
On the Response Functions of Isotropic Elastic Shells 
C . - C .  W A N G  

Contents 
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 
2. Representations for Scalar-Valued Response Functions . . . . . . . . . . . . . .  84 
3. Representations for Vector-Valued Response Functions . . . . . . . . . . . . . .  89 
4. Representations for  Tensor-Valued Response Functions . . . . . . . . . . . . . .  90 
5. Reversibility in Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

1. Introduction 

In a mathematical model proposed in [1] for elastic shells we define a surface 
manifold to be an orientable 2-dimensional differentiable manifold S~ which can 
be imbedded globally into the physical space ~3. Let X denote a typical point 
in 6 p. We define a local state of X to be a triple (Vx, ~x, e) consisting in a pair of 
linear injections vx and 0x of the tangent space 6a x into ~a  and a vector e in ~a.  
e is called the director of X in the local state. It is required that e be non-zero, 
not belonging to Vx (Sax) and Ox(rax), and having the same orientation relative to 
Vx(rax) and 9x(rax). That is, if {El, E2} is a basis for Sex, we define 

er = Vx (Er), ~r = 9x (Er), F = 1, 2; (1.1) 

then it is required that {el, e2, e} and {~1, ~2, e} be bases having the same orienta- 
tion in y~a. 

As usual, we may define an orientation for X by designating a particular 
equivalence class of bases which have the same orientation in Sex to be the positive 
class. When X has been oriented in this way, a local state (Vx, 9x, e) is called 
positive if the bases {e D e2, e} and {~1, ~2, e} defined by (1.1) are positive in ~3 
for any positive basis {El, E2} in 6ax. For definiteness, we shall now assume that 
X is oriented and, naturally, only positive local states of X will be considered. 

To characterize a local state, we can introduce a local reference configuration 
Px for X. Let n be the positive unit normal of Px (~x) in ~3. We define the defor- 
mation gradients (F, F) from (Px, n) to (v x, ~x, e) by the conditions 

and 
F v = Vx o / ~ x  1 (v) ,  

F n = f  n=e,  (1.2) 

PV=OxOpxZ(V) Yve/~x(Sex). (1.3) 
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Since (Vx, ~x, e) is positive, and since n is the positive unit normal of #x(SPx), 
(1.2) and (1.3) imply that 

de tF>0,  detl~>0. (1.4) 

As in [1], we denote the set of all pairs (F,/~) which satisfy the conditions (1.2)1 
and (1.4) by ~ , .  This set constitutes a representation for the set of positive local 
states of X. The set ~ .  is a submanifold of dimension 15 in ffLa(3)+ x f f~ (3 )  § 
We define left-multiplication of f~Aa(3)+ on ~n by 

K(F, ~)- (KF, KF) (1.5) 

and right-multiplication similarly by 

(F, F) K -  (FK, I~K) (1.6) 

for any Ke(~L#(3) + and any (F, F ) e ~ . .  Then it can be verified easily that 

K ( ~ . ) = ~ . ,  (1.7) 
and 

(~ . )  K = ~,,,, (1.8) 

where m is the unit vector in the direction of K- 1 n, viz, 

K-In 
m =  IlK- 1 nll " (1.9) 

We call X an elastic point if it has a list of constitutive relations of the form 

Z=r ~x, e), (1.10) 

where �9 is called the response function. The value Z of �9 may be a scalar, a 
vector, or a tensor on ~3. For example, in the case where X is a hyperelastic 
poin6 the response function is a scalar-valued function, which can be interpreted 
as the stored-energy function of X. More generally, the value Z may be the stress 
tensor, the director stress tensor, or the internal director force, etc., in any local 
state (Vx, ~x, e) of X. Using a local reference configuration (/~x, n), we can represent 
(1.10) by 

Z= ~.x(F, ~), (1.11) 

where ~ . x  is called the relative response function. The domain of ~ is, of course, 
the set of positive local states of X, while the domain of ~. , ,  is the set ~ .  

The response function ~ and the relative response function ~. , :  are both 
restricted by the principle of material frame-indifference. Let f be scalar-valued, 
g be vector-valued, and H be tensor-valued response functions, respectively. 
Then they must obey the following transformation rules: 

f ( Qvx, Q Ox, Q e)= f (vx, r e), (1.12) 

g(Qvx, Q~x, Qe)= Qg(vx, ~x, e), (1.13) 
and 

n (Qvx, Q gx, Q e) = QH (vx, 9x, e) QT, (1.14) 
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relative to an arbitrary rotation Q of y~3 and for an arbitrary local state (vx, Ox, e). 
Here Qr denotes the transpose of Q. In terms of the corresponding relative 
response functions, the rules (1.12)-(1.14) become 

f~,x(QF, Q~)=f~,x(F, F), (1.15) 

g,,,(QF, Qt~)= Qg,x(F, F), (1.16) 
and 

H,,,(QF, Q~) = QH~,,,(F, F) QT, (1.17) 

respectively, for all (F,/~) in ~ . .  Here we have used the condition (1.7), which 
implies that the left-hand side of (1.15)-(1.17) are well defined. 

The response function �9 and the relative response function ~m, are also 
restricted by the condition of material symmetry. Specifically, an orientation 
preserving linear isomorphism 

F: SPx --. 5ax (1.18) 

is a material automorphism of X if 

tb(vxF, $xF, e)= ~(Vx, Ox, e) (1.19) 

for all local states (Vx, Ox, e) of X. The set of all material automorphisms of X 
form a group ~x, called the (abstract) symmetry group of X. Thus (1.19) holds 
for all FE~x. In terms of the relative response function ~s,,, we say that K is a 
material automorphism relative to It x if it satisfies the conditions 

Kn=n, Knl=n • detK>0 (1.20) 
and the identity 

~,x (FK, FK) = ~,,, (F, F) (1.21) 

for all (F,/~) in ~ . .  Here we have used the condition (1.8), which implies that 
the left-hand side of (1.21) is well defined. The set of all material automorphisms 
relative to /~x also form a group 9',x, called the relative symmetry group of X. 
Then (1.21) holds for all K~gm ,. 

In accordance with NOLL'S general rule we call X an isotropic solid point if 
there exists an inner product mx on Sex such that S~x coincides with the rotational 
group SaC(Sex) of 5a x relative to mx. In terms of the relative symmetry group, 
isotropy requires the existence of a local reference configuration Px, called an 
undistorted local configuration, relative to which g,,, coincides with the rotational 
group 5r which is the subgroup of 5r subject to the condition (1.20)1. 

Having explained the conditions of material frame-indifference and material 
symmetry, we see that a scalar-valued response functionfrelative to an undistorted 
local reference configuration of an isotropic solid point X must satisfy the fol- 
lowing identities: 

f~,:(QF, Q~)=f,x(F,F) VQ~5r (1.15) 
and 

f~o,(FQ',FQ')=fsx(F, ~) VQ' ~ O , ,  (1.22) 

for all (F, F) in ~ . .  Likewise, when the response function g is vector-valued, the 
restrictions are 

g,,,(QF, Q~)=Qg,,,(F, ~) VQ~5r (1.16) 

6* 
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and 
g,x(FQ', ~Q')=g,x(F,  ~) VQ'e6~ (1.23) 

and when the response function H is tensor-valued, the restrictions become 

Hr,,:(QF ' QF)=QB~,x(F, ~ ) Q r  VQeAa0(3) (1.17) 
and 

H~,x(FQ', ~Q')=H~,,,(F, I:) V Q'eoq'd~.. (1.24) 

The aim of this paper is to solve the identity-pairs (1.15), (1.22), (1.16), (1.23), 
and (1.17), (1.24). We shall follow the general procedure developed in [2] to 
obtain general solutions for the identities. 

2. Representations for Scalar-Valued Response Functions 

For brevity we suppress the notation gx, so we write the conditions (1.15) 
and (1.22) as 

f(QF, Q~)=f(F,/~) VQsSe~(3) (2.1) 
and 

f (FQ' ,  FQ')=f(F,  F) V Q'eAa0., (2.2) 

where (F, t r  As usual, we denote the plane gx(dax) whose positive unit 
normal is n by n I. 

Given any deformation gradient F, we define its normalized gradient G relative 
to n by 

Gn=_h, Gv=_Fv Vven l,  (2.3) 

where h is the positive unit normal of F(n• Clearly, F can be determined by G 
and the vector 

e=Fn,  (2.4) 

and vice versa. Further, if we choose any positive basis {nl, n2} in n l, then (2.3)1 
can be represented by 

Gn=. F n t x F n 2  =h. (2.5) 
IIFna • Fn2ll 

As usual G admits the polar decompositions: 

G = R U  = VR, (2.6) 

where R is the rotation tensor, and U and V are the fight stretch tensor and the 
left stretch tensor, respectively. In view of (2.3) or (2.5), we have 

R n = h ,  Un=n,  Vh=h  (2.7) 
and 

U(n • ) = n • , V(h l) = h I. (2.8) 

We denote a positive principal basis for U in n" by {ul, Uz}. Then a positive 
principal basis for V in h i is given by 

(vl, v2} =R(ul,  u2}. (2.9) 



Isotropic Elastic Shells 85 

The principal stretches {0~1, 6t2} and the principal invariants of U and V are, of 
course, related by 

~ l + ~ 2 = t r U - l = t r V - 1 ,  oq~2=detU=detV, (2.10) 

since the proper number of U and V in the direction of the proper vectors n and 
h, respectively, is 1. We call G degenerate if ~t =0~2; otherwise, G is called non- 
degenerate. For a non-degenerate G, ~t or ~2 need not be different from 1. 

From (2.7), (2.8), and (2.9) the tensors R, U, and V can be characterized by 

R{.1 ,  1~2, n} = {1~1, v2, h}, 

U{u~, uz, n}= {~x ut, ~2 u2, n}, (2.11) 
and 

V{Vl, v2, h} = {~z I ~1, 0~2 v2, h}. 

Then from (2.6) and (2.3) the tensors G and F can be characterized by 

G(u~, u2, n} = (~x ~ ,  ~2v2, h}, 
and (2.12) 

F {ul ,  "2, n} = {o~ 1 vl ,  o~ 2 v2, e}. 

It should be noted that the expressions (2.3)-(2.12) can be applied to any deforma- 
tion gradient. In particular, when the deformation gradient is l~, we shall designate 
the corresponding quantities by the superimposed ^ ,  viz, 

1~ {a~, a2, n} = {~a 0~, ~2 ~2, e}, (2.13) 

etc. However, from (1.2), we have 

e=Fn=*en = & (2.14) 

Next we consider the transformation rules for the quantifies introduced in 
(2.3)-(2.13) under a change of configuration of the forms (2.1) and (2.2). First, 
when the reference configuration is rotated by Q', the deformation gradient F 
is transformed to FQ'. In this case we have the following transformation rule: 

[ n ~ n , e ~ e , h ~ h ,  
F - - F Q ' = > ~ G - - G Q ' , R - - R Q ' , U - - Q ' r U Q ' , V - - V ,  (2.15) 

[~r ~ oct, Ur ~ Q' r Ur, Vr ~ Vr F = 1, 2, 

for any Q'~5~O,. Similarly, when the deformed configuration is rotated by Q, 
the deformation gradient F is transformed to QF. In this case we have the following 
transformation rule: 

" n ~ n , e ~ Q e ,  h ~ Q h ,  
F~QF=> G ~ Q G ,  R ~ Q R ,  U~,U,  V ~ Q V Q  r, (2.16) 

~ r ~ r ,  Ur~Ur, v r ~ Q v r  F = l , 2 ,  

for any Q ~ 5r (3). Of course, a similar set of transformation rules can be stated 
for the deformation gradient F and its corresponding quantities, such as those 
in (2.13). In particular, in a joint transformation of the form (2.1) and (2.2), we 
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have the transformation rule: 

In-- n, (e, h, ~) ~ Q (e, h,/~), , 
(F, F) ~ Q (F, t ~) Q' =~ ~(G, r R,/~) ~ Q (G, ~, R,/~) Q ,  , (2.17) 

/(v, r r (U, O ) ~ Q  T(U, ~)Q'. 

The preceding transformation rule suggests that we define a relative rotation 
tensor A for any pair (F, i~)~ ~ .  by 

A =/~R r. (2.18) 

Then under the same joint transformation as in (2.17) we have also the trans- 
formation rule: 

(F, F) ~ Q(F, ~) Q' ~ A -- QAQ T. (2.19) 

Now as in [2] we define an equivalence set in ~ ,  by the equivalence relation 

(e, P),,~(F', P')<~ 3 Q~YO(3), Q ' ~ e , :  (F', P')=Q(F, F)Q'. (2.20) 

From the general representation theorem in [2] we know that a general solution 
for the scalar-valued response function f subject to the condition (2.1) and (2.2) 
can be characterized by a set of invariants, which are constant on each equivalence 
set in ~ .  but which take on distinct constant values on different equivalence sets. 
We shall determine such a set of invafiants by using the following 

Theorem 2.1. An equivalence set in ~ .  can be characterized by the rotational 
invariants of the set 

{e, h, ~, V, ~, A}. (2.21) 

That is to say, the condition (2.20) is equivalent to the condition 

~(e', h', h')= Q(e, h,/t), 
( F , F ) ~ ( F ' , F ' ) ~ 3 Q e ~ O ( 3 ) :  ~(V', D',A')=Q(V, D,A)Q r. (2.22) 

It should be noted that the quantities in the set (2.21) are not entirely arbitrary; 
besides the obvious restrictions that h and ~ be unit vectors, V and 1r be positive- 
definite and symmetric, and A be a rotation, they must obey also the conditions 

h. e>0,  ~. e>0  (2.23) 
and 

Vh = h, 17'/i = ~, A h = ~. (2.24) 

Necessity of the condition (2.22) follows readily from the transformation rules 
(2.17) and (2.19). Conversely, when the right-hand side of (2.22) holds, we may 
choose any rotation R such that 

Rn=h.  
Then/~ is given by 

and from (2.24) we have 
I~=AR, 

~ n ~ .  

Similarly, we may choose any rotation R' such that 

R'n=h'.  

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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Then we have also 

• '=  A' R' (2.29) 
and 

/~'n = h'. (2.30) 

From (2.25)-(2.30) and the right-hand side of (2.22), we obtain 

R r QrR'n = n (2.31) 
or, equivalently, 

Q' =-R r Qr R' ~SeO,. (2.32) 

We now show that (F,/~) and (F', 1 ~') are related by the right-hand side of (2.20). 
Indeed, from (2.25)-(2.31) we have 

QFQ'n=QFRr Qr R'n=QFRr Qr h '=QFRrh=QFn=Qe=e'=F'  n, (2.33) 
and 

QGQ' = Q VRR r Qr R' = Q VQ r R' = V' R' = G'. (2.34) 

As explained before, these two conditions imply that 

F'= QFQ'. (2.35) 

Exactly the same argument yields also 

I~'= QFQ'. (2.36) 

Thus the proof of Theorem 2.1 is complete. 

Note. The preceding theorem can be stated in terms of the response function 
f as follows: 

Theorem 2.2. A representation for the scalar-valued response function f subject to 
the conditions (2.1) and (2.2) is given by 

f (F, F) =f  (e, h, ~, V, D, A), (2.37) 

where f is a hemitropic function; i.e., 

f (Qe,  Qh, Q~, QVQ r, Qf2Q r, QAQT)=f(e, h, ~, V, D, A) (2.38) 

for all Q E 6a~ (3). 

From this theorem we see that the conditions (2.1) and (2.2) are equivalent to 
the condition (2.38), which we shall now proceed to solve. First, among the six 
variables of f t h e  last one, A, may be disposed of first. Indeed, since A is a rotation 
and must satisfy the condition (2.24), there are two possibilities: 

1. h and/~ are parallel. In this case A is a rotation about h and h. We can charac- 
terize A by the angle of rotation 0 (A) about h and ~. 

2. h and / i  are not parallel. In this case the vector h x ~ is orthogonal to both h 
and ~. We can characterize A by the angle I O(A) from h x/~ to A(h x ~). 

1 The sign of 0 is determined as usual by the right-hand rule relative to the common normal 
for h X h and A (h x h). 
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Clearly, 0(,4) is a scalar invariant of A, viz, 

O(QAQr)= O(A) u (2.39) 

Hence when we replace A by O(A) in (2.38), that condition becomes 

f(Qe, Qh, Q[t, QVQ r, QI?QT, O(QAQr))=f(e, h, ~t, V, I7, O(A)) (2.40) 

for all rotations Q. For the remaining five variables of f we know that they 
can be characterized by a set of fundamental invariants and a set of relative 
invariants. The fundamental invariants are 

{llel[, tr V, tr D, det V, det f'}, (2.41) 

which characterize separately the five variables to within a rotation. 

Since that rotation must be the same for all five variables, there are also some 
relative invariants, which characterize the directions of the vectors {e, h, ~} and 
the principal axis of the symmetric tensors {V, D} relative to one another. Naturally, 
the number of these relative invariants depend on the degeneracy of the tensor 
variables. There are three possibilities: 

1. V and [ '  are both degenerate. The relative invariants are those among the 
oriented directions of the vectors {e, h, fi}. 
2. Only one of the two tensors, V and D, is degenerate. The relative invariants are 
those among the oriented directions of the vectors {e, h, ~} and the non-oriented 
direction of a particular principal axis of the non-degenerate tensor V or I~. 

3. V and D are both non-degenerate. The relative invariants are those among the 
oriented directions of the vectors {e, h, fi} and the non-oriented directions of a 
particular principal axis of each V and D. 

For definiteness, we choose the particular principal axes in Cases 2 and 3 
above to be the axes v x and Sl for Vand D, respectively. Then from the celebrated 
Cauchy-Weyl theorem it is well known that the relative invariants are 

{ e ' h ' e ' ~ ' h ' ~ ' v x ' e ' v l " I i ' ~ x ' h }  (2.42) 
01" e, v l .  e~, A (e, h,/;, vl, ex) 

(cfi [3, w where A denotes the determinant product (cf. [4, II.9]). Since v x and 
Ox are non-oriented, the relative invariants (2.42) are subject to an equivalence 
relation defined by the mutually independent transformations 

lP l  ~ - -  V l ,  ~1 I--> - -  ~ 1  o (2.43) 

Having determined the basic invariants among the variables of the function 
f on the fight-hand side of (2.40), we can now summarize our results in the fol- 
lowing 

Representation Theorem 2.3. A scalar-valued response function f obeys the identities 
(2.1) and (2.2) i f  and only if it can be expressed as a function of the fundamental 
invariants (2.41) and O(A) and the relative invariants (2.42) subject to the equiv- 
alence relation (2.43). 
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It should be noted that, unlike the usual representation theorems for isotropic 
or hemitropic functions, the theorem above has not reduced the relative invariants 
among the variables explicitly to some particular hemitropic functions. While it 
is, of course, possible to determine such hemitropic functions, which characterize 
the relative invariants among the variables {e, h, ~, V, I?}, we choose not to do so 
here. Since from (2.24) Vand Dare essentially 2-dimensional tensors, it is actually 
easier to calculate v~ and ~ directly than to make use of a long list of hemi- 
tropic functions. 

A special case of the representation theorem is a representation theorem for 
scalar-valued response function for an isotropic elastic membrane; cf. [5]. In the 
membrane theory the only pertinent variable is V. As a result, f can be represented 
by a function of tr V and det V. 

3. Representations for Vector-Valued Response Functions 
For brevity we write the conditions (1.16) and (1.23) as 

g(QF, Q/~)= Qg(F, ~) VQ ~S~r (3.1) 
and 

g(FQ', ~Q')=g(F, F) V Q' ~ff'r (3.2) 

By exactly the same argument as that of Theorems 2.1 and 2.2 we obtain 

Theorem 3.1. A vector-valued response function g subject to the conditions (3.1) 
and (3.2) can be represented by 

g(F, 1~) =~(e,  h,/i, V, l 2, A), (3.3) 

where ~ is a hemitropic function, i.e., 

~(Qe, Qh, Qf~,QVQr, QI?Qr, QAQr)=Qg(e,h,~,V,I>,A) (3.4) 

for all Q �9 5e0 (3). 

As explained in [6], a solution for (3.4) can be found in the following way: 
First, we define the invariance group 5et~te, h,~,v,f,A } for each particular {e, h,/~, 
V, I ?, A } by the condition 
Q~. -~ te  h ~.v.r Q ~ . ~ ( 3 ) :  l{Qe' Qh, Q~, QVQ T, Qi?QT, QAQT} 

' ' [ =  {e, h,/i,  V, r A}. (3.5) 
From (3.4) we see that 

Q~(e,h, li, V,C',A)=~(e,h,h,V,l~,A) VQeSer162 (3.6) 

so we define the admissible space le'c." ~, ~, v, t., a} by the condition 

v~,,t,~,v,f. ,a}c:.vs~a: Qv=v VQ~AatPt,,h,~,v,f,,a}. (3.7) 

Then from (3.6) we have 

g(e,h,$,V,D,A)~,,, ,~,v,~,a~ V{e, h,/~, V, f', A}. (3.8) 

The theory developed in [6] now implies that a representation for ~ is given by a 
linear combination of vector-valued hemitropic functions which generate the 
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admissible space Uc,,~,f,,v,P,a~ at each {e, h,/~, V, 17', A}, the coefficients in the 
linear combination of the generators being scalar-valued hemitropic functions 
which we have already considered in general in the preceding section. 

In view of the restrictions (2.23) and (2.24) on {e, h, ~, V, I ~, A}, we see that 
there are only two possibilities for 3e': 

1. e, h, and/~, are all parallel. In this case the invariance group contains at least a 
rotation lr about e, h, and ~. The admissible space is the 1-dimensional subspace 
spanned by e, namely (e• • 
2. e, h, and / i  are not all parallel. In this case the invariance group contains the 
identity tensor I only, so that the admissible space is the whole space 9~ 3. There 
are two possibilities in this case: 

2a. e and h are not parallel. A generating set is {e, h, e x h}. 

2b. e and/ i  are not parallel. A generating set is {e, ~, e x ti}. 

Having exhausted the admissible spaces for all {e, h,/~, F, P, A}, we can now 
state the following 

Representation Theorem 3.2. .4 vector-valued response function g obeys the identi- 
ties (3.1) and (3.2) if and only if it can be expressed as a linear combination 

g = ~ = A e + A h + A ~ + A e x  h+f5e• ~, (3.9) 

where f l ,  . . . , fs are scalar-valued response functions satisfying (2.1) and (2.2). 

As usual, although there are five generators in (3.9) to express a vector g in 
~3, none of the generators can be deleted in (3.9), since the remaining four are 
not sufficient to span the admissible space at every {e, h, h, V, 17, A}. For instance, 
if h is deleted from (3.9), then {e, h, e x h, e • ~} do not span Y'~,. i, t, v, P, a~ when e 
and h are parallel but not parallel to h. However, since a set of five vectors is 
always linearly dependent in ~3, the coefficients f l  . . . .  , fs  in (3.9) are not unique. 
This property is typical in most representations for vector-valued or tensor- 
valued isotropic or hemitropic functions; cf. [6]. 

4. Representations for Tensor-Valued Response Functions 

As explained in [1] we are interested in tensor-valued response functions 

Z=H(F,  ,r (4.1) 

which can be identified as a linear transformation of the form 

Z:  h l - - - ~  3, (4.2) 

or of the form 
2 :  /~• 3. (4.3) 

For definiteness, we consider tensors of the form (4.2) first, and we write the con- 
ditions (1.17) and (1.24) as 

H(QF, QF)=QH(F, k~)Q r VQ~6a~(3) (4.4) 
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and 
H(FQ', FQ')=H(F, F) VQeSe~,, (4.5) 

where the right-hand side of (4.4) corresponds to a linear transformation of the 
form 

QZQr: Qh• a. (4.5) 

As before, we can reduce (4.4) and (4.5) to a single identity by using the following 

Theorem 4.1. A tensor-valued response function H of the forms (4.2) or (4.3) and 
subject to the conditions (4.4) and (4.5) can be represented by 

H(F, $)=ffl(e, h, ~, V, D, A), (4.7) 

where lel is a hem• function, i.e., 

A(Qe,  Qh, Qi~, QVQ r, QI?Q r, QAQr)=QI~i(e, h, ~, V, l 7, A) Qr (4.8) 

for all Q ~ 6e~ (3). 

We can find a representation for (4.8) in exactly the same way as before. 
However, before solving (4.8) directly, we introduce first a canonical decomposi- 
tion for tensors of the form (4.2). Let Z be an arbitrary tensor of that form. We 
define the tangentialprojection Z~x and the normalprojection Z~ of Z with respect 
to h by 

Zi• Zv)h, Zbv--(h. Zv)h Vveh • (4.9) 

Then Zh• is a linear transformation of h l, viz, 

Z~l: h •  • (4.10) 

while Zh is a linear transformation from h i to (h• • viz. 

Zi:  h i ~ (hi) • (4.11) 

Clearly Z~• and Zh are uniquely determined by Z, and vice versa, since from 
(4.9) we have 

Zv=(Z~• + Zh)v Vv~h • (4.12) 

The transformation rule for Zh• and Z h is 

f h ~ Q h ,  h •  • 
Z ~ QZQ r =~ ~zh• ~ QZh• Q T, Zh ~ QZt, Q r, (4.13) 

for all Q s 6er (3). 

From (4.9), if we define a vector z e h • by 

z - Z r  h - ( h  �9 Zr h)h, (4.14) 

then z characterizes Z~ in such a way that 

ZAv=(z . v)h Vv~h • (4.15) 

Clearly, the vector z obeys the transformation rule: 

Z ~--~ QZQr=~ z ~-~ Q z (4.16) 
for all Qe6"r 
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As usual, we can decompose the tensor Zh• into a symmetric part X and a 
skew symmetric part Y, viz, 

X=�89  Y=�89177177 (4.17) 

Since h" is 2-dimensional, the action of Y on h • can be characterized by a scalar 
y such that 

Y v = y ( h  x v) Vveh  • (4.18) 

Moreover, X and y obey the transformation rule 

Z ~ Q Z Q  r =r X ~ QXQ r, y ~ y (4.19) 
for all Qe6ed~(3). 

In view of the decompositions (4.17) and (4.9) and the transformation rules 
(4.19), (4.16), and (4.13), we see that a tensor-valued response function H of the 
form (4.2) can be characterized by a hem• scalar-valued response function, 
a hem• vector-valued response function, and a hem• symmetric 
tensor-valued response function. Since in the preceding sections we have already 
obtained representations for hem• scalar-valued and vector-valued response 
functions, it suffices to consider hem• symmetric tensor-valued response 
functions only. Hence we shall now assume that i t / is  a symmetric tensor on h • 
and obeys the identity (4.8). 

As before we define the admissible space ~r 4, ~, v, P, A} by the condition 

X~,~e,~.~,v,~,a~ c ~ Q X Q r = X  VQeSPcg{,,t,~,v,~,,~ ~, (4.20) 

where 6e~{,,h,~,v.p,A } is the invariance group defined by (3.5). There are two 
possibilities for Yt~: 

1. e, h, and I• are all parallel and V and I ? are both degenerate. In this case the 
invariance group is Sed~,, and the admissible space is the space of tensors of the 
form c 1, where 1 is the identity tensor on h • 
2. e, h, and /i are not all parallel or V and I ? are not both degenerate. In this 
case the invariance group consists in either the identity map only or the identity 
map and the rotation of rc about e, h, and/i ,  and the admissible space is the space 
of all symmetric tensors on h • We consider the following two possibilities: 

2a. e, h, and ~ are not all parallel, say e and h are not parallel. As explained in 
the preceding section, a basis for h • is 

{e - (e  �9 h)h, e x h}. (4.21) 

The product basis of (4.21) then forms a basis for ~,,h,~,v, P,a}. 
2b. V and 1~ are not both degenerate; say V is non-degenerate. In this case a 
basis for h • is 

{v,, v2}. (4.22) 

Again the product basis of (4.22) then forms a basis for .,~g'{,, h,i,, v, f,, ,}. 
Since (4.21) and (4.22) obey the transformation rule 

{e,h,~}~--~Q{e,h,~}'~ 5 { e - ( e . h ) h ,  e x h } ~ - ~ Q { e - ( e . h ) h ,  e x h } ,  (4.23) 
{V, D} ~+ Q {V, [?} Q r j  ~ ~.{v~, !~2} ~ Q {Vl, V2} , 
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when we express i t / in component form relative to the product bases of (4.21) or 
(4.22), the components are scalar-valued hemitropic functions. Consequently, we 
have the following 

Representation Theorem 4.2. A symmetric, tensor-valued, response function H of  
the form (4.10)obeys the identities (4.4)and (4.5) /f  and only i f  its components 
relative to the product bases of  (4.21) or (4.22) are scalar-valued hemitropic func- 
tions. 

Clearly, the preceding theorem can be modified for tensor-valued response 
functions of the form (4.3) also. 

5. Reversibility in Shells 

As explained before, the mathematical model for shells used in this paper is 
the double-membrane model developed in [1]. In that model, generally, a shell is 
not reversible in the sense that the upper membrane is distinguished from the 
lower membrane by an orientation condition, and their local states are character- 
ized separately by the deformation gradients F and ~r We cannot interchange the 
roles of F and i e without violating the orientation condition. 

Now suppose that we wish to establish a mathematical model for a shell by a 
double-membrane in which the role of the upper membrane and the role of the 
lower membrane are mathematically equivalent. Then the shell may be called 
reversible. To make this concept precise we introduce a new symmetry condition, 
called reversibility. We say that an isotropic point X in a shell is reversible if for 
any rotation Q" of the form 

Q " n =  - n  (5.1) 

the local states (F, g) and (FQ", FQ") are materially equivalent, i.e., 

(FQ", FQ") = 4) (F, ~) (5.2) 

for any local state (F, le). Notice that the order of F and I e on the right-hand 
side is opposite to that on the left-hand side in (5.2). 

Since Q" obeys (5.1), it must be a rotation of rc about an axis q~ in n • i.e., 
Q" may be characterized by 

Q"{q'l', q'2', n}-- {q~', -q~',  - n} ,  (5.3) 

where {q~, q[} is a positive basis in n ' .  When we change the reference configura- 
tion by (5.3), the transformation rule for the vectors {e, h,/]} is 

(F,F)w,( i~Q",FQ")=~e~-e ,  h w , - ~ ,  [ z ~ - h ,  (5.4) 

which shows that the operation on the left-hand side of (5.4), indeed, corresponds 
to a reversal of the sense of the double-membrane. Hence, we call that operation 
a reversal operation on (F, 1r 

Given any pair (F,/~), we consider a particular reversal operation given by 
the rotation Q such that 

~2 {ul, u2, n} = {al, - a2, - n}. (5.5) 
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For this particular 6 the axis ql is in the direction of u 1 +aa, while q2 is in the 
direction of u2 + f12. It can be shown that 6 gives rise to the following trans- 
formation rule: 

(a, R)~  P(C, R), (~J, i~)~ P(G, R), 
(v, v, ~, 17)~-,(0, r u, v), 

(F,/~)~" (P6, F6)  =r (a,, a2, ~l, &2)~(~1, a2, as, a2), (5.6) 
(vs, v2, el, e2)~ (el, -~2, vs, -e2),  
(us, u2, ~1, ~2)~(~s, -~2,  Ul, -u2),  
(e, h, i l )~ ( - e ,  -•, -h),  A ~ pAr p, 

where P and P are rotations characterized by 

P { , , , ,  ,,2, h}  = 0'1,  - , ' 2 ,  - h}  (5 .7 )  
and 

/~ {~s, ~, ~} = {~s ,  - ~2, - tl}. (5 .8 )  

Notice that P and P are symmetric and commute with V and P, respectively. In 
view of the transformation rule (5.6) we have the following 

Representation Theorem 5.1. An isotropic point X in a shell is reversible if and 
only if its reduced response function ~ relative to an undistorted reference satisfies 
the condition 

•(e,h,]i, V, g A ) = ~ ( - e ,  -f~, -h ,  ~, V, pATp). (5.9) 

Necessity can be read off from (5.2), (5.6), and the particular choice 

O" = 6 .  (5.10) 

Conversely, suppose that (5.9) holds. Then from (5.6) we have 

~b (1~6, F 6 ) =  q~(F,/~). (5.11) 

But since X is isotropic, we have also 

�9 (FQ',/~Q') = ~(F,/~) (5.12) 

for all Q'~6a#,, cf (1.21). Combining (5.11) and (5.12), we then obtain 

(~Q' QQ' T, FQ' 6Q' T) = ~ (~O, 6 ,  FQ' 6)  = ~ (FQ', ~O') = �9 (F, t ~) (5.13) 

for all Q'~ 6a#,. Now in general if K is a rotation of angle x about the axis k, 
then Q'KQ 'r is a rotation of the same angle tc but about the axis Q'k. Hence if 

satisfies (5.11) in a particular reversal operation 6 ,  then (5.13) implies that it 
satisfies (5.2) in all reversal operations Q". Thus the proof of the representation 
theorem is complete. 

The condition (5.9) suggests that we define a local state characterized by 
{e, h, fi, V, 17, A} to be symmetric with respect to reversal if there exists a rotation 
Q such that 

{Qe, Qh, Qll, QVQ T, Q17QT, QAQT} = { - e ,  -~ ,  -h ,  D, V, PArP}. (5.14) 
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Such a local state can be characterized in the following way: First, since Q reverses 
the orientation of e as required by (5.14), it must be a rotation of angle rc about 
some axis orthogonal to e. For definiteness, let us denote that axis by ql, and 
we put 

q2=exql.  (5.15) 

Then {ql, q2, e} form a positive orthogonal basis in ~3, relative to which the 
component matrix of Q is the diagonal matrix diag (1, - 1 ,  -1 ) ,  i.e., Q can be 
characterized by 

Q{qi, q2, e}={ql ,  -q2 ,  - e} .  (5.16) 

Now suppose that the components of h relative to the basis {ql, q2, e} is 
{h 1, h 2, h3}, viz, 

h=hl ql + h2 q2 + h3 e. (5,17) 

Then (5.14) requires that the components of /~ relative to the same basis be 
{ - h  1, h 2, h3}, viz, 

~= -h~ qi + h2 q2 + h3 e= -Qh .  (5.18) 

Of course, the component forms (5.17) and (5.18) are consistent with the con- 
dition (2.23) if and only if 

h.  e=/~. e=h3 >0. (5.19) 

Next let {~1, ~2} be the principal values and {vl, v2} be a principal basis for 
Vin h • As usual, we choose {vt, v2} in such a way that {vl, v2, h} is positive in 
~3. In component form V is then given by 

V=~a vl | v~ +ct2 v2 | v2 + h  | h. (5.20) 

From (5.14), Dis related to Vby 
I?=OVO r, (5.21) 

which means that the principal values of ~ are also {~,  c~2}, and that a principal 
basis for If'in ~J- is {Qvl, Qt~2}. Since 

Qh= --[i, (5.22) 
we may choose 

81=Qvl, 82= -Qv2; (5.23) 

then (8 l, 8 z, h} is a positive principal basis for l~in ~3. That is, If'has the com- 
ponent form 

19=cq 8~ | ~l +~2 82 | ~2 + ~  | (5.24) 

From (5.22) and (5.23), Q can be characterized also by 

Q {Vl, v2, h} = {82, - 82, - ~}. (5.25) 

Having treated the first five variables in (5.14), we consider next the last 
variable in the same condition: 

QAQr=pATp. (5.26) 
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We recall first that A is a rotation satisfying the condition (2.24). Hence the axis 
of rotation al of A must be on the bisecting plane of h and/ i .  From (5.17) and 
(5.18) that bisecting plane is obviously the plane qt. In view of (5.16), we see that 
QAQ r is a rotation of the same angle as that of A but the axis of rotation of 
QAQ r is - a ~ .  This result means simply 

QAQ r =A r. (5.27) 

Comparing (5.27) with (5.26), and noting the fact that both P and P are 
symmetric, cf. (5.7) and (5.8), we obtain 

PA =AP. (5.28) 

If we now apply both sides of (5.28) to the basis {vl, v 2, h}, the result is 

P(Av~,Av2,[i}=A{v~, -v2, - h } = ( A v t ,  -Av2 ,  - / i} .  (5.29) 

This equation and the equation (5.8) imply that A Vl is parallel to 0~ and A v2 is 
parallel to 02. Thus there are two possibilities: 

Avl = +01, Av2= ___02, (5.30) 

where the signs are either both + or both - .  Since the principal axes of V and 
I? are not oriented, by a judicious choice of the directions of {vl, v2} relative to 
those of {0~, 02} we can select a definite sign in (5.30), say + .  This particular 
choice does not affect the component forms (5.20) and (5.24) but it may reverse 
the signs of 01 and 0 z in (5.23) and (5.25). 

From (5.30) and (2.24), we see that A can be characterized by 

A {v t, v2, h} = {0 x, 02,/~}. (5.31) 

Then from the definition (2.18) for A, the condition (5.31) means that 

R r (vx, v2, h} =/~r {0t, 02, h} (5.32) 
or, equivalently, 

{u~, u2} = {~,, a2}. (5.33) 

The equation (5.33) and the fact that 

{~,  ~2} = {~,  ~2} (5.34) 
mean also 

v = O. (5.35) 

Summarizing the analysis for a symmetric state, we have the following 

Theorem 5.2. Given any {e, h, V} satisfying the restrictions (2.23) and (2.24) and 
given any rotation Q such that 

Q e =  - e ,  (5.36) 
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there exist uniquely {ti, l ?, A} satisfying (2.23) and (2.24) such that the local state 
corresponding to {e, h, li, V, I ), A} is symmetric. In component form {/~, D, A} are 
given by (5.18), (5.24), and (5.31). 

If {e, h,/i, V, 19, A} define a symmetric local state, and if Q is a rotation which 
satisfies the condition (5.14), then from (5.9) we have 

~(Qe, Qh, Q~,QVQr,  QDQr, QAQr)=~(e,h ,[I ,v ,D,A) .  (5.37) 

But since isotropy and material frame-indifference imply that ~ be hemitropic, 
the condition (5.37) restricts further the value of �9 in a symmetric state. In par- 
ticular, if �9 is vector-valued, say ~ = g ,  then (5.37) and (3.4) imply 

Q~(e, h, [i, V, f~, a)=g(e, h, ~, V, D, A), (5.38) 

which means that the vector g(e, h, ~, V, D, A) at the symmetric state must be 
parallel to the axis q 1 of the rotation Q. In the case ~ is tensor-valued, the situation 
is somewhat more complex. When we switch the roles of F and F, a tensor of the 
form (4.2) is transformed into a tensor of the form (4.3). So a tensor-valued 
response function associated with a reversible shell must consist in a pair of 
tensors which are of the forms (4.2) and (4.3), respectively. The condition (5.37) 
and (4.8) now imply 

QB(e,h,f,, V, D,a)QT=fl(e,h,f,, v, D,A) (5.39) 

which means that Q transform the tensor of the form (4.2) to the corresponding 
tensor of the form (4.3), and vice versa. 

As an example let us consider the symmetric state characterized by {e, h,/i, 
V, D, A} such that e, h, and/~ are all parallel, Vand Dare identical, and A is the 
identity map I. For this symmetric state we may choose Q to be a rotation of 
angle 7~ about any principal axis of V and f'. Then (5.38) implies immediately 
that 

g(e, h, ~, V, P, A)=0 (5.40) 

and (5.39) implies that/~(e, h,/~, V, D, A) is coaxial with Vand P, i.e., 

fl(e, h, ~, V, D, A)=fol+f l  V, (5.41) 

where fo and ft  are isotropic functions of {e, h,/~, V, D, A}. 
A special case of the representation formula (5.41) is a representation formula 

for symmetric tensor-valued response functions of isotropie membranes. In that 
theory every local state is a symmetric state as defined here, since the only per- 
tinent variable there is the tensor V; cf [5]. 
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