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1. Introduction 

There are several indications pointing to an intimate relationship between 
the second law of thermodynamics and "stability". Most notably, the work of 
ERICKSEN [1], COLEMAN & DILL [2] and GURTIN [3] has revealed that the 
Clausius-Duhem inequality induces Liapunov stability of equilibrium processes 
in a variety of materials. Here I at tempt to establish a different connection 
between stability and the second law, in that "stabil i ty" will be interpreted as 
continuous dependence of thermodynamic processes upon initial state and 
supply terms. 

The ideas will be presented within the context of thermoelasticity theory, 
without heat conduction. The hyperbolic character of the field equations causes 
the breakdown of smooth solutions and the development of shock waves, so the 
class of smooth functions is far too narrow to encompass all processes of 
physical interest. The natural framework is the class of proper processes, charac- 
terized by the property that velocity, deformation gradient, specific entropy, 
stress, temperature and internal energy are functions of bounded variation in the 
sense of Tonelli-Cesari.* The balance laws, in integral as well as in local form, 
are meaningful in the class of proper processes, and the classical geometric 
theory of wave propagation can be transplanted into this class. One expects that 
existence of solutions to the field equations will eventually be established within 
the class of proper processes, but so far this has only been accomplished in the 
one-dimensional case [5]. 

* that is, measurable functions whose first derivatives are locally Borel measures. 
This is essentially the broadest function class in which the Gauss-Green theorem holds. 
There is an analogy between the geometric structures of functions of bounded variation 
and functions that are piecewise smooth. For a survey see [4]. 
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The interpretation of the role of the second law of thermodynamics in the 
theory of proper processes poses an interesting problem. The practice of re- 
stricting constitutive relations so that the Clausius-Duhem inequality be auto- 
matically satisfied by smooth processes originated in the work of COLEMAN 
NOLL [-6] and has by now become standard in continuum thermomechanics. On 
the other hand, within the class of processes with shock waves, the Clausius- 
Duhem inequality has traditionally been viewed as an admissibility criterion. It 
turns out that this criterion generally rules out some but not all extraneous 
processes, so that one must either impose shock admissibility restrictions [7] or 
else strengthen the second law [8], in order to single out those processes that are 
physically relevant. 

Despite the above remarks, it will be shown here that, whenever they exist, 
smooth processes are stable within the class of (not necessarily smooth) proper 
processes that satisfy the Clausius-Duhem inequality. In other words, so long as 
one is dealing with smooth processes, the second law in its traditional form is a 
satisfactory admissibility criterion. 

The above result is established under certain assumptions on material 
response,* relating to convexity of internal energy. With the exception of one- 
dimensional bodies, global convexity of the internal energy function is contrary 
to experience (it is incompatible, in particular, with the principle of frame 
indifference). Even so, internal energy will in general be locally convex on a 
certain region in state space. In Section 4 we prove uniqueness and stability for 
smooth processes residing in the convexity region of internal energy. For the 
case where the body is smooth and bounded and the motion of its boundary is 
prescribed, stability is established in Section 5 under the weaker assumption that 
the smooth process resides in the strong ellipticity region. 

The general strategy of the proof was inspired by the important paper [10] of 
D! PERNA on uniqueness of solutions to the initial value problem for quasilinear 
hyperbolic systems. The heart of the proof is an inequality, derived in Section 3, 
which estimates the evolution in time of the "distance" between the states of two 
processes originating at neighboring states. The time rate of increase of this 
distance can be controlled, with the help of the Clausius-Duhem inequality, 
provided that at least one of the processes is smooth and resides in the convexity 
or the strong ellipticity region of internal energy. 

2. Adiabatic Processes in Thermoelastic Materials 

We consider a thermoelastic body with reference configuration :~ in R" (n 
=1 ,2  or 3). The reference mass density p(X), defined on ~ ,  is smooth and 
strictly positive, 

(2.1) p(X)> po>O, X6~. 
A motion x=x(X,t) determines the velocity field v =~  and the deformation 
gradient field F = grad x x. The internal energy & the Piola-Kirchhoff stress T and 

* It is not generally to be expected that the second law will of itself induce stability, 
unless it is supported by appropriate restrictions on constitutive relations. In this 
connection, see the illuminating remarks of SERRIN [9]. 
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the temperature 0 are determined by the deformation gradient F and the specific 
entropy r/via constitutive relations 

(2.2) e=e*(F,q;  X), T = T * ( F , q ;  X), O=O*(F,q; X), 

where e*, T* and 0* are smooth functions defined for F in the set M + of n x n 
matrices with positive determinant, ~/in R and X in ~.* We also require that 

(2.3) 0*(F,q; X)>0, F c M  +, tieR, X ~ .  

We shall be assuming that the material is a non-conductor of heat so that heat 
flux and entropy flux vanish. 

By a proper thermodynamic process we mean fields (x, rl)(X,t) such that 
(v, F, r/)(X, t) are functions of locally bounded variation, in the sense of Tonelli- 
Cesari, satisfying the balance laws of momentum and energy, viz., 

(2.4) p b i = Ti~ ' ~ + p b i ,  

(2.5) p(e + i vi vi ) = (Ti~ vi), ~ + p bi vi + p r, 

where b(X, t) is the body force and r(X, t) is the energy supply. The process will 
be called admissible if it also satisfies the Clausius-Duhem inequality 

r 
(2.6) 0-~_->0. 

The reader should bear in mind that for the class of proper processes (2.4)-(2.6) 
only hold in the sense of measures (or distributions) and thus one cannot 
simplify (2.5) in the standard fashion, since the usual product differentiation rule 
does not apply to products of functions of bounded variation. 

A process (~,FI)(X,t) will be called smooth if the functions (~,F, F1)(X,t) are 
Lipschitz continuous, uniformly on bounded subsets of their domain. Thus a 
smooth process may contain weak waves but not shock waves. For smooth 
processes, one may write the balance laws in reduced form 

(2.7) p~i=Ti~.~+pbi  

(2.8) p~,= T~i,~ + p~. 

As is known, the standard requirement that every smooth process be admissible 
will be satisfied if and only if 

0e* de* 
(2.9) T* =P  ~F-' 0* = - - .  ~u 

Indeed, upon using (2.9), (2.8) yields 

(2.10) 0 - - 0 = 0 ,  

* In particular, we assume that the partial derivatives of e*, 0* and T*, at any fixed 
FEM + and ~/6R, are bounded functions of X on ~. 
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which shows that the Clausius-Duhem inequality is automatically satisfied by 
smooth processes, as an equality. 

3. The Evolutionary Inequality 

We establish here the estimate that will be the basis of our stability analysis. 
We define 

H* (r, F, q; ~, F, ~; X) = �89 p(v i - vi) (vz - vi) + P e* (F, q; X) 
(3.1) 

_ p ~,(,e, ~; x ) -  ~*(,#, ~; x )  (v ,~-  ~ ) -  p 0*(F, r~; x )  ( ~ -  r~), 

(3.2) G*(v,F,~l; ~,F, V/; X)= -(Ti*(F, q; X ) -  .~(F,~; X))(v,-V,) .  

On account of (2.9), H* and G* are of quadratic order in ( v - E  F - F ,  r / -  ~/). 
Consider now a smooth process (2, r/)(X, t),with supply terms (b,?)(X, t), and 

let (x, q)(X, t) be any admissible process with supply terms (b, r)(X, t). We set 

(3.3) H(X, t )=H*(v(X ,  t), F(X, t), ~/(X, t); ~(X, t), F(X, t), ~(X, t); X), 

(3.4) G(X, t) = G*(v(X, t), F(X, t), q(X, t); ~(X, t), F(X, t), f/(X, t); X). 

We shall be viewing H as a measure of the "distance" between the two 
processes. In order to see how H evolves in time, we compute be low/ : /+  div x G, 
bearing in mind that the usual product differentiation rule applies (in the sense 
of measures) to the product of a Lipschitz continuous function with a function 
of bounded variation. We have 

f I  + G~,~= p(S + lz Vi vi) -- p Ui ~i-- P-Ui 1)i-}- P-Vi ~i-- P -~ 
(3.5) - ~ , ( F , , -  ~ , ) -  ~,-r + ~ , -  p O(rl- ~l) 

- p  0(0-  0) -  (L ~,)., + ( L -  ~,) f,, + ~, V,, 

Observing that vi.~=~,-~i.==~= and using the balance laws (2.4), (2.5), (2.7), 
(2.8), we may rewrite (3.5) in the form 

fI + G~,~ = p (v,--~,) ( b , -  b,) + p (r - ~ )  - ~ ( V ~  - ~'e) 

+ ~ ( L -  T~)-P ~('7- ~)-  P 0(,~- ~) 
_ , ~ p ~  

(3.6) = p(v, --~,) (b, - b,) + p(r - r) - ~ F~,(Fj~ - ~ )  

o ~  ~ ( F j ~ - ~ ) + ~ ( ~ , -  - ~0" _. 
?~r I . 

c~O* . 
- p ~-q 71(rl-- ~ ) -  p O(fl-- ~). 
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By virtue of (2.9), 

e0* 0r,* 0~3 eT,~* 
(3.7) P OF~, - ~?q ' ~F~, - ~?Fj, ' 

so that (3.6) takes the form 

131 + G~, ~ = p(v i - vi) (bi - bl) + p(r  - ? )  

* 

- ~ 7)} + ~{ ~ -  7~- ~ (F~p- Fj~)- U~-n (./- 
(3.8) 

+ p ~ f O -  r - ~0" ) 

- p ~ ( o -  0 ) -  p 0(0 - ~). 

From the Clausius-Duhem inequality (2.6) and (2.10), we obtain 

(3.9) p(r-~)- pO(O-O)-pO(O-O)<= o (O-O)(r-P)-~o(O-O)2; 

hence (3.8) yields 

(3.10) 

i : i+G~, < p ( v i _ ~ i ) ( b i _ ~ i  ) P - - P r  - 2 +~(0-0)(r-r)-00(0- 0) 

+ ~ f ~ , _ ~ ,  ~ ~,* _ 0r,~* � 9  ~. (.-rT)~ 

Inequality (3.10) will be the starting point of our stability analysis. The crucial 
observation is that its right-hand side is of quadratic order in ( v - E  F - F ,  ~/-~, 
b -  b, r -? ) ,  so that one may establish continuous dependence of processes upon 
initial data and supply terms by applying Gronwall type inequalities, provided 
that H be positive definite in an appropriate sense. This program will be 
implemented in the following two sections. 

4. Stability of Smooth Processes in the Convexity Region of Internal Energy 

In this section we shall be dealing with pairs of processes that render H(X,  t) 
pointwise positive definite. On account of (3.1) and (2.9), the sign of H* is 
dependent upon the convexity properties of the function e*. 

For fixed X~N', we let J*(F,~/; X) denote the Hessian matrix of e*(F,r/; X). 
We will say that a process (2, rl)(X, t) resides in the convex i t y  region o f  internal 
energy  if J* (F(X ,  t), YI(X, t); X) is uniformly positive definite on the closure of the 
domain of the process. By virtue of (2.9), J* is the Jacobian matrix of the 
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transformation (F, tl)~_~( p 1 T~0). Thus, by Sylvester's 
J*(,e(X, t),gl(X, t);X) will be positive definite if and only if 

(4.1) [[~T*(F(X' ~Ft)'O-(X' t); X)] is positive definite, 

and 

theorem, 

(4.2) det J* (F(X, t), f/(X, t); X)> 0. 

In order to see the thermodynamic interpretation of (4.2), we observe that when 
J* is nonsingular at a point one may invert locally the transformation 
(F,q)~--+(p 1T, 0) to get F=F*(p -1T, 0; X), q=r/*(p -1T,q;  X) and 

(4.3) c~t/* = P "Met J*) -1 det (0T*] 
~0 \ ~F / "  

It follows that (4.1), (4.2) are equivalent to the following two conditions (in the 
notation of classical thermodynamics): 

(4.4) ~ - ,  is positive definite, 

It is easily seen that (4.4), (4.5) are in turn equivalent to 

(r is positive definite, (4.6) ~ 0 

(4.7) (•t/] > 0  
\ ~ O / F  " 

The relevance of (4.5), (4.7) to thermodynamic stability was first pointed out by 
GIBBS [11]. It would be appropriate to impose these conditions on any region in 
state space that does not contain critical points at which the material undergoes 
phase transitions. On the contrary, (4.4) and (4.6) are quite restrictive. These 
conditions may be globally satisfied for one dimensional bodies but are incom- 
patible, in the multidimensional case, with the principle of material frame 
indifference on a large portion of state space that includes, in particular, natural 
states. The theory of elastic stability (e.g. [12]) elucidates the role of (4.4), (4.6) 
and makes it plausible that these conditions will be satisfied on some region in 
state space where strains are moderate and stresses are predominately tensile. 

We now state two stability results, the first one for the mixed initial- 
boundary value problem and the second for the pure initial value problem. 

T h e o r e m  4.1. Assume that ~ is bounded and has finite perimeter [4]. Let 
(2,~l)(X,t) be a smooth process defined on ~ x [0, to], residing in the convexity 
region of internal energy, with supply terms (b,?)(X, t)eL~ x [0, to] ). Then there 
are positive constants 6, ~, M , N  with the following property: 
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I f ( x ,  rl)(X, t) is any admissible process defined on ~ x [0, to], with supply terms 
(b, r)( . ,  t)eLl([O, to]; L2(N)), and such that* 

(4.8) I F ( X , t ) - F ( X , t ) l + l r t ( X , t ) - ~ ( X , t ) [ < 6 ,  ( X , t ) E ~ x [ O ,  to] , 

(4.9) (v - 7). ( ~ -  ~) <-_ O, on ~ ,  

then we have, for any se[O, to] , 

II(v - 7 ,  F -  F, t / -  ~/) ( �9 s)llL=t~) 
(4.10) < M e ~  I1(~-~, F - F ,  t/-~/)(. ,  0)11L~C~) 

s 

0 

Theorem 4.2. Assume that & = R  ~. Let (2, VI)(X, t) be a smooth process defined 
on ~ • [O, to] , residing in the convexity region of  internal energy, with supply 
terms (b ,?) (X , t )~L%r to] ) and such that (F, F1)(X,t) is bounded on 
• ~0, to]. Then there are positive constants 6, k, c~, M,  N with the following proper- 

ty." 

l f  (x, rl)(X, t) is any admissible process defined on ~ x [0, to-], with supply terms 
(b, r) (. ,  t)eL~([0, to]; L~oe(~8)), and such that 

(4.11) IF(X,t)--F(X,t)[+[rI(X,t)-- f f(X,t)[<fi ,  

then we have for every a > 0, s e I0, to-], 

(X, t ) e ~  x [0, to], 

II(v-~, F - /~ ,  ~/-~/)( ', s) JIL~lxl <,~ 

(4.12) < M e~" ll( V-- 7, F- -  F, rl-- rl) ( ., O)llL:(Pxl <,+ks~ 

+ N e~ i II( b - b , r - ~ ) ( . ,  t)llL211xj < , +k(,~_ o~ dt. 
0 

From the above propositions one draws immediately the following 

Corollary 4.1. Let ~ ,  (~,fl)(X,t) and (x,~l)(X,t) be as in Theorem 4.1 or as in 
Theorem4.2. Assume that the corresponding supply terms (b, ?) ( X, t) and (b, r) (X, t) 
coincide on ~ x EO, to] and that both processes originate f rom the same state, that 
is, 

(4.13) x(X, O) =.7(X, 0), r(X, 0) =7(X, 0), ~/(X, 0)= V/(X, 0), X e ~ .  

Then (~, fl) (X, t) and (x, rt) (X, t) coincide on ~ x [0, to]. 

The above uniqueness result is only local since the two processes are 
restricted a priori by (4.8) or (4.11). Roughly speaking, the corollary states that 
the only way that an admissible process may bifurcate out of a smooth process, 
at an instant t~, is by the spontaneous generation at t~ of a shock wave of large 
(__>b) amplitude. In the one dimensional case it is known [13] that this is 

* In Equation (4.9) ~, ~ denote the stress vectors. For the meaning of the traces of v 
and z on c~&, see [4]. 
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impossible, i.e., shock waves originating at a smooth state start out with "zero" 
amplitude and are then gradually amplified. One would need a similar property 
for the multidimensional case in order to deduce global uniqueness from 
Corollary 4.1, but a proof does not seem feasible at the present stage of 
development of the theory. 

For the proof of Theorems 4.1 and 4.2 we shall need the following Gronwall 
type inequality. 

Lemma 4.1. Assume that the nonnegative functions y(t)eL~[O,s] and 
g(t)eL i [0,s] satisfy the inequality 

o 

(4.14) y2(a)<M2y2(O)+~[2cty2(t)+2Ng(t)y(t)]dt ,  ae[O,s], 
0 

where ~,M, N are nonnegative constants. Then 

(4.15) y(s) < M e  ~s y(O) + N e ~'~ j g( t) dt. 
0 

The proof of the above lemma is straightforward and in any case a more 
general result (Lemma 5.1) will be established in Section 5. 

Proof of Theorem 4.1. Since (~,~/)(X,t) resides in the convexity region of 
internal energy, it follows from (2.9) that there exist positive constants 6, 2 such 
that, whenever (4.8) holds, 

e*(F(X, t), ~/(X, t); X ) -  ~*(F(X, t), F/(X, t); X) 

--t2 - 1  r/~*(l~(X, t), ~(X, t); X) [F~(X, t ) - /~ (X ,  t)-] 
(4.16) - 0*(F(X, t), ~/(X, t); X) D/(X, t )-~/(X, t)] 

> A(IF(X, t) - le(X, 012 + rrl(x, t ) -  O(x, t)12), 

for every (X, t ) e ~  x [0, to]. 
We now fix se[0, to]  , integrate (3.10) over ~ x [ 0 , a ] ,  a~[0,s] ,  apply the 

Gauss-Green theorem, and then use (4.9), (4.16) and the observation that the 
right-hand side of (3.10) is of quadratic order in ( v - K  F - F ,  t/-F/, b - b ,  r -? ) .  
Thus we arrive at an estimate of the form (4.14) with 

(4.17) y(t) = It(~-~, F -  F, t / -  f/) ( �9 t)ilL2(~), 

(4.18) g(t) = II(b-- b, r -T)  ( �9 t)ll L2t~. 

An application of Lemma 4.1 completes the proof. 

Proof of Theorem 4.2. As in the proof of Theorem 4.1 there are positive 
constants 6, A such that (4.16) is satisfied for all (X, t ) e ~  x [0, to], whenever (4.11) 
holds. Consequently, since G* is of quadratic order in ( a - E  F - t  •, t / -0) ,  one 
may determine a sufficiently large positive constant k with the property that 

(4.19) kH(X, t) - G(X, t). ~ > O, (X, t ) ~  x [0, to ] . 
I•1 
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We now fix se[0, t0], a>0 ,  and for each ae[0,s]  integrate (3.10) over the 
frustum {(X, t)[t~[O,a], IXI <a + k ( s -  t)}. Applying the Gauss-Green theorem 
and using (4.19), (4.16), we obtain (as in the proof of Theorem4.1) an estimate of 
the form (4.14) with 

(4.20) y(t) = II(v- ~, F -  if, r / -  ~) ( ' ,  t) l] t Z<lXl <a+k(s-t)), 

(4.21) g(t) = II (b - b, r - ? )  ( . ,  t)II t~l xl ~ a + k~.,-,)' 

Hence Lemma4.1 yields (4.12). The proof of the theorem is complete. 
From the proof of Theorems 4.1 and 4.2 it becomes clear that in the one- 

dimensional case, where the internal energy is globally convex, one may choose 
6 in (4.8) or (4.11) to be arbitrarily large. Thus the stability and uniqueness 
results become global. As a matter of fact, in the one-dimensional case and 
under some additional assumptions (most notably, genuine nonlinearity), 
DIPERNA 1,10] has established uniqueness of piecewise smooth processes in the 
class of proper admissible processes. DIPERNA's analysis relies on a number of 
novel ideas and the problem of extending it to the multidimensional case is still 
open. 

5. Stability of Smooth Processes in the Strong Ellipticity Region 

The object of the restrictive convexity assumption in Section 4 was to ensure 
that H(X, t) be pointwise positive definite. In reviewing the proof of Theorem 4.1, 
however, it becomes clear that definiteness of ~H(X,t)dX would suffice for 

stability. We prove here that, whenever the body is smooth and the motion of its 
boundary is prescribed, stability is induced by a mere strong ellipticity con- 
dition. 

We will say that a process (~, 71)(X, t) resides in the strong ellipticity region if 
there is a positive constant v with the property that, for any vectors ~,~eR", 
every #~R and all (X, t) in the domain of the process, 

~2 ~*(F(x, t), rT(x, t); x) 0 2 ~*(F(x, t), ~(x, t); 
(5.1) ~ ~ i ~ +  @~@ x ) ~ , ~  

0 2 ~*(F(x, t), ~(x, t); x) ~2 >__ v(l~121~12 + ~) .  
@2 

Strong ellipticity in nonlinear elasticity has been studied in connection with 
wave propagation (e.g. 1-14]) as well as with existence of equilibrium con- 
figurations [15]. As an assumption, it is weaker than convexity of the internal 
energy and, in particular, it is not incompatible with frame indifference at a 
natural state. For a discussion of the extent of the strong ellipticity region in 
two-dimensional, homogeneous, isotropic, hyperelastic bodies, see 1-16]. See also 
[17, 18] for relevant illuminating remarks. 

We now state our stability result. 

Theorem 5.1. Assume that ~ is smooth and bounded. Let (~,F/)(X,t) be a 
smooth process defined on ~ x [0, to] , residing in the strong ellipticity region, with 
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supply terms (b,~)(X,t)eL~(~ x [0, to] ). Then there are positive constants 6, ~, fl, 
M, N with the following property: 

I f (x ,  q)(X, t) is any admissible process defined on ~ x [0, to], with supply terms 
(b, r)(X, t)~Ll([O, to] ; L2(~)) and such that 

(5.2) IF(X, t)-/~(X, t)l + Iq(X, t) - F/(X, t)l < 6, (X, t ) ~  • [0, to], 

(5.3) x(X, t) =~(X, t), X~8~ ,  t~[O, to], 

then we have, for any st[O, to], 

II(r-~,F-F, ~-r/)( ' ,  s)llL2(~) 
(5.4) < M exp(a s + fl s2)ll (v-~, F -  i#, r / -  ~/)(., 0)11L2<~) 

+ N  exp(~s + fls2) S l l ( b - b , r - ~ ) (  �9 , t)[lL2(~)dt. 
o 

From the above proposition we get the following uniqueness result. 

Corollary 5.1. Let ~ ,  (2,~/)(X,t) and (x,q)(X,t) be as in Theorem 5.1. Assume 
that the corresponding supply terms (b,~)(X,t) and (b,r)(X,t) coincide on 
• [0, to] and that both processes originate from the same state, that is 

(5.5) x(X,O)=2(X,O), v(X, 0) =~(X, 0), ~(X, 0) =rT(X, 0), X ~ .  

Then (~, rl) (X, t) and (x, tl) (X, t) coincide on ~ x [0, to]. 

For the proof of Theorem 5.1 we will employ the following Gronwall type 
inequality. 

Lemma 5.1. Assume that the nonnegative functions y(t)eL~ and 
g(t)~L 1 [0, s] satisfy the inequality 

f f  

(5.6) y2(a)<M2y2(O)+S[(27+4f la)y2( t )+2Ng( t )y( t ) ]d t ,  a~[O,s], 
o 

with fl, y, M, N nonnegative constants. Then 

s 

(5.7) y(s) < M exp(~ s + fl s z) y(O) + N exp(~ s + fl s 2) S g(t) dt, 
0 

where ~ = 7 + ill7. 

Proofi We define a nonnegative function z(cr) by 
ff 

(5.8) z2(a)=M2y2(O)+~[(27+4fla)yZ(t )+2Ng(t)y( t )]dt ,  ae[O,s], 
0 

and we note that 
~t 

(5.9) 2z (a )~(a)=(27+4f la )y2(a )+2Ng(a)y (a )+4f l~y2( t )d t  
0 

< (2~ + 4fl a) z2(a) + 2Ng(a) z(a). 
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Hence 

(5.10) 2(a) <= (~ + 2 fl a) z(a) + N g(a). 

Integrating the differential inequality (5.10) under the initial condition z(0) 
= My(O) we arrive at (5.7). The proof is complete. 

We note that Lemma 5.1 reduces to Lemma 4.1 when fl=0. 

Lemma 5.2. Let ~,  (2, F1)(X,t ) and (X, tl)(X,t) be as in Theorem 5.1. Then there 
are constants 2 > 0  and ~c with the property that, for any a t [0 ,  to], 

S "X" (02 g*(ff(X, (7), t/(X, (7); X) 

4 ~ (7)' rT(x, (7); x) [~ (x ,  ( 7 ) - ~ ( x ,  (7)] [~(x, (7)-r~(x, (7)3 

(5.11) a2e*(F(X,(7),~-I(X,(7); X) ( 
4 [~(x, (7)- ~(x, (7)] 2 dX @2 

> 22 S { IF(X, (7) -F (X,  a)[ 2 + [t/(X, (7) - ;/(X, (7)[ 2} dX 

- ~ ~ Ix(X, (7) -  ~(x ,  (7)1 ~ dX. 

Proof. We recall that (2,~/)(X, t) resides in the strong ellipticity region and 
that x - 2  vanishes on 0~. In the case where t/(X, t)-F/(X, t) vanishes identically, 
(5.11) reduces to the classical Ggtrding inequality. In general, (5.11) is established 
by imitating the proof of G~trding's inequality, as described, for example, in [191. 

Proof of Theorem 5.1. On account of (2.9), 

1 ~*(F, ~; X) -  ~*(F, ~; X)-  p ~  T~* (,~, ~; X)(E~- ~ ) -  0"(,r ~; X)(~- ~) 

(5.12) -02  X)(FI~ Fi~)(F2~ Fj~)+ 8F~3t 1 

02 ~*(F, r/; x) 
( t / -  ~/) 2 + o ( IF -  Jel 2 + I t / -  ~/12). ~ &/2 

Combining (5.11) with (5.12), we conclude that there is a positive constant 6 with 
the property that, when (5.2) is satisfied, 

{p (X) e* (F (X, a), '7 (X, a); X) - p (X) e* (F(X, ~ ~ (X, a); X) 

- Tff (/~(X, a), ~/(X, a); X)[F,= (X, a ) - / ~ ( X ,  a)] 

(5.13) - p (X) 0* (F(X, a), ~/(X, a); X) [t/(X, a) - ~/(X, ~r)] } dX 

2 ~ {[F(X, a) - I~(X, a)]2 + ]~/(X, a) - ~(X, a)] 2} dX 

- ~  ~ Ix(X,~)-.~(X,~)l 2 dx.  
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Furthermore, upon using Schwarz's inequality and the Poincar6 inequality, we 
find that 

Ix(X, ~)- .~(x, G)[ 2 ax 

x(X, ~ t)} dt 2 =~ 0 ) -~ (x ,0 )+  ~ {rix, t)-~(x, dX 
0 

(5.14) 
<2c ~ IF(X,O)-F(X,O)I2dX 

+2tr~ ~lv(X,t)-~(X,t)lg dX dt. 
0 

We now proceed as in the proof of Theorem 4.1. We fix se[0, to], integrate 
(3.10) over ~ x [0,a],  ae[0 ,s ] ,  and apply the Gauss-Green theorem. We then 
use the boundary conditions (5.3), (5.13), (5.14) and the observation that the 
right-hand side of (3.10) is of quadratic order in ( v - J ,  F - / ~ , r / - r / ,  b - b ,  r - ? ) ,  
thus arriving at an estimate of the form (5.6) with 

(5.15) y(t) = II(v- ~, F -  if, r / -  ~/)(., t)llL2t~), 

(5.16) g(t)--II(b-b, r -~)( . ,  t) II L2~). 

An application of Lemma 5.1 yields (5.4) and thus completes the proof. 
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