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Introduction 

In finite elasticity one neither expects nor  desires unqualified uniqueness. 
Indeed, counterexamples  exhibit ing non-uniqueness  are known for all of the 
s tandard  boundary-va lue  p rob lems  of the equi l ibr ium theory. 1 This, however,  
does not  rule out the possibility of having uniqueness in certain subsets of  the 
solut ion space, and in this paper  we present  our  initial a t tempts  to delineate 
these subsets. In part icular ,  we consider the d isplacement  and mixed problems2 
and show that  uniqueness holds in any convex, stable set of deformations. Further ,  
using this result as a basis, we establish uniqueness:  3 

(a) in a ne ighborhood  of a uniformly stable deformat ion;  4 
(b) in a ne ighborhood  of a positive, na tura l  configurat ion;  5 
(c) (for the displacement  problem) in a ne ighborhood  of a homogeneous ,  

strongly-ell iptic configuration.  6 

1 For the displacement problem cf. JOHN [1964]. For the mixed problem cf. BALL 
[1977] and GURTIN [1977]. For the traction problem cf. ARMANNI [1915] and ANTMAN 
[1979] (eversion of a sphere), ALMANSI [1916] (eversion of a hollow cylinder), and 
ERICKSEN (WANG 8g. TRUESDELL [1973]). See also TRUESDELL & NOLL [1965], pp. 128- 
129 and TRUESDELL [1977]. 

2 The traction problem, which is far more difficult, will be the subject of a future 
paper. 

3 For (a) and (b) we need the assumption of dead loads. The extension to more 
general loadings is given by Spector [1979]. 

4 ERICKSEN & TOUPIN [1956] and HILL [1957] have established an analogous 
result within the linear theory of infinitesimal deformations superimposed on a stressed 
state. See also TRUESDELL & NOLL [1965], p. 255. 

5 i.e., a natural configuration whose elasticity tensor is positive-definite. 
6 This particular result was first established by JOHN [1972] using completely 

different methods. We became aware of JOHN'S work only after we had completed our 
analysis. 
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Our results (b) and (c) are similar in nature to results established previously 
by STOPELLI [1954] and VAN BUREN [-1968]. 1 However, in contrast to these 
authors, our goal is uniqueness, rather than uniqueness and existence, and for 
this reason our proofs are far simpler. 

Many of the counterexamples displaying lack of uniqueness arise because the 
path of loading is not specified. But specification of this path does not rule out 
non-uniqueness due to instabilities such as buckling. Here results concerning 
local uniqueness play an important  role. For example, (a) tells us that a solution 
cannot bifurcate in a continuous manner  at a uniformly stable deformation. 

Our definition of stability is quite general: roughly speaking, a deformation f 
is stable if the incremental power required to move the body from f is strictly 
positive. 

Finally, we remark that none of our results require the assumption of 
hyperelasticity. 

1. Notation 

We use lower case Greek letters for scalars (elements of ~,), lower case Latin 
letters for vectors (elements of IR3), and upper case Latin letters for tensors 2 
(linear transformations from ~3  into ~3). We use the standard inner product a.  b 
on IR 3, while on 

we use the inner product 

Lin = the space of all tensors 

G. H = tr (GH r) 

with H r the transpose of H and tr the trace. We write 

Lin + = { H e L i n :  d e t H > 0 } ,  

Orth + = {Qs L i n+  : QrQ =i},  

where det is the determinant and I the identity. Any tensor H admits the unique 
decomposition 

H = E + W  

into a symmetric tensor E and a skew tensor W; in fact, 

E=�89 W=�89 

We call E and ~ respectively, the symmetric and skew parts of H. Finally, the 
tensor product a| of a, beN 3 is the tensor defined by (a| for 
every xelR 3. 

' See also TRUESDELE & NOEL [1965], w and WANG & TRUESDEEL [1973], pp. 
494-509. 

2 As is customary, we will use the term elasticity tensor for a certain linear map A: 
Lin ~ Lin. Of course, A is not a tensor in the above sense. 
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We write V and div for the gradient and divergence operators ~ in N3: for 
a vector field u, Vu is the tensor field with components (Vu)~i=~3u]~3xi; for a 
tensor field S, div S is the vector field with components ~:i OSij/Ox~" 

Given a function 4~(a, b . . . . .  c) with vector or tensor arguments, we write, e.g., 
go~(a,b . . . . .  c) for the partial Frechet derivative with respect to a holding the 
remaining arguments fixed. 

Throughout this paper N will denote a properly regular 2 region in IR3; thus, 
in particular, N is compact and has piecewise smooth 3 boundary ~3M. Further, 

will always designate a subsurface of 0N with 

non-empty and relatively open, (1.1) 
and 

Var={ueCl(~ , lR3) :  u~0 ,  u = 0  on ~}. (1.2) 

Lemma (Korn Inequality). There exists a x > 0 such that 

I}EJl > ~  }J Vull (1.3) 4 

for all u~Var, where E is the symmetric part of Vu. 
Here and in what follows I1"/I denotes the L2(~) norm; thus, e.g., 

IIEll 2 =$ IEI 2. 

2. K i n e m a t i c s  

For convenience, we identify the body with the (properly regular) region of 
IR 3 it occupies in a fixed reference configuration. 

Definition. A deformation f (of ~)  is a member of the space 

Def= { f e C l ( ~ ,  lR3): det Vf >0}. 

A process g is a one-parameter family g, (0 < cr < fl) of deformations such that: 
(a)  the derivatives s 

~o(x), G .(x)= lTg.(x), 6.(x), d.(x) 

exist and are jointly continuous in (x, a) on M x [0, fl]; 
(b)  for all ae[0,  fl], 

(c) go~O. 
We say that g starts from f if go =f. 

on ~ ;  (2.1) 

For our applications these operations will be with respect to the material point x. 
2 Cf. FICHERA [1972 l, p. 351. 
3 We use smooth as a synonym for C1. 
4 Cf., e.g., FICHERA 1-1972], p. 384, whose proof, with minor modifications, applies in 

the present circumstances. 
5 A superposed dot denotes the partial derivative with respect to a; V is the gradient 

with respect to x. 
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When we discuss the mixed problem ~ will be the portion of the boundary 
over which the deformation is prescribed. Condition (b) preserves this type of 
boundary condition; it asserts that if g starts from f then g~ = f  on ~ for all a. 
Note also that (b), (e), and (1.1) rule out the possibility of a rigid process, while 
(a), (b), and (c) insure that 

~o~Var. (2.2) 

Proposition 1. Given a deformation f and a field uEVar, there is a f l>0  such 
that g~(O<=~< fl) defined by 

g~(x) =f(x) + au(x) (2.3) 

is a process. Moreover, 
~ =u, G~ = V u .  (2.4) 

Proof. The non-trivial portion of the proof consists in showing that for some 
fl>0, g~eDef for 0<a</~ ,  or equivalently, det Vg~>O for 0<a</~ .  But this 
follows from the relation Vg~ = Vf+ a gu, since det gf  >0, f and u are smooth, 
and ~ is compact. [] 

We call a process of the form (2.3) straight, since it represents a straight line 
in the space CI(N, IRa). 

3. The Constitutive Relation 

We assume that the body is elastic with smooth response function S: Lin + 
x ~ ~ Lin. S gives the (Piola-Kirchhoff) stress 

S(Vf(x),x) 

at any point x ~  when the body is deformed by f. Writing F for Vf(x), we 
assume that S obeys the following hypotheses 1 at each (F, x) in its domain: 

QS(F,x)=S(QF, x) for all QeOrth +, 
S(F, x) F T = FS(F, x) r. (3.1) 

The restriction (3.1)1 is a consequence of frame-indifference, while (3.1)2 follows 
from balance of moments. 

The linear transformation A (F, x): Lin-o Lin defined by 

A (F, x) = c~vS(F, x) (3.2) 

is called the elasticity tensor. 
Definition. The reference configuration is: 
(a) natural if 

s ( I ,  x) = 0 (3.3) 
for all x e ~ ;  

a These hypotheses and the remaining results of this section are not needed until 
Section 6. 
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(b) homogeneous if A(I, x) is independent of x; 
(c) positive if, for each xcN,  

E.A(I,x)E>O (3.4) 

for all symmetric E4: 0; 
(d) strongly-elliptic if, for each x e ~ ,  

H.A(I ,x)H>O 

whenever H = a | e with a 4: 0, e 4: 0. 

Proposition 2. Assume that the reference configuration is natural. Then, for all 
x e ~  and HcLin,  

H. A(I, x) H = E. A (I, x) E, (3.5) 

where E is the symmetric part of H. 

Proof. If we take F=I  and Q=Q(t)=e wt in (3.1)1, where W is skew, and 
differentiate with respect to t at t=0 ,  we conclude, with the aid of (3.3), that 

A(I, x) W=0.  (3.6) 

Next, if we take the directional derivative of (3.1)2 with respect to F in the 
direction HELin, we find that 

A (I, x) H = [-a (I, x) HI r. 

Thus A(I, x) has symmetric values and hence 

W. A (I, x) H = 0 (3.7) 

whenever W is skew. Now let E and W, respectively, denote the symmetric and 
skew parts of H. Then, by (3.6) and (3.7), 

H.A(I ,x )H=(E+W).A( I , x ) (E+W)=E.A( I , x )E .  [] 

For convenience, we write S(Vf) and A(Vf) for the fields on ~ with values 
S (Vf(x), x) and A (Vf(x), x). 

4. Stability 

We assume that in each deformation f the environment exerts a body force 
b r(x ) on the points x of ~ and a surface force sl(x ) on the points x of 

5 P = c ~ -  ~ 

(cf. (1.1), (2.1)). We assume further that, for each deformation f, sI~LI(SP, IR3) 
and bleL  1 (~, IR3). 
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Central to our definition of stability is the functional 

P~(g) = I (S, - So). d~ - ~ (s~ - So). ~,~ - ~ (b~, - bo). ~,, 

where 

(4.1) 

G~=Vg~, S~=S(G~), s~--Sg~, b ~ = b s .  

To interpret (4.1) physically assume that the process g is sufficiently smooth and 
use the divergence theorem and (2.1) to rewrite the first integral as 

where 
g~ =S~n, 6~ = - div S~ 

with n the outward unit normal to t?~. The fields go and 6~ represent the surface 
force and body force necessary to equilibrate S~. Thus P,(g) is the total in- 
cremental 1 power needed to sustain g minus the incremental power available from 
the environment. 

A reasonable definition for the stability of a deformation f is that P~(g) be 
strictly positive 2 near a = 0  in any process g starting from f,  so that such 
processes actually absorb power. 

Definition. A deformation f is stable if given any process g~ (O<=a~fl) 
starting from f there is a 2e(0, fl) such that 

P~ (g) > 0 

for all a~(0,2). A set O c D e f  is stable if every f ~  is stable. 
The next result is the essential ingredient in our proof of uniqueness. 

Theorem 1. Let ~ c D e f  be stable. Then given any straight process g~ 
(0~  a <= fl) lying in EL the mapping a~-~P~(g) is strictly increasing on [0, fl]. 

Proof. Let g be as above. Choose ae[0,  fl) and consider the straight process 
g* (0____a__<fl-cr defined by g* =g~+,. Then, since ~ and r are independent of 

and equal, as are ~ and ~* (cf. (2.4)), a simple calculation based on (4.1) 
shows that 

P~+ ~(g) --- P~(g) + P~(g*). 

But g* starts from g~g2 which is stable. Thus there exists a 2(~)>0 such that 
P~(g*)>0 for 0<a<2(~ ) ,  and 

P~§ ~(g) > P~(g) 

for all such ~r. Therefore o-~-~P~(g) is strictly increasing on [0, fl). To show that 
this monotonicity is preserved at the end point, consider the process *g~ 

We use the term "incremental" because the underlying forces are the actual loads 
minus their values at a=0. 

2 Recall that, because of (1.1) and (2.1), processes are necessarily non-rigid. 
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(0 < a < fl) defined by *g, = ga_ ,. Then ~, and *~  are independent of a with ~ = 
- * ~ , ,  and a similar assertion applies to G, and *G,. Thus (4.1) implies 

Pp_ ~(g)= Pp(g)- P~(*g), 

and, since P,(*g)>O for all sufficiently small a>O, we have 

P~ (g) > Pp _ ~ (g). [] 

5. The Mixed Problem. Uniqueness 

The mixed problem consists in finding a deformation f that satisfies the 
equation of equilibrium 

divS(Vf)+bi=O in 

and the boundary conditions 

(5.1) 

f=d  on 9 ,  S(Vf)n=-sy on ~ ,  (5.2) 

where d~C~ 3) is the prescribed deformation of 9 ,  while n is the outward 
unit normal to ~ .  

Remark. Note that the displacement problem ( @ = ~ ,  6e=r is a special 
case of the mixed problem. In view of our original hypothesis that ~ be non- 
empty, the traction problem ( 6 e = ~ ,  ~=O)  is excluded from our consider- 
ations. 

Let f be a class C 2 solution of the mixed problem and let u be a variation 
(i.e., ueVar). Then (1.2), (5.1), (5.2), and the divergence theorem imply that 

sf.u= ~ S(Vf)n.u=~ [S(Vf). Vu+u.divS(Vf)] 
5e ~ 3  

= ~ [S(Vf). Vu - b  I �9 u], 

and we have the identity 

I sr  

The converse is also true. Indeed, let 

(5.3) 

Kin={fEDef:f=d on 9};  

then a class C 2 deformation f e K i n  that satisfies (5.3) for every u~Var will 
automatically satisfy (5.1) and (5.2). This motivates the following weak statement 
of the mixed problem: Find an f~Kin that satisfies (5.3) for every u~Var. A 
deformation f ~ K i n  with this property will be called a solution. 
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Let O be a set of deformations. We say that uniqueness holds in ~2 provided 
the mixed problem has at most one solution in ~2. The next theorem shows that 
stability implies uniqueness, at least in convex 1 subsets of Def. 

Theorem 2. For the mixed problem uniqueness holds in any convex, stable set 
of deformations. 

Proof. Let O c Def be convex and stable. Let f, heO be solutions with f ~ h, 
and let u = h - f  Then h---f on 9 ,  so that u = 0  on 9 .  Thus ueVar. Consider 
the straight path 

g~=f  +au (O=<a=<l) 

from f to h. Since O is convex, g lies in O and hence represents a process. Thus 
we may conclude from Theorem 1 and (4.1) that 

~(g)>Po(g)=0. 

On the other hand, (2.4), (4.1), (5.3), and the fact that both f and h are solutions 
imply that 

P~(g) = I [ S(V h ) -  S( Vf)] . V u -  I (Sh-- S y)" U-- ~ (b h - b  f). u =0, 

and we have a contradiction. Thus f - h .  []  

Corollary. Let f and h be two solutions of the mixed problem. Then the straight 
path from f to h (provided it lies in Def) cannot be stable. 

Remark. Consider a straight rod placed between two parallel rigid plates 
which are moved toward each other until the rod buckles ((a) and (b) denote two 
possible buckled states). If the buckling is not too severe, the straight path 
connecting these states will lie in Def. The corollary asserts that at least one 
deformation on this path is not stable; a strong candidate for such a defor- 
mation is the intermediate state (c). 

(a) (b) (c) 

Remark. To place Theorems 1 and 2 in a slightly different context, let 
denote the non-linear operator that carries f e K i n  into the linear functional L~ai: 
Var ~ IR defined by 

~s(u) = ~ S(Vf). V u -  ~ s f . u -  ~ by.u. 
,9" 

1 Convexity here is with respect to the linear structure in CI(N, N.3). 
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By definition L~ is strictly monotone on f2 c Kin if 

( 3  - s  h) > 0 

whenever f, heg2 with f~-h.  For f2 convex this is equivalent to Pl(g)>0 with g, 
= f + a ( h - f ) ;  hence Theorem 1 asserts that ~f is strictly monotone on f2 if f2 is 
convex and stable. Theorem 2 is therefore a corollary of the well-known result 
that strictly monotone operators are one-to-one. 

6. Local Stability and Uniqueness for Dead Loading 

We now confine our attention to dead loading, so that both s z (=s)  and by 
(=b)  are independent of the deformation f. The incremental power (4.1) then 
takes the simple form 

P+(g) = ~ (S~ -So ) .  G~. (6.1) 
9~ 

When discussing local uniqueness it is often more convenient to work with 
the following slightly stronger definition of stability. 

Definition. A deformation f {respectively, set # c D e f }  is Hadamard-stable, 1 
or simply H-stable, if 

d 
Po (g) = ~ -  P+(g)l~ = o> 0 (6.2) 

for all processes g which start from f {respectively, in Q}. The stability is uniform 
if for some ~ > 0 

&(g) ~ ~/I V~ol/~ 

for all processes g which start from f {respectively, in f2}. 

Proposition 3. For a deformation f or a set ~2 c Def 

H-stability ~ stability. 

Proof. By (4.1), Po(g)=0. Thus if Po(g)>0, then P,(g) must be strictly positive 
in some interval (0, 2). [] 

Our next result shows that H-stability is equivalent to stability under 
infinitesmal perturbations. 

1 Cf. HADAMARD [1903], p. 252, who uses the phrase "stabilit6 de l'equilibre 
interne". Actually, HADAMARD's definition is based on the equivalent condition (6.3). See 
also PEARSON [1956], HILL [1957], GREEN & ADKINS [1960], TRUESDELL & NOLL 
[1965], BEATTY [1965]. In the mechanics literature a condition equivalent to (6.2), but 
formulated in terms of work, is usually referred to as DRUCKER'S postulate (DRUCKER 
[19643). 
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Theorem 3. A deformation f is H-stable if and only if 

17u. A(Vf) 17u>0 (6.3) 

for all ueVar. A set f 2 c D e f  is uniformly H-stable if and only if for some x > 0  

S 17u. a (17f) Vu >= ~ II Vu II 2 (6.4) 

for all fe f2  and ueVar. 

Proof. By (6.1) and (3.2), 

Po(g) = ~ So'Go = S do 'A(Vf )Go  ( f = g o )  (6.5) 

for any process g. Thus, by (2.2), (6.3) implies the H-stability of f Conversely, 
assume that f is H-stable, and choose u~Var. Then, by Proposition 1, there is a 
process g which starts from f and has go =u;  for this process (6.5) and (6.2) yield 
(6.3). The remainder of the proof is equally simple. [] 

We now endow Def with the topology generated by the semi-norm 

sup IV f[. (6.6) 

Then, as is clear from the next result, the set of all uniformly H-stable 
deformations is an open subset of Def. 

Theorem 4. Every uniformly H-stable deformation has a neighborhood which is 
uniformly H-stable. 

Then 

ProoL Let 
~p ( f  u) = ~ Vu. A (Vf) Vu. 

q9 (h, u) = q~ ( f  u) - S Vu. [A (Vf) - A ( 17 h)] Vu (6.7) 

for all f, h~Def and u~Var. Assume that f is uniformly H-stable. Then, if we let 

e h =sup ]A(Vf)-A(Vh)], 

(6.4) (with 12 = {f}) and (6.7) imply 

q~(h,u)>=(K-eh) II 17ull 2 

for all ueVar. Moreover, by the continuity of A and the choice of topology (6.6) 
on Def, there exists a neighborhood f2 o f f  such that 

K--~,h~KI >O 
for all h~Q; hence 

17u. A(17h) 17u>=~ 1 ]I 17u]] 2 
.@ 

for all h~f2 and u~Var. Thus, by Theorem 3, 12 is uniformly H-stable. [] 
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By a neighborhood of the reference configuration we mean a neighborhood of 
the identity deformation ( f (x)=x for all x ~ ) .  

Theorem 5. Assume that either: 
(a) the reference configuration is positive and natural; or 
(b) ~ = ~  and the reference configuration is homogeneous and strongly- 

elliptic. 
Then the reference configuration has a neighborhood which is uniformly H- 

stable. 

Proof. Assume first that (a) holds. By (3.4), (3.5), and the continuity of A, 
there is a Xo>0 such that 

H .A(I,x) H>=~colEI 2 

for all x e N  and HsLin,  where E is the symmetric part of H. Thus if we take H 
= IZu(x), integrate over N, and use Korn's inequality (1.3), we infer the existence 
of a x l > 0  such that 

Vu. A(I) Vu>x 111 Vuql 2 (6.8) 

for all usVar. Further, (6.8) also holds in case (b); indeed, in this instance (6.8) 
is simply G~irding's inequality. 1 In any event, (6.8) and Theorem 3 tell us that 
the reference configuration is uniformly H-stable, and the desired conclusion 
follows from Theorem 4. [] 

We now return to the mixed problem (5.1), (5.2), but now, of course, with 
dead loads. For convenience, we use the term data 2 for the triplet (d, s, b). 

Remark. It is important to note that the neighborhoods established in 
Theorems 4 and 5 are independent of the data. 

Trivial examples of convex sets are sufficiently small open balls in Def. Thus 
Theorems 2, 4, and 5, Proposition 3, and the preceding Remark have the 
following immediate consequences. 

Theorem 6. Every uniformly H-stable deformation has a neighborhood in which 
uniqueness holds, and this neighborhood is independent of the data. 

Theorem 7. Assume that either: 

(a) the reference configuration is natural and positive; or 
(b) ~ =0~  and the reference configuration is homogeneous and strongly- 

elliptic. 
Then the reference configuration has a neighborhood in which uniqueness holds, 

and this neighborhood is independent of the data. 

1 G~,RDING 1-1953]. 
2 Note that we do not consider the response function S to be part of the data. 
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Thus, as one would expect, the usual hypotheses of the infinitesimal theory 
of elasticity yield local uniqueness in the finite theory. 
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