Subsolutions for Abstract Evolution Equations

LOUISE BARTHÉLEMY and PHILIPPE BÉNILAN

Equipe de Mathématiques de Besançon, U.A. C.N.R.S. 741, Université de Franche Compté, 25030 Besançon Cedex, France.

(Received: 14 May 1991; accepted: 1 October 1991)

Abstract. We study different notions of subsolutions for an abstract evolution equation $du/dt + Au \ni f$ where A is an m-accretive nonlinear operation in an ordered Banach space X with order-preserving resolvents. A first notion is related to the operator d/dt + A in the ordered Banach space $L^1(0, T; X)$; a second one uses the evolution equation $du/dt + A_{\rightarrow}u \ni f$ where $A_{\rightarrow}:x \rightarrow \{y; z \le y \text{ for some } z \in Ax\}$; other notions are also considered.

AMS subject classifications (1991). 47H06, 47H15, 47H19, 47H20.

Key words. Nonlinear operator, accretivity, subsolution, evolution equation.

The nonlinear semigroup theory gives a general notion of solution, called 'mild solution', for abstract evolution equations of the form

$$du/dt + Au \ni f \tag{1}$$

where A is an operator in a Banach space X and $f \in L^1(0, T; X)$; the exact definition will be recalled in Section 1. This theory can be applied as well to degenerate parabolic equations in divergence form

$$u_t = \operatorname{div} a(u, \operatorname{grad} u) \tag{2}$$

where $a(r, \xi)$ is monotone in the vector ξ , as to fully nonlinear parabolic equation of the form

$$u_t = H(Du, D^2 u) \tag{3}$$

where $H(\xi, S)$ is monotone in the symmetric matrix S. In both cases, solutions formally satisfy a 'parabolic comparison principle'. If u is a 'subsolution' and v a 'supersolution' of the equation on a cylinder $Q = [0, T[x\Omega] \text{ and } u \leq v$ on the parabolic boundary $\partial_p Q = (\{0\}x\Omega) \cup ([0, T]x\partial\Omega)$, then $u \leq v$ on Q. Such a result is classical for sufficiently regular solutions, but its extension to generalized solutions is often a tricky problem. The aim of this paper is to make precise an abstract framework for this principle. In a previous paper [2], we have introduced an abstract notion of subsolution for the 'stationary problem'

$$Ax \ni y$$
 (4)

for a class of operators A in an ordered Banach space X, which we called 'pregenerators'. An operator $A: X \to \mathscr{P}(X)$ is a pregenerator if for $\lambda > 0$ small enough, the operator $J_{\lambda} = (I + \lambda A)^{-1}$ is everywhere defined on X single-valued and order-preserving; if $x, y \in X$, we say that x is a subsolution for (4) if

 $x \leq J_{\lambda}(x + \lambda y)$ for all sufficiently small $\lambda > 0$.

It is clear that if $x \in D(A)$ and there exists $z \in Ax$ such that $z \leq y$, then x is a subsolution for (4); but the notion of subsolution is much wider. In order to emphasize this, let us recall the situation in the linear case (see [2], Section 2.B.): if

-A is the infinitesimal generator of a strongly continuous semigroup (S(t)) of positive linear bounded operators on X, (5)

then A is a pregenerator; and if x, $y \in X$, then x is a subsolution for (4) if and only if

 $\langle A'w, x \rangle \leq \langle w, y \rangle$ for any $w \in D(A')$ with $w \ge 0$

where A' is the adjoint of A.

In this paper we will consider the evolution equation (1) with a pregenerator Aand we will assume $A + \omega I$ to be accretive for some $\omega \in \mathbb{R}$ (i.e. for $\lambda > 0$ with $\lambda \omega < 1$, J_{λ} is a Lipschitz continuous mapping in X with Lipschitz constant $(1 - \lambda \omega)^{-1}$); then the Crandall-Liggett theorem guarantees for $u_0 \in \overline{D(A)}$ and $f \in L^1(0, T; X)$, the existence of a unique mild solution u of (1) with $u(0) = u_0$. For $u_0 \in \overline{D(A)}$ we denote by \mathscr{A}_{u_0} the operator in the Banach space $\mathscr{X} = L^1(0, T; X)$ defined by

 $(u, f) \in \mathscr{A}_{u_0}$ iff u is a mild solution of (1) with $u(0) = u_0$.

We will see (Theorem 1) that \mathscr{A}_{u_0} is a pregenerator in X: to this pregenerator corresponds a notion of subsolution which is a first notion of a subsolution for (1); it actually is a notion of subsolution for the abstract Cauchy problem:

$$\frac{\mathrm{d}u}{\mathrm{d}t} + Au \ni f, \quad u(0) = u_0. \tag{6}$$

We will see that the comparison principle holds for this notion of subsolution. In the linear case, if (5) holds and $u, f \in \mathcal{X}$, we will show (see Proposition 7) that u is a subsolution for (6) if and only if

$$\int \langle A'w, u(t) - \mathbf{u}(t) \rangle \zeta'(t) \, \mathrm{d}t \ge 0$$

for $w \in D(A')$ with $w \ge 0$ and $\zeta \in \mathscr{C}^1([0, T], X)$ with $\zeta \ge 0$ and $\zeta(T) = 0$, where **u** is the exact solution of (6) given by

$$\mathbf{u}(t) = S(t)u_0 + \int_0^t S(t-s)f(s)\,\mathrm{d}s.$$

There are alternative ways to define a notion of subsolution for (1). A first way consists in considering the mild solutions for the evolution problem

$$\frac{\mathrm{d}u}{\mathrm{d}t} + \underline{\mathbf{A}}u \ni f \tag{7}$$

where A is the operator associated to subsolutions of (4), namely

 $y \in Ax$ iff x, $y \in X$ and x is a subsolution for (4).

This operator A contains the operator A_{\rightarrow} defined by

$$A_{\rightarrow} : x \in X \rightarrow \{y \in X; z \leq y \text{ for some } z \in Ax\} = \bigcup_{z \in Ax} [z, \rightarrow [\in \mathcal{P}(X)]$$

If $f \in L^1(0, T; X)$, we will see (Theorem 2) that a mild solution u of (7) is a subsolution for (6) for any $u_0 \in \overline{D(A)}$ with $u(0) \leq u_0$. This result is interesting for applications, but the converse statement is more surprising. If $u \in \mathscr{C}([0, T], X)$ taking its values in $\overline{D(A)}$, is a subsolution for (6) with $u_0 = u(0)$, then u is a mild solution of (7); u is even more than that: it is an exact mild solution of $du/dt + A_{,}u \geq f$ (we will make precise the meaning of this assertion in Section 1).

A second way of defining subsolutions for (1) is to extend the notion of integral solutions as introduced in [3]. We will not make more precise this extension in this introduction (see Section 2), but as we will see (Theorem 3) it will give a characterization for a subsolution of (6) in the same way that the integral inequalities characterize the mild solutions of (6).

The content of this paper is the following: in Section 1 we introduced the definitions and state the main results; in Section 2 we extend the notion of integral solution; in Section 3, we give the proofs of the statements of Section 1; finally, in Section 4, we consider the linear case.

We will not consider examples in this paper which is long enough. A characterization of subsolutions for first order quasilinear equations in terms of Kruskov inequalities has been given by the first author in [1]. The notion of viscosity subsolutions for Hamilton Jacobi equation, or more generally for equations of type (3), as developed in [7], [8], [10], etc., appears also as a concrete example of the abstract framework introduced here. Other examples will be presented in forthcoming papers.

1. Definitions and Main Results

Let X be an ordered Banach space with norm $\|\cdot\|$ and closed convex positive cone X_+ ; we assume that the norm is nondecreasing on the positive cone:

$$0 \leqslant x \leqslant y \Rightarrow ||x|| \leqslant ||y||. \tag{8}$$

We will use the sublinear nondecreasing functional on X,

$$N_{+}(x) = \operatorname{dist}(-x, X_{+}) = \inf\{\|x + z\|; z \in X_{+}\}$$
(9)

and its directional derivative on XxX

$$N'_{+}(x, y) = \lim_{\lambda \to 0_{+}} \lambda^{-1} (N_{+}(x + \lambda y) - N_{+}(x)) = \inf_{\lambda > 0} \lambda^{-1} (N_{+}(x + \lambda y) - N_{+}(x)).$$
(10)

Let A be an operator in X, that is a map $A: X \to \mathscr{P}(X)$ which is identified with its graph $\{(x, y); y \in Ax\}$. Recall the usual terminology: an operator A is accretive if

$$||x_1 - x_2|| \le ||x_1 - x_2 + \lambda(y_1 - y_2)||$$
 for $(x_1, y_1), (x_2, y_2) \in A$ and $\lambda > 0$

and it is *m*-accretive if it is accretive and for any $\lambda > 0$ and $y \in X$ there exists a (unique) solution of

$$x + \lambda A x \ni y. \tag{11}$$

Following [2], we say that an operator A is a pregenerator if there exists $\lambda_0 > 0$ such that if $0 < \lambda < \lambda_0$, for any $y \in X$ there exists a unique solution $x = J_{\lambda}y$ of (11) and the map $y \in X \rightarrow J_{\lambda}y \in X$ is order-preserving. It is clear that if A is a pregenerator and $A + \omega I$ is accretive for some $\omega \in \mathbb{R}$, then $A + \omega I$ is m-accretive.

Let A be a pregenerator and $x, y \in X$. It is clear that

$$y \in Ax \Leftrightarrow x = J_{\lambda}(x + \lambda y) \text{ for } 0 < \lambda < \lambda_0;$$

we say that x is a subsolution (resp. supersolution) for $Ax \ni y$ iff

$$x \leq J_{\lambda}(x + \lambda y)$$
 (resp. $x \geq J_{\lambda}(x + \lambda y)$) for $0 < \lambda < \lambda_0$.

One can prove this definition is independent of λ_0 (see [2], Proposition 1.1).

Let us recall the following characterization (see [2], Proposition 2.5):

LEMMA 1. Let A be a pregenerator and x, $y \in X$. Assume that $A + \omega I$ is accretive for some $\omega \in \mathbb{R}$. Then x is a subsolution (resp. supersolution) for $Ax \ni y$ if and only if

$$N'_{+}(\mathbf{x} - \mathbf{x}, y - \mathbf{y}) + \omega N_{+}(\mathbf{x} - \mathbf{x}) \ge 0 (resp. N'_{+}(\mathbf{x} - \mathbf{x}, \mathbf{y} - \mathbf{y}) + \omega N_{+}(\mathbf{x} - \mathbf{x}) \ge 0)$$

for any $\mathbf{y} \in A\mathbf{x}$.

Let A be an operator in X and $f \in L^1(0, T; X)$; a strong solution of (1) is a function $u \in W^{1,1}(0, T; X)$ satisfying

$$u'(t) + Au(t) \ni f(t)$$
 a.e. $t \in (0, T)$. (12)

Following the terminology of [4] (see also [5]), a mild solution of (1) is a continuous function $u: [0, T] \rightarrow X$ satisfying the following property:

for all
$$\varepsilon > 0$$
, there exist a subdivision $t_0 = 0 < t_1 < \cdots < t_n \leq T < t_{n+1}$ with $t_i - t_{i-1} < \varepsilon$ and $x_0, x_1, \dots, x_n, f_1, \dots, f_n \in X$ such that $\sum \int_{t_{i-1}}^{t_i} ||f(t) - f_i|| dt < \varepsilon$,
 $\frac{x_i - x_{i-1}}{t_i - t_{i-1}} + Ax_i \ni f_i$ and $\max_{t_{i-1} \leq t \leq t_i} ||u(t) - x_i|| < \varepsilon$ for $i = 1, \dots, n$.

A mild solution takes its values in $\overline{D(A)}$. A strong solution is a mild solution, but the converse is false in general.

Here we introduce a stronger notion: an *exact mild solution* of (1) is a continuous function $u: [0, T] \rightarrow X$ satisfying the following property:

for some $\varepsilon_0 > 0$ and some continuous function $\eta: [0, \varepsilon_0[\rightarrow [0, \infty[\text{ with } \eta(0) = 0;$ for any $\varepsilon \in]0, \varepsilon_0[, t_0 = 0 < t_1 < \cdots < t_n \leq T < t_{n+1}$ with $t_i - t_{i-1} < \varepsilon$ and $f_1, \ldots, f_n \in X$ with $\sum_i \int_{t_{i-1}}^{t_i} ||f(t) - f_i|| dt < \varepsilon$, there exist $x_0 = u(0), x_1, \ldots, x_n \in X$ such that $\frac{x_i - x_{i-1}}{t_i - t_{i-1}} + Ax_i \ni f_i$ and $\max_{t_{i-1} \leq t \leq t_i} ||u(t) - x_i|| < \eta(\varepsilon)$ for $i = 1, \ldots, n$.

Since step functions are dense in $L^{1}(0, T; X)$, an exact mild solution is a mild solution, but the converse is false in general.

Let us recall the Crandall-Liggett theorem as follows:

LEMMA 2. If $A + \omega I$ is m-accretive for some $\omega \in \mathbb{R}$, then for any $u_0 \in \overline{D(A)}$ and $f \in L^1(0, T; X)$ there exists a unique mild solution u of (1) with $u(0) = u_0$. Moreover, any mild solution of (1) is an exact mild solution of (1).

The first main result of this paper is the following.

THEOREM 1. Let A be a pregenerator in X and assume that $A + \omega I$ is accretive for some $\omega \in \mathbb{R}$. Let $u_0 \in \overline{D(A)}$ and define the operator \mathscr{A}_{u_0} in the Banach space $\mathscr{X} = L^1(0, T; X)$ by

$$(u, f) \in \mathscr{A}_{u_0}$$
 iff u is a mild solution of (1) with $u(0) = u_0$

Then

- (a) \mathscr{A}_{μ_0} is a pregenerator in the ordered Banach space \mathscr{X} .
- (b) If $u, f \in \mathcal{X}$, the following properties are equivalent:
 - (i) u is a subsolution (resp. supersolution) for $\mathscr{A}_{u_0} u \ni f$, (ii) $\int_0^T N'_+(u(t) - u(t), f(t) - f(t))e^{-\omega t} dt \ge 0$ $\left(\operatorname{resp.} \int_0^T N'_+(u(t) - u(t), f(t) - f(t))e^{-\omega t} dt \ge 0 \right)$ for any $(\mathbf{u}, \mathbf{f}) \in \mathscr{A}_{u_0}$.
- (c) Let $u_0, v_0 \in \overline{D(A)}, u, f, v, g \in \mathcal{X}$. If u is a subsolution for $\mathcal{A}_{u_0}u \ni f, v$ is a supersolution for $\mathcal{A}_{v_0}v \ni g, u_0 \leqslant v_0$ and $f \leqslant g$, then $u \leqslant v$.

REMARK 1. The integrals in (b.ii) are well defined: indeed, the function $(x, y) \in X \times X \rightarrow N'_+(x, y)$ is u.s.c. and satisfies $|N'_+(x, y)| \leq ||y||$.

We now state the second main result of this paper.

THEOREM 2. Under the assumptions and notations of Theorem 1, we consider the operators <u>A</u> and A_{\rightarrow} in X defined by

 $(x, y) \in \underline{A}$ iff $(x, y) \in X$ and x is subsolution of $Ax \ni y$

and

$$A_{\rightarrow}: x \in X \rightarrow \{y \in X; z \leq y \text{ for some } z \in Ax\} = \bigcup_{z \in Ax} [z, \rightarrow [\in \mathcal{P}(X), respectively.$$

- Let $u_0 \in \overline{D(A)}$, $u \in \mathscr{C}([0, T], X)$ and $f \in L^1(0, T; X)$. Then
- (a) If $u(0) \leq u_0$ and u is a mild solution of $du/dt + Au \ni f$, then u is a subsolution for $\mathcal{A}_{u_0}u \ni f$.
- (b) If $u(t) \in D(A)$ for $t \in [0, T]$, then the following assertions are equivalent:
 - (i) u is a subsolution for $\mathscr{A}_{u_0} u \ni f$,
 - (ii) $u(0) \le u_0$ and u is a mild solution of $du/dt + Au \ni f$,
 - (iii) $u(0) \leq u_0$ and u is an exact mild solution of $du/dt + A \downarrow u \ni f$.

REMARK 2. We do not know if (i) \Rightarrow (ii) is true in general. Of course one may state the corresponding result for supersolutions.

Let $A + \omega I$ be *m*-accretive for some $\omega \in \mathbb{R}$ and $f \in L^1(0, T; X)$; let us recall (see [3]) that *u* is a mild solution of (1) if and only if $u \in \mathscr{C}([0, T], X)$ satisfies the inequalities

$$\frac{\mathrm{d}}{\mathrm{d}t}\|u-x\| \leq [u-x,f-y] + \omega\|u-x\| \text{ in } \mathscr{D}'[]0, T[] \text{ for any } (x,y) \in A \quad (13)$$

where [,] is the directional derivative of the norm; a function $u \in \mathscr{C}([0, T], X)$

satisfying the inequalities (13) is called an integral solution of (1).

We now state an extension of this result for the problem of subsolutions for (1).

THEOREM 3. Under assumptions and notations of Theorems 1 and 2, let $u, f \in L^1(0, T; X)$ and consider the following assertions:

- (i) $u \in \mathscr{C}([0, T], X)$ is a mild solution of $du/dt + Au \ni f$.
- (ii) u satisfies the inequalities

$$\frac{\mathrm{d}}{\mathrm{d}t}N_{+}(u-\mathbf{u}) \leq N'_{+}(u-\mathbf{u},f-\mathbf{f}) + \omega N_{+}(u-\mathbf{u}) \quad in \ \mathcal{D}'(]0,\ T[) \tag{14}$$

for any $(\mathbf{u}, \mathbf{f}) \in \mathscr{X} \mathscr{X}$ satisfying

$$\frac{\mathrm{d}}{\mathrm{d}t}N_{+}(x-\mathbf{u}) \leq N'_{+}(x-\mathbf{u}, y-\mathbf{f}) + \omega N_{+}(x-\mathbf{u}) \quad in \ \mathcal{D}'[]0, \ T[)$$
for any $(x, y) \in A.$ (15)

(iii) u satisfies the inequalities (14) for any $(\mathbf{u}, \mathbf{f}) \in \mathscr{C}([0, T], X) \times L^1(0, T; X)$ with u mild solution of $d\mathbf{u}/dt + A\mathbf{u} \ni \mathbf{f}$.

(iv) u satisfies the inequalities

$$\frac{\mathrm{d}}{\mathrm{d}t}N_{+}(u-x) \leq N'_{+}(u-x,f-y) + \omega N_{+}(u-x) \quad \text{in } \mathcal{D}'(]0, T[) \text{ for any } (x,y) \in A.$$
(16)

(v) u is a subsolution for $\mathscr{A}_{u_0} u \ni f$ for any $u_0 \in D(A)$ satisfying

$$\lim_{t \to 0_+} \exp N_+(u(t) - u_0) = 0.$$
(17)

Then

(a) The following properties hold

$$\{(i) \text{ or } (ii)\} \Rightarrow (iii) \Leftrightarrow (iv) \Rightarrow (v).$$

(b) If $u(t) \in \overline{D(A)}$ a.e. $t \in (0, T)$ and there exists $u_0 \in \overline{D(A)}$ such that (17) holds, the assertions (ii), (iii), (iv) and (v) are equivalent.

(c) If $u \in \mathscr{C}([0, T], X)$ and $u(t) \in D(A)$ for $t \in [0, T]$, the assertions (i), (ii), (iii), (iv) and (v) are equivalent.

REMARK 3. The inequalities (14), (15), (16) are well defined; indeed if $u, f \in L^1(0, T; X)$ then $N_+(u)$ and $N'_+(u, f)$ are integrable functions on (0, T). Recall that for $\phi, \psi \in L^1(0, T)$, the inequality

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} \leq \psi \text{ in } \mathscr{D}'(]0, T[)$$

is equivalent to

$$\phi \in BV_{loc}(]0, T[) \text{ and } \phi(t+) \leq \phi(s+) + \int_a^t \psi(\tau) d\tau \text{ for any } 0 < s < t < T.$$

In Theorem 3(a), the property $\{(iii) \Rightarrow (iv)\}$ is immediate and the property $\{(iii) \Rightarrow (iv)\}$ is an easy corollary of Theorem 1(b); one can also see that, according to (a) and (b), the part (c) of Theorem 3 is a restatement of the property $\{(i) \Leftrightarrow (ii)\}$ in Theorem 2(b).

2. Extension of the Notion of Integral Solution

In this section we extend the notion of integral solution as introduced in [3]. In this section X is a Banach space, A is an operator in X and $N: X \to \mathbb{R}$ is a Lipschitz continuous convex functional; for $u, v \in X$, we denote by N'(u, v) the directional derivative

$$N'(u,v) = \lim_{\lambda \to 0_+} \lambda^{-1} (N(u + \lambda v) - N(u)).$$

We state the extension of the fundamental 'uniqueness theorem' of [3] as follows:

THEOREM 4. Let $u, f \in L^1(0, T; X)$ satisfy

$$\frac{d}{dt}N(u-x) \leq N'(u-x,f-y) + \omega N(u-x) \quad in \ \mathcal{D}'(]0,\ T[) \quad for \ any \ (x,\ y) \in A.$$
(18)

Then

$$\frac{\mathrm{d}}{\mathrm{d}t}N(u-\mathbf{u}) \leq N'(u-\mathbf{u},f-\mathbf{f}) + \omega N(u-\mathbf{u}) \quad in \ \mathcal{D}'(]0,\ T[) \tag{19}$$

for any $(\mathbf{u}, \mathbf{f}) \in \mathscr{C}([0, T], X) \times L^1(0, T; X)$ with \mathbf{u} mild solution of $d\mathbf{u}/dt + A\mathbf{u} \ni \mathbf{f}$.

In the statement of Theorem 4, we do not assume any accretivity of the operator A; let us state a corollary assuming some accretivity:

COROLLARY 5. For i = 1, 2, let A_i be an operator in $X, f_i \in L^1(0, T; X)$ and u_i be a mild solution of $du_i/dt + A_iu_i \ni f_i$. Assume that

$$N'(x_1 - x_2, y_1 - y_2) + \omega N(x_1 - x_2) \ge 0 \quad \text{for any } (x_1, y_1) \in A_1, (x_2, y_2) \in A_2.$$
(20)

Then

$$\frac{\mathrm{d}}{\mathrm{d}t}N(u_1 - u_2) \leq N'(u_1 - u_2, f_1 - f_2) + \omega N(u_1 - u_2) \quad in \ \mathcal{D}'(]0, \ T[).$$
(21)

Proof of Corollary 5. Applying Theorem 4 with $A = A_2$, $(u, f) = (x_1, y_1) \in A_1$ we deduce, using (20), that

$$\frac{d}{dt}N(x_1 - u_2) \le N'(x_1 - u_2, y_1 - f_2) + \omega N(x_1 - u_2) \quad \text{in } \mathcal{D}'(]0, T[)$$

for any $(x_1, y_1) \in A_1$.

Then apply Theorem 4 with $A = A_1$, $(u, f) = (u_2, f_2)$ and N(x) replaced by N(-x) to obtain (21).

Proof of Theorem 4. Let $(\mathbf{u}, \mathbf{f}) \in \mathscr{C}([0, T], X) \times L^1(0, T; X)$ with \mathbf{u} a mild solution of $d\mathbf{u}/dt + A\mathbf{u} \ni \mathbf{f}$; we prove that (19) holds. We follow closely the proof of Theorem 1.1 in [3]; the difference is that we take a general Lipschitz continuous convex functional N here (instead of the norm) and u is only assumed to be integrable (instead of continuous). Notice that N being Lipschitz continuous, the functions $N(u - \mathbf{u})$ and $N'(u - \mathbf{u}, f - \mathbf{f})$ are integrable functions on (0, T), such that (19) is well defined.

Let $t_0 = 0 < t_1 < \dots < t_n \leq T < t_{n+1}, x_0, x_1, \dots, x_n, f_1, \dots, f_n \in X$ with

$$\frac{x_i - x_{i-1}}{t_i - t_{i-1}} + Ax_i \ni f_i$$

and define the step functions v, g on $]0, t_n]$ by $v = x_i, g = f_i$ on $]t_{i-1}, t_i]$. By (18), for i = 1, ..., n the function $N(u - x_i)$ is of bounded variation on [0, T] and for $0 \le a < b < T$, one has

$$N(u - x_i)(b +) \leq N(u - x_i)(a +)$$

+
$$\int_a^b \left\{ N'\left(u(\sigma) - x_i, f(\sigma) - f_i + \frac{x_i - x_{i-1}}{t_i - t_{i-1}}\right) + \omega N(u(\sigma) - x_i) \right\} d\sigma.$$

On the other hand

$$N'\left(u(\sigma) - x_i, f(\sigma) - f_i + \frac{x_i - x_{i-1}}{t_i - t_{i-1}}\right) \leq N'(u(\sigma) - x_i, f(\sigma) - f_i) + \frac{N(u(\sigma) - x_{i-1}) - N(u(\sigma) - x_i)}{t_i - t_{i-1}}$$

which one can see, by using $w \in \partial N(u(\sigma) - x_i)$ such that

$$N'\left(u(\sigma) - x_{i}, f(\sigma) - f_{i} + \frac{x_{i} - x_{i-1}}{t_{i} - t_{i-1}}\right) = \left\langle w, f(\sigma) - f_{i} + \frac{x_{i} - x_{i-1}}{t_{i} - t_{i-1}}\right\rangle.$$

Then, by definition of v, g, one has

$$\int_{t_{i-1}}^{t_i} N(u-v(\tau))(b+) d\tau \leq \int_{t_{i-1}}^{t_i} N(u-v(\tau))(a+) d\tau$$

+
$$\int_{t_{i-1}}^{t_i} d\tau \int_a^b \left\{ N'(u(\sigma)-v(\tau), f(\sigma)-g(\tau)) + \omega N(u(\sigma)-v(\tau)) \right\} d\sigma$$

+
$$\int_a^b N(u(\sigma)-x_{i-1}) d\sigma - \int_a^b N(u(\sigma)-x_i) d\sigma.$$

Adding these inequalities, one gets for any $0 \le i < j \le n$

$$\int_{t_i}^{t_j} N(u - v(\tau))(b +) d\tau \leq \int_{t_i}^{t_j} N(u - v(\tau))(a +) d\tau$$

+ $\int_{t_i}^{t_j} d\tau \int_a^b \{ N'(u(\sigma) - v(\tau), f(\sigma) - g(\tau)) + \omega N(u(\sigma) - v(\tau)) \} d\sigma$
+ $\int_a^b N(u(\sigma) - x_i) d\sigma - \int_a^b N(u(\sigma) - x_j) d\sigma.$

By definition of a mild solution, one may approximate (\mathbf{u}, \mathbf{f}) by functions (v, g) of the type above; passing to the limit in these inequalities and using the upper semicontinuity of the derivative N', one has for any $0 \le s \le t \le T$

$$\int_{s}^{t} N(u - \mathbf{u}(\tau))(b +) d\tau \leq \int_{s}^{t} N(u - \mathbf{u}(\tau))(a +) d\tau$$

+
$$\int_{s}^{t} d\tau \int_{a}^{b} \{N'(u(\sigma) - \mathbf{u}(\tau), f(\sigma) - \mathbf{f}(\tau)) + \omega N(u(\sigma) - \mathbf{u}(\tau))\} d\sigma$$

+
$$\int_{a}^{b} N(u(\sigma) - \mathbf{u}(s)) d\sigma - \int_{a}^{b} N(u(\sigma) - \mathbf{u}(t)) d\sigma.$$

This being true for any $0 \le a \le b < T$, $0 \le s \le t < T$, one deduces that

$$\left(\frac{\partial}{\partial\sigma} + \frac{\partial}{\partial\tau}\right) N(u(\sigma) - \mathbf{u}(\tau)) \leq N'(u(\sigma) - \mathbf{u}(\tau), f(\sigma) - \mathbf{f}(\tau)) + \omega N(u(\sigma) - \mathbf{u}(\tau))$$

in $\mathcal{D}'(]0, T[x]0, T[).$

Using the following Lemma with $F(x, \mathbf{x}) = N(x - \mathbf{x})$, $G(x, \mathbf{x}, y, \mathbf{y}) = N'(x - \mathbf{x}, y - \mathbf{y})$, will conclude the proof of (19).

LEMMA 3. Let $F: X \times X \to \mathbb{R}$ be continuous and let $G: X \times X \times X \times X \to \mathbb{R}$ be u.s.c. with

$$|F(x, \mathbf{x})| + |G(x, \mathbf{x}, y, \mathbf{y})| \leq C(1 + ||\mathbf{x}|| + ||\mathbf{x}|| + ||\mathbf{y}|| + ||\mathbf{y}||).$$
(22)

Let $u, u, f, f \in L^1(0, T; X)$ satisfy

$$\left(\frac{\partial}{\partial\sigma}+\frac{\partial}{\partial\tau}\right)F(u(\sigma), u(\tau)) \leq G(u(\sigma), u(\tau), f(\sigma), f(\tau)) \quad in \ \mathscr{D}'(]0, \ T[x]0, \ T[).$$
(23)

Then

$$\frac{\mathrm{d}}{\mathrm{d}t}F(u(t),\,\mathbf{u}(t)) \leqslant G(u(t),\,\mathbf{u}(t),\,f(t),\,\mathbf{f}(t)) \quad in \ \mathcal{D}'(]0,\,T[). \tag{24}$$

Proof of Lemma 3. Let $\zeta \in \mathcal{D}(]0, T[), \zeta \ge 0$ and $\rho \in \mathcal{D}(]-1, 1[), \rho \ge 0, \int \rho = 1$. Consider the functions $\zeta_n(\sigma, \tau) = \zeta((\sigma + \tau)/2)\rho(n(\sigma - \tau)/2)$. For *n* large enough, $\zeta_n \in \mathcal{D}(]0, T[x]0, T[)$ and $(\partial/\partial\sigma + \partial/\partial\tau)\zeta_n(\sigma, \tau)/2) = \zeta'(\sigma + \tau)/2)\rho(n(\sigma - \tau)/2)$. Applying (23),

$$\int\!\!\int\!\!\left\{G(u(\sigma), \mathbf{u}(\tau), f(\sigma), \mathbf{f}(\tau))\zeta_n(\sigma, \tau) + F(u(\sigma), \mathbf{u}(\tau))\left(\frac{\partial}{\partial\sigma} + \frac{\partial}{\partial\tau}\right)\zeta_n(\sigma, \tau)\right\}\mathrm{d}\sigma\,\mathrm{d}\tau \ge 0,$$

and then changing variables $\sigma = t + (s/n)$, $\tau = t - (s/n)$, one has

$$\iint \{G_n(t, s)\zeta(t) + F_n(t, s)\zeta'(t)\}\rho(s)\,\mathrm{d}s\,\mathrm{d}t \ge 0 \tag{25}$$

with $G_n(t, s) = G(u(t + (s/n)), u(t - (s/n)), f(t + (s/n)), f(t - (s/n)))$ and $F_n(t, s) = F(u(t + (s/n)), u(t - (s/n)))$.

But if $v \in L^1(0, T; X)$ and 0 < a < b < T, for *n* large enough, the functions $v_n(t, s) = v(t + (s/n))$ (resp. v(t - (s/n))) are in $L^1(]a, b[x] - 1, 1[;X)$ and converge in $L^1(]a, b[x] - 1, 1[;X)$ to the function v(t, s) = v(t). Thanks to the continuity of *F*, the upper semicontinuity of *G* and (22), at the limit in (25) one obtains

$$\iint \{G(u(t), \mathbf{u}(t), f(t), \mathbf{f}(t))\zeta(t) + F(u(t), \mathbf{u}(t))\zeta'(t)\}\rho(s)\,\mathrm{d}s\,\mathrm{d}t \ge 0$$

and then

$$\int \{G(u(t), u(t), f(t), f(t))\zeta(t) + F(u(t), u(t))\zeta'(t)\} dt \ge 0.$$

This proves (24).

REMARK 4. The Lemma may be extended easily to more than one variable: if Ω is an open set in \mathbb{R}^N , F takes values in \mathbb{R}^N , u, u, f, $\mathbf{f} \in L^1_{loc}(\Omega; X)$ satisfy

$$(\operatorname{div}_{\sigma} + \operatorname{div}_{\tau})F(u(\sigma), \mathbf{u}(\tau)) \leq G(u(\sigma), \mathbf{u}(\tau), f(\sigma), \mathbf{f}(\tau)) \quad \text{in } \mathscr{D}'(\Omega x \Omega)$$

then div $F(u, \mathbf{u}) \leq G(u, \mathbf{u}, f, \mathbf{f})$ in $\mathscr{D}'(\Omega)$.

This result is closely related to the Kruskov's uniqueness Theorem for entropy solutions of first order quasilinear equations ([9], see also [6], [3], [1]).

3. Proofs of Theorems 1, 2 and 3

In this section we use the notations of Section 1. One of the main arguments in the proofs is application of Theorem 4 with the functional $N(x) = N_+(x)$ (or $N_+(-x)$) which is convex and Lipschitz continuous.

We first remark the elementary lemma:

LEMMA 4. Let $u, f \in X$ satisfy

$$\frac{\mathrm{d}}{\mathrm{d}t}N_{+}(u) \leq N_{+}'(u,f) + \omega N_{+}(u) \quad in \ \mathcal{D}'(]0,\ T[)$$
(26)

and

$$\limsup_{t \to 0} \sup N_{+}(u(t)) = 0.$$
(27)

Then

(a) If $f(t) \le 0$ a.e. t, then $u(t) \le 0$ a.e. t (b) $\int N'_{+}(u(t), f(t)) e^{-\omega t} dt \ge 0$.

Throughout this Section, A is a pregenerator with $A + \omega I$ accretive and A, A_{\rightarrow} are defined as in Theorem 2. We state in a Proposition the corollaries of Theorem 4 corresponding to this particular situation:

PROPOSITION 6. Let $u, u, f, f \in \mathcal{X}$. (a) If u is a mild solution of $du/dt + \underline{A}u \ni f$, then (16) holds. (b) If u is a mild solution of $du/dt + \overline{A}u \ni f$, then

$$\frac{\mathrm{d}}{\mathrm{d}t}N_{+}(x-\mathbf{u}) \leq N'_{+}(x-\mathbf{u}, y-\mathbf{f}) + \omega N_{+}(x-\mathbf{u}) \quad in \ \mathcal{D}'(]0, \ T[) \ for \ any \ (x, y) \in \underline{\mathrm{A}}$$
(28)

and in particular (15) holds.

(c) If u is a mild solution of $du/dt + Au \ni f$ and (28) holds, then (14) holds.

(d) If (16) holds and **u** is a mild solution of $d\mathbf{u}/dt + A\mathbf{u} \ni \mathbf{f}$, then (14) holds.

Proof. Recall Lemma 1:

 $N'_+(x - \mathbf{x}, y - \mathbf{y}) + \omega N_+(x - \mathbf{x}) \ge 0$ for any $(x, y) \in \underline{A}$, $(\mathbf{x}, \mathbf{y}) \in A$.

To obtain the different parts (a), (b), (c), (d) we apply Theorem 4 taking for the data $\{N(x), A, (u, f), (u, f)\}$ in the Theorem for (a): $\{N_+(-x), \underline{A}, (x, y), (u, f)\}$ where $(x, y) \in A$ for (b): $\{N_+(x), A, (x, y), (u, f)\}$ where $(x, y) \in \underline{A}$ for (c): $\{N_+(-x), \underline{A}, (u, f), (u, f)\}$ for (d): $\{N_+(x), A, (u, f), (u, f)\}$.

Proof of Theorem 1. We first prove that \mathscr{A}_{u_0} is a pregenerator in \mathscr{X} . Let $\lambda > 0$ and $f \in \mathscr{X}$. The inclusion $u + \lambda \mathscr{A}_{u_0} u \ni f$ means that

u is a mild solution of
$$\frac{du}{dt} + Au \ni \frac{f-u}{\lambda}$$
 with $u(0) = u_0$. (29)

Using the definition of a mild solution, it is easy to see (and well-known) that it is equivalent to say that u is a mild solution of

$$\frac{\mathrm{d}u}{\mathrm{d}t} + \left(A + \frac{I}{\lambda}\right)u \ni \frac{f}{\lambda}, \ u(0) = u_0.$$

But $(A + I/\lambda)$ is a pregenerator and $(A + I/\lambda) + (\omega - \lambda^{-1})I = A + \omega I$ is accretive; applying Lemma 2 to $(A + I/\lambda)$, there exists a unique solution u of (29); applying Corollary 5 with $N(x) = N_+(x)$ and $A_1 = A_2 = A + I/\lambda$, by Lemma 1 and Lemma 4(a), we see that the map $f \rightarrow u$ is order-preserving. This proves part (a).

Now let \mathcal{N} be the functional on \mathcal{X} defined by

$$\mathcal{N}(u) = \int N_+(u(t)) e^{-\omega t} \,\mathrm{d}t.$$

It is clear that \mathcal{N} is convex nondecreasing, $\mathscr{X}_+ = \{u \in \mathscr{X}; \mathcal{N}(-u) = 0\}$ and we have $\mathcal{N}'(u, f) = \int N'_+(u(t), f(t)) e^{-\omega t} dt$ for $(u, f) \in \mathscr{X}$. Using Corollary 5 with $N(x) = N_+(x)$ and $A_1 = A_2 = A$, because of Lemma 1 and Lemma 4(b), one has

$$\mathcal{N}'(\mathbf{u} - \mathbf{u}, f - \mathbf{f}) \ge 0$$
 for any $(\mathbf{u}, f), (\mathbf{u}, \mathbf{f}) \in \mathscr{A}_{\mathbf{u}_0}$.

Then part (b) is a particular case of Proposition 2.5(ii) in [2].

To prove part (c), use the definition of a subsolution (resp. supersolution): we have $u \leq u_{\lambda}$ (resp. $v \geq v_{\lambda}$) where $u_{\lambda} = (I + \lambda \mathscr{A}_{u_0})^{-1}(u + \lambda f)$ (resp. v_{λ}) is the mild solution of

$$\frac{\mathrm{d}u_{\lambda}}{\mathrm{d}t} + Au_{\lambda} \in f_{\lambda} = f + \frac{u - u_{\lambda}}{\lambda}, u_{\lambda}(0) = u_{0}$$

$$\left(\text{resp.} \frac{\mathrm{d}v_{\lambda}}{\mathrm{d}t} + Av_{\lambda} \ni g_{\lambda} = g + \frac{v - v_{\lambda}}{\lambda}, v_{\lambda}(0) = v_{0}\right).$$

In particular $f_{\lambda} \leq f$ and $g \leq g_{\lambda}$; thus $f_{\lambda} \leq g_{\lambda}$ and $u_0 \leq v_0$ so that, as above, $u_{\lambda} \leq v_{\lambda}$. This gives $u \leq v$ and finishes the proof of the theorem.

Proof of Theorem 2. Part (a) follows directly from Proposition 6(c) and (b); actually if u is a mild solution of $du/dt + Au \ni f$ then the assertion (iii) of Theorem 3 is satisfied; if moreover $u(0) \le u_0$, using Lemma 4(b) and Theorem 1(b), we see that u is a subsolution for $\mathcal{A}_{u_0}u \ni f$. For part (b), (iii) \Rightarrow (ii) is clear since $A_{\rightarrow} \subset A$, and we already have proved (ii) \Rightarrow (i); it remains to prove (i) \Rightarrow (iii).

Assume that u is a subsolution for $\mathscr{A}_{u_0} u \ni f$ and $u(t) \in D(A)$ for $t \in [0, T]$. For $\lambda > 0$, set $u_{\lambda} = (I + \lambda \mathscr{A}_{u_0})^{-1}(u + \lambda f)$; by definition, $u \leq u_{\lambda}$ where u_{λ} is the mild solution of $du_{\lambda}/dt + Au_{\lambda} \ni f + (u - u_{\lambda})/\lambda$ with $u_{\lambda}(0) = u_0$. In particular we have $u(0) \leq u_0$. We have to prove that u is an exact mild solution of $du/dt + A_{\lambda}u \ni f$.

We first prove that

$$u_{\lambda}(t) \rightarrow u(t) \text{ in } X \text{ for } t \in [0, T] \text{ as } \lambda \rightarrow 0.$$
 (30)

Fix $t \in [0, T]$; since u_{λ} is a mild solution of $du_{\lambda}/dt + Au_{\lambda} \ni f + (u - u_{\lambda})/\lambda$, we have the integral inequalities

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \|u_{\lambda} - x\| &\leq \left[u_{\lambda} - x, f + \frac{u - u_{\lambda}}{\lambda} - y \right] + \omega \|u_{\lambda} - x\| \\ &= \left[u_{\lambda} - x, f - y + \frac{u - x}{\lambda} \right] + (\omega - \lambda^{-1}) \|u_{\lambda} - x\| \text{ in } \mathcal{D}'(]0, T[) \\ &\qquad \text{ for any } (x, y) \in A. \end{aligned}$$

Applying this with $x = x_{\lambda} = (I + \lambda A)^{-1} u(t)$, $y = (u(t) - x_{\lambda})/\lambda$, and integrating the differential inequality between 0 and t, we obtain

$$\|u_{\lambda}(t) - x_{\lambda}\| \leq e^{(\omega - \lambda^{-1})t} \|u_{0} - x_{\lambda}\| + \int_{0}^{t} e^{(\omega - \lambda^{-1})(t-s)} \left[u_{\lambda}(s) - x_{\lambda}, f(s) + \frac{u(s) - u(t)}{\lambda} \right] ds$$

and then

$$\|u_{\lambda}(t) - u(t)\| \leq \|u(t) - x_{\lambda}\| + e^{(\omega - \lambda^{-1})t} \|u_{0} - x_{\lambda}\| + \int_{0}^{t} e^{(\omega - \lambda^{-1})(t-s)} \left\{ \|f(s)\| + \frac{\|u(s) - u(t)\|}{\lambda} \right\} ds.$$
(31)

Since $u(t) \in \overline{D(A)}$, we have $x_{\lambda} \rightarrow u(t)$ in X as $\lambda \rightarrow 0$ and then (30) follows from (31).

Now remark that $u_{\lambda}(t)$ decreases as λ decreases (this follows from Proposition 1.1 in [2]); then, thanks to (8), $||u_{\lambda}(t) - u(t)||$ decreases as λ decreases. It follows from Dini's theorem, that

$$u_{\lambda}(t) \to u(t) \text{ in } X \text{ uniformly for } t \in [\delta, T] \text{ as } \lambda \to 0, \text{ for } \delta > 0 \text{ and} \\ u_{0} = u(0) \Rightarrow u_{\lambda}(t) \to u(t) \text{ in } X \text{ uniformly for } t \in [0, T] \text{ as } \lambda \to 0.$$
(32)

Using this, we prove that for $\delta > 0$, u is an exact mild solution of $du/dt + A_{,u} \ni f$ on $[\delta, T]$ and that if $u_0 = u(0)$, u is an exact mild solution of $du/dt + A_{,u} \ni f$ on [0, T]. This will complete the proof of the theorem; indeed, it will follow that u is a mild solution of $du/dt + A_{,u} \ni f$ on $[\delta, T]$ for any $\delta > 0$, and then, by basic properties of mild solutions (see [4]), since u is continuous on [0, T], it is a mild solution of $du/dt + A_{,u} \ni f$ on [0, T]; then using part (a) of the Theorem, it is a subsolution of $\mathscr{A}_{u(0)}u \ni f$ and this will finish the proof.

Let $\delta = 0$ if $u_0 = u(0)$ and fix $\delta > 0$ if $u_0 \neq u(0)$. We prove that u is an exact mild solution of $du/dt + A \downarrow u \ni f$ on $[\delta, T]$. Fix $\varepsilon > 0$ with $\varepsilon \omega < 1$ and, according to (32), consider $\lambda > 0$ such that

$$\|u_{\lambda}(t) - u(t)\| \leq \varepsilon \quad \text{for } t \in [\delta, T].$$
(33)

Let $t_0 = \delta < t_1 < \cdots < t_n \leq T < t_{n+1}$ with $t_i - t_{i-1} < \varepsilon$, and $f_1, \dots, f_n \in X$ with $\sum_i \int_{t_{i-1}}^{t_i} ||f(t) - f_i|| dt < \varepsilon$. For $i = 1, \dots, n$, set $g_i = f_i + (u(t_i) - u_\lambda(t_i))/\lambda$ and, using the fact that $A + \omega I$ is *m*-accretive, define by induction $x_0, x_1, \dots, x_n \in X$ satisfying

$$x_0 = u(\delta), \frac{x_i - x_{i-1}}{t_i - t_{i-1}} + Ax_i \ni g_i.$$

Since $g_i \leq f_i$, we have

$$\frac{x_i - x_{i-1}}{t_i - t_{i-1}} + A_{\rightarrow} x_i \ni f_i.$$

Set $g = f + (u - u_{\lambda})/\lambda$. Since u, u_{λ} are continuous on $[\delta, T]$, we have

$$\sum_{t_{i-1}} \int_{t_{i-1}}^{t_i} \|g(t) - g_i\| \, \mathrm{d}t < \sigma(\varepsilon),$$

where σ is a continuous function (depending on λ , but not on (t_i, f_i)) with $\sigma(0) = 0$; we may assume $\sigma(\varepsilon) \ge \varepsilon$. Since u_{λ} is an exact mild solution of $du_{\lambda}/dt + Au_{\lambda} \ge g$ (see Lemma 2), we have

$$\max_{i}\left(\max_{t_{i-1}\leq t\leq t_{i}}\|u_{\lambda}(t)-x_{i}\|\right)\leq e^{\omega^{+}(T-\delta)}\|u_{\lambda}(\delta)-x_{0}\|+\eta(\sigma(\varepsilon)),$$

where η is some continuous function with $\eta(0) = 0$. Then, using (33), we have

$$\max_{i}\left(\max_{t_{i-1}\leq t\leq t_{i}}\|u(t)-x_{i}\|\right)\leq (1+e^{\omega^{+T}})\varepsilon+\eta(\sigma(\varepsilon))$$

and this concludes the proof.

Proof of Theorem 3. Part (a) is already proved:

(i) \Rightarrow (iii) follows from Proposition 6(c) and (b) and was already proved above (proof of Theorem 2(a));

(ii) \Rightarrow (iii) follows immediately from Proposition 6(b)

(iii) \Rightarrow (iv) is immediate as noted in Remark 3

(iv) \Rightarrow (iii) is exactly the statement of Proposition 6(d)

(iii) \Rightarrow (v) follows from Lemma 4(b) and Theorem 1(b).

As noted in Remark 3, according to the parts (a) and (b), the part (c) is only a restatement of $\{(i) \Leftrightarrow (ii)\}$ in Theorem 2(b). To complete the proof of Theorem 3, we only have to show that if u is a subsolution for $\mathscr{A}_{u_0}u \ni f$ for some $u_0 \in \overline{D(A)}$ and $u(t) \in \overline{D(A)}$ a.e. t, then (ii) holds.

Set $u_{\lambda} = (I + \lambda \mathscr{A}_{u_0})^{-1}(u + \lambda f)$. By Theorem 4, since u_{λ} is a mild solution of $du_{\lambda}/dt + Au_{\lambda} \ni f + (u - u_{\lambda})/\lambda$, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}N_{+}(u_{\lambda}-\mathbf{u}) \leq N_{+}'\left(u_{\lambda}-\mathbf{u},f+\frac{u-u_{\lambda}}{\lambda}-\mathbf{f}\right)+\omega N_{+}(u_{\lambda}-\mathbf{u}) \quad \text{in } \mathcal{D}'(]0, T[)$$

for any $(\mathbf{u}, \mathbf{f}) \in \mathscr{X} \mathscr{X}$ such that (15) holds.

But $u \leq u_{\lambda}$, so that $N'_{+}(u_{\lambda} - \mathbf{u}, f + (u - u_{\lambda})/\lambda - \mathbf{f}) \leq N'_{+}(u_{\lambda} - \mathbf{u}, f - \mathbf{f})$ and thus

$$\frac{\mathrm{d}}{\mathrm{d}t}N_{+}(u_{\lambda}-\mathbf{u}) \leq N'_{+}(u_{\lambda}-\mathbf{u},f-\mathbf{f}) + \omega N_{+}(u_{\lambda}-\mathbf{u}) \quad \text{in } \mathcal{D}'(]0, T[).$$
(34)

We obtain (14) at the limit in (34) as $\lambda \rightarrow 0$ by using the following Lemma, and this will conclude the proof of the Theorem.

LEMMA 5. Let $(u, f) \in \mathcal{XX}$, $u_0 \in \overline{D(A)}$ and for $\lambda > 0$, $u_{\lambda} = (I + \lambda \mathscr{A}_{u_0})^{-1}(u + \lambda f)$. If $u(t) \in \overline{D(A)}$ a.e. t, then $u_{\lambda} \rightarrow u$ in $L^1(0, T; X)$.

Proof. Since u_{λ} is a mild solution of

$$\frac{\mathrm{d}u_{\lambda}}{\mathrm{d}t} + Au_{\lambda} \ni f + \frac{u - u_{\lambda}}{\lambda},$$

we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \|u_{\lambda} - x\| \leq \left[u_{\lambda} - x, f + \frac{u - u_{\lambda}}{\lambda} - y \right] + \omega \|u_{\lambda} - x\| = \left[u_{\lambda} - x, f - y + \frac{u - x}{\lambda} \right] \\ + (\omega - \lambda^{-1}) \|u_{\lambda} - x\| \quad \text{in } \mathcal{D}'(]0, T[) \quad \text{for any } (x, y) \in A.$$

Setting $x = x_{\lambda}(t) = (I + \lambda A)^{-1} u(t)$, $y = (u(t) - x_{\lambda}(t))/\lambda$, and integrating, one gets

$$\|u_{\lambda}(t) - u(t)\| \leq \|u(t) - x_{\lambda}(t)\| + e^{(\omega - \lambda^{-1})t} \|u_{0} - x_{\lambda}(t)\| + \int_{0}^{t} e^{(\omega - \lambda^{-1})(t-s)} \|f(s)\| \, ds + \int_{0}^{t} e^{(\omega - \lambda^{-1})(t-s)} \|u(s) - u(t)\| \, \frac{ds}{\lambda}.$$
(35)

Since $u(t) \in D(A)$ a.e. t, we have $x_{\lambda}(t) \to u(t)$ a.e. t as $\lambda \to 0$ and by dominated convergence, $x_{\lambda} \to u$ in $L^{1}(0, T; X)$ as $\lambda \to 0$ (note that $||x_{\lambda} - (I + \lambda A)^{-1}u_{0}|| \leq (I - \lambda \omega)^{-1} ||u - u_{0}||$ and $(I + \lambda A)^{-1}u_{0} \to u_{0}$ in X as $\lambda \to 0$).

It is clear that $\int e^{(\omega-\lambda^{-1})t} ||u_0 - x_{\lambda}(t)|| dt \to 0$ and also that $\int dt \int_0^t e^{(\omega-\lambda^{-1})(t-s)} ||f(s)|| ds \to 0$. Using (35), the proof of the lemma will be completed if we show that

$$R_{\lambda}(u) = \int dt \int_{0}^{t} e^{(\omega - \lambda^{-1})(t-s)} \|u(s) - u(t)\| \frac{ds}{\lambda} \to 0 \quad \text{as } \lambda \to 0.$$
 (36)

One easily sees that if $u \in \mathscr{C}([0, T]; X)$, then $R_{\lambda}(u) \to 0$ as $\lambda \to 0$; on the other hand, the functionals R_{λ} are equicontinuous seminorms on \mathscr{X} ; thus, by density, (36) holds for any $u \in \mathscr{X}$.

REMARK 5. Lemma 5 is true for any operator A such that $A + \omega I$ is *m*-accretive. It actually means that the closure of $D(\mathscr{A}_{u_n})$ in \mathscr{X} is exactly $\{u \in \mathscr{X}; u(t) \in \overline{D(A)} \text{ a.e. } t\}$.

4. The Linear Case

We discuss the particular situation when (5) holds; in the next Proposition we use the notation and assumptions of Section 1.

PROPOSITION 7. Assume that -A is the infinitesimal generator of a strongly continuous semigroup (S(t)) of bounded positive linear operators on X and denote by A' the adjoint of A in the dual space X'. Let $u_0 \in X$ and $f \in L^1(0, T; X)$. Then

- (a) A is a pregenerator in X and in the notation of Theorem 1, \mathcal{A}_{u_0} is a single-valued pregenerator with dense domain in \mathcal{X} .
- (b) If $u \in L^1(0, T; X)$, then the following assertions are equivalent:
 - (i) u is subsolution for $\mathcal{A}_{u_0}u = f$
 - (ii) u satisfies (17) and $\frac{d}{dt} \langle w, u - u \rangle + \langle A'w, u - u \rangle \leq 0 \text{ in } \mathcal{D}'(]0, T[)$ for any $w \in D(A')$ with $w \geq 0$ (37)

where $\mathbf{u}(t) = S(t)u_0 + \int_0^t S(t-s)f(s) \,\mathrm{d}s$,

(iii) for any $w \in D(A')$ with $w \ge 0$ and $\zeta \in \mathscr{C}^1([0, T])$ with $\zeta \ge 0$ and $\zeta(T) = 0$,

$$\int \langle A'w, u(t) \rangle \zeta(t) \, \mathrm{d}t \leq \int \langle w, u(t) \rangle \zeta'(t) \, \mathrm{d}t + \int \langle w, f(t) \rangle \zeta(t) \, \mathrm{d}t.$$
(38)

(c) If $u \in \mathscr{C}([0, T], X)$, then the following assertions are equivalent:

- (i) u is subsolution for $\mathcal{A}_{\mu_0} u \ni f$
- (ii) $u(0) \leq u_0$ and for any $\varepsilon > 0$, there exists a subdivision $t_0 = 0 < t_1 < \dots < t_n \leq T < t_{n+1}$ with $t_i - t_{i-1} < \varepsilon$ and x_0, x_1, \dots, x_n , $f_1, \dots, f_n \in N$ with $\frac{\langle w, x_i - x_{i-1} \rangle}{t_i - t_{i-1}} + \langle A'w, x_i \rangle \leq \langle w, f_i \rangle$ for any $w \in D(A')$ with $w \geq 0$ such that $\max_i \left(\max_{t_{i-1} \leq t \leq t_i} \|u(t) - x_i\| \right) < \varepsilon$, $\sum \int_{t_{i-1}}^{t_i} \|f(t) - f_i\| dt < \varepsilon$.
- (iii) $u(0) \leq u_0$ and for some continuous function η with $\eta(0) = 0$, for all sufficiently small $\varepsilon > 0$, for all $t_0 = 0 < t_1 < \cdots < t_n \leq T < t_{n+1}$ with $t_i t_{i-1} < \varepsilon$, and all $f_1, \ldots, f_n \in X$ with $\sum \int_{t_{i-1}}^{t_i} ||f(t) f_i|| dt < \varepsilon$, there exists $x_0 = u(0), x_1, \ldots, x_n \in D(A)$ such that

$$\frac{x_i - x_{i-1}}{t_i - t_{i-1}} + Ax_i \leq f_i \text{ and } \max_i \left(\max_{t_{i-1} \leq t \leq t_i} \|u(t) - x_i\| \right) < \eta(\varepsilon).$$

Proof. It is clear by the representation of the resolvent by Laplace transform that A is a pregenerator. Notice that, for some $\omega \in \mathbb{R}$, $|||u||| = \sup\{e^{-\omega t}||S(t)u||; t \ge 0\}$ is an equivalent norm on X satisfying (8) and $A + \omega I$ is accretive for this new norm; also if $u \in L^1(0, T; X)$, the property (17) is the same for the two norms. In other words, without loss of generality we may assume that $A + \omega I$ is accretive and then use the results of Theorem 1. In particular \mathscr{A}_{u_0} is a pregenerator in \mathscr{X} (this may actually be shown directly). The density of $D(\mathscr{A}_{u_0})$ in \mathscr{X} follows from Remark 5 (it may be seen directly since $D(\mathscr{A}_{u_0})$ contains $\mathbf{u}_0 + D(A) \otimes \mathscr{D}(]0, T[$), with $\mathbf{u}_0(t) = S(t)u_0$, and $D(A) \otimes \mathscr{D}(]0, T[$) is dense in \mathscr{X}). Singlevaluedness of \mathscr{A}_{u_0} follows from linearity: if $f, g \in \mathscr{A}_{u_0}u$, then $f - g \in \mathscr{A}_00$; but \mathscr{A}_0 is an *m*-accretive linear graph in the Banach space \mathscr{X} , endowed with the equivalent norm $\int e^{-\omega t} ||u(t)|| dt$; since $D(\mathscr{A}_0)$ is dense in \mathscr{X} , singlevaluedness of \mathscr{A}_0 follows by classical arguments. This completes the proof of (a).

Part (c) is an immediate application of Theorem 2. Indeed using Proposition 2.3 in [2],

$$(x, y) \in \underline{A} \Leftrightarrow x, y \in X$$
 and $\langle A'w, x \rangle \leq \langle w, y \rangle$ for any $w \in D(A')$ with $w \ge 0$,

so that (ii) in Proposition 7(c) is exactly (ii) in Theorem 2(b); on the other hand, according to the definitions of A_{\rightarrow} and of an exact mild solution, (iii) in Proposition

7(c) is exactly (iii) in Theorem 2(b).

To prove (b), let us state the following result in a lemma:

LEMMA 6. Under the assumptions of Proposition 7, $v \in \mathcal{X}_+$ if and only if $v \in \mathcal{X}$ and

$$\int \langle w, v(t) \rangle \zeta(t) dt \ge 0 \text{ for any } \zeta \in \mathcal{D}(]0, T[), \zeta \ge 0 \text{ and } w \in D(A'), w \ge 0.$$
(39)

Proof of Proposition 7 continued. We prove (b). Notice first that for $\lambda > 0$, $(I + \lambda \mathscr{A}_{u_0})^{-1}(u + \lambda f) = \mathbf{u} + (I + \lambda \mathscr{A}_0)^{-1}(u - \mathbf{u})$ and hence, by definition of a subsolution, u is a subsolution for $\mathscr{A}_{u_0}u = f$ if and only if $v = u - \mathbf{u}$ is a subsolution for $\mathscr{A}_0v = 0$. Notice also (see for instance [5]) that for $\zeta \in \mathcal{D}(]0, T[)$ and $w \in D(A')$

$$\int \langle A'w, \mathbf{u}(t) \rangle \zeta(t) \, \mathrm{d}t = \int \langle w, \mathbf{u}(t) \rangle \zeta'(t) \, \mathrm{d}t + \int \langle w, f(t) \rangle \zeta(t) \, \mathrm{d}t$$

and hence u satisfies (38) if and only if v = u - u satisfies (38) with f = 0. In other words we may assume $u_0 = 0$ and f = 0 (so that u = 0). For simplicity we denote $\mathscr{A} = \mathscr{A}_0$.

If u is a subsolution for $\mathcal{A}u = 0$, then $u \leq 0$ (use Theorem 1(c)) and hence (17) holds and for any $\lambda > 0$, $u \leq u_{\lambda} = (I + \lambda \mathcal{A})^{-1}u$ and so

$$\int \langle w, (u-u_{\lambda})(t) \rangle \zeta(t) \, \mathrm{d}t \leq 0 \text{ for any } \zeta \in \mathcal{D}(]0, \ T[), \ \zeta \geq 0 \text{ and } w \in D(A'), \ w \geq 0.$$
(40)

But if $\zeta \in \mathcal{D}(]0, T[)$ and $w \in D(A')$, the linear functional on \mathscr{X}

$$\mathbf{w}: v \longrightarrow \int \langle w, v(t) \rangle \zeta(t) \, \mathrm{d}t$$

is in $D(\mathcal{A}')$ and

$$\langle \mathscr{A}'\mathbf{w}, v \rangle = \int \{ \langle A'w, v(t) \rangle \zeta(t) - \langle w, v(t) \rangle \zeta'(t) \} dt.$$

Then, using $u - u_{\lambda} = \lambda A u_{\lambda}$, (40) may be written

$$\begin{split} \int \langle A'w, \, u_{\lambda}(t) \rangle \zeta(t) \, \mathrm{d}t &\leq \int \langle w, \, u_{\lambda}(t) \rangle \zeta'(t) \, \mathrm{d}t \\ & \text{for any } \zeta \in \mathcal{D}(]0, \, T[), \, \zeta \geq 0 \text{ and } w \in D(A'), \, w \geq 0. \end{split}$$

Passing to the limit as $\lambda \rightarrow 0$, this gives (37). Thus we have shown that (i) implies (ii).

To prove (ii) \Rightarrow (iii), let $w \in D(A')$, $w \ge 0$ and $\zeta \in \mathscr{C}^1([0, T])$ with $\zeta \ge 0$ and $\zeta(T) = 0$; using (37) we have

$$\int_{s}^{T} \langle A'w, u(t) \rangle \zeta(t) dt \leq \langle w, u(s) \rangle \zeta(s) + \int_{s}^{T} \langle w, u(t) \rangle \zeta'(t) dt \quad \text{a.e. s.}$$
(41)

But $\langle w, u(s) \rangle \leq \langle w, u(s) + z \rangle \leq ||w|| ||u(s) + z||$ for $z \in X_+$, and using (17), lim infess_{s→0} $\langle w, u(s) \rangle \leq 0$; passing to the limit in (41), we obtain (38).

Let us now assume that (iii) holds. By convex combination and density, we have

$$\int \langle A'w(t), u(t) \rangle dt \leq \int \langle w'(t), u(t) \rangle dt \quad \text{for any } w \in \mathscr{Y}_+,$$
(42)

where

$$\mathcal{Y}_{+} = \{ w \in \mathcal{C}^{1}([0, T]; X'); w(T) = 0, w(t) \in D(A') \text{ for } t \in [0, T], A'w \in \mathcal{C}([0, T]; X') \text{ and } \langle w(t), x \rangle \ge 0 \text{ for } t \in [0, T] \text{ and } x \in X_{+} \}.$$

But \mathscr{Y}_+ may be identified with a convex cone in the dual space \mathscr{X}' contained in $D(\mathscr{A}')$ and if $w \in \mathscr{Y}_+$, $\mathscr{A}'w$ is identified with the continuous function -dw/dt + A'w; in other words (42) may be written

$$\langle \mathscr{A}'w, u \rangle \leq 0$$
 for any $w \in \mathscr{Y}_+$.

For any $\lambda > 0$, $(I + \lambda \mathscr{A}')^{-1}(\mathscr{Y}_+) \subset \mathscr{Y}_+$ and applying the inequality above with $(I + \lambda \mathscr{A}')^{-1}w$, one gets

 $\langle w, u - (I + \lambda \mathscr{A}^{-1}u) \leq 0$ for any $w \in \mathscr{Y}_+$.

In particular (40) holds, and then thanks to Lemma 6, u is a subsolution for $\mathcal{A}u = 0$.

Proof of Lemma 6. The necessary condition is clear. Let us assume that (39) holds. We will prove that $v \ge 0$. It is clear that we have

$$\langle w, v(t) \rangle \ge 0$$
 a.e. t, for any $w \in D(A')$ with $w \ge 0$.

Let $w \in X'$ and $w \ge 0$; for any $\lambda > 0$, $w_{\lambda} = (I + \lambda A')^{-1} w$ is in D(A'), $w_{\lambda} \ge 0$ and we have $\langle w_{\lambda}, x \rangle \rightarrow \langle w, x \rangle$ as $\lambda \rightarrow 0$. It follows that

$$\langle w, v(t) \rangle \ge 0$$
 a.e. t, for any $w \in X'$ with $w \ge 0$. (43)

Using standard arguments we now show that $v(t) \ge 0$ a.e. t. Since v is strongly measurable, there exists a countable set D in X such that $v(t) \in \overline{D}$ a.e. t; by the Hahn-Banach Theorem, for all $x \in D$ there exists $w_x \in X'$ such that

$$\langle w_x, x \rangle = -N_+(-x), w_x \leq N_+.$$
(44)

In particular $w_x \ge 0$, and D being countable, we have

 $\langle w_x, v(t) \rangle \ge 0$ for any $x \in D$, a.e. t

and thus

$$\langle w, v(t) \rangle \ge 0$$
 for any $w \in C'$, a.e. t , (45)

where C' is the $\sigma(X', X)$ -closed convex cone generated by $\{w_x; x \in D\}$. But $v(t) \in \overline{D}$ a.e. t and thus, using (44), we have for a.e. t, the existence of $w \in C'$ such that $\langle w, v(t) \rangle = -N_+(-v(t))$. Then, using (45), one obtains $N_+(-v(t)) \leq 0$ a.e. t, which means $v(t) \geq 0$ a.e. t.

Acknowledgment

We thank W. Arendt, M. G. Crandall and R. Gariepy for helpful discussions.

References

- 1. Barthélemy, L.: Problème d'obstacle pour une équation quasi-linéaire du premier ordre, Ann. Fac. Sc. Toulous. IX(2), (1988), 137-159.
- Barthélemy, L., and Bénilan, Ph.: Sous-potentiels d'un opérateur nonlinéaire, Israel J. Math. 61(1), (1988), 85-111.
- 3. Bénilan, Ph.: Equations d'evolution dans un espace de Banach quelconque et applications, Thèse Orsay (1972).
- 4. Bénilan, Ph., Crandall, M. G., and Pazy, A.: Evolution Equations Governed by Accretive Operators, book in preparation.
- Bénilan, Ph., Crandall, M. G., and Pazy, A.: 'Bonnes solutions' d'un problème d'évolution semi-linéaire, C.R.Ac. Sc. Paris 306(1), (1988), 527-530.
- Crandall, M. G.: The semigroup approach to first order quasilinear equations in several space variables, Israel J. Math. 12 (1972), 108-122.
- 7. Crandall, M. G.: Semidifferentials, quadratic forms and fully nonlinear elliptic equations of second order, to appear.
- Crandall, M. G., and Lions, P. L.: Viscosity solutions of Hamilton Jacobi equation. Trans. Am. Math. Soc. 277 (1983), 1-42.
- 9. Kruskov, S. N.: First order quasilinear equation in several independant variables, *Math. U.R.S.S. Sb.* 10 (1970), 217-243.
- 10. Lions, P. L.: Generalized Solutions of Hamilton Jacobi Equations, Pitman (1984).