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Abstract. We study different notions of subsolutions for an abstract evolution equation du/dt + Ausf
where A is an m-accretive nonlinear operation in an ordered Banach space X with order-preserving
resolvents. A first notion is related to the operator d/dt + A in the ordered Banach space LY(0, T; X); a
second one uses the evolution equation du/dt + A_u3f where A_:x— {y;z < y for some ze Ax}; other
notions are also considered.
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The nonlinear semigroup theory gives a general notion of solution, called ‘mild
solution’, for abstract evolution equations of the form

du/dt + Aus f m

where A is an operator in a Banach space X and fe L!(0, T; X); the exact definition
will be recalled in Section 1. This theory can be applied as well to degenerate parabolic
equations in divergence form

u, = div a(u, grad u) 2)

where a(r, {) is monotone in the vector ¢, as to fully nonlinear parabolic equation of
the form

u, = H(Du, D*u) )

where H(, S) is monotone in the symmetric matrix S. In both cases, solutions formally
satisfy a ‘parabolic comparison principle’. If u is a ‘subsolution’ and v a ‘supersolution’
of the equation on a cylinder Q = J0, T[xQ and u < v on the parabolic boundary
0,0 = ({0}xQ) U ([0, T]x0Q), then u < v on Q. Such a result is classical for sufficiently
regular solutions, but its extension to generalized solutions is often a tricky problem.
The aim of this paper is to make precise an abstract framework for this principle.
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In a previous paper [2], we have introduced an abstract notion of subsolution for
the ‘stationary problem’

Ax>y @

for a class of operators 4 in an ordered Banach space X, which we called
‘pregenerators’. An operator A: X — #(X) is a pregenerator if for A > 0 small enough,
the operator J, =(I + 14)™! is everywhere defined on X single-valued and
order-preserving; if x, y € X, we say that x is a subsolution for (4) if

x < Jy(x + Ay} for all sufficiently small 1 > 0.

It is clear that if x € D(A) and there exists z € Ax such that z < y, then x is a subsolution
for (4); but the notion of subsolution is much wider. In order to emphasize this, let
us recall the situation in the linear case (see [2], Section 2.B.): if

— A is the infinitesimal generator of a strongly continuous semigroup (S(¢)) of
positive linear bounded operators on X, &)

then A is a pregenerator; and if x, y € X, then x is a subsolution for (4) if and only if
{A'w, x> < {w,y> for any we D(A’) withw =0
where A’ is the adjoint of A.

In this paper we will consider the evolution equation (1) with a pregenerator A
and we will assume 4 + wl to be accretive for some w € R (i.e. for 4 > 0 with lw < 1,
J, is a Lipschitz continuous mapping in X with Lipschitz constant (1 — Aw)~'); then
the Crandall-Liggett theorem guarantees for u, € D—(A?S and feL'(0, T; X), the
existence of a unique mild solution u of (1) with #(0) = u,. For u, € D(A) we denote
by o, the operator in the Banach space & = LY(0, T; X) defined by

W fe A, iff u is a mild solution of (1) with #(0) = u,.

We will see (Theorem 1) that o/, is a pregenerator in X: to this pregenerator
corresponds a notion of subsolution which is a first notion of a subsolution for (1);
it actually is a notion of subsolution for the abstract Cauchy problem:

du
E;+Au3f, u(0) = u,. 6)

We will see that the comparison principle holds for this notion of subsolution. In the
linear case, if (5) holds and u, fe &, we will show (see Proposition 7) that u is a
subsolution for (6) if and only if

J(A’w, u(t) —u(@®)>{(Hdt =0
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for we D(A") with w > 0 and { € €1([0, T], X) with { > 0 and {(T) = 0, where u is
the exact solution of (6) given by

uw(t) = S(thuy + J tS(t —8)f(s)ds.
0

There are alternative ways to define a notion of subsolution for (1). A first way
consists in considering the mild solutions for the evolution problem
du

E+é_uaf )]

where A is the operator associated to subsolutions of (4), namely
yeAx iff x, ye X and x is a subsolution for (4).
This operator A contains the operator A_, defined by
A.:xeX—{yeX;z <y for some z € Ax} = u,_,.[2,— [e P(X).

If fe LY(0, T; X), we will see (Theorem 2) that a mild solution u of (7) is a subsolution
for (6) for any u, € D(A) with u(0) < u,. This result is interesting for applications, but
the converse statement is more surprising. If € ¢([0, T], X) taking its values in
D(A), is a subsolution for (6) with u, = u(0), then u is a mild solution of (7); u is even
more than that: it is an exact mild solution of du/dt + 4_ u> f (we will make precise
the meaning of this assertion in Section 1).

A second way of defining subsolutions for (1) is to extend the notion of integral
solutions as introduced in [3]. We will not make more precise this extension in this
introduction (see Section 2), but as we will see (Theorem 3) it will give a characterization
for a subsolution of (6) in the same way that the integral inequalities characterize the
mild solutions of (6).

The content of this paper is the following: in Section 1 we introduced the definitions
and state the main results; in Section 2 we extend the notion of integral solution; in
Section 3, we give the proofs of the statements of Section 1; finally, in Section 4, we
consider the linear case.

We will not consider examples in this paper which is long enough. A characterization
of subsolutions for first order quasilinear equations in terms of Kruskov inequalities
has been given by the first author in [1]. The notion of viscosity subsolutions for
Hamilton Jacobi equation, or more generally for equations of type (3), as developed
in [7], [8], [10], etc., appears also as a concrete example of the abstract framework
introduced here. Other examples will be presented in forthcoming papers.
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1. Definitions and Main Results

Let X be an ordered Banach space with norm ||| and closed convex positive cone
X, ; we assume that the norm is nondecreasing on the positive cone:

0<x<y=|xl <yl ®)
We will use the sublinear nondecreasing functional on X,
N,(x) =dist(—x, X,) =inf{||x + z|;; ze X, } )
and its directional derivative on XxX

Ni(x,y) = lim A7 (N, (x + 4y) — N.(x)) = inf 27} N, (x + Ay) — N,(x)). (10)

A—0. A>0

Let A be an operator in X, that is a map 4: X — #(X) which is identified with its
graph {(x, y); y € Ax}. Recall the usual terminology: an operator A is accretive if

Xy = x,0l < llxy — x5 + MAy; — ¥l for (xy, yy)s (x5, y,) €A and A >0

and it is m-accretive if it is accretive and for any A > 0 and y e X there exists a (unique)
solution of

x+ AAx3y. (11)

Following [2], we say that an operator A is a pregenerator if there exists 4, > 0
such that if 0 < 4 < 4, for any y € X there exists a unique solution x = J,y of (11)
and the map y € X — J, y € X is order-preserving, It is clear that if 4 is a pregenerator
and A + ol is accretive for some o € R, then 4 + wl is m-accretive.

Let A be a pregenerator and x, y € X. It is clear that

yeAxesx=J,(x+4y) for0<i< iy
we say that x is a subsolution (resp. supersolution) for Ax >y iff
xS J(x + Ay) (resp. x 2 J(x + Ay)) for 0 < 4 < A,.

One can prove this definition is independent of 4, (see [2], Proposition 1.1).
Let us recall the following characterization (see [2], Proposition 2.5):

LEMMA 1. Let A be a pregenerator and x, y € X. Assume that A + wl is accretive
for some w € R. Then x is a subsolution (resp. supersolution) for Ax >y if and only if

Ni(x — %,y —y) + oN,(x — x) > O(resp. Ny(x — x, y — y) + oN ,(x — x) > 0)

for any y € Ax.
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Let A be an operator in X and f e L'(0, T; X); a strong solution of (1) is a function
ue Wh(0, T; X) satisfying

w() + Aut)> f(t) ae. te(0, T). (12)

Following the terminology of [4] (see also [5]), a mild solution of (1) is a continuous
function u: [0, T]— X satisfying the following property:

for all ¢ > 0, there exist a subdivision t, =0<t, <--<t,<T<t,,, with

t
t,—t;_y <& and Xo, Xp,...; Xy, f1,-sfy € X such that zf‘ @) — fillde <&,
toy

%7 %14 Ax,af, and  max |u(t)— x <efori=1,.,n.

L~y oSt

A mild solution takes its values in Bai A strong solution is a mild solution, but the
converse is false in general.

Here we introduce a stronger notion: an exact mild solution of (1) is a continuous
function u:[0, T]-— X satisfying the following property:

for some ¢, > 0 and some continuous function #: [0, g,[ — [0, co[ with n(0) = 0;

for any ¢€]0,¢,[,t,=0<t; < <t,<T<t,,,; with t,—t,_, <¢ and
t
S fye X with ) I£() — f;||dt < ¢, thereexist x, = u(0), x,, ..., x, € X such

i t_,y

X, — X;_
that === 4 Ax,;5f; and max |u(t)— x| <) fori=1,...,n
i ti-1 ti-1SI<Y

Since step functions are dense in L'(0, T; X), an exact mild solution is a mild solution,
but the converse is false in general.
Let us recall the Crandall-Liggett theorem as follows:

LEMMA 2. If A+ ol is m-accretive for some w € R, then for any u, € D(A) and
fe€LY0, T; X) there exists a unique mild solution u of (1) with u(0) = u,. Moreover,
any mild solution of (1) is an exact mild solution of (1).

The first main result of this paper is the following.

THEOREM 1. Let A be a pregenerator in X and assume that A + wl is accretive for
some w € R. Let u, € D(A) and define the operator o/, inthe Banach space ¥ = L'(0, T; X)
by

(u, f) e o, iff uis amild solution of (1) with w(0) = u,.
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Then
(@) o, is a pregenerator in the ordered Banach space %.
(b) If u, fe X, the following properties are equivalent:

(i) u is a subsolution (resp. supersolution) for o4, u>s f,

(i) IT N (u(t) — u(e), f(5) — f(t))e™'dt > 0

0

(resp. JTN;(u(t) —u(t),f(t) — f(t)e™ " dt > 0) Sorany (u,f)e .

0
(c) Letuy, vy € D(A),u, f, v, g€ X. If uis asubsolution for o, u3 f, v is a supersolution
Jor o, v3g,us<vyand f<g,thenu<v.

REMARK 1. Theintegralsin (b.ii) are well defined: indeed, the function (x, y) € XxX —
N (x, y) is us.c. and satisfies |N/(x, y)| < ||yl

We now state the second main result of this paper.
THEOREM 2. Under the assumptions and notations of Theorem 1, we consider the
operators A and A_, in X defined by
(x, )€ A iff (x, y)€ X and x is subsolution of Ax>3y
and
A_:xe X—{yeX;z<y for some z € Ax} = U, ,,[z,— [€ P(X), respectively.

Let uy € D(A), ue €([0, T],X) and fe L'0, T; X). Then
(@) If u(0) < uyand uis amild solution of du/dt + Au > f, then u is a subsolution for o/, u 3 f.
(b) If u(t) € D(A) for t € [0, T, then the following assertions are equivalent:

() u is a subsolution for o, u> f,

(ii) w(©0) < u, and u is a mild solution of du/dt + Au> f,

(iii) u(0) < u, and u is an exact mild solution of du/dt + A_u> f.

REMARK 2. We do not know if (i) = (ii) is true in general. Of course one may state
the corresponding result for supersolutions.

Let A + ol be m-accretive for some w € R and fe L'(0, T; X); let us recall (see [3])
that u is a mild solution of (1) if and only if u € ¢([0, T], X) satisfies the inequalities

%Ilu — x| <[u—xf—y]+olu—x||in 2400, T[) for any (x, y)e A (13)

where [,] is the directional derivative of the norm; a function u € 4([0, T}, X)
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satisfying the inequalities (13) is called an integral solution of (1).
We now state an extension of this result for the problem of subsolutions for (1).

THEOREM 3. Under assumptions and notations of Theorems 1 and 2, let
u, fe L0, T; X) and consider the following assertions:

(@) ue¥((0, T], X) is a mild solution of du/dt + Au> f.

(i) u satisfies the inequalities

%N+(u —wW<N@u—uwf—f)+oN,(u—w in2qJ0, T) (14)

Jor any (u,f)e XxX satisfying
%N,L(x —wW<N(x—wy—f)+oN,(x—uw in 200, T[)

Jor any (x, y)e A. 15)
(iii) u satisfies the inequalities (14) for any (u, f)e4([0, T], X) x L}0, T; X) with u

mild solution of du/dt + Ausf.
(iv) u satisfies the inequalities

%NJ,(u —X)SN{(u—x,f—y)+oN (u—x) in2'(00, T[) for any (x, y) e A.
(16)

(V) uis a subsolution for £, u> f for any u, e D(A) satisfying

lim ess N, (u(t) — u,) = 0. a7

t—0.,

Then
(a) The following properties hold

{6) or (i)} = (iii) «> (iv) = (v).

(b) If u(t)e D(A) a.e. te(0, T) and there exists u, em such that (17) holds, the
assertions (ii), (iii), (iv) and (v) are equivalent.

(©) If ue €([0, T1, X) and u(t) € D(A) for t € [0, T, the assertions (i), (ii), (iii), (iv) and
(v) are equivalent.

REMARK 3. Theinequalities (14), (15), (16) are well defined; indeed ifu, f € L'(0, T; X)
then N, (u) and N (u, f) are integrable functions on (0, T). Recall that for ¢, ¥ € L*(0, T),
the inequality
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do

4 SV in 20, TD)

is equivalent to
t
¢ € BV, (10, T[) and ¢(t+) < d(s+) + f Y(r)dr foranyO0<s<t<T

In Theorem 3(a), the property {(iii) = (iv)} is immediate and the property {(iii) = (iv)}
is an easy corollary of Theorem 1(b); one can also see that, according to (a) and (b),
the part (c) of Theorem 3 is a restatement of the property {(i) <> (ii)} in Theorem 2(b).

2. Extension of the Notion of Integral Solution

In this section we extend the notion of integral solution as introduced in [3]. In this
section X is a Banach space, 4 is an operator in X and N: X — R is a Lipschitz
continuous convex functional; for u, v € X, we denote by N'(4, v) the directional derivative

N'(u,v) = lim A~ Y(N(u + Av) — N(u)).

A—0.

We state the extension of the fundamental ‘uniqueness theorem’ of [3] as follows:
THEOREM 4. Let u, fe L}0, T; X) satisfy
%N(u —x)KN@—-x,f—y)+oNu-x) in2'(0, T[) for any(x, y)€ A.
(18)
Then
%N(u —u<Nu—uf—~f)+oNu-—u in2'(Q0, T (19)
for any (u,f) € 4([0, T1, X) x L0, T; X) with u mild solution of du/dt + Ausf.

In the statement of Theorem 4, we do not assume any accretivity of the operator 4;
let us state a corollary assuming some accretivity:

COROLLARY 5. For i =1, 2, let A, be an operator in X, f,e L'(0, T; X) and u; be
a mild solution of du;/dt + Au;> f,. Assume that

N'(xy — X3, ¥, — ¥2) + ©N(x; — x,) 20 for any (x,, y,) € Ay, (x5, ;) € A;.
(20)

Then
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%N(ul —uy) S N'uy — . fy — f3) + N, —u;) in2'(10, T[). (21

Proof of Corollary 5. Applying Theorem 4 with 4 = A4,, (4, f) = (x,, y,) € 4, we
deduce, using (20), that

d .
EN(XI —u) S N'(x; —uy, y; — f2) + oN(x; —u,) in 2'(]0, T[)

for any (x,, y,) € 4;.

Then apply Theorem 4 with 4 = A, (4, /) = (u,, f,) and N(x) replaced by N(—x) to
obtain (21). [ |

Proof of Theorem 4. Let (u, f) e €([0, T], X) x L'(0, T; X) with u a mild solution
of du/dt + Au > f; we prove that (19) holds. We follow closely the proof of Theorem
1.1 in [3]; the difference is that we take a general Lipschitz continuous convex
functional N here (instead of the norm) and u is only assumed to be integrable (instead
of continuous). Notice that N being Lipschitz continuous, the functions N(u — u) and
N'(u — u, f — f) are integrable functions on (0, T), such that (19) is well defined.

Letty=0<t, < <t, S T<t,,q, Xgs X1seeesXps 1502 S € X With

X — Xi—g

T‘i——l_ + Ax; 3 f;
and define the step functions v, g on 10, ¢,] by v =x;, g = f; on J¢t;,_,, t;]. By (18),
fJor i=1,...,n the function N(u — x,) is of bounded variation on [0, T] and for
0<a<b< T one has

N(u — x;)(b+) < Nu — x;(a+)
+ jb {N’(u(a) x;, flo) — f; +

) + wN(u(o) — x; )}

t —tl 1
On the other hand
N’(u(cr) x;, f(o) — f+ al ti ) N'(u(o) — x;, f(0) — f)
-1

+ N(u(o) — x;_,)— N(u(o) — x;)
Li— by

which one can see, by using w € dN(u(o) — x;) such that

(u(a)—xi, f@) ~fi+ —_—)= (ns0 -1 +323E),

L Ly t'—tzl

Then, by definition of v, g, one has
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t

jtl N — o(n))(b+)dt < f N(@u — o(t))(a+)dr

- LY

ti b
+ I dTJ {N'(u(c) — (x), f(0) — g(r)) + wN(u(0) — (1))} do

+ fb N(u(o) — x;_,)do — Jw N(u(s) — x;)do.

a a

Adding these inequalities, one gets for any 0 <i<j<n

J‘” N@u — v(7)}(p+)dz < fj N@u — v(t)}(a+)dz

] 4

t b
+ j de j {N'(u(0) — v(1), f(0) — 9(1)) + wN(u(0) — ®r))} do

+ Jw N(o) — x;)do — Jw N(u(s) — x;)do.

a a

By definition of a mild solution, one may approximate (u, f) by functions (v, g) of the
type above; passing to the limit in these inequalities and using the upper semicontinuity
of the derivative N’, one has for any 0 <s<t<T

JtN(u —u(t))(b+)dr < I‘N(u —u(t)(a+)dr

t b
+ I dr f {N'(u(0) — u(z), f(0) - £(z)) + wN(u(0) — w(z))} do

+ f ' N(u(c) — u(s))do — jb N(u(o) — u(t))do.

This being true for any 0 <a < b < T, 0 < s <t < T, one deduces that

d 0
(5; * a) N(uo) - w) < N'(ulo) — u(s), £(0) — (5) + wN(edo) — ule)
in 2'(J0, T[x]0, T[).
Using the following Lemma with F(x, X) = N(x — x), G(x, X, y, ¥) = N'(x — x, y — y),
will conclude the proof of (19). ]
LEMMA 3. Let F: XxX — R be continuous and let G: XxXxXxX — R be u.s.c. with

IF(x, X)| + |G(x, x, y, Y)I < C(L + Ixli + x|l + Nyl + Hyl)- 22
Let u, u, f, fe L0, T; X) satisfy
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(% N 5‘1—) Flulo), u(x)) < Glu(o), u(e), flo), (@) in 2(10, TLxI0, TD.  (23)
Then

%F(u(t), u(®) < G(u(e), u(®), f0), £()) in 2'(10, TL). 249

Proof of Lemma 3. Let {e 2(]0, T[), { 20 and pe 2(]—1, 1[), p 20, [p=1.
Consider the functions {,(a, 1) = {((¢ + 1)/2)p(n(c — 1)/2). For n large enough,
¢, € 2(10, T[x]0, T[)and (d/0e + 0/07) (0, 1)/2) = {'(6 + 1)/2)p(n(c — 7)/2). Applying
(23),

f f {G(u(a), w0 (@), K)o, ©) + Flu(o), uir) (a% + (—%) Lo, r)} dodr >0,

and then changing variables ¢ = t + (s/n), T =t — (s/n), one has
jI{Gn(t, s)(t) + F,(t, s)'()}p(s)dsde > 0 25

with G,(t, s) = Gu(t + (s/n)), u(t —(s/n)), f(t+(s/n)), f(t—(s/n))) and F,(t s)=
F(u(t + (s/n)), u(t — (s/m))).

But if veL'(0, T; X) and 0 <a<b < T, for n large enough, the functions
v,(t, ) = ot + (s/n)) (resp. v(t — (s/n))) are in L}(Ja, b[x] — 1, 1[;X) and converge in
L'(Ja, b[x] — 1, 1[;X) to the function v(t, s) = v(t). Thanks to the continuity of F,
the upper semicontinuity of G and (22), at the limit in (25) one obtains

ff{G(u(t), u(?), f(0), £OX() + Fu(e), w@)'(0)}p(s)dsde > 0

and then

I{G(“(t), u(z), f(2), £EOK () + Flu(e), w@)C'()} dt > 0.
This proves (24). [ ]
REMARK 4. The Lemma may be extended easily to more than one variable; if Q
is an open set in R”, F takes values in RY, u, u, f, fe L}, (€ X) satisfy
(div, + div,)F(u(0), u(z)) < G(u(o), u(z), f(0), f(z)) in Z'(QAxC)

then div F(u, u) < G(u, u, f, f) in 2'(Q).
This result is closely related to the Kruskov’s uniqueness Theorem for entropy
solutions of first order quasilinear equations ([91, see also [6], [3], [1]).
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3. Proofs of Theorems 1, 2 and 3

In this section we use the notations of Section 1. One of the main arguments in the
proofs is application of Theorem 4 with the functional N(x) = N, (x) (or N ,.(—Xx))
which is convex and Lipschitz continuous.

We first remark the elementary lemma:

LEMMA 4. Let u, f€ X satisfy

SN < NG )+ 0N ) in 20, TD) (26)
and
fim sup ess N, (u(t)) = 0. 27)
Then ~

@ If f()<Oae t thenut)<Oaet
(b) [N (ut), f(t))e”"dt > 0.

Throughout this Section, A4 is a pregenerator with 4 + wl accretive and A, A_, are
defined as in Theorem 2. We state in a Proposition the corollaries of Theorem 4
corresponding to this particular situation:

PROPOSITION 6. Let u, u, f,fe 2.
(@) If uis a mild solution of du/dt + Au > f, then (16) holds.
(b) If u is a mild solution of du/dt + Au > f, then

%N+ x—w)<N(x—wy—f)+oN, (x—uw) in2'(]0, T[) for any (x, y)e A
(28)

and in particular (15) holds.

(©) If uis a mild solution of du/dt + Au> f and (28) holds, then (14) holds.

(d) If (16) holds and u is a mild solution of du/dt + Aus{, then (14) holds.
Proof. Recall Lemma 1:

Nix—x,y—y) +oN,.(x—x)=>0 forany (x, y)eA, (x,y) € 4.

To obtain the different parts (a), (b), (c), (d) we apply Theorem 4 taking for the data
{N(x), 4, (4, f), (u, )} in the Theorem

for @) {N.(—x), A, (x, y), (u, f)} where (x, y)e A

for (b): {N.(x), 4, (x, y), (u, )} where (x, y)eA

for (¢ {N.(=x), A, (u, ), (w, /)}

for (d): {N.(x), 4, (), (uw, D}, |
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Proof of Theorem 1. We first prove that o/, is a pregenerator in Z. Let 4 > 0 and
f€X. The inclusion u + Ao/, u > f means that

du f—u
E+Au3 1

u is a mild solution of with 4(0) = u,. 29)

Using the definition of a mild solution, it is easy to see (and well-known) that it is
equivalent to say that u is a mild solution of

du I f
@ + (A + Z)uax, u(0) = u,.

But (4 + I/4) is a pregenerator and (4 + I/A) + (0 — A~ ")/ = A + w] is accretive;
applying Lemma 2 to (4 + I/4), there exists a unique solution u of (29); applying
Corollary 5 with N(x) = N,(x) and A, = A, = A + I/}, by Lemma 1 and Lemma
4(a), we see that the map f— u is order-preserving. This proves part (a).

Now let A4~ be the functional on 2 defined by

H(u) = IN+(u(t)) e “de.

It is clear that 4" is convex nondecreasing, &', = {ue %; A#(—u) = 0} and we have
N'(u, ) = | N (u(t), f(t)) e~ **dt for (u, f) € &. Using Corollary 5 with N(x) = N ,(x)
and A, = A, = A, because of Lemma 1 and Lemma 4(b), one has

N'u—uf—1)>0forany (1) mfeo,.

Then part (b) is a particular case of Proposition 2.5(ii) in [2].
To prove part (c), use the definition of a subsolution (resp. supersolution): we have
u < u,(resp. v > v;) where u, = (I + Ao, )~ '(u + Af) (resp. v,) is the mild solution of

du u—u
5 HAREfi=+ 2 w0 =1

(resp. gd%! + Ao, 59, =g + _Av‘, v,(0) = vo).
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In particular f; < f and g < g;; thus f; < g, and u, < v, so that, as above, u, < v,.
This gives u < v and finishes the proof of the theorem. |

Proof of Theorem 2. Part (a) follows directly from Proposition 6(c) and (b); actually
if u is a mild solution of du/dt + Au > f then the assertion (iii) of Theorem 3 is satisfied;
if moreover #(0) < u,, using Lemma 4(b) and Theorem 1(b), we see that u is a
subsolution for &, u 3 f. For part (b), (iii) = (ii) is clear since A_, = A, and we already
have proved (ii) = (i); it remains to prove (i) = (iii).

Assume that u is a subsolution for o/, u 3 f and u(t) € I)(—AS forte [0, T]. For 4 >0,
set u, = (I + Ae,))”'(u + Af); by definition, u < u; where u, is the mild solution of
du,/dt + Au, 3 f + (u — u,)/A with u4,(0) = u,. In particular we have u(0) < uy. We
have to prove that u is an exact mild solution of du/dt + A_u>s f.

We first prove that

u,(t)—>u(t)in X forte]0, T] as A—0. (30)

Fix t € ]0, T]; since u, is a mild solution of du,/dt + Au,> f + (u — u,)/A, we have
the integral inequalities
u—u A

d
d—t““‘ — x| < [u; -x, [+ T y] + wllu, — x|

- [w —xf-y+ %] + (@ = A7Ylw; = x| in (00, T[)

for any (x, y) € A.

Applying this with x = x, = (I + A4)~'u(t), y = (u(t) — x,)/A, and integrating the
differential inequality between 0 and ¢, we obtain

-_2-1
llua(e) — x, )l < @74 Mlug— x|

N J‘re(m—z—l)(:—s)l:ul(s) —x,, fl8) + u(s) ; u(t)] ds
0

and then

et (8) — w(o)] < Jue) — Xl + €74 M lug — x,
+ Jt e(w—l“)(z—-s){"f(s)" + [|a(s) ; u(t)“}ds 31)
1]
Since u(t) € D(A), we have x, — u(t) in X as A— 0 and then (30) follows from (31).
Now remark that u,(t) decreases as A decreases (this follows from Proposition 1.1
in [2]); then, thanks to (8), [ju;(t) — u(t)ll decreases as A decreases. It follows from
Dini’s theorem, that
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u,(t)—>u(t) in X uniformly for t € [4, T] as A—0, for § > 0 and

4y = u(0) = u,(f)—> u(t) in X uniformly for t [0, T] as A—0. 2

Using this, we prove that for 6 > 0, u is an exact mild solution of du/dt + A_usf
on [, T] and that if u, = u(0), u is an exact mild solution of du/dt + A u3f on
[0, T]. This will complete the proof of the theorem; indeed, it will follow that u is a
mild solution of du/dt + Au 3 f on [4, T] for any é > 0, and then, by basic properties
of mild solutions (see [4]), since u is continuous on [0, T, it is a mild solution of
du/dt + Au> f on [0, T]; then using part (a) of the Theorem, it is a subsolution of
o2 f and this will finish the proof.

Let § = 0 if u, = u(0) and fix § > 0 if u, # w(0). We prove that u is an exact mild
solution of du/dt + A_u>f on [4, T]. Fix ¢ > 0 with ew < 1 and, according to (32),
consider A > 0 such that

llus(®) — ur)l < & forte[d, T1 (33)
Let ty=d0<t, < <t,<T<t,,, with t;,—t,_, <¢ and f,,...,f,€ X with
Zi_[:j_l [f(t) — flldt <& Fori=1,...,n, set g, = f; + (u(t;) — u,(t;))/2 and, using the
fact that A + wl is m-accretive, define by induction x,, x,,...,x, € X satisfying

Xo = u(d), ftL:—zc—'—_—l + Ax;3¢9;.

i i—-1
Since g; < f;, we have

X; — X;—
2l ALx o,
Li—tig

Set g = f + (u — u;)/A. Since u, u, are continuous on [d, T], we have

TH 190 - glldt < ote),

LY

where o is a continuous function (depending on 4, but not on (¢;, f;)) with ¢(0) = 0;
we may assume o(g) > ¢. Since u, is an exact mild solution of du,/dt + Au, > g (see
Lemma 2), we have

m”(mﬂumm—m0<”"Wwﬁrmw+mmn

i ti-1 <I<t
where 7 is some continuous function with 5(0) = 0. Then, using (33), we have
maX< max ||u(t) — xill) < (1 + ¢ Me + n(oe)
i ti-1 SISt

and this concludes the proof. [ ]
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Proof of Theorem 3. Part (a) is already proved:
(i) = (iii) follows from Proposition 6(c) and (b) and was already proved above (proof
of Theorem 2(a));
(i) = (iii) follows immediately from Proposition 6(b)
(iii) = (iv) is immediate as noted in Remark 3
(iv) = (iii) is exactly the statement of Proposition 6(d)
(iii) = (v) follows from Lemma 4(b) and Theorem 1(b).
As noted in Remark 3, according to the parts (a) and (b), the part (c) is only a
restatement of {(i)<>(ii)} in Theorem 2(b). To complete the proof of Theorem 3, we
only have to show that if u is a subsolution for </, u3 f for some u, € D(4) and
u(t) € D(A) a.e. t, then (ii) holds.

Set u, =(I + A.sal,,o)'l(u + Af). By Theorem 4, since u, is a mild solution of
du,/dt + Au, > f + (u — u,)/4, we have

u—1u

A

d
—N,(u; —w) < NJ (u,l —-uf+

ar t- f) +oN ., (u,—w) in 20, T[)

for any (u, f) € Zx& such that (15) holds.
But u < u,, so that N/ (u, —u, f + (u — u,;)/A — f) < N (u; —u, f — f) and thus
d , .
5N+(u; —w) <N, —u f—f)+oN,(u,—u) in2(]0, T). (34

We obtain (14) at the limit in (34) as A— 0 by using the following Lemma, and this
will conclude the proof of the Theorem. [ |

LEMMA 5. Let (4, f) € Zx%, uo € D(4) and for 1> 0,u, = (I + Af, ) *(u + &). If
u(t) e D(A) ae. t, then u;—u in LY0, T; X).
Proof. Since u, is a mild solution of
du,

u—u
dt‘+Aulaf+ 7 A

we have

d u—1u u—x
allug—xlls[u;—x,f+ 7 A“Y]+w"“1"x"=[“1_x’f_}’+ 7 ]

+(@—A"Yu, — x| in 200, T[) for any (x, y) € A.

Setting x = x,(t) = (I + A4)~u(t), y = (u(t) — x,(t))/4, and integrating, one gets
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llea (8) — (Ol < Jut) — x, O + €™+ P lug — x, @) + L @ AE9) f()l ds

! \ d 35
+ '[ e ""”Ilu(s)—u(t)llf. 9
0

Since u(t) € D(A4) a.e. t, we have x,(t)—u(t) ae. t as A—0 and by dominated
convergence, x,—u in L0, T; X) as A—0 (note that ||x; — (I + 14)™ lu,| <
(I — Aw)™Yju — uoll and (I + AA)” 'ug— u, in X as 1 —0).

Itis clear that | e ~*"|lu, — x, (1)l dt—O0and also that | dt ¢ €=+ )¢ ~9|| f(s)| ds— 0.

Using (35), the proof of the lemma will be completed if we show that

1
R,(u) = J dtf e“""‘“""‘"llu(s)—u(t)ll%—»o as A—0. (36)
(V]

One easily sees that if u € €([0, T]; X), then R,(u)— 0 as A—0; on the other hand,
the functionals R; are equicontinuous seminorms on &; thus, by density, (36) holds
for any ue &. [ ]

REMARK 5. Lemma 5 is true for any operator 4 such that A + wl is m-accretive. It
actually means that the closure of D(«, ) in & is exactly {ueZ; ut) e D(A) ae. t}.

4. The Linear Case

We discuss the particular situation when (5) holds; in the next Proposition we use
the notation and assumptions of Section 1.

PROPOSITION 7. Assume that —A is the infinitesimal generator of a strongly
continuous semigroup (S(t)) of bounded positive linear operators on X and denote by
A’ the adjoint of A in the dual space X'. Let uy€ X and fe L'(0, T; X). Then
(a) A is a pregenerator in X and in the notation of Theorem 1, o, is a single-valued
pregenerator with dense domain in .
(b) If ue LY0, T; X), then the following assertions are equivalent:
(i) wu is subsolution for S u=f
(ii) u satisfies (17) and

%(w, u—w+ A'w,u—u) <0in 200, T[)
Jor any we D(A') withw > 0 (37
where w(t) = S(t)ug + fo S(t — 5)f(s)ds,
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(iii) for any w e D(A") with w = 0 and { € €*([0, T]) with { > 0 and {(T) = 0,

j(A’W, ut)>{(e)dt < I(w, u(t)y (') de + J w, fepinde. (38)

(c) If ue¥(0, T, X), then the following assertions are equivalent:
(i) wu is subsolution for o, u> f
(ii) u(0) < u, and for any ¢ > O, there exists a subdivision
to=0<t, < <t, <T<t,,, With t;—t,_, <& and Xg,Xy,..., %,

W, X3 — X;_1)

i~ blioa

fis-s o€ N with + (A'w, x;> < {w, f;> for any

weD(A) with w>=0 such that max( max |lu(t) — xill) <s,

i tio1 St<ty

y f 17 - fllde <.

(iil) w(0) < u, and for some continuous function n with n(0)=0, for all
sufficiently small ¢ >0, for all t,=0<t; < <t,<T<t,,, with
ti—ti_y <¢ and dll f,,....f,€ X with Z{;'_ || f(t) — filldt <e, there exists

xo = u(0), xy,...,x, € D(A) such that

X;— X;_
STl Ax < f;and max( max |ju(t) — x‘.||) < ne).
ti - ti—l i tio 1 SISY

Proof. 1t is clear by the representation of the resolvent by Laplace transform that
A is a pregenerator. Notice that, for some w € R, |||lul| = sup{e™**||S(t)ull; ¢t > 0} is an
equivalent norm on X satisfying (8) and A + wI is accretive for this new norm; also
if ue LY(0, T; X), the property (17) is the same for the two norms. In other words,
without loss of generality we may assume that A + wl is accretive and then use the
results of Theorem 1. In particular &/, is a pregenerator in £ (this may actually be
shown directly). The density of D(s, ) in Z follows from Remark 5 (it may be seen
directly since D(#, ) contains uy + D(4) @ 2(]0, T[), with uy(t) = S(t)u,, and
D(4) ® 2(10, T[) is dense in Z). Singlevaluedness of s/, follows from linearity: if
fgesd, u then f—ge of,0; but & is an m-accretive linear graph in the Banach
space &, endowed with the equivalent norm e~ “"|lu(t)]| dt; since D(=/,) is dense in
%, singlevaluedness of o/, follows by classical arguments. This completes the proof of (a).

Part (c)is an immediate application of Theorem 2. Indeed using Proposition 2.3 in [2],

(x, yeA<ex,yeX and (A'w,x)» < {(w, y) for any we D(4') with w > 0,

so that (ii) in Proposition 7(c) is exactly (ii) in Theorem 2(b); on the other hand,
according to the definitions of 4A_, and of an exact mild solution, (iii) in Proposition
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7(c) is exactly (iii) in Theorem 2(b).
To prove (b), let us state the following result in a lemma:

LEMMA 6. Under the assumptions of Proposition 7, ve &, if and only if ve & and
f w, ()DL dt 20 for any (€ D(10, T[), { =20 and we D(A'), w2 0. (39)

Proof of Proposition 7 continued. We prove (b). Notice first that for 1 > 0,
I+ M,,o)“l(u + 4f) = u + (I + A«,)” (u — u)and hence, by definition of a subsolution,
u is a subsolution for &/, u = f if and only if v = 4 — w is a subsolution for 2/, = 0.
Notice also (see for instance [5]) that for { € 2(]0, T[) and w e D(4’)

j (A'w, ut)>{(r)dt = f(w, u(®)>{'(e)dt + I(W, J@>{)de

and hence u satisfies (38) if and only if v = u — u satisfies (38) with f = 0. In other
words we may assume u, = O and f = 0(so thatu = 0). For simplicity we denote o = o,

If u is a subsolution for o/u =0, then u < 0 (use Theorem 1(c)) and hence (17)
holds and for any 4 > 0, u < u; = (I + A%#)”'u and so

J(w, (u—u))@)>lt)dt < 0 for any e 2(]0, T[), { = 0 and we D(A'), w = 0.
(40)
But if { € 2(]0, T[) and w € D(4’), the linear functional on &

wio— J. w, v(t)p{()de

is in D(«/’) and
Cal'w, vy = [{{A'w, 0(0)) {(8) — <w, o)) {'()} dt.
Then, using 4 — u, = AAu,, (40) may be written
f A'w, u,(9)>{(r)dt < J w, () {(2)de

for any { € 2(]0, T[), { 2 0 and we D(4), w = 0.

Passing to the limit as A— 0, this gives (37). Thus we have shown that (i) implies (ii).
To prove (ii) = (iii), let w € D(4"), w > 0 and { e € ([0, T]) with { > 0 and {(T) = O;
using (37) we have

J {A'w, (@) §(2)dt < (w, u(s))L(s) + IT(W, u(t)>{'()dt ae. s. “41)
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But {w, u(s)) < (w, u(s) + z) < |jwllllu(s) + z]| for zeX,, and using (17),
liminfess,_ o {w, u(s)) < 0; passing to the limit in (41), we obtain (38).
Let us now assume that (jii) holds. By convex combination and density, we have

f (AWML, u(t)) dt < f(w’(t), u(t)>dt foranywed,, 42)

where
¥, = {we¥€'([0, TL; X'); m(T) = 0, w(t) e D(A') for t € [0, T],
Awe€([0, T]; X') and {w(t), x) >0 forte[0, T]and xe X,}.

But %, may be identified with a convex cone in the dual space &’ contained in D(=#’)
and if w e %, , of'w is identified with the continuous function —dw/dt + A'w; in other
words (42) may be written

(A'w,uy <0 foranywed,.

For any A>0, (I + Ae/')"'(#,) = %, and applying the inequality above with
(I + Ae")"'w, one gets

wyu—(I+ A4 'u) <0 foranywed,.

In particular (40) holds, and then thanks to Lemma 6, u is a subsolution for «/u = 0.
[ |

Proof of Lemma 6. The necessary condition is clear. Let us assume that (39) holds.
We will prove that v > 0. It is clear that we have

w, (t)) =2 0 ae. t, for any we D(A’) with w = 0.

Let we X’ and w > 0; for any A > 0, w, = (I + A4")"'w is in D(4’), w, > 0 and we
have {w,, x> — (w, x) as 1—0. It follows that

{w, t(t)) =0 ae. t, for any we X’ with w > 0. (43)

Using standard arguments we now show that u(t) > 0 a.. t. Since v is strongly
measurable, there exists a countable set D in X such that v(t)e D ae. t; by the
Hahn—Banach Theorem, for all x € D there exists w, € X’ such that

Wy, X) = =N, (=x), w, <N,. (44)
In particular w, > 0, and D being countable, we have
{w,, (1)) 20 for any xe D, ae. t
and thus
{w,v(t)) 20 foranyweC ae.t, (45)
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where C' is the o(X’, X)-closed convex cone generated by {w,; x € D}. But »(t)e D
ae. t and thus, using (44), we have for a.e. ¢, the existence of we C’ such that
{w, o(t)> = — N, (—v(t)). Then, using (45), one obtains N (—uv(t)) <0 a.e. t, which
means v(t) = 0 ae. t. |
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