tJ (w-r) (3w+r) .  

Let yt  denote  the least posit ive zero  of ~ =6( r ,  a). 

L e m m a  4.4. tx<y I <ft. 

Proof.  Suppose  first that 

(4.21) Yl --< 

and integrate (4.20) between 0 and Yl. The expression t5 ( w - r )  (3 w + r) is posit ive 
o n  (0, Yl), which  implies 

Yl (w ' (Y l ) -  1) cS'(yi) > 0. 
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Because of the definition of ct the assumption (4.21) implies that w ' ( y l ) > l ,  
while clearly 6 ' (y l )<0 ,  so that the assumption (4.21) has led to a contradiction. 
Suppose next that 

(4.22) y~ > fl 

and integrate (4.18) between 0 and ft. This gives 

-w"(/~)6(~)<0; 

but (4.22) implies 6(fl)>0, and dearly w"(fl)<0, so (4.22) has also led to a contra- 
diction and the lemma is proved. 

Since w is concave on (0, 7) we have w' (r) < 1 on (~, 7). In particular, by Lemma 
4.1 

(4.23) w' (Yl) < 1. 

We now complete the proof of Lemma 4.2. Suppose that 6 has a zero, say Y2, 
in (Yl, zl], and integrate (4.19) between yt and Y2. This gives 

Y2 

(4.24) (w'(y2)-  1)6'(y2)=(w'(y ~)- 1) &' (y t ) -  j" r -3 6(w- r)2(2w+ r) dr. 
Yi 

We assume (as we obviously can) that 6 < 0  on (y~, Y2). Then 6 ' ( y l ) < 0  and by 
(4.23), (w'(yi)-1)<0, so that the right side of (4.24) is positive. Since 6 '(y2)>0, 
(4.24) implies that w' (Y2) > 1. This is deafly a contradiction since w' < 1 on (ct, 7) 
and, since w is convex on (7, z~], w '<0  on that interval. Thus 6 < 0  on (yl,  z2], 
a n d / )  of Lemma 4.2 is proved. 

If w satisfies (4.5) and (4.6), then w'(r)<0 on (fl, oo) and 6 < 0  in (yl,  oo). 
Integration of (4.19) from y~ to 7 gives 6'(~)<0, and integration of (4.17) from 7 
then gives 

lim (w' (r) 6' (r)-  w" (r) 6(r)) > O, 
i,..~ oO 

and this implies that - 6  grows exponentially. This completes the proof of Lemma 
4.2. 

Remark. Once again we consider the more general equation 

Au-u-I-lul~-2u=O 

in R 3 and remark that with regard to the uniqueness theorem the generalization 
from the case p = 4 is not straightforward. In fact, if one writes the comparison 
formulas (4.16)-(4.20) for the general case, then the argument presented above 
will fail except for the case p = 4. Whether or not a uniqueness proof can be obtained 
in the general case using other comparison formulas, we do not know. In parti- 
cular, the question of uniqueness remains open for the equation 

Au--uq-u2=O 

which was studied by SYNOE in [22]. 
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5. Numerical Values for )I 

The inequality (2.4) gives the lower estimate 

21>2. 

Numerical values have been computed by TESmMA [23] and RYDER [21]; 
results of the former are quoted in [2]. RYDER gives the value 

oo 

1 f (W '2_~ W2"% ~j~ 1 lj dr=3.00787 
0 

where wl is the positive solution of (4.1), (4.2). TESHIIVlA gives 

(16 n)- 1 ~ q~ (x) d x = 1.503. 

For 21 these two values give 
(4 n)- 1 21 = 6.01574 

and 
(4 n)- 1 21 = 6.012. 

the 

6. Non-Positive Solutions 

For the purposes of this section it will be convenient to consider the Rayleigh 
quotient associated with the problem (4.1), (4.2); this will also be denoted by J: 
thus 

J(w)= (w'2+w2)dr w4r-2dr. 

We shall let W denote the space of functions w on [0, 00) which are absolutely 
continuous and satisfy the conditions 

oo 

w(0)=0, S(w'2+w2)dr<~. 
0 

Finally, we let U denote the space of measurable functions w on [0, ~ )  such that 
oo 

S w4 r-2 dr< oo. 
0 

If these two spaces are normed in the obvious way, then they are isometrically 
equivalent, respectively, to the space V defined in w 2 and to the subspace of L 4 (R 3) 
consisting of radially symmetric functions; except for a factor these equivalences 
are given by 

W--~ U 

where u(x)= Ix I-1 w(I x I). In particular it follows that J (w) is defined whenever 
weW. 

We are interested here in "characteristic values" or stationary values of J (w) 
greater than the minimum. Geometrically the corresponding stationary points 
are those points in W\{0} where the gradients of the W norm and the U norm are 
colinear. 

We shall first quote RYDER'S characterization [21] of the stationary values of J. 
For practical purposes this is probably the most useful characterization since it 
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lends itself most readily to estimation. Indeed estimates as well as asymptotic 
formulas are given in [21]. RYDER actually defines "characteristic values" for 
(4.1), (4.2) in such a way that they differ by a factor of �89 from the stationary 
values of J(w);  we merely omit this factor in quoting his definition. Let 
0 = t o < r 1 <  ... < r n _ l < r n = o o  and let weW satisfy 

w(rv)=0, v = l ,  2, . . . ,  n - l ,  

and not vanish identically in any of the intervals (rv_ 1, r~), v= 1 . . . . .  n. The 
n th stationary value of J is 

(6.1) ) ' n = i n f 2  (w'2+w2)dr} / I w4r-2dr 
v = l  \ r v -  1 / I r v - 1  

where the infimum is taken over all such functions w and over all such finite 
sequences r~ . . . . .  r~_t. RYDER proves that for each n there is a solution w~ of 
(4.1), (4.2) with exactly n -  1 zeros in (0, oo) and with 

(6.1') J(wn)=2~. 

We shall describe two other ways of characterizing the stationary values of 
J (w). The first of these is the exact analogue of the Poincar6 minimum-maximum 
principle. In what follows, M will always denote a finite dimensional subspace 
of W. We then define 

J(M)=maxJ(w) 
M\{O} 

and 

(6.2) 2'~ = in f  {J(M): dim M >  n}. 

It was mentioned earlier that the Lyusternik-Schnirelman theory has been 
applied to (4.1), (4.2) by BEGGER [1] to obtain existence assertions similar to 
RYDEg'S. We remark also that, because of h) of w 2, the general results of [4] are 
applicable to the integral equation (2.2) in the space Y defined in w 2. To charac- 
terize the stationary values of J in accordance with the Lyusternik-Schnirelman 
theory, we use the notion of genus, due to KRASNOSELSKn (the genus is 1 greater 
than the co-index defined in [8]). We shall call a subset S of W admissible if 
S__q W\{0} and S is symmetric, compact, and non-empty. In what follows S will 
always denote an admissible subset of IV. The genus of S, p (S), is the least integer 
n such that there exists an odd continuous mapping of S into R~{0}. We put 

J(S)=maxJ(w) 
s 

and define 

(6.3) ;t'~' = inf (J (S): p (S) >__ n}. 

It readily follows from the results of [4] that for each n there is a solution w of 
(4.1), (4.2) with J (w) = 2~,'; here however we shall rely only on the existence theorem 
of RYDER. 

If M is a finite dimensional subspace of W and S is the unit sphere in M, then 
S is admissible, 

J(S)=J(M) 
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and by the Borsuk Antipodal Theorem [9], p (S)= dim M. It follows that 

2'.'____ x.. 

Let wn be a solution of (4.1), (4.2) with n -  1 zeros in (0, oo) and which satisfies 
(6.1'). Then wn is the n th eigenfunction of the boundary value problem 

(6.4) O"-O + itr- 2 w~ O=O, 

(6.5) 0(0) = 0, lim 0(r) = 0, 
r - ~ o o  

and the corresponding eigenvalue/z, is I. Therefore, by the theory of the Sturm- 
Liouville problem, if M denotes the space spanned by the first n eigenfunctions 
of (6.4), (6.5), then for 0eM\{0} 

/i (6.6) S(O,2_l_02)dr r-2 2 2 w, 0 dr< 1. 
0 

By the Schwarz inequality 

co co co 

~or-2w2nO2dr<-(!r-2w4ndr)�89 ) , 

and therefore, from (6.6) 

(6.7) ~o(O'2+02)dr r-204dr ~< r-2w~dr 

Since w~ satisfies (4.1), (4.2) 

co co 

(w'~2+w~)dr= ~ r -2 w~dr, 
0 0 

and thus 
co 

~ r-2 w~ dr=J(w,)=2,. 
0 

Therefore (6.7) implies 
J(O)<=~ 

for 0eM/{0}. Since dim M=n it follows that 

Having established that 
2'~' _< ;'. =< ,Z., 

we shall now show that 2, < 2~', that is, the three characterizations of the stationary 
values of J are in fact equivalent. For a given we W\{0} we let I~k=ltk(W) denote 
the k th eigenvalue of 

(6.8) O"--O-l- ~r-  2 w2 0=O 

(6.9) 0(0)=0, lim 0(r)=0;  
r.--~ co  
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similarly, let 0~ = Ok (r, w) be the k th eigenfunction normalized by 

oo 

(6.10) 0'(0)>0, ~r-2w202dr=l.  
0 

The Poincar6 minimum-maximum principle shows that gk is a continuous function 
of w on W\{0}, and it then follows that w-~ 0 k (., w) is a continuous mapping of 
W\{0} into W. Let 

co  

ak=ak(W) = S r-2 wa Okdr; 
0 

then a k is an odd continuous function of w and 

A, : w --* (al (w) . . . .  , a ,_ l  (w)) 

is an odd mapping of W\{0} into R"- 1. If S is any admissible set of genus n then 
by definition of the genus there is a ~e  S such that A, (~)= 0. From the definition 
of A, and the theory of the Sturm-Liouville problem, this implies 

(6.11) kt,(~) < ~ (w'2 +w2)dr  ~v4r-2dr. 
0 

If 0<  rl < r2 < " ' "  < rn_ 1 < o9 are the zeros of 0, then 

(6.12) 2.<__~lQ~!~,(o'.Z+O2)dr)2/.~!Vr-2Og. dr. 

By the Schwarz inequality 

and using this together with the relation 

I~. i r-2~v202dr= i v (0'.2+02) dr 
r v  - 1 P v -  1 

we obtain 
co  

~.~_t~2. ~ r-2 ~4 dr. 
0 

Upon combining this last inequality with (6.11), we find 

2,_-<J(~). 

Since S was an arbitrary admissible set of genus >n ,  it follows that 

2 <.~,, II ~ " *n  �9 

We have proved the following result. 

Theorem 6.1. The formulas (6.1) (RYDER), (6.2) (Poincar~ minimum-maximum 
principle) and (6.3) ( L yusternik-Schnirelman minimum-maximum principle) deter- 
mine the same sequence of numbers. 
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Remarks. 1. We have referred to the numbers 2, as the stationary values of J. 
We do not know whether the nodal properties of w, uniquely determine (to 
within sign) a solution of (4.1), (4.2); therefore neither do we know if all of the 
stationary values of J are among the {2n}. 

2. The Lyusternik-Schnirelman principle would more conventionally be 
formulated in terms of the category of sets in the identification space of W\{0} 
under the equivalence u-= - u. A result of WEIss [24] shows that such a formulation 
is equivalent to that in terms of the genus. 

3. A mapping corresponding to A n was used for similar purposes in [5]. A 
related construction was used in conjunction with fixed point (rather than varia- 
tional) techniques by WOLKOWlSKY [25]. 

The author wishes to acknowledge several very helpful conversations with Dr. C. BANDLE 
and Prof. Z. NEHARI, and in particular is grateful to the former for suggesting the use of the 
Schwarz symmetrization. 
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