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Introduct ion 

This paper as well as a subsequent one (part II  of  this study, immediately 
following in this journal) is concerned with the existence of  nontrivial solutions 
for some semi-linear elliptic equations in R u. Such problems are motivated in 
particular by the search for certain kinds of  solitary waves (stationary states) 
in nonlinear equations of  the Klein-Gordon or Schr6dinger type. To be more 
precise, consider the following nonlinear Klein-Gordon equation 

(1) ~)tt - -  A #  + a2~ = f(q~). 

where # = #(t,  x) is a complex function defined on t E R, and x E R N, dq~ = 
N 

~2#/8x~i, and a is a real constant. Suppose that 
i = 1  

(2) f ( ~ d  ~ = f (~)  d ~ u 0 E R .  

Hence, we may assume that f :  g -+ g is a real continuous function which is odd, 
and f(0) ----- 0. Equation (1) corresponds to the Lagrangian density 

1 12 1 a 2 
~ = - T I , P ,  + T Ivr + T lr - F(}~l), 
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where Vr . . . .  , #q~/#xn) and 

Q 

r ( o  = f f(s) ds, ~ ~ R.  
0 

Then, looking for a solitary wave in (1) of "standing wave" type, that is, q~ of  
the form q~(t, x) = ei~tu(x), co E R ,  and u : ~U __~ R, one is led to the equation 

(3) - - A u  + m u  = f ( u )  in R N, 

where m = a 2 - -  coz. Notice that u ~ 0 is always a trivial solution of (3), 
while of course one is interested in nontrivial solutions, that is u ~ 0. 

In terms of u, the Lagrangian S(u)  has the expression 

m 

RN 

For physical reasons, one wants the Lagrangian to be finite, and hence one re- 
quires u to vanish at infinity. This plays the role of a boundary condition for (3). 
Therefore, we impose here the condition u C Ha(RN). Actually, this condition 
more than suffices for our purpose since, as will be seen later, in most cases the 
solutions will have exponential decay at infinity. A weaker condition than u E 
H ~ ( R  n) is considered in section 5 (namely, [Vu[ E L2(RN)). 

Another classical type of solitary waves is that of  travelling waves. Consider 
a real Klein-Gordon equation (1), that is q ~ : R •  and f : R - - ~ R .  
Then, looking for a travelling wave solution of (1), that is q~ of the form q~(t, x) ~- 
u(x  - -  et)  where u : R N - + R ,  and eE a N is a fixed vector such that ]e t ~ 1, 
one obtains the following equation for u: 

N ~2 u 

(5)  - -  E aij "I- a 2 u  = f ( u )  in RNo 
g,s= 1 ~xi ~xj 

Here agj = O;j --  cic i, cg being the coordinates of c. It is easily checked, using 
the fact that I cl < l, that the constant coefficient operator in the left hand side 
of  (5) is elliptic. Thus, after a change of coordinates, (5) can be converted into an 
equation of  type (3). 

Stationary states of nonlinear Schr6dinger equations lead to similar problems. 
Indeed, consider the equation 

(6) iqb t - -  A q5 = f ( ~ ) ,  

where q) : R •  N--~ C and f satisfies the symmetry property (2). Then, looking 
for standing wave solutions, that is tb(t, x) ---- e -# ' t  u(x),  one is again led to 
problem (3). 

To sum up, we consider the following semi-linear elliptic problem 

- - A u  = g(u) in R N, 
(*) 

u E HI(RN), u ~ 0, 

where we always assume that g : R ---> R is a continuous function which is odd, 
and thus g ( 0 ) =  0. 
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Equations of  type (*) arise in various other contexts of physics (for example, 
the classical approximation in statistical mechanics, constructive field theory, 
false vacuum in cosmology, nonlinear optics, laser propagations, etc.) They are 
also called nonlinear Euclidean scalar field equations (cf. e.g. [6, 28, 34, 35]). 1 

The Lagrangian associated with (*), S(u) is defined by 

(7) S(u) = ! f IVuL= dx -- f a(u) dx, 
2 R N R N 

s 

where G(s) = f g(t) dt. The functional S(u) is also called the "act ion" associated 
o 

with (*) (when (*) is thought of as a Euclidean field equation; el. e.g. [28, 29]). 
Moreover, by analogy with nonlinear elliptic problems in bounded domains, 
S(u) is sometimes (unprecisely) called the energy associated with (*). In the 
following, we use indifferently the terms action or Lagrangian to designate S. 

In a totally different context, a solution of  (*) can also be interpreted as a non- 
trivial stationary state for a nonlinear heat equation 

(8) 8~' 
8t A~p = g(~p), 

~o = ~,(t, x), t ~ 0, x E R N. Such problems arise in biology, especially in popula- 
tion dynamics theory (cf. e.g. [7, 33, 60] and the survey article of FIVE [32]). 

There is an important and well known litterature about semi-linear elliptic 
boundary value problems in a bounded domain of R N. We refer the reader for 
instance to [2, 5, 20, 48, 53] for the existence of  positive solutions and to [4, 5, 22, 
23, 25, 26, 39, 53] for the existence of  an infinite number of distinct solutions. 
Evidently, a striking contrast between semi-linear elliptic boundary value problems 
on a bounded domain and on R N is the apparent lack of compactness in treating 
the latter. Therefore, a first natural approach to (*) would be to use the above 
works and to approximate a solution of  (*) by a solution of an analogous problem 
on the ball BR = {x E R N, ]xl < R}, that is, first solve --AuR = g(uR) in BR, 
uR I aBR = 0, and then let R + -k cx~. One of  the difficulties to overcome in such 

an approach is the absence of  uniform a priori bounds (i.e. independent of  R) 
in the works mentioned above. This method is nevertheless developed in [9], 
though it requires some restrictions of  a technical nature on the nonlinear term 
g. Here and in part II, we study (*) by using variational methods, working with an 
appropriate constraint in order to have some compactness. This constraint can 
be made transparent because of  the "autonomous"  character of (*) and the fact 
that one can use scale changes inRN.The fact that g is "autonomous"  (that is, depends 
only on u), and the operator is the Laplacian (or a constant coefficient elliptic ope- 
rator), constitute the main restrictions on the method presented in this study. 

A special feature of  (*) is its invariance under the group of  displacements. 
That  is, if  ~ is a rotation in 1% n and C E R N is a fixed vector, then, for any solu- 
tion u of (*), the function v defined by v(x) = u(Ylx + C) is also a solution of  

t References are gathered at the end of part II] of this study, following in this 
journal. 
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(*). Such an indeterminacy will not be present in what follows, since we will be 
seeking "radial" solutions of (*), that is, solutions u with spherical symmetry: 
u depends only on Ix I. Such solutions are sometimes called "particle-like" (cf. 
e.g. [6]). In this case, u, as a function of r = Ix l, satisfies the ordinary differential 
equation 

d2u N -  1 du 
(9) dr 2 r dr -- g(u), rE (0, + oo). 

One can also obtain certain existence results by analysing (9) using a "shooting" 
type argument (cf. [15]). This approach, as well as the local one evoked above, 
also provides results for the "nonautonomous"  case, that is when g is allowed to 
depend also on r. However, the optimal results for the autonomous case which 
we present here are only obtained by working directly with (*). 

In section 4.3 we show, following an argument of COLEMAN, GLAZER and MAR- 
TIN [29], that the solution Uo of (*) which we derive from our variational problem 
has the property of having the least action among all possible solutions of 
(*), namely 0 < S(uo) ~ S(u), for any solution u of(*). Such a solution Uo is called 
a "ground state" for (*). It can be shown that a ground state is necessarily a 
positive and radial solution of (*). 

It is conjectured (and not known except for a very special case, see [27]) 
that, at least for certain classes of nonlinearities g, the positive radial solution 
of  (*) is unique. Therefore, it is customary (though not quite correct) to call a 
positive radial solution of (*) a ground state. Solutions u of (*) such that S(u) 
S(uo) are called "bound states". In this paper (part I), we prove the existence of  
a ground state. In the second part of this study, we show the existence of infinitely 
many distinct bound states u/, of  (*), k E 1~, with furthermore S(uk) ~ + oo. 
The proof  there rests on two results in critical point theory (of. section 8 in part II), 
the main value of these theorems being to allow a greater flexibility in the choice 
of the manifold defining the constraint. 

Several of the results presented here were announced in [8, 11, 12]. Some 
results concerning the existence of solutions for certain semi-linear weakly coupled 
elliptic systems in R N, as well as a discussion of certain bifurcation questions in 
(*), can be found in [12, 13]. 

Acknowledgment. The authors are grateful to Professors W. A. STRAUSS and H. BRE- 
ZIS for having called their attention on this class of problems and for stimulating discus- 
sions on this subject. 

1. The Main Result; Examples 

Throughout  this paper, with the exceptions of sections 5 and 6, it will be 
assumed that the dimension of the space N is at least 3. We recall that g: R - +  R 
is a continuous function such that g(0) = 0. We also assume that g is odd. 
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We consider the problem 

- - A u  = g(u) in R N 
(*) 

U E H I ( R N ) ,  U ~ 0 .  

The function g is required to satisfy the following conditions: 

(1.1) - -  o0 < lim g(s)/s <_ lim g(s)/s = - - m  < O. 
s _~. 0._..-.- + - -  s ~ 0  + 

N + 2  
(1.2) - -  cx) ~ lira g(s)/s t <__ O, where 1 

s-++~ N -  2" 
r 

(1.3) There exists r > 0 such that G(r = f g(s) ds > O. 
0 

The following theorem concerns the existence of a ground state of  (*). 

Theorem 1. Suppose N >= 3 and that g satisfies (1.1)-(1.3). Then (*) possesses 
a solution u such that 

i) u > 0 on R N. 
ii) u is spherically symmetric:  u(x) = u(r), where r = Ix[, and u decreases 

with respect to r. 
iii) u E C2(RN). 
iv) u together with its derivatives up to order 2 have exponential decay at infinity: 

lD~u(x)[ < Ce -~!xl, x E R N, 

f o r  some C, (~ > 0 and fo r  I"l < 2. 

This theorem will be proved in section 3 by means of a constrained minimiza- 
tion method. Let us first illustrate the result by giving a few simple examples. 
We will also derive some necessary conditions in section 2. 

Example 1. Consider the equation 

- - A u  + mu = 21ul p - l  u i n R  N, 
(1.4) 

u E HI(RN), u ~ 0, 

where 2 and m are positive constants and p > 1. This equation was treated by 
S. POHOZAEV [51]; he showed that 0 .4)  possesses a solution if and only if  

N + 2  
1 < p < N - -  2" Notice that in this case the hypotheses of Theorem 1 reduce to 

N + 2  
the same condition. The fact that  for p ~ N - -  2 '  (1.4) does not have any solu- 

tion follows from a well known identity of  POHOZAEV [51] which we recall in 
section 2. The method of  POHOZAEV consisted in maximizing 

P + I~N ]u]V+~f dx  



318 H. BERESTYCKI & P.-L. LIONS 

over the set 

1 " g  2 m 2 1} 
{uE  Ha(RN);  TIJN I u[ dx  + - ~ -  f u dx  = . 

The constraint causes a Lagrange multiplier to appear, and one obtains a positive 
solution of - - A u  + mu  = 20u p. The Lagrange multiplier 0, shown to be posi- 
tive, can then be removed by looking for a solution v = ~u, a > 0, and using 
the special homogeneity feature of  (1.4). Equation (1.4) was also studied by 
B~RGER [16, 17] and by COFFMAN [27] who showed (1.4) to possess infinitely 
many distinct solutions, using the same special feature of  homogeneity of  (1.4). 

Example 2. 

- - A u  § mu  = ~. [ul p-~ u - I~ lul q - l  u in R u 
(1.5) 

u E H~(F~N), u ~ 0, 

where 2, tt, m are positive constants and p q= q, 1 < p, q. Here the hypotheses 
~ N + 2  ) 

of  theorem 1 reduce to 1 < p < max \N--~--2-- 2 '  q and to the existence of ~" > 0 
such that 

2 ~p+1 # ~ q + ~  m ~ 2 > 0 .  
G(~') p + 1 q + 1 2 

The second condition is automatically fulfilled if q < p. Thus Theorem 1 applies 
N + 2  

for 1 < q < p ~ N ~ "  This case was treated by STRAUSS [55], who also showed 

N + 2  
the existence of an infinite number of  solutions. I f  q < < p, it follows 

= N - - 2 =  
from the Pohozaev identity (see Section 2 below) that there cannot exist a non- 

N + 2  
trivial solution of (1.5). The case N~- -2  <~ q <~ p remains open: it is not known 

whether or when there exists a solution of  (1.5). Lastly, when p < q, Theo- 
rem 1 applies if  there is a ~ > 0 such that G(~) > 0. Actually, again f rom the 
Pohozaev identity, it can be seen that (1.5) has no solution if G(~') =< 0 for all 
~" > 0. Hence the condition (1.3) is in this case both necessary and sufficient. 
This condition means, in particular, that for given /~, m > 0, there exists 2* > 0 
such that (1.5) has no solution for 0 < 2 ~ 2", while Theorem 1 applies for 
2 > 4". For  p < q a weaker result was obtained in [55], namely the existence 
of at least one 2 > 0 for which (1.5) possesses a positive solution). In fact ~t* 
has the expression 

,~. = #b(q _ 1) (p + 1) (q - -  p ) - a  (p _ 1)-b (q _+_ 1)-b, 

q - - p  p - - 1  
where a --  - -  and b = In the particular case of  (1.5) with m = 1, 

q - - 1  q - - l "  
2 = 1, p = 3, q = 5, which was studied by ANDERSON [6], the requirement 
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(1.3) yields exactly # < 3/16. This explains why the latter condition appears in 
[61. 

The proof  of  Theorem 1 in the particular framework of  equation (1.5). which 
serves as a model and for which technicalities are somewhat simpler, is developed 
in [11]. 

Equations of  type (*) have been considered in a number of  works in addition 
to the ones already mentioned. The one dimensional problem (N ----- 1) was studied 
by STUART [56] and DANCER [30], while in higher dimensions, existence results 
were obtained by NEHARI [47], SYNGE [58], RYDER [54]. The first general study 
of this type of  equations is due to STRAUSS [55]. A geneial result for the existence 
of a ground state is given in COLEMAN, GLAZER and MARTIN [29]. 

2. Necessary Conditions 

2.1. Pohozaev's identity. Several necessary conditions for the existence of  a 
solution of  problem (*) can be derived from an identity which seems to be due to 
S. I. POHOZAEV [5 1 ]1. It asserts that a solution of  (*) which, together with its 
first derivatives, is sufficiently small at infinity, necessarily satisfies 

N - - 2  f l V u [ 2 d x = U  f G(u) dx (2.1) 2 g ~x 

z 

(G always denotes the function G(z) = f g(s) ds). Before being more precise, let 
0 

us give a formal argument explaining (2.1). Define the two functionals 

T ( u ) =  f lVul2  dx, V ( u ) =  f a(u)dx. 
I~N ~ N  

(By analogy, �89 T corresponds to kinetic energy while V corresponds to potential 
energy. Thus S = ~ T --  V.) Consider a scale change in RN: for a ~ 0 define 
u~(x) = u(x/a). One readily checks that 

T(uo) = o'~-2T(u), V(uo) = o'nV(u). 
(~N-- 2 

Hence S(u~) = T T(u) -- aNV(u). Now, if u is a solution of (*) then at least 

d 
formally it can be interpreted as a critical point of S. Therefore, one has~-  S(u~)ro= 1 
= 0, which is precisely (2.1). 

The preceding argument is not rigorous, however, for two reasons at least. 
Firstly, one needs to know that S is a C 1 functional on the space where it is 
defined (see the Appendix of  Part I, for such a result). Then, one also needs 

d 
to show that ~-~-uo(x)l~=l = - -7u (x ) .  x lies in the right integration space. 

This identity is also known under other names. In particular it is also associated 
with the names of ROSEN and DEgRlCK. Notice moreover that it is just the "Virial 
theorem". 
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We now proceed to give a rigorous proof  of  the fact that any solution of (*) 
satisfies Pohozaev's identity (2.1). This will be derived as a corollary of the follow- 
ing more general statement. Let us remark that this level of generality--even 
in the case of  the corollary 1 below--seems to be new for the identity. 

Proposition 1. Suppose g is a continuous function: R - +  R such that g(0) = 0, 
t 

and let G(t) = f g(s) ds. Let u satisfy 
0 

--Au = g(u) in ~'(RN). 

Assume furthermore that 

oo N 
u E L~oe(R ), 

Then u satisfies 

Vu ~ La(RN), G(u) ~ L'(RN). 

2N 
(2.1) ~(v Igu[2dx N - -  2 f G(u) dx" 

Remark 2.1. The condition u E L~c(R N) can still be weakened. As for the 
conditions 7 u E  Lz(RN), G(u)C LI(RN), they are needed for the integrals in 
(2.1) to make sense at all. 

8U ~2U 

Proof of Proposition 1. In this proof  we write ui = 8--~, u,.j -- bx; 8xj and 

we adopt the summation convention on repeated indices. Observe first that 
because of u E Ll~c(RU), standard regularity theory (see e.g. section 4.1 below) 
shows u E Wzl;,~(R N) for any q, 1 ~ q < + oo. In the first part of the proof 
we use the device of POHOZAEV [51 ], multiplying the equation by x~ui and integrat- 
ing by parts to get the Pohozaev identity on a ball BR ---- {x E R u, I xl < R). 
We then show the boundary term (on 8BR) to converge to 0 as R--~ + oo. 
Indeed, integration by parts yields 

f g(u) uixidx=Bf ~-~i(G(u))xidx=--N f G(u) dx + f G(u) x~n~dS. 
B R B R OB R 

But --ujj = g(u) and we have 

B R B R ~B R 

Thus, 

(2.2) flvul dx 
B R 

=JlVuJ dx-N jlVu? dx-T gRl nl .dS. 

u -  2[ 2 d.l~nl + f a ( u )  
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We will now show that the right hand side irt (2.2) converges to 0 for at least one 
suitably chosen sequence Rn -+ + cx~. We have 

(2.3) f (IG(u)I +/Vu/2) dx ---- jiG(u)/ + IVul2idS dR< + ~ .  
R N  0 

Hence, there exists a sequence R,, --~ + ~ such that 

Rn f {Ia(u)l +lVu lZ )dS -+O as n - - ~ q - ~ .  
~BR. 

Indeed, if 

then 

lira R f {IG(u)l + IVul2)dS=c~>O, 
R~'~oo t~BR 

f (lG(u)l + [Vul =) dS 
~BR 

would not be in L~(0, + ~ ) ,  which contradicts (2.3). Therefore, since 

f l Vu I ~ d~-+ f l Vu I ~ d~, f G(u) dx ~ f G(u) dx 
BRn • N BRn ~N 

as n - +  § co, we derive the identity (2.1) from (2.2) (with the choice R = Rn, 
and n ~ + ~ ) .  

Corollary 1. Assume g satisfies (1.1) and (1.2). Then any solution of(*) satisfies 
the Pohozaev identity (2.1). 

Proof, To be more precise, we mean any solution of (*) corresponding to a 
truncated function ~ (see section 3 below), where (i) ~(s) : g(s) if g(s) > 0 for 
s ~ r  and (ii) if 3 S o > r  such that g(so)<=O, thert ~ ( s ) = g ( s )  on [0, So] 
and g(s) : g(so) on [so, + ~ )  (for simplicity we take g and ~ to be odd). As 
will be seen later, solutions of (*) corresponding to ~ are also solutions of 

(*) with g. (If li____m g(s) > 0 or lira g(s) < 0, we can actually take ~ in such a 
S'--)" -t- e~ 8 " ~  h- ~ 1 7 6  

way that the two problems have the same solutions). The corollary follows im- 
mediately from proposition 1, for if  u E HI(R N) solves (*), then by a standard 
bootstrap argument (see Section 4.1 below) u E L~(R~), while by Theorem A.VI 
in the Appendix, G(u) E LI(RN). 

Remark 2.2. In the case of radial solutions of (*), one can use the exponential 
decay of u and Vu (see Section 3.3) to obtain a simpler proof of the identity, by 
making the preceeding scale-change argument rigorous (an alternative way would 
be to multiply the ordinary differential equation satisfied by such a solution by 
r~tu'(r) and to integrate by parts). We remark that by a recent result of GIDAs, 
NI, and Nm•NBBRO [37], if g'(0) < 0 and if ~(s) : g(s) -- g'(O) s is an increasing 
function of  s, then any positive solution of (*) is spherically symmetric (and de- 
creases with r). 
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2.2. Some consequences o f  Pohozaev's identity, and some necessary conditions. 
We now show that conditions (1.1)-(1.3) are "almost" necessary for the existence 
of  a solution of problem (*). 

(a) Hypothesis (1.3) is necessary, for if u is a solution of (*), then by (2.1) 

f a(u) dx > O. 
RN 

(b) Hypothesis (1.2) is justified by considering the pure power case, that is 
equation (1.4) (Example 1 in Section 1), where g(u) ---- 2 [ul p-I u --  mu, 2, 
m > 0. If  u satisfies (1.4), then multiplying (1.4) by u and using (2.1) yields 

f 2 N  f G(u) dx,  f lVut2 dx=  g (u )udX=N 2 p~N 
whence 

This implies 

N - - 2  = m u 2 d x ~ O .  
~" p +  1 ~ " [ulP+' dx 'N 

1 N - - 2  N + 2  
p + 1 > 2 ~ '  that is p -< N-----_- ~ -- l. 

Thus (1.4) has no solution when p ~ 1. On the other hand, it is known [51, 17, 
55] that when p < l (1.4) admits (infinitely many distinct) radial solutions. 
From this example, we see that a growth hypothesis like (1.2) is needed and that 

N + 2  
l -  N ~  (the "critical exponent") is indeed the cut-off. 

(c) Consider now hypothesis (1.1). We claim it is "almost" necessary in the 
sense that if  g'(0) > 0, then (*) has no radial solution. Indeed, if u E H I ( R  N) 
is spherically symmetric, then by a result of STRAUSS [55] (see Appendix, Radial 
Lemma A I I )  there exists a constant C ( =  C(N)) > 0 such that 

1t U][HI(RN ) 
lu(x) l =< c 

IxI<~,-,>/=, 
and actually lu(x)l = o(Ixl -(N-'/=) as Iz l -+  + o 0 .  Let m =g ' (O)  and 
q(r) : m --  g(u(r))/u(r). Then, considering the case N : 3 and assuming g 
is C 2 in the neighborhood of 0, one has q(r) : o(r -~) as r --~ + oo while u 
satisfies the linear equation 

- -Au  + q(r) u : mu i n R  3. 

But this is impossible, since it violates a result of KATO [40] which states that the 
linear Schr6dinger operator - - d  + q(r) has no positive eigenvalues associated 
with eigenfunctions in L2(R a) under the condition q ( r ) =  o(r-~). A careful 
discussion of equation (9) (in the Introduction) in the case g ' ( 0 ) >  0 would 
lead to the same conclusion. Thus hypothesis (1.1) is "almost" necessary. 

Notice, however, that g'(0) > 0 is not exactly the negation of  (1.1). The only 
remaining case, essentially, is the limiting "zero mass" case where g ' ( 0 ) =  0. 
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Then the existence question becomes much more complex and many different 
phenomena may take place, depending on the structure of  g. We will study this 
ease in Section 5 below, where we prove an existence theorem (which we believe 
to be very nearly optimal) for  a ground state solution. 

(d) Another consequence of  Pohozaev's identity is the following 

1 
Corollary 2. I f  u is any solution of  (*), then S(u) =- -~  T(u) > O. 

Proof. Just use (2.1). Then 

1 
S(u) = - T  T(u) --  V(u) 

1 [ N--2]  T(u) 1 
=-~-  1 N =- -~  T(u) > O. 

3. The Constrained Minimization Method 

A natural method to solve (*) would be to look directly for critical points of  
the action S on the space H~(RN). Indeed by Theorem A.V in the Appendix, 
after a suitable modification of  g (see below), S is a C t functional on HI(RN). 

Actually this method was used in [55] for some particular cases and in [31] 
for some existence results for dimension N----- 2. However, a first difficulty en- 
countered in this approach is the fact that S is neither bounded from above nor 
from below on Hx(RN). That S is not bounded above is well known (due to the 
presence of  the gradient term). On the other hand, under hypothesis (1.3) there 
exists wE H I ( R  u) such that 

v(w) = f a(w) ax > o 

(see below, Section 3, proof  of  Theorem 2). By the scale change of  section 2.1 
(~N--2 

one has S(w~) : T T(w) -- aNv(w). It follows from V(w) > 0 that S(w~) 

-+ --  ~ as a - +  -+- o0, as claimed. Another difficulty in this approach lies in 
the fact that S does not satisfy conditions of  the type (PS +) or (PS-) in an obvious 
way. 

Therefore, rather than looking for critical points of S, we will consider a 
constrained minimization problem. First, however, we need to modify the func- 
tion g in order to make V of  class C x and a meaningful functional on HI(RN). 

Define a new function ~ : R --~ R as follows: 

(i) i f g ( s ) ~ 0  for all s~>$ ,  put g : ~ ;  

and 

(ii) if 3 So ~ r such that g(So) = 0, put 

g(s) on [0, s0] 

~(s)---- 0 for S ~ S o .  
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For s ~ 0, ~ is defined (as g) by ~(s) = --g(--s).  Observe that ~ satisfies the 
same conditions as g. Furthermore, by the maximum principle, solutions of prob- 
lem (*) with ~ are also solutions of (*) with g. (Indeed, in case (ii) above, a solu- 
tion u of (*) with ~ satisfies l ul < So, whence ~,(u) = g(u)). Hence there is no 
loss in generality in replacing g by ~ in the following discussion. Henceforth we 
will always adopt the convention that g has been replaced by g; we keep however 
the same notation g. With this modification, g satisfies the stronger condition 

Ig(s) l N + 2 
(1.2 bis) lim 0 with l - - -  

s-.• [sl t -- N - -  2" 

Theorem A.V of the Appendix then applies, and thus 

V(w) = f O(w) dx 
RN 

is a meaningful C x functional on H~(RN). 
Consider the following constrained minimization problem: 

(3.1) minimize (T(w); wE H~(RN), V ( w ) =  1}, 

introduced by COLEMAN, GLAZER and MARTIN [29]. The problem (3.1) leads to 
a solution of (*). Indeed if u solves (3.1) then, since T and V are of class C t on 
Hx(RN), there exists a Lagrange multiplier 0 such that T'(u) = OV'(u); that is 
(at least in the distribution sense) 

(3.2) - -Au = Og(u) in R ~r. 

We will show below that necessarily 0 > 0. Thus, letting uo(x) ----- u(x/a), a > O, 
one has 

0 
--Au~ : -~-g(u~) in R N. 

Therefore, choosing ~ : I/O, one obtains a solution of (*). 

Theorem 2. Under the hypotheses o f  Theorem 1 the minimization problem (3.1) 
has a solution u E HI(R N) which is positive, spherically symmetric, and decreases 
with r = l xl. Furthermore, there exists a Lagrange multiplier 0 > 0 such that 

u satisfies (3.2). Hence u~, for cr -= ~0,, is a solution o f  (*). 

Proof of Theorem 2. This will be divided into several steps: 

1. The set (w E HI(RN), V(w)---- 1} is not empty. 
2. Selection of an adequate minimizing sequence. 
3. A priori estimates. 
4. Passage to the limit. 
5. Conclusion. 

Step 1. The set (wE HI(RN); V(w) ---- 1} is not empty. This is the only place 
where hypothesis (1.3) is used. Let r > 0 be such that G(r ~> 0. For R > 1, 
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define 

for lxl :~ R 

wn(x) = ~(R + 1 -- r) for r = Ixl ~ [R, R q- 1] 

0 for I x I : > R + l .  

Thus WR E H~(Rs). Letting [. ] denote Lebesgue measure, it is easily checked 
that one has 

V(wR) >= a(o  I B. I  -- I B~+~ - B~I [ max [G(s)1). 
~sE[o,r 

Hence there exist constants C, C ' >  0 such that 

V(wg) ~ CR N -- C'R N-1 . 

For R > 0 large enough, this shows that V(wR)> O. Then, introducing a 
scale change on wg, wR,o(x) = wR(x/tr), we have V(wg,~) = c~UV(wR). Thus 
for an appropriate choice of  ~r > 0, we have V(WR,o)= 1. 

Step 2. Selection o f  an adequate minimizing sequence. There exists a sequence 
(un) Q H~(R N) suchthat  V(u,) = 1 and lim T(un) = I:-- inf(T(w); wEH~ ( R  N) 

tl---~ -]- oo 
V(w) = 1)--__ 0. Let u* denote the Schwarz spherical rearrangement of  l u,[. 
(The definition and some properties of the Schwarz symmetrization are recalled 
in the Appendix A3). One has u* E Hx(RN), V(u*) ---- 1, and 1 <= T(u*) ~ T(u,). 
This means that (u*) is also a minimizing sequence. Replacing (u,) by (u*), we 
will assume henceforth that, for all n, u, is nonnegative, spherically symmetric 
and nonincreasing with r = ]xl. 

Step 3. Estimates for u,. We will show that Ilu.llul(~N> is bounded. For  s ~  0, 

define gl(s) = (g(s) q- ms) + and g2(s) ---- gl(s) -- g(s). (Here a + = max (a, 0) 
is the positive part of  a). Extend g~ and g2 as odd functions for s ~ 0. Then one 
has g = g x - - g 2  with g ~ , g 2 ~ 0  onR+,  and 

(3.3) g l ( s ) = o ( s )  as s - + 0 ;  lim gl"s" ( )  0, where l - N q - 2  
�9 ~ s ----7- ----- N --------~' 

and 

(3.4) g:(s) >= ms, V s >= O. 

2 

Let Gi(z) = f gi(s) ds, i = 1, 2. From (3.3) and (3.4) we see that for any 
o 

e > 0, there exists Cs > 0 such that 

(3.5) GI(s) <= C~ lsl '+ '  + eG2(s), V s~R.  

(Indeed, one has gl(s) ~ Cs s t q- eg2(s), V s ~ 0.) Now, since T(un) ~ I, 117u. IIL2(RN~ 
is bounded, which implies by the Sobolev embedding Theorem* that I[ un IIz2.(RN) 

* - @ I ' 2 ( R N ) ~  L2*(R N) (cf. e.g. [44]). 
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C, where 2* = l + 1 = 2N/(N -- 2). (Here and in the sequel C designates 
various positive constants independent of n). Writing V(u,) = 1 in the form 

(3.6) f G~(u,,) dx = f Gz(un) dx -]- 1 
~N ~N 

and using (3.5), we derive (with e = 1/2 in (3.5)) 

'r C + T G2(u,) dx ~ f G2(u,) dx + 1. 
~N 

Hence f G2(u,) dx <= C, and by (3.4), 
1~,,u 

m 
T f u,i dx < a2(u.) dx <= c. 

Thus f[ U. IIHI(RN) is bounded. This implies by H61der's inequality that I[ U, tfLp(r~N) 
~ C  for a n y p ,  2 ~ p ~ 2 " .  

Step 4. Passage to the limit. First, observe that u,(x)-+ 0 as Ix [ -+  + cxD 
uniformly with respect to n. Indeed, since un is radial and nondecreasing and u, 
is bounded in L2(RN), it is easily seen that ]u,(x)] <= C[x[ -u12, x E R  N, 
with C independent of n (see Radial Lemma A IV in the Appendix). Now, since 
u, is bounded in Ha(RN), one can extract a subsequence of  u,, again 
denoted by u,, such that Un converges weakly in HI (R  N) and almost everywhere 
in R N to a function u. Observe that u C HI (R  N) is spherically symmetric and non- 
increasing with r. 

Now, let Q(s) = s z + Is[( From (3.3) and (3.4), we derive 

(3.7) G~(s) ^ Q---~-+o as s - + + ~  and as s ~ 0 .  

We also know that 

(3.8) 

(3.9) 

(3.10) 

sup f Q(u,) dx < -? oo , 
n "~N 

GI(u,)-+ G(u) a.e. in R N, 

un(x) ~ 0 as I x] -+ + ~ ,  uniformly in n. 

Therefore the compactness lemma of STRAUSS [55] (see Appendix, Theorem A1) 
applies. Thus, 

f G,(u~) dx--> f G,(u) dx as n - +  -q- o o .  
:~N p#V 

Using Fatou's Lemma in (3.6) we deduce that 

f a~(u) dx >= f G2(u) dx + l, 
I~ N I~N 
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tha t  is, V(u) ~ 1. On  the other  hand, we also know that  

T(u) ~ lira T(un) = I. 
tl---> 4 -  o o  

N o w  suppose for  contradict ion that  V(u) > 1. Then, by the scale change 
Uo(X) = u(x/a) we have V(uo) = aNV(u) = 1 for  some o', 0 < tr < 1. Also, 
T(uo) = a N-2 T(u) ~= o ~v-2 L But by the very definition o f  L T(u~ ~ L But 
this would imply I = 0, whence T(u) = 0, i.e. u = 0, contradict ing V(u) > O. 
This is impossible and therefore V(u) = 1 and T(u) = I >  0; u is a solution o f  
the minimizat ion problem (3.1). 

Step 5. Conclusion. Since V and T are C 1 functionals on H~(R N) (see Appen-  
dix), there exists a Lagrange multiplier 0 such that  ~- T'(u) = OV'(u). We remark 
first that  0 ~ O, since if 0 = 0 one would have u = 0 which is impossible. 
Let  us show that  0 > O. Suppose for  contradict ion that  0 < O. Observe that  
V'(u) =4= 0 (V'(u) = 0 gives g(u) = O, which implies u ~ 0 since g(s) =4= 0 for  
s > 0 small, a contradict ion to  V(u) = 1). Consider a funct ion w E ~ ( R  N) 
such that  

(V'(u), w) = f g(u) w dx > O. 
t t N  

Since V(u + ew) ~ V(u) + e(V'(u), w) and 

T(u -t- ew) ~ T(u) + 2cO (V'(u), w) for  e -+  0 and 0 > 0, 

one can find e > 0 small enough so that  v = u + ew satisfies V(v) > V(u) = 1 
and T(v) < T(u) = L Again  by a scale change, there exists a, 0 < ~r < 1 such 
that  V(vo) = 1 and T(vo) < L which is absurd. Hence 0 > 0. 

Thus u satisfies, at least in the H 1 sense, the equation 

--Au = Og(u) in ~:~N 

and  so u(./l/O ") = u ~  is a solution o f  problem (*). 

Remark  3.1. In  dimension N = 1 and N = 2, the method  used in Step 3 
for  obtaining bounds  on the sequence (u,) fails. The reason for  this failure is 
tha t  in those dimensions a bound  on [ 7u[  in L2(R N) alone does no t  yield a bound  
on u in an Lt+1(W v) space (1 < + cx~). Actually,  the constrained minimizat ion 
problem (3.1) has no solutions when N = 1 or  N = 2. Indeed, let us examine 
separately the cases N = 1 and N----- 2. 

Case (i): N = 2. Under  a scale change, one has the following relations 

T(uo) = Z(u), V(Uo) = a 2 V(u). 
Thus,  

inf  T ( u ) =  inf T(u). 
{ V(u)  = I } { V(u) >0} 

N o w  if it is supposed for contradict ion that  Uo is a solution o f  (3.1), then one 
has V ( u o ) :  1 and T(uo)= min T(u). Hence Uo is an "interior  m i n i m u m "  

{ v(u) > o~ 

for  T(u); thus T ' ( u o ) :  O, whence uo : O, a contradict ion to V(uo)= 1. 
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Case (ii): N = 1. The scaling relations in this case read 

T(u~) = ~-~ T(u), V(uo) = ~V(u) .  

Choose a w E Ha(R) such that V(w) = 1. Recalling that lim g(s)/s = - - m  < O, 
S--~0 + 

we see that there exists 0oE (0, 1) such that V(OoW) = 0 and V(Ow) > 0 for 
00 < 0 < 1. Clearly, V(Ow) -+ 0 + as 0 -+ 00 +. Let O'(0) = V(Ow)- 1 ; thus 
Z(Ow~(o)) = 1. Now, T(Owo(o)) = a(O) -~ T(Ow) = 0 2 V(Ow) T(w). 
Letting 0 ~ 0o, this shows that inf T(u) = O. 

{V(u)=l} 
The case N = 1 for problem (*) is treated in Section 6 below. A very general 

existence theorem, involving conditions which are both necessary and sufficient, 
is proved there by means of simple methods of ordinary differential equations. 
For  the case N = 2 and under more restrictive assumptions, one can obtain 
existence results by a "local approach" (see [9]) or by "shooting methods" (see 
[15]). Other results for the case N = 2 were obtained by M. J. ESTEBAN [31] 
using critical point theorems due to AMBROSETTI & RABINOWITZ [5] for the action S. 

Remark 3.2. There is a "dual"  variational method to (3.1). Consider the prob- 
lem 

(3.11) maximize {V(u); uE HI(RN),  T(u) = 1}. 

One can check that the proof  of  Theorem 2 easily adapts to problem (3.11) and 
derive from it a solution of problem (*). This observation will be used in Part II. 

4. Further Properties of  the Solution 

Let u denote the solution to problem (*) which we have obtained in the pre- 
ceding section. We shall consider the regularity and exponential decay of u, and 
thus complete the proof  of  Theorem 1. Lastly, we show that u has minimum 
action among all possible solutions of  (*). We assume throughout this section 
that g is odd. 

4.1. Regularity. We show that u E C 2 ( R N ) ,  using the following more general 
lemma (also applicable for the regularity of  the solutions obtained in Part  II). 

Lemma 1. Under conditions (1.1), (1.2 bis), i f  u is a spherically symmetr ic  
solution o f  (*) then u E C2(RN). 

Proof  of  Lemma 1. u satisfies the equation 

(4.1) - -Au  ~ q(x) u in R N 

where q ( x ) =  g(u(x))/u(x).  By (1.2 bis), one has 

-< c +  lul N-2. 
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4 N 
Since u C HI(RN), we also have u E L2*(RN). Noticing that 2* = - - -  

N - - 2  2 '  
we see that q E LN/2(Rlv). Now, using a result of  BREZIS & KATO [19], we obtain 
u E L~oc(R N) for 1 ~ p < oo. A classical bootstrap argument (on balls BR) 

lJ72,p lid N'~ then shows that uE LI~c(RN). Thus by the L v estimate [1] we know that uE ,, l o , ~  J 
for any p < + oo. Hence u E cl'~x(~:~N), 0b E (0, 1). 

Since u satisfies the equation 

N - - 1  
(4.2) --ur~ - -  Ur = g(u), r E (0, + oo), 

r 

we already know that u~, is continuous, except possibly at 0. Let us put v(r) : 
d 

g(u(r)) ; v is continuous on [0, + oo). Rewriting (4.2) as - -  ~rr (rN-lUr) : rN--1 v(r) 
and integrating from 0 to r yields 

rN--lUr : -- f sN--lV(S) ds. 
0 

With a change of  variable, we have 
1 

U r = - - r  f tN-lv(rt) dt 
0 

o r  

Since 

1 

Ur f t N - l v ( r t ) d t .  
r o 

1 . v ( 0 )  
f tN--lv(rt) at-+ ~ as r -+ 0, 

0 

we deduce that u,r(0) exists and urn(0) = --v(O)/N. Furthermore,  f rom equation 
(4.2) we then see that u,~ -+ --v(O)/N as r - +  0. Thus, u E C2(RN). 

Hence the solution of (*) obtained in Section 3 satisfies u E C2(RN). We also 
observe that  u > 0 on R N, by the maximum principle, and that  u is a decreasing 
function of r, since by the strong maximum principle, u'(r) < 0 for any r > 0. 

4.2. Exponential decay. The decay of u, [D~u] (I or I ~ 2) at infinity is shown 
in the next lemma (this result also applies to the (non-positive) bound states ob- 
tained in Part  II). 

Lemma2 .  Under conditions (1.1), (1.2 his), i f  u is a spherically symmetric 
solution of  (*) then 

[O~u(x)l < Ce-~l xl, x C R  N 

for some C, ~ > 0 and for [o~[=<2. 

Proof. The exponential decay of  u at infinity follows from a standard argument 
of  ordinary differential equations (see e.g. [55]). For  the sake of completeness, 
we repeat it here. 
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By L e m m a  1 u is o f  class C2(RN), accordingly it satisfies equat ion (4.2). Set 
v ~ r(N--1)/2U; then v satisfies 

where q ( r ) ~ - - - g ( u ( r ) ) / u ( r )  
say r ~ r o ,  one has 

v~, = q(r) -]- v 

and b = (N --  1) ( N - -  3)/4. For  r large enough, 

b m 
q( r ) - k  r2 = 2 

(recall that  u(r)-+ 0 as r - +  0 by the Radial  L e m m a  A I I  in the Appendix).  

Hence  

N - - 1  

(4.3) lu(r) I =< C r  z e 

for  certain positive constants  C and r~. 

Let  w = v2; then w verifies 

"--fWrr=Vr + q ( r ) +  w. 

Thus  for  r ~ r o  one has Wrr>=mw, and w ~ O .  

N o w  let z = e -1/'7'" (wr + l /mw).  We have z, = e -r (w,, - -  row) >= O; 
hence z is nondecreasing on (ro, + ~ ) .  I f  there exists ra > ro such that  z(rl)  > O, 
then z(r) >= z(r~) > 0 for  all r ~ rl .  This implies that  

w~ + 1/m w >= (z(rl)) e r , 

whence wr + l /m w is not  integrable on (r~ + cx~). But v z and v v, are integrable 
near  ~ (for  u E H~(RN)), so that  Wr and w are also integrable, a contradict ion.  
Hence  z(r) <= 0 for  r > r~. This implies that  

(e(m--rW)r = e2~-mlr2 ~ 0 for  r ~ r l .  

w(r) <= Ce -fm% and in turn 

2 for r ~ r l ,  

TO obta in  the exponential  decay of  ur, observe that  ur satisfies 

(4.4) (rN-- lur)r ~ --rN-- l g(u) . 

Hence using (1.1) and the exponential  decay of  u it is easily seen that  for  r large 
enough,  say r ~ ro, one has ml  lul =< Ig(u)l =< m2 lul ,  where m2 > ml  > 0. 
Hence,  integrat ing (4.4) on (r, R), using (4.3), and letting r, R ~ -f- c~ shows 
that  r N-1 u, has a limit as r - +  co ;  this limit can only be zero by (4.3). Integrat ing 
(4.3) on (r, q- ~x~) then implies that  Ur has exponential  decay. Lastly, the exponential  
decay of  U,r (and thus of  ] D~u(x) [ for  1or ] ~ 2) follows immediately f rom equat ion 
(4.2). 

4.3. Minimum o f  the action among solutions o f  (*). By a result o f  COLEMAN, 
GLAZER & MARTIN [29] the solution of  (*) obtained by the constrained minimiza-  
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tion method of Section 3 has the important property of minimizing the action 
among all solutions of (*). The proof of this fact which we present now relies 
essentially on the Pohozaev identity (2.1). Therefore it is crucial, from this view- 
point, to know that any solution of (*) satisfies this identity (cf. Proposition 1 
above). 

Theorem 3. Let u denote the solution o f  (*) obtained in Theorem 2. Then for 
any solution v o f  (*) one has 

o < S(u) < s (v ) .  

Let us recall again that by any solution v of(*) we mean a solution correspond- 
ing to the truncated g, that is ~ (see above). We follow the argument of [29]. 
Let ff be the solution of (3.1) obtained in Theorem 2, so that 

V(~7) = 1 and T(f) ---- min(T(w); wC HI(RU), V(w) = 1}. 

Then, as we have seen, there exists 0 > 0 such that --Aft = Og(ff) in R u, and 
u is defined by u = feb-" By (2.1), one has 

2N 
(2.1) T(u) -- U -- 2 V(u). 

The scale change relations yield 

N - - 2  

T(u) : O-T- T(u), 

Hence from (2.0 we derive 

0 - -  - -  

V(u) = 0 NI2 1/(5) = 0 NI2. 

N - - 2  
2N T(~). 

1 
By Corollary 2, the action for a solution of (*) has the expression S(u) --- - ~  T(u). 
Thus, 

1 ( N -  2\ (m-2)/2 
(4.5) S(u) : --~ ~ ] /  [T(~)] N/2. 

Now, let v denote another solution of (*), so by (2.1) 

2N 
T(v) N -- 2 V(v). 

Let ( r > O  be such that V ( v o ) :  1, that is a :  V(v) -Ore), or using (2.1), 

I N -  2~ -('m) = \--~--~-! i T ( v ) ]  -<l /N) .  

Let us express S(v) in terms of T(v,~). We know (Corollary 2) that S(v) -~ T(v)/N. 
On the other hand, T(Vo) : a N-2 T(v), so using the preceding expression of a, 

( N -  2~-(N-2)IN 
T(v~) = \ - T ~ ]  [T(~)]~/N" 
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Hence 

1 1 ( N - -  2'~ (N-2)12 
(4.6) S(v) = -~  T(v) = -~  \ ~ ]  [T(v~)] u12 . 

Since h solves the minimization problem (3.1) and V(v~)= 1, 
T(h). 

we have T(v~) 
Using this inequality together with (4.5) and (4.6) yields S(v) ~ S(u). 

5. The "Zero Mass" Case 

As we have seen in Section 2, the situation where g'(0) = 0 is a limiting case 
from the viewpoint of existence results. Indeed, we have seen that when g'(0) > 0 
there are no solutions of (*) while when g'(0) < 0, Theorem 1 applies. We call 
the case g'(O) = O, the "zero mass" case. This situation arises in certain problems 
related to the Yang-Mills equations; see e.g. [35, 36]). In this section, we prove an 
existence result which is more general than Theorem 1, as it also includes situations 
where g ' ( 0 ) =  0. We believe this result to be a nearly optimal one. 

We assume here that g :R+-->R is continuous and satisfies: 

g ( s ) <  N + 2  
(5.1) g ( 0 ) = 0  and s-+0+lim st = 0 ,  where I - - N ~ .  

(5.2) There exists ~" > 0 such that G(~') > 0. 

(5.3) Let r  G( ( )>0} .  If  g ( s ) > O  for all s > ( 0 ,  then 

lim g(s) _ O. 
s---~ + c~ S l - -  

Theorem 4. Under hypotheses (5.1)-(5.3) there ex&ts a positive, spherically 
symmetric, and decreasing (with r) solution u of the equation 

--Au = g(u) in R N 

such that u C ~I'2(RN). Furthermore, u is a classical solution (i.e. u E C2(RN)). 

Proof. As in Section 3, we modify the function g by letting ~(s) ~ g(s A So) 
if there exists So > ~'o such that g(So) ~ O. We again denote by g the truncated 
function ~. The proof of Theorem 4 rests on the same constrained minimization 
method as in Section 3. Consider the problem 

(5.4) minimize (T(w); wE ~1'2(RN), ]G(w)[ E L~(RN), V(w) = I} 

where again 

T(w) = f I Vwl s dx, V(w) = f G(w) dx. 
t~N ~ N  

For the definition of ~1.2 the reader is referred to [44]; @I"Z(RN) is just the Hilbert 
space obtained by taking the completion o f ~ ( R  N) for the norm J[ wl[~x,2 = I / T ~ .  
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(Equivalently, using Sobolev's embedding theorem, ~I'2(RN) is the space of  func- 
tions in L2*(R N) such that Vu E (L2(RN))N). 

The proof  will be divided into the following steps: 

5 a. Existence of a solution to the minimization problem (5.4). 
5 b. Existence of  a Lagrange muitiplier 0 ~ 0. 
5e. Regularity of the solution of (*). 

5a. Existence of a solution to the minimization problem. By taking the same WR 
as in Step 1 of the Proof  of  Theorem 2, we see that the set 

A : (w E ~I,2(RN); I G(w) I ~ LI(RN), V(w) = 1} 

is not empty. Let (u,) be a minimizing sequence for (5.4), i.e. u, E A and 

T(un) ~ I : inf {T(w); w E A} as n t + oo. 

We may always assume, as in Step 2 of the Proof  of  Theorem 2, that u, is non- 
negative, sperhically symmetric and nonincreasing. (Indeed if (un) is a minimizing 
sequence, then so is (u*), where u* is the Schwarz symmetrization of  u, ; note that 
there is no difficulty in defining the Schwarz symmetrization o n  ~l,2(]~/v) ; see 
Appendix A3). 

Thus ]l U.I[41.2(RN) and hence 1[ u.  []L2*(p~N ) remain bounded. 

After truncation of G, from (5.3) it follows that 

(5.3 bis) [g(s)l ~ C +  Is[ t , s E R ;  

hence for any finite R, there exists a constant C(R) such that 

(5.5) f IG(u,)] dx < C(R). 
B R 

Furthermore, [un(r)[ <= fl(r), where fl(r) is independent of n and lira fl(r) = O. 

(Indeed by the Radial Lemma A III of  the Appendix, 

l u.(r)[ =< Cr-~, 

where 0~ > 0 depends only on N and C depends only on [IVu, J[L2(RN ), which is 

bounded). Using (5.5) and V(u,) : 1, we see that, for any R > 0 fixed, there 
exists a constant C(R) such that 

(5.6) f a(u.) dx >= --C(R). 
RN--BR 

Put g + = m a x ( g ,  0) g - = ( - - g ) + ,  so that g = g + - - g -  and g+, g- ~ 0. Also, 
set 

a,(z) = f g+(s) ds, a (z) = f g-(s) ds. 
0 0 

From (5.6) we deduce that 

(5.7) f G2(u,) dx < C(R) + f G,(u,) dx. 
RN--BR ~N--B R 
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We know that  0 <~ u,(r) ~ fi(R) for  r ~ R, n E N, wherefl(R) ~ 0 as R -+ + oo. 
By (5.1), for  R large enough, there exists a constant  s(R)~> 0 such that  

0 ~ al(un(r)) ~ g(R) I u.(r)I t+~, r ~ R, n E N. 

Futhermore  (by (5.1)) we can suppose s(R)-+ 0 as R - +  + co. Hence 

(5.8) f Ia l (un) ldx~e(g)  f lUnlt+ldx~fe(R).  
R N - - B  R I~N--B R 

This together with (5.5) shows that  [GI(U,) I is bounded  in L~(RN). 
We can extract a subsequenee o f  (u,), again denoted by (u,), such that  un ~ u 

weakly in ~1"Z(RN) and u, --~- u almost everywhere in R u. Note  that  u is non-  
negative, radial and nonincreasing. Now, for  any R, since u, is bounded in Ha(BR) 
we have 

f ai(u.) ,Ix-> f G,(u) ,Ix as n -+ + co ,  
B R B R 

using (5.3 bis). Since by (5.8), 

f IG,(u,)[dx-->O as R - + + ~ x ~ ,  
~R N--  B R 

uniformly with respect to n, we then derive that  

f a,(u.) dx -+ f Gl(U ) d x .  
~ N  R N  

F r o m  V(u,) = 1, that  is 

f al(U.) dx = l + f a2(u.) dx, 
R N  R N  

it follows (using Fa tou ' s  Lemma) that  G~(u), Gz(u)E LI(R N) and 

f a,(u) dx > 1 + f o~(u) dx, 
R N RN 

that  is V(u) ~ 1. On  the other hand, we know that  T(u) <= lira T(u,)~ L , -++~ 
Thus we conclude as in the P roo f  o f  Theorem 2 that V(u) = 1, i.e. u E A and 
T(u) = I. Hence u is a solution o f  the minimization problem (5.4). 

5b. Existence of  a Lagrange multiplier 0 ~ O. We now prove that  there exists 
0 =~ 0 such that  --Au ~ Og(u) in R N. Observe that  uE H~(C~) on any region 

c~ =~xERN,~< Ixl < a/e} for  0 < s <  1. 

Denot ing  by ~ , z  the space o f  radial functions in ~l,z, we remark that  u is also 
a solution o f  the minimization problem 

minimize iT(w); wE ~ , z ,  w = u in ~U - -  Ce ' V(w) = 1}, 

This is a classical problem in the calculus o f  variations, as T and V are C ~ 
functionals on H~(C~). Therefore there exists a constant  0 such that  --Au = Og(u) 
in the sense o f  ~'(C~), for all e > 0. That  is, --Au = Og(u) in ~ ' ( R  N --  {0)). 
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To see that this equation is also satisfied at the origin, we use a result of  [21] 
about the singularities of  solutions of  semi-linear elliptic problems. Indeed, i f  
u E Hi(B1) satisfies 

= Og(u)  i n  - -  {0} )  

and g verifies condition (5.3 bis), then the equation also holds at the origin:: 
--Au : Og(u) is satisfied in ~ ' (Ru) .  

The possibility 0 = 0 is ruled out by V(u) = 1. We can eliminate the case 
0 < 0 too, by using the same argument as in Section 3. Indeed, if w E ~(Ru)  , 
is such that f g (u )  w d x > O ,  then for 0 < 0  and s > 0  small enough the  

R N  

function v = u + sw would satisfy V(v) > V(u) : 1 and T(v) < T(u). 
But as we have seen by a simple scale change argument this is impossible. Hence  
u E ~'Z(RN) A H~oc(R N) satisfies --Au = Og(u) in R N, with 0 > 0. 

5c. Regularity of  the solution of  (*). Using a scale change, we find that u~/b- 

which we again denote by u in this section, is a positive, spherically symmetric,. 
and non-increasing solution of  (*). Write (*) as 

--Au = q(x) u in ~:~N 

�9 N/2[llZ~N'~ where q(x) = g(u(x))/u(x). By (5.3 bis), q E ~loc ~ ~- Since u E H~oc(Ru),~ 
we find from a result of BR~zIs & KATO [19] that u E L~oc(R N) for 1 ~ p < o~. 
A standard bootstrap argument then shows that u E C2(R N) as before. 

6. The Case of Dimension N = 1 
(Necessary and Sufficient Conditions) 

In this section we will show, with very few restrictions, that there exists a 
necessary and sufficient condition for the solvability of problems like (*) in one  
variable. In this case, furthermore, the solution of (*) is unique when it exists. 
The proofs rely on simple arguments adapted from H. Berestycki & P. L. Lions. 
[11]. 

Let f E  C(R, R) be a locally Lipschitz continuous function with f(O) = 0.. 
z 

Let F(z) = f f (s)  ds. Consider the problem 
0 

--u" = f(u), uE C2(R), 
(6.1) 

lim u ( x ) = 0 ,  U(Xo)>O for some x o E R .  
x--+ 4- oo 

Theorem 5. A necessary and sufficient condition for the existence of a solution" 
u of  problem (6.1) is that 

(6.2) 
~o = inf ~" > 0; F(~) = 0} exists, 

~ o > 0 ,  f C o ) > 0 .  
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Furthermore, i f  (6.2) is satisfied, then (6.1) has a unique solution up to translations 
o f  the origin, and this solution satisfies (after a suitable translation o f  the origin): 

(i) u(x) = u(--x) ,  x C R ("u is radial"), 
(ii) u(x) > O, x E R ,  

(iii) u(O) = ~o, 
(iv) u'(x) < O, x > O. 

Remark 6.1. Under the assumptions of Theorem 5, the solution u of (6.1) can 
be obtained as the solution of  the initial value problem 

- -  u "  = f ( u )  in R ,  
(6.3) 

u(0)  = ~o, u ' (0)  = 0 .  

The other solutions are obtained by translations; v(x) = u(x + C), C E R being 
a constant. 

Remark 6.2. Observe that condition (6.2) implies that 

i) There exists ~ > 0 such that F(~) > 0. 
ii) If  f is differentiable at 0, then f ' (0) ~ 0. We thus have the same type of 

assumptions that were made for the case N => 3. However, in dimension 1 (as 
is well known) no growth restriction needs to be imposed on f 

Remark 6.3. If  one assumes in addition to (6.2) that lim f(s)  =< - -m  < 0, 
s-~0 S 

then u, u', u" have exponential decay at infinity: There exist C, ~ > 0 such that 

0 < u(x), I u'(x) l, I u ' (x)[  < Ce -61xl, x E R 

(see Section 4 above). 

Proof of  Theorem 5. (a) Condition (6.2)/s sufficient. Let u denote the solution 
of  (6.3). This solution exists and is unique on a certain maximal interval (--~, ~). 
Multiplying the equation by u' yields 

1 
(6.4) 2 u'(x)2 = F(u(x)), Ix I <  ~. 

Now observe that: 

(i) u(--x)  = u(x), Ix I < -~. 
(ii) u(x) > O, Ix[ < ~. Indeed, if not, there exists Xo with u(xo) = 0. But 

then by (6.4), u'(xo) : 0, and by the uniqueness of solutions of the initial value 
problem, u ~ 0, which is impossible. 

(iii) u'(x) < 0, 0 < x < ~. Indeed, since u'(0) ~ 0 and u"(0) = --f(~o) < 0, 
it is clear that u'(x) < 0 is negative for small x > 0. Now, suppose there exists 
Xo > 0 such that u'(xo) = 0 and 0 < U(Xo) < ~o. This implies by (6.4) that 
F(u(xo)) : 0, which is impossible by the very definition of ~o. Hence u'(x) < O, 
x < ~ .  
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F r o m  (ii) and  (iii) above we derive that  u is bounded :  0 < u(x) < ~o for  
x > 0. Apply ing  a s tandard  cont inuat ion  a rgumen t  we the~ show tha t  u is defined 
on all o f  R : ~ = - ? ( x ) .  

(iv) l im u ( x ) = O .  Indeed,  let L =  l im Su(x ) ;  thus 0 ~ L < ~ ' o .  F r o m  
x - + + ~  x t + e ~  

(6.4) we see tha t  - -  ~- (u'(x)) 2 ~ F(L) as x ~ + e~, which obviously  implies 
F ( L ) = O  and L = 0 .  

(v) The solution of(6 .1)  is unique up to translations. Let v be another  solution. 
By translat ing the point  where v reaches its m a x i m u m  to the origin, we can assume 
tha t  v'(0) = 0. By uniqueness o f  the initial value p rob lem v mus t  be symmetr ic  
(v(--x)  = v(x)). Mult iplying (6.1) by v'  yields 

1 
2 v'(x)Z = F(v(x)) -- F(v(O)), x E P~. 

Thus,  ~ v ' ( x )  2 ~ F ( v ( 0 ) )  as x - +  + o o ,  implying F(v(O)) = 0. Suppose  
v ( 0 ) > ~ - o .  Then there exists Xo such tha t  v ( x ) > ~ o  for  0 = < X < X o ,  and 
V(Xo) = ;-o. Since v also satisfies (6.4) we have u'(xo) = 0. But  then, v"(Xo) = 
--f(r  < 0, contradict ing v(x) > ~o for  x < xo. Hence,  it mus t  be the case 
tha t  v(0) = ~o, which means  tha t  v is a solution of  (6.3). Thus  v = u by unique- 
ness of  this problem.  

(b) Condition (6.2) is necessary. Suppose (6.2) is violated and tha t  there exists 
a solut ion v of  (6.1) such that  v(0) > 0 and v'(0) = 0 (indeed, v is even modu lo  
a translation).  By the same a rgument  as above,  F(v(O)) = 0. Hence  ~o < -}- 
(i.e. ~-o exists). Hence  (6.2) can only fail to be satisfied in two ways:  

(i) Case 1. r > 0 but  f(~o) ~ 0. Then  v(0) ~ ~'o, and then exists xo > 0 
such tha t  V(Xo) = ~o. Then  also v'(xo) = 0 and  v"(Xo) = --f(~o) ~= 0. I f  

f ( r  = 0, then the condit ions V(Xo) = ~o, v'(xo) = v"(Xo) = 0 imply v ~ r 
which is impossible.  On the other  hand  if  f(~o) < 0, then since whenever  V(Xo) 
= r one also has v ' ( xo )=  0 and v" (Xo)> O, v can never  go below ~o, 
which is impossible  too.  Hence,  this case is ruled out. 

(ii) Case 2. ~ o = 0 -  Let  v ( 0 ) = ~ l > 0 .  Then  F ( ~ I ) = 0  a n d . f ( r  (if 
not ,  as we have seen in Case 1, v could not  go below ~'1)- There  exists ~2, 0 < 
r < Cx, such that  F(~2) = 0. Again,  f(~2) > 0. But  there exists ~ > 0 such 
tha t  v ( J ) = ~ z  and v ( x ) > r  for  any  x, 0 < x < ~ .  Then  v ' ( ~ ) = 0  and 
v"(Yc) = --f(~2) < 0, which is a contradict ion.  

Remark  6.4. The  sharp difference between the case N = 1 and  the dimensions  
N ~ 3 should be stressed. Indeed,  for  the case N = 1, when there is existence 
for  p rob lem (*), one also has uniqueness.  On the other  hand  for  dimensions  
N ~ 3, roughly  speaking, when there is existence, then, in the odd case, there 
also exist ifinitely m a n y  distinct solutions. The  opt imal  condit ions for  the existence 
of  a g round  state in dimension N = 2 are not  entirely clear for  the m o m e n t  
(part ial  results are however  available for  dimension 2 in [9], [15], [31]). 
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In a general manner, the results concerning existence for (*), strongly depend 
on 

1) the dimension N, and 

2) the function spaces where solutions are being sought. This shows that one has 
to be quite careful in defining with precision the functioa spaces or the variational 
problems used to solve (*). One also has to be careful in approaching (*) via the 
ordinary differential equation (9), since solvability depends on N. 

Appendix 

A.L  A compactness lemma o f  Strauss. We recall here a compactness result 
(used in section 3) due to STRAUSS [55], and present a very simple proof  of it. 

Theorem A.I. Let  P and Q : R --> R be two continuous .functions satisfying 

e(s) 
(1.1) Q(s----3)--~ 0 as Isl ~ + ~ .  

Let  (u,) be a sequence o f  measurable functions: RN--~ R such that 

(I.2) sup f lQ(u~(x))l dx < 4- 
RN 

and 

(1.3) P(un(x)) --~ v(x) a.e. in R N, as n --~ 4- ~ .  

Then f o r  any bounded Borel set B one has 

f l e(un(x)) - ,,(x) l d x - ~  0 a s  n ~ + o 0 .  
B 

I f  one fur ther  assumes that 

e(s) 
(1.4) - - - - ~  0 as s--~ O, 

a(s) 

and 

(1.5) un(x)---> O as Ix I --~ 4- co, uniformly with respect to n, 

then P(u,)  converges to v in L1(R N) as n--~ 4- ~ .  

Example. Suppose (wn) is a sequence of functions RN--> R which is included 
in a bounded set of  LP(R n)/~ Lq(R~v), 1 < p < q < 4- oo. Suppose further- 
more that wn converges to some w a.e. in R n, and that w, as well as w satisfies 
(1.5). Then wn converges strongly to w in Lr(R s)  for any r E (p, q). Indeed, we 
remark that by Fatou's Lemma, w E LP(R n) ~ Lq(RN), and apply Theorem A.I. 
with 

P(s) = tsl r, Q(s) = [sl p 4- Is] q, U n = W n - -  W ,  
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Proof  of Theorem A.I. (1) To prove the first part of  the theorem, we need to 
show that P(un) is uniformly integrable on B, But by condition (I. 1), there exists 
C >  0 such that 

I P(u,(x))] <= C + C ]a(u,(x))l, x ~ R N. 

Thus P(u,) and v (by Fatou's lemma) are in LI(B). Next, we see that 

f p(uAx)) dx <= f [e(u.(x))ldx, 
B~t[P(Un(x))l ~_ K} {lun(X )] ~v(K)}~B 

for  some function q~ such that ~(K)-+ + o~ as K ~  + o0. 

Applying condition (I.1), we then have 

f ~ A [P(u,(x))[ dx ~ e(K) f I Q(u,(x))l dx <= Ce(K), 
{IP(un(x))l~ } B B 

where e(K)-+ 0 as K--~ + ec. This shows the uniform integrability. 
(2) Now let e > 0; by conditions (I.4) and (I.5), there exists R0 ~> 0 such 

that 

I x[ > R0 implies I P(u.(x))[ <= e I Q(u~(x))], n E N. 

Therefore, by Fatou's Lemma, v 6 LI(RN), and 

f Iv(x) l dx < ~C. 
{rxl >Ro} 

Now, from the first part of  the theorem, there exists no such that for any 

?/ ~ no, 

f I P(u.(x)) - v(x) t dx <= e. 
{Ixl <Ro) 

To sum up, we have for n => no (no ---- no(e)), 

f l e(u.(x)) - v(x) l dx <= 2eC + e. 
z~N 

A.II. Some radial lemmas. We prove here some useful radial lemmas concerning 
the uniform decay at infinity of  certain radial functions. The first one is due again 
to STRAUSS [55]. 

Radial Lemma A.II. Let N ~ 2; every radial function u E HI(RN) is almost 
everywhere equal to a function U(x), continuous for x =~ 0 and such that 

(II.1) I f(x)l ~- CN [XI (I-N)]2 ][U]IHI(RN ) for Ix[ >= O~N 

where CN and 0% depend only on the dimension N. 
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Proof. Since the first part is classical, we just indicate the way to show (II.1). 
By a standard density argument, it suffices to consider the case u E ~(RN). Let 

N - - 1  
m - - - - ;  we have 

2 

d(r2mu2)=2 d [~_~ ]2 dr -~r (r mu) " r rnu ~ (rmu) -~- (rmu) 2. 

Now if N ~ 3, integrating over [0, r], we obtain 

} 0 [\dr] + u2 Ou-~ do + mrN-2 u2(r)' 
or 

(1--m) 'u'(r, 

We next prove a radial lemma (in the same spirit as the preceding one) for the 
space ~1'2(RN). Recall that ~1'2(RN) denotes the closure of  ~ ( R  N) for the norm 

11~II~,,2(~N) = f [V~l 2 dx. 
R N 

Then (see [44]) by Sobolev's inequality, ~1'2(RN) ~-~ L2*(RN), for N > 3, 
with 2* = 2 N / ( N -  2). 

Radial Lemma A.III. Let N ~ 3. Every radial function u in ~I'2(BN) is almost 
everywhere equal to a function U(x), continuous for x 4= O, such that 

(II.2) [U(x)[ =< Cx Ix] (2-N)/= I[u[l~x,2(Ru), Ixl ~ 1, 

where CN only depends on N. 

Proof. As above, it suffices to consider the case when u E ~(RN). Now, 
following a device of COLEMAN, GLAZER and MARTIN [29], we set r = e y and 
define 

v(y) = u ( r ) e x p { + ( N - -  2) y}. 

An elementary calculation then shows that 

II U]]L2(RN ) ] (v'(y)) 2 dy + 4 
- -  - - o o  

(I sN-1 [ is the area of the unit sphere in RN). Since for any v E Hi (R)  one has 

dv 

we obtain 
]u(r) r(N-2)121 ~ C N II ~TUI[L2(RN ) 

and the desired inequality follows at once. 
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We next prove an easy lemma, used in the proof  of  the existence of a ground 
state solution. 

Radial Lemma A.IV. I f  u 6 LP(RN), 1 ~ p < -1- ~ ,  is a radial nonincreasing 
function (i.e. 0 <: u(x) ~ u(y) i f  Ixl > lyl), then one has 

(It.3) lu(x)l-<_ Ixl-U/  laU_,l! I[ulI, c N), x 0. 

Proof. For  all r > 0, we have (setting r = [xl) 

P ~ rN 
IlullLp(rtN) > i su-,i f [u(s)l s -'ds > I SN-Xl [ u ( r ) ] P ~ .  

0 

Denote by HIr(R N) the subspace of HI(R N) formed by the radial functions. 
An important corollary of Lemma A.II is 

Theorem A.I ' .  The injection HI~(R N) ~-+ LV(R N) is compact, for 2 < p < 2N/ 
( N -  2). 

Proof. The injection HI(R N) ~+ Lv(RN), when 2 < p < 2N/(N -- 2), fol- 
lows from Sobolev's Theorem and H61der's inequality. Now let (un) Q Hlr(R N) be 
a sequence of radial functions such that 1] un IIm~N) is bounded. From Lemma A. II 
we deduce that (u,) has uniform behaviour at infinity with respect to n, i.e., 
lim [u,(x)] = 0 uniformly with respect to n. We can extract a subsequence Ixl-+~o 

(unk) which converges almost everywhere in R N, and weakly in HIr(R N) to a radial 

function u. Applying Theorem A.I above (with the choice P(s) = Is] p, Q(s) = 
s 2 + Isl 2.) we then find that u,k converges strongly to u in Lv(I~N). 

A.IIL Some results about Sehwarz symmetrization. We recall here, without 
proofs, the basic properties of Schwarz symmetrization. First, let us recall the 
definition of the sperhical rearrangement (or symmetrization) of a function. 
Let fELI(RN); then f* ,  the Schwarz symmetrized function o f f ,  is a radial, 
nonincreasing (in r), measurable function such that for any o~ > 0, 

m~f* >: o~) = m{lf[ ~ or 

where m is the Lebesgue measure. It is obvious that 

f F( f )dx  = f F(f*) dx 
RN RN 

for every continuous function F such that F(f) is integrable. 
A fundamental property of the mapping f - -~ f*  is the following 

Riesz Inequality. Let f, g be in L2(RN); then 

(III.1) f f(x) g(x) dx <: f f*(x) g*(x) dx. 
RN ~N 
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From this inequality, we see that 

~(III.2) IIf* -- g* [IL2(~ N) ~ [[f - -  g I[L2(RN)' f~ g E L2(~N). 

Another  important consequence of the Riesz inequality is the following result. 

Let u be in ~l ,2 (~N)  /..1- N ~ 3 (respectively, in Hl(RU) for any N). Then u* 
belongs to ~t'2(RN) (respectively, to HI(RN)), and we have 

(III.3) f IVu*(x)l 2 dx ~ f 17u(x)l: dx. 
~ N  I~N 

This result is essentially well known (see [38]), but with stronger regularity re- 
quirements and with a somewhat delicate proof; recently L~EB gave a quite simple 
.and general proof, using only the Riesz inequality and the symmetry property of 
the fundamental solution of the heat equation (see [43]). Though the result was 
established in the case of H ~ functions only, the case u E ~I'2(RN) follows easily 
from a simple density argument. 

A.IV. Some functionals of  class C 1 on H~(RN). We prove here some assertions 
"about the C ~ character of  certain integral functionals defined on H~(Rx). We 
believe these are standard results (they are certainly well-known and used in the 
case of  a bounded domain), but since we would not find any precise reference, 
we include the proofs. We start with the bounded domain case. 

Theorem A.V. Let ~2 be a bounded, regular domain in R N, with 
g E C(R) satisfy g(O) = 0 and 

,0.v.~) li--~ Ig(s)l N + 2 1,1-~ + ~ - - ~  < + cx~ with l -- N ~ "  

Then the functional 
t 

V(u) = f G(u(x)) dx, where G(t) = f g(s) ds, 
t-a o 

is well-defined and of  class C ~ on the space H1(s Moreover one has 

( IV.2)  < V'(u), v) = f g(u(x)) v(x) dx, u, v E H ~(~). 
t2 

N ~ 3. Let 

Theorem A.VI. Let N ~ 3 and let g be a continuous function on R satisfying 
g(O) = O, condition (IV.I), and 

[g(s) 1 1 
(IV.3) lira ~ ~. + cx~. 

,-~o Isl 
s~-0 

Then, the functional V(u) == f G(u(x)) dx is well-defined and o f  class C x on 
7~N 

the space H~(RN). Moreover 

0v .2 ' )  < V'(u), v),_l,,~, = .f g(u(x)) v(x) dx, u, v ~ HI(RN). 
~N 
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Remark. The above results remain true (with the same proofs) i fg  also depends 
on x : g = g(x, s), and satisfies the Carath6ordory condition. Conditions (IV. 1) 
to (IV.3) must then, however, be satisfied in a uniform sense with respect to 

xEs  or x E R  N. 

Proof  of Theorem A.V. The fact that V is meaningful on HI(.Q) is immediate. 
To show that it is of class C 1 (see VAINBER6 [59]), we only need to show: 

(i) For  u, v E HI(s 

(ii) If  un--~ u in H~(~) (strongly), then 

sup [ f {g( . )  -- g(u)) v dxl--~ O as n -+ + ~ .  
vE H~( O),llvllHJ( t2) ~_ 1 

Proof of  (i). We have 

j + ,v)- G(u)- 
I 

<= dx. 

Now, almost everywhere in g2, one has 

+ { G ( u  + tv) -- G(u) -- tg(u)v) <= [Sup I g(u + tv)] + ]g(u)[tl v ] 
~tE[O,l] ) 

<= {c + Clul' + Clv] l) ]vl 
(here, we use the fact that I g(s)[ ~ C q- C[sl t for sER) .  Thus, letting h : 
{C-[-C [ult+ C]vl t) Iv l, h lies in L~(.Q) by the Sobolev imbedding theorem 
(H~(.Q) r L/+1(.Q)). We have next 

1 
--[- {G(u Jr tv) -- G(u) -- tg(u) v) ~ 0 a.e. x E g2, as t ---> 0 

and 

{G(u + tv) -- G(u) -- tg(u)v) h, a.e. x E <= Y2, h LI+(~). E 

The conclusion now follows by applying Lebesgue's dominated convergence 
theorem. 

Proof of  (ii). We also know that un ---> u in Lt+l(O) (note that l + 1 = 2*). 
Hence by a standard result in integration theory (cf. [18]), there exists fi ELt+ 1(f2) 
such that (taking subsequences, if necessary) 

lu], [u,[ <= h a.e. in s n E ~ .  
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l +  1 

I g ( u . )  - g(u)l  --7- < C + C(h) ~§ . 

l + 1  

This shows that g(un)-+ g(u) in L--7-(~), and in turn 

sup 
IMIHI(D)~ 1 

j {g(u~) - -  g(u)} v dx 

}' 
] g ( u . ) -  g(u)l-7--dxy +' sup I dx 

] IrVllHl(o)<l 

This concludes the proof  of  (ii) and hence of Theorem A.7. 

Proof  of Theorem AWL We follow the proof  above. 

(i) For  any u, v E HI(RN), one has 

+ t[ V(u + tv) -- V(u) -- t f g(u) v dx 1,--+0 as t---~0, t > 0 .  
~ N  

We now use the inequality 

Ig(s)l < clsl + clsl', s~R 

for some positive constant C. With h now defined by 

h = { c l . l  + Girl + Clul z+ Clvl'}lvl 

we have h E L~(RN). This enables us to repeat the previous argument. 

(ii) We show that 

sup f {g(u.) -- g(u)} v dx --~ 0 as n -+ + o0. 
t, E H I( I~N),IIt:I[ H I( R N) _<__ 1 I R N 

Let e > O; we assert that there exists Ro > 0 such that 

sup f {g(u,) -- g(u)} v dx -<- e. 
IIVIIHI(I~N) ~_I [xl~Ro 

In view of Theorem A.V and its proof  above, we will then be finished). Since 
un --> u in H~(RN), and so also in Lt+~(RN), taking subsequences if needed, there 
exist ;TEL~-'(RN), hEL2(B N) such that (cf. [18]) 

luI, 1..I < ~ a.e. in E N, I.I, lu.I < ~ a.e. in R N. 
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Then, for any R > 0, we have 

sup f {g(u.) - -  g(u)} v dx C I/~llv(l~r_~) tJl~ 

-- II F [IH~(RN) ~ 1 

Hence, 

sup f {g(u.) - -  g(u)} vdx <= C [l~llL2<txl_~R) + C I[~[l~+a<~x~_~R)" 
v~Hl(~N),IIvIIHl(I%N)<l x ~ R  

?rE L2(R N) and ~ELt+I(RN), we derive the existence of  Ro > 0 such Since 
that 

I 
sup f {g(Un) -- g(u)} vdx I =< 

v H I ( • N ) < : I  I x l > R o  I 

This concludes the proof  of  Theorem A.VI. 
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