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Abstract 

We obtain criteria of stability of the unsteady motion of an incompressible 
Cosserat fluid in an arbitrary time-dependent domain, employing a general 
energy method due to J. SERmN. It is shown that the original motion is stable if 
R~ =< 80 +12 800 Co or if 2Re<80+6400 Co. The quantities Re and Co are the 
Reynolds number and Cosserat number, respectively, and - 2  is the lower bound 
for the eigenvalues of the strain rate tensor D u. 

The theorems established for the stability criteria are universal in the sense 
that they do not depend either on the shape of the domain or on the distribution 
of the basic field variables. Finally an experimental scheme is proposed to deter- 
mine the upper bound of the Cosserat number and consequently the characteristic 
length of a Cosserat fluid. 

Introduction 

JAMES SERRIN [1], in a remarkable and now classic paper, examined the exact 
stability of motion for viscous fluids, employing a general energy technique. He 
obtained conditions sufficient to ensure the stability of motions for arbitrary 
disturbances in bounded domains of arbitrary shape. He showed that his results 
were applicable also to unbounded domains if the disturbances were periodic. 
He applied his theory also to Couette flows. Following the work of SE~IN [1], 
JOSEPH [2] extended the investigation to the stability of the Boussinesq equations. 
Recently RAO [3] employed SERRIN'S energy method to investigate the stability 
of the flow of an incompressible micropolar fluid motions. The model of fluids 
employed by RAo [3], as presented by ERINGEN [4, 5], consists in a coupled 
system of differential equations for the two basic vectors, namely velocity and 
microrotation. In the present paper we consider another model of a viscous 
fluid with couple stresses. This model is based essentially on the theory of couple 
stresses proposed by TROESDELL & TOOPIN [6], TOUPIN [7], and MINOLIN & 
TmRSTEN [8]. We choose to call the fluid under discussion a Cosseratfluid. 

Stability criteria for an incompressible Cosserat fluid in unsteady motion in 
an arbitrary time-dependent domain are obtained. The method employs a positive 
definite Liapunoff function in the form of the kinetic energy of the difference 
motion. Then it is shown that the decay of the above function in time will lead 
to stability of the original flow. 
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1. Governing Equations of a Cosserat Fluid 

We consider the motion of an isotropic material continuum of volume V, 
bounded by a surface S with outward normal n. Upon S act stress and couple 
stress vectors t n and m,, and within V act body force and body couple vectors f 
and C. Then the governing equations are 

mass: 

ff--f l pdV=O, (1.1) 
V 

momentum: 

d fp~aV=~tndS+f, pfdV, (1.2) 
d t v  s v 

moment of momentum: 

d ~v v+Jto)pdV=S(r•215 (1.3) dt (r•  
S V 

energy: 

v Jto pdV 
dt -~+ u +---y- 

=S(t , ,  v+�89 (V• v))dS-S e. qdV+~(f,  v+�89 (V• v))dV, (1.4) 
S V V 

where d/dt is the material time-derivative, p is the mass density, r is the spatial 
position vector from a fixed origin, v is the material velocity dr]dt, to is the local 
angular spin vector, j is the local micro-inertia, U is the internal energy per unit 
mass, V is the spatial gradient O/Or, q is the heat flux vector. In writing (1.4) we 
have assumed that the work of the couple stress vector m,, and the body couple 
vector C on the translation of rotation to can be neglected. 

The model of the continuum considered in (1.1)-(1.4) is different from that 
of [6], [7] and [8] due to the presence of independent spin vector to and local 
micromoment of inertia j and heat flux vector q. Note also that 

t , = n  .'c, m . = n . p ,  (1.5) 

where ~ and / t  are the stress tensor and couple stress tensor, respectively. 

Definition of a Cosserat Fluid. We choose to define a Cosserat fluid as one 
for which 

to=�89 Vx v, j ~ 0 .  (1.6) 

For a Cosserat fluid the governing equations, which are based on (1.6) and 
(1.1)-(1.5) reduce to 

Op 
~-~--+ V. p v = 0, (1.7) 

d o V.C+�89 V. p +pf+�89 (1.8) 

dU 
p --~-- = 1:: Vv-�89 x I). Vx r +�89 VVx v -  Vq, (1.9) 

1 3 "  
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where the superscripts s and ddenote the symmetric and deviatoric parts, respective- 
ly. 

Constitutive Equations for a Cosserat Fluid: For  our fluid we choose to 
consider linear constitutive equations analogous to those of AERO & KUVSHINSKII 
[9] and the linearized equations of TOUPIN [7]. In addition a hydrostatic pressure 
term appears in the constitutive equations, thus: 

"d= - p I  + 2 V. vl +l~(Vv+ v F), (1.10) 

/*d= 2t/VVx v+2~ '  Vx vV, (1.11) 

where 2,/~, t/, r/', are material constants. As in [5], it may be shown that the 
Clausius-Duhem Inequality imposes the following restrictions on the constants: 

/~>0, 32+2 /1>0 ,  - l<r / ' / r /<  1, r/>0. (1.12) 

Furthermore, as shown in [8], the restrictions (1.12) also ensure the uniqueness 
of solutions for this problem. 

Finally the displacement equation of motion based on (1.10), (1.11), (1.8) 
with f and C set equal to 0 is 

- Vp+# V2v+(~+/~) FV. v+r/V 2 Vx 17x v=pi~. (1.13) 

Boundary Conditions: We assume that on S(t) the velocity and angular 
velocity are prescribed arbitrarily: 

v(x, t )=  U(x, t) on S(t), (1.14) 

oJ(x,t)=�89 on S(t). (1.15) 

These conditions reflect a sort of super adherence [1], [3], [10]. According to 
KOITER [11] the conditions (1.14) and (1.15) are kinematically admissible. 

2. Serrin Energy Criterion 

Let us consider a basic motion (v) of an incompressible Cosserat fluid in a 
time-dependent domain V(t) bounded by the surface S(t). Further, we assume 
that on S(t) we have the conditions (1.14) and (1.15). Suppose that the motion 
is disturbed from the basic flow velocity v to a disturbed flow velocity v*. Now 
to determine whether or not the disturbed flow approaches the basic flow asympto- 
tically and in the mean as t ~ oo we employ a positive-definite Liapunoff function 
in the form of the kinetic energy of the difference motion/~ = v * - v .  The kinetic 
energy of the difference motion is*: 

T=�89 2 dV+�89 2 dV. (2.1) 
V V 

Note that in the model considered it was assumed that j-~0 so that the second 
term in the right-hand side of (2.1) can be dropped. Thus we consider only a 

* Note that this is not the difference in kinetic energies of the starred and the basic flow. 



Stability of Cosserat Fluid Motions 

Liapunoff measure of stability in the form 

T=�89 $ = V x $ = 0  
V 

we note that from (2.2) and the Leibnitz rule that 

dT =~vPla" O# dt - - ~  dV. 

Further, 

on S(t). 

pv*-pv----p (-~t +ll. Vv+v. Vl~-t-ll" Vl O, 
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(2.2) 

(2.3) 

(2.4) 

(2.11) 

(2.12) 

Re = Reynolds number = p 1,~ Lo, 
# 

Co = Cosserat number = - ~ ,  

Vo = Maximum velocity, 

Lo = Reference dimension of the domain. 

where 

dt' = +-~-~-, (V' x V' x/~')a +/# �9 ./l' 

, Lo T ' -  1 
t=t  -r ~=Vor -3-V-goT. (2.10) ~=Vo.', v= l - -v  ', 

Lo 

Then from (2.9) and (2.10) 

so that from (2.3) and (2.4) 

dT 
-=Ilt .(p(~*-p~)dV-I(p.  Vv .#+r.  Vl~.lJ-t~. V#'I~)dV. (2.5) 

clt v v 

Since the conditions (1.14) and (1.15) ensure tha t / l=  V • on S(t), and since 
V. v*= V. v =0  because the fluid is incompressible, 

iv .  [7 0 �9 p=I �89 (v#Z) dv=j �89 z . dS=O, (2.6) 
V V S 

I/~. V#. o = I � 8 9  (##2)dV=I�89 z. dS=O, (2.7) 
V V $ 

and furthermore from (1.13) and certain vector identities 

t~" (P~*-P~)=  - V. [P(P*-P)]  

-#[(Vxt~)2-v.(~x VxtO]-,7[v.(t,x vx vx VxtO (2.8) 
+ V. (Vx/~x gx  Vxp)+(Vx Vx p)2].  

Since all surface integrals involving/~ or V x p vanish, 

aT - I [# (Vxp)2+t / (Vx  Vx/~)2+pp. Vv. s l av .  (2.9) 
d t  ~-- v 

We eliminate dimensions by putting 
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SERRIN [1 ], [10] has developed certain vector inequalities for spherical domains. 
Let us now assume that our region V(t) can be included in a sphere of diameter 
L o. Then according to SERmN [1] we have the following inequalities*: 

~ (Vt /*t)2 dV~_~ (Vt x/*t)2 d V ~  80ff]~ t2 dV, 
v v v 

~(V' • V' • => 80~ (V' • if)2 dV> 6400~ff 2 dV. (2.13) 
V V V 

Also note that 
~(/*'. v 'v' .  ~*')dr=-~(/*'. V' /*'. v')dV, 
V V 

and, as shown by SERRIN [11], 

p, 17,#, , 1 , ,2  Re ,2 ,2 
�9 .~  ____TRT(V/*) + - ~ - / *  v 

From (2.11), (2.13), (2.15) 

dt' - -<[ - I# '2dV]  +6400 Co . 
v Re  ' 

(2.14) 

(2.15) 

(2.16) 

3. First Condition of Universal Stability 

Theorem 1. I f  the Reynolds number R e and the Cosserat number Co of  a Cosserat 
f luid in a bounded domain V(t) o f  space are such that 

R 2 < 80+ 12800 Co, (3.1) 

the Liapunoff measure of  stability T' tends tO zero as t ~ oo, and the basic f low is 
stable�9 

We note that if (3.1) holds, then from (2.16) 

T' (t) < T' (0) exp [ - a t'], (3.2) 

T' (t)--*O 

t ' ---~ oO 
where 

a = - - ~ + 6 4 0 0  ReC~ Re2 -->0" (3.3) 

4. Second Condition of Universal Stability 

We may, alternatively, write 

I(/*'" V'v'./*') dV=I(/*' .  D ' - # ) d r ,  (4.1) 
V V 

where D' is the non-dimensional strain-rate matrix in the form 

D ' = � 8 9  g'). (4.2) 

* The  cons tan t s  employed  here  are the  improved  ones obta ined by L.  E. PAYNE & H.  F.  
WEINBERGER. 
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Now we have the inequality 

/, ' .  D ' . / l  > - 2 / {  2, (4.3) 

where - 2  is a lower bound for the eigenvalues of D'. Now from (2.11), (2.13), 
(4.1), (4.2), (4.3), 

dT'  < r  e ,2dV'~ 80 C O ~-~-=  L - j / I  ] [-~--+ 6 4 0 0 - - ~ -  2]. (4.4) 

Theorem 2. I f  the Reynolds number Re and the Cosserat number Co of  a Cosserat 
f luid in a bounded domain V(t)  of  space are such that 

2Re < 80 + 6400 Co, (4.5) 

the Liapunoff measure of  stability T' tends to zero as t ~ oo, and the basic f low is 
stable. 

Note that if (4.5) holds, then from (4.4) 

T' (t) < T' (0) exp [- - b t'], (4.6) 

T' ( t)-oO 

t ' -o  oo 

where 
80 Co b = ~ + 6400 ~ -  2 > 0. (4.7) 

As (3.1) and (4.5) indicate, disturbances in the Cosserat fluid flows are damped 
more rapidly than in the corresponding viscous Navier-Stokes fluid flows. This 
should be no surprise, for a Cosserat fluid has an additional dissipative mech- 
anism. 

From the theorems above the following corollaries are established once and 
for all: 

Corollary 1. (Uniqueness of unsteady Cosserat fluid flows.) I f  v a n d  v *  are 
two f lows in a bounded region V(t)  having the same velocity distribution at t= 0 
and on the boundary of  V, then they must be identical. 

The proof of the corollary is simply seen by putting p =  v * - v  and noting that 
# must satisfy equations (3.2) or (4.6). But since at t = 0, # = 0, we find that T' ( t )=  0 
for all t, and therefore/~=0, and hence v must be equal to v* at all time t>0 .  

Corollary 2. (Uniqueness of steady Cosserat fluid flows.) I f  v and v* are two 
steady motions of  a Cosserat f luid in a bounded domain V ( t ) subject to the adherence 
boundary conditions, and i f  the relations (3.1) and (4.5) hold for both of  them, then 
the two motions are identical. 

The proof of the corollary is seen easily by putt ing/1= v * - v  and noting that 
/, must also be steady. On the other hand (3.2) and (4.6) must also hold. This is 
possible only if T' (t) = 0 for all t, and therefore p = 0 ~ v* = v. 
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5. Program for Experimental Determination of the Upper Bound 
of the Cosserat Number 

One of the consequences of the above universal stability analysis will come to 
light in experimental determination of an upper bound for the Cosserat number 
Co. As mentioned by MI~DLIN & TIERSTEN [8], the ratio 

L =  ]/'~-~ (5.1) 

is actually a material length, the characteristic length of the Cosserat fluid. Inas- 
much as the common theory of elasticity has been verified experimentally in 
great detail, L is probably very small in comparison with bodily dimensions and 
wave-lengths that are commonly encountered. It is now clear that the Cosserat 
number Co is in fact the square of a non-dimensional characteristic length of the 
Cosserat medium. We propose here a scheme for determining experimentally an 
upper bound for C o and consequently an upper bound for the material length L. 
Suppose that in the laboratory a certain flow of a Cosserat fluid be produced, 
the flow velocity v of which can always be determined. Suppose also that the 
experiment be such that we can increase v as desired. Upon observation of the 
system, we may predict the instant of instability, i.e., when any increase in the 
flow velocity v will lead to a drastic change of the flow field, a radically different 
flow velocity v*. This is the instant of instability. According to Theorem 1 this 
happens when 

R 2 >__ 80+ 12800 Co, (5.2) 

so that the characteristic length will satisfy the relation 

V - ~  = L = < I ~ 0  Lo(R~Z-80) �89 (5.3) 
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