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Abstract. We study different notions of subsolutions for an abstract evolution equation du/dt + Au ~ f  
where A is an m-accretive nonlinear operation in an ordered Banach space X with order-preserving 
resolvents. A first notion is related to the operator d/dt + A in the ordered Banach space LI(0, T; X); a 
second one uses the evolution equation du/dt + A~ u ~ f  where A .  :x---, {3; z ~< y for some z ~ Ax}; other 
notions are also considered. 
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The nonlinear semigroup theory gives a general notion of solution, called "mild 
solution', for abstract evolution equations of the form 

du/dt + Au ~ f (1) 

where A is an operator in a Banach space X and f 6  LI(0, T; X); the exact definition 
will be recalled in Section 1. This theory can be applied as well to degenerate parabolic 
equations in divergence form 

u, = d i v  a(u, grad u) (2) 

where a(r, 0 is monotone in the vector ~, as to fully nonlinear parabolic equation of 
the form 

u, = H(Du, DZu) (3) 

where H(~, S) is monotone in the symmetric matrix S. In both cases, solutions formally 
satisfy a 'parabolic comparison principle'. If u is a 'subsolution' and v a 'supersolution' 
of the equation on a cylinder Q = ]0, T[xf~ and u ~< v on the parabolic boundary 
apQ = ({0}xf~) u ([0, T]x~fl), then u ~ v on Q. Such a result is classical for sufficiently 
regular solutions, but its extension to generalized solutions is often a tricky problem. 
The aim of this paper is to make precise an abstract framework for this principle. 
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In a previous paper [2], we have introduced an abstract notion of subsolution for 
the 'stationary problem' 

Ax ~ y (4) 

for a class of operators A in an ordered Banach space X, which we called 
'pregenerators'. An operator A:X---,  ~ (X)  is a pregenerator if for :- > 0 small enough, 
the operator Ja = (I + :-A) -1 is everywhere defined on X single-valued and 
order-preserving; if x, y ~ X, we say that x is a subsolution for (4) if 

x <~ Jx(x + 2y) for all sufficiently small ,! > 0. 

It is clear that i fx  ~ D(A) and there exists z e Ax such that z ~< y, then x is a subsolution 
for (4); but the notion of subsolution is much wider. In order to emphasize this, let 
us recall the situation in the linear case (see [21 Section 2.B.): if 

- A  is the infinitesimal generator of a strongly continuous semigroup (S(t)) of 
positive linear bounded operators on X, (5) 

then A is a pregenerator; and if x, y ~ X, then x is a subsolution for (4) if and only if 

<A'w, x> ~< <w, y> for any w ~ D(A') with w >/0 

where A' is the adjoint of A. 

In this paper we will consider the evolution equation (1) with a pregenerator A 
and we will assume A + col to be accretive for some co E R (i.e. for 2 > 0 with :-co < 1, 
Ja is a Lipschitz continuous mapping in X with Lipschitz constant (1 - :.co)-1); then 

the Crandall-Liggett theorem guarantees for u o ~D(A) and f ~ L t ( 0 ,  T; X), the 

existence of a unique mild solution u of (1) with u(0) = u o. For u o e D(A) we denote 
by ~Uo the operator in the Banach space ~ = LI(0, T; X) defined by 

(u , f )  E SlUo iff u is a mild solution of (1) with u(0) = u o. 

We will see (Theorem 1) that ~ o  is a pregenerator in X: to this pregenerator 
corresponds a notion of subsolution which is a first notion of a subsolution for (1); 
it actually is a notion of subsolution for the abstract Cauchy problem: 

du 
dt + Au ~ f,, u(O) = Uo. (6) 

We will see that the comparison principle holds for this notion of subsolution. In the 
linear case, if (5) holds and u, f6 ~, we will show (see Proposition 7) that u is a 
subsolution for (6) if and only if 

f <A'w, u(t) - u(t)>~'(t)dt >. 0 
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for w ~ D(A') with w/> 0 and ~ ~ ~1([0, T], X) with ~ t> 0 and ~(T) = 0, where u is 
the exact solution of (6) given by 

u(t) = S(t)u o + f l  S(t - 8) f($) ds. 

There are alternative ways to define a notion of subsolution for (1). A first way 
consists in considering the mild solutions for the evolution problem 

du 
d-t- + A_.u 9 f (7) 

where A is the operator associated to subsolutions of (4), namely 

y ~ Ax iff x, y e X and x is a subsolution for (4). 

This operator A contains the operator A_. defined by 

A_.: x ~ X ---, {y ~ X; z ~< y for some z ~ Ax}  = u z  E Ax [z, --,  [~ ~ (X) .  

I f f E  LI(0, T; X), we will see (Theorem 2) that a mild solution u of(7) is a subsolution 

for (6) for any u o E D(A) with u(0) ~< u o. This result is interesting for applications, but 
the converse statement is more surprising. If u E qr T], X) taking its values in 

D(A), is a subsolution for (6) with Uo = u(0), then u is a mild solution of (7); u is even 
more than that: it is an exact mild solution of du/dt  + A_. u ~ f (we will make precise 
the meaning of this assertion in Section 1). 

A second way of defining subsolutions for (1) is to extend the notion of integral 
solutions as introduced in [3]. We will not make more precise this extension in this 
introduction (see Section 2), but as we will see (Theorem 3) it will give a characterization 
for a subsolution of (6) in the same way that the integral inequalities characterize the 
mild solutions of (6). 

The content of this paper is the following: in Section 1 we introduced the definitions 
and state the main results; in Section 2 we extend the notion of integral solution; in 
Section 3, we give the proofs of the statements of Section 1; finally, in Section 4, we 
consider the linear case. 

We will not consider examples in this paper which is long enough. A characterization 
of subsolutions for first order quasilinear equations in terms of Kruskov inequalities 
has been given by the first author in [1]. The notion of viscosity subsolutions for 
Hamilton Jacobi equation, or more generally for equations of type (3), as developed 
in [7], [8], [10], etc., appears also as a concrete example of the abstract framework 
introduced here. Other examples will be presented in forthcoming papers. 
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1. Def in i t ions  and M a i n  Results  

Let X be an ordered Banach space with norm I1" II and dosed convex positive cone 
X+; we assume that the norm is nondecreasing on the positive cone: 

0 ~< x ~ y =  Ilxll ~< []yll. (8) 

We will use the sublinear nondecreasing functional on X, 

N+(x) = d i s t ( - x ,  X+)  = inf{]lx + zll; z e X+} (9) 

and its directional derivative on X x X  

N+(x,y) = lim 2-1(N+(x + 2y) - N+(x)) = inf 2-1(N+(x  + 2y) - N+(x)). (10) 
~ . " ' 0  § , ; . > 0  

Let A be an operator in X, that is a map ,4: X-- ,  ~(X) which is identified with its 
graph {(x, y); y ~ Ax}.  Recall the usual terminology: an operator A is accretive if 

[Ix1 - x21l ~< Ilxx - x2 + ~(y~ - y2)H for (X 1, Yl), (X2, Y2) EA and 2 > 0 

and it is m-accretive if it is accretive and for any 2 > 0 and y ~ X there exists a (unique) 
solution of 

x + 2 A x  ~ y. (11) 

Following [2], we say that an operator A is a pregenerator if there exists go > 0 
such that if 0 < 2 < go, for any y e X there exists a unique solution x = Jxy of (11) 
and the map y ~ X--~ Jxy  e X is order-preserving. It is clear that if A is a pregenerator 
and A + col is accretive for some co E R, then A + col is m-accretive. 

Let A be a pregenerator and x, y ~ X. It is clear that 

y ~ A x o x = J ~ ( x + 2 y )  for 0 < 2 < 2o; 

we say that x is a subsolution (resp. supersolution) for  A x  ~ y iff 

x <<. Jx(x + 2y) (resp. x >I Ja(x + 2y)) for 0 < 2 < 4 o. 

One can prove this definition is independent of 2o (see [2], Proposition 1.1). 
Let us recall the following characterization (see [21 Proposition 2.5): 

LEMMA 1. Let  A be a pregenerator and x, y e X.  Assume that A + col is accretive 

for  some co ~ R. Then x is a subsolution (resp. supersolution) for  A x  ~ y i f  and only i f  

N~.(x - x, y - y) + coN +(x - x) >i O(resp.N~(x - x, y - y) + coN+(x - x) t> 0) 

for  any y e Ax.  
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Let A be an operator in X and f � 9  Lt(0, T; X); a strong solution of (I) is a function 
u �9 Win(0, T; X) satisfying 

u'(t) + Au(t)~ f( t)  a.e. t �9 T). (12) 

Following the terminology of [4] (see also [5]), a mild solution of (1) is a continuous 
function u: [0, TJ---,X satisfying the following property: 

for all e > 0, there exist a subdivision t o = 0 < tl < "'" < t, ~< T <  t ,+l  with 

t t -  ti-~ < ~ and x o, x~ ..... x. ,  f l  ..... f .  �9 X such that ~ IIf(t)-f~ll dt < ~, 
l - !  

Xi  - -  X i -  1 
+ A x i ~ f i  and max I l u ( t ) - x i l l < s f o r i = l  .... ,n. 

t i  - -  t i -  l t~-I ~ t ~ t l  

A mild solution takes its values in D(A). A strong solution is a mild solution, but the 
converse is false in general. 

Here we introduce a stronger notion: an exact mild solution of (1) is a continuous 
function u: [0, 73--* X satisfying the following property: 

for some eo > 0 and some continuous function t/: [0, % [ - *  [0, ~ [  with t/(0) = 0; 

for any 8 � 9  o = 0 < t ~ < . . . < t . ~ < T < t . + l  with t ~ - t ~ _ ~ < e  and 

f l  ..... f .  �9 X w i t h ~  I I f ( t ) - f l l ld t  < 8, there exist xo = u(O) ,x l , . . . , x~ �9  
t i-1 

that x ~ - x i - 1  ~-Ax~f~  and max I l u ( t ) - x i l l < r l ( e ) f o r i = l  ..... n. 
t i  - -  t i -  1 t H  ~ t ~ t l  

Since step functions are dense in Ll(O, T; X),  an exact mild solution is a mild solution, 
but the converse is false in general. 

Let us recall the Crandall-Liggett theorem as follows: 

LEMMA 2. I f  A + o9I is m-accretive for some co �9 R, then for any u o �9 D(A) and 
f � 9  LI(O, T; X )  there exists a unique mild solution u of(1) with u(O) = u o. Moreover, 
any mild solution of  (I) is an exact mild solution of (I). 

The first main result of this paper is the following. 

T H E O R E M  1. Let A be a pregenerator in X and assume that A + o91 is accretive for 

some co �9 R. Let u o �9 D( A ) and define the operator ~t~o in the Banach space ~F = L I (O, T; X )  
by 

(u, f )  �9 ~ ,o  iff u is a mild solution of (1) with u(O) = u o. 
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Then 

(a) ~r is a pregenerator in the ordered Banach space 3;. 
(b) I f  u , f  ~ ~ ,  the following properties are equivalent: 

(i) u is a subsolution (resp. supersolution) for ~r U 9 f, 

I ~ N+(u(t) - n(t), f ( t )  - f(t))e-'~ dt I> 0 (ii) 

(resp. f r o N + ( u ( t ) - u ( t ) , f ( t ) - f ( t ) ) e - ~ ' d t > ~ O ) f o r a n y ( u , f ) ~ o  �9 

(c) Let Uo, v o ~ D(A), u, f, v, g ~ ~ .  I f  u is a subsolution for ~uo u ~ f, v is a supersolution 
for dvoV ~ g, u o <<. v o and f <~ g, then u <~ v. 

REMARK 1. The integral~ in (b.ii) are well defined: indeed, the function (x, y) ~ X x X - - .  

N+(x, y) is u.s.c, and satisfies IN+(x, Y)I ~ Jlyll. 

We now state the second main result of this paper. 

T H E O R E M  2. Under the assumptions and notations of Theorem I, we consider the 
operators A and A~ in X defined by 

(x, y) ~ A iff (x, y) ~ X and x is subsolution of  A x  ~ y 

and 

A_, :x ~ X--* {y E X; z ~< y for some z ~ Ax}  = u z ~ax l,z,---* l'~ ~(X) ,  respectively. 

Let  u o ~ D(A), u ~ if(l,0, T] ,X) and f ~  LI(0, T; X). Then 
(a) I f  18(0) <<. u o and u is a mild solution of  du/dt + Au ~ f, then u is a subsolution for ~,~u g f. 

(b) If u(t) ~ D(A) for t ~ 1,0, T], then the following assertions are equivalent: 
(i) u is a subsolution for ~ o  u ~ f,  
(ii) u(O) <~ u o and u is a mild solution of du/dt + A_.u ~ f,  
(iii) u(O) <<. u o and u is an exact mild solution of  du/dt + A_.u ~ f 

R E M A R K  2. We do not know if (i) =~ (ii) is true in general. Of  course one may state 
the corresponding result for supersolutions. 

Let A + col be m-accretive for some co 6 R and f 6  LI(0, T;X); let us recall (see I-3]) 
that u is a mild solution of (1) if and only if u 6 cO(l,0, T], X) satisfies the inequalities 

d 
dt Ilu - xll ~ Iu - x, f -  y] + collu - xll in ~'(]0, TD for any (x, y) ~ A (13) 

where l ' ,]  is the directional derivative of the norm; a function u e qr T1, X) 
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satisfying the inequalities (13) is called an integral solution of (1). 
We now state an extension of this result for the problem of subsolutions for (1). 

T H E O R E M  3. Under assumptions and notations of 
u, f �9 LI(0, T; X )  and consider the following assertions: 
(i) u �9  T'J, X )  is a mild solution of du/dt + Au ~ f 
(ii) u satisfies the inequalities 

d 
N +(u - u) ~< N+ (u - u, f -  f) + coN + (u - u) 

Theorems I and 2, let 

in ~'(.]0, T[)  (14) 

for any (n, f) �9 ~ x ~  satisfying 

d 
-~tN +(x - u) ~< N~.(x - u, y - f) + toN +(x - u) in ~'00, T[) 

for any (x, y ) � 9  A. (15) 

(iii) u satisfies the inequalities (14) for any (u, f)�9 T], X )  x LI(O, T; X )  with u 
mild solution of dn/dt  + Au ~ f. 
(iv) u satisfies the inequalities 

d 
~ttN+(u - x) <~ N+(u - x , f  - y) + ogN+(u - x) in ~ ' ( ]0 ,  T D for any (x, y ) � 9  

(16) 

(v) u is a subsolution for M~ou ~ f for any u o �9 D(A) satisfying 

lira ess N+(u(t) - Uo) = 0. (17) 

Then 
(a) The following properties hold 

{(i) or (ii)} =~ (iii) ~ (iv) =~ (v). 

(b) / f  u(t) �9 D(A) a.e. t �9 (0, T) and there exists u o �9 D(A) such that (17) holds, the 
assertions (ii), (iii), (iv) and (v) are equivalent. 

(c) / f  u �9 c~([0, T], X)  and u(O �9 D(A) for t �9 [0, T],  the assertions (i), (ii), (iii), (iv) and 
(v) are equivalent. 

R E M A R K  3. The inequalities (14), (15), (16) are well defined; indeed if u, f r L t (0, T; X) 
then N +(u) and N+(u, f )  are integrable functions on (0, T). Recall that for ~, ~, �9 LI(0, T), 
the inequality 
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d_~_~ <~ ~ in ~'(]0, T D 
dt 

is equivalent to 

�9 BV~or TD and ~ ( t+ )  ~< ~ s + )  + Ir162 
Ja 

for any 0 < s < t < T. 

In Theorem 3(a), the property {(iii) =~ (iv)} is immediate and the property {(iii) =~ (iv)} 
is an easy corollary of Theorem l(b); one can also sr162 that, according to (a) and (b), 
the part (c) of Theorem 3 is a restatement of the property {(i),~ (ii)} in Theorem 2(b). 

2. Extension of the Notion of Integral  Solution 

In this section we extend the notion of integral solution as introduced in [3]. In this 
section X is a Banach space, A is an operator in X and N: X---* R is a Lipschitz 
continuous convex functional; for u, v �9 X, we denote by N'(u, v) the directional derivative 

N'(u, v) = lira ,~-l(N(u + ~v) -- N(u)). 
J.~O+ 

We state the extension of the fundamental 'uniqueness theorem' of [3] as follows: 

T H E O R E M  4. Let u , f  �9 Lt(O, T; X) satisfy 

d N(u - x) <. N'(u - x, f -  y) + coN(u - x) in ~'(20, TD for any (x, y) �9 A. 

(18) 

Then 

d 
d-~tN(u - u) ~< N'(u - u , f  - f) + coN(u - a) in ~'(]0, T[)  (19) 

for any (u,f) �9 c~([0, T ] , X )  x LI(O, T; X )  with u mild solution of  dn/dt + An ~f. 

In the statement of Theorem 4, we do not assume any accretivity of the operator A; 
let us state a corollary assuming some accretivity: 

COROLLARY 5. For i = 1, 2, let A t be an operator in X ,  fj �9 Lt(O, T; X )  and ui be 

a mild solution o f  dui/dt  + A~ui ~ fi. Assume that 

N' (x l  - xz ,  Yx -- Y2) + c~ - xz)  >1 0 for any (x 1, Yl) �9 At, (xz, Yz) �9 Az- 
(2O) 

Then 
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d N ( u t  - u 2 ) < < . N ' ( u l - u 2 , f t  - f 2 ) + t o N ( u l - u 2 )  in ~'(]0,  TD. (21) 

Proof  o f  Corollary 5. Applying Theorem 4 with A = Az ,  ( u , f )  = (xl ,  Y l ) ~  A t  we 
deduce, using (20), that 

d 
~ N ( x t  - u2) ~< N'(x t  - u2, Yl - f2)  + t~N(xl  - u2) in ~'(]0, TD 

for any (xl, Yl) e A t. 

Then apply Theorem 4 with A = A t, (u,f)  = (u2,f2) and N(x) replaced by N ( - x )  to 
obtain (21). �9 

Proof  o f  Theorem 4. Let (u, f) ~ ~r T], X) x Lt(0, T; X) with u a mild solution 
of du/dt + An ~ f; we prove that (19) holds. We follow closely the proof of Theorem 
1.1 in [3]; the difference is that we take a general Lipschitz continuous convex 
functional N here (instead of the norm) and u is only assumed to be integrable (instead 
of continuous). Notice that N being Lipschitz continuous, the functions N(u - u) and 
N'(u - u, f -  f) are integrable functions on (0, T), such that (19) is well defined. 

Let  t o = 0 < tl  < "'" < t, <~ T <  t,+ l, Xo, x l  . . . . .  x , ,  f t  . . . . .  f ,  ~ X with 

Xi  - -  X i -  t 
+ Axi  ~ f i  

t i  - -  t t -  1 

and define the step functions v, y on ]0, t . ]  by v = x i, 0 = f~ on I t  l_ 1, ti]. By  (18), 
for  i = 1 .. . . .  n the function N ( u -  x~) is of hounded variation on [0, T] and for 
0 <~ a < b < T, one has 

N(u - xi)(b + ) <. N(u -- xi)(a + ) 

f{( } + N '  u(a) - x i, f ( a )  - f i  + xi - x i -  t + oJN(u(a) - xi) da. 
t i  t i -  1 / 

On the other hand 

( x ' - - x ' - l ~  
N '  u(a) - x i, f (a )  --f~ + ti _ t t-1 J <~ N'(u(tr) - xi, f ( a )  - f i )  

lV(u(~) - x i - d -  lV(u(~) - x i )  
+ 

t i  - -  t i -  t 

which one can see, by using w ~ dN(u(~) - xi) such that 

x, x,_l.] = w, f(o') -- f/ + - -  . N' u(a)--x,,f(a)--fl+ ~ t , - l /  h t i -1 

Then, by definition of v, 0, one has 
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f f " N(u -- v(~))(b+)dz ~< N(u -- v(~))(a+)d~ 
I - 1  I - I  

+ d~ {N'(u(~) - v(~), f(~) - O(T)) + o~N(u(a) - N~))} d~ 
l - 1  

Adding these inequalities, one gets for any 0 ~< i < j ~< n 

N(u - v(~))(b+)dz ~< N(u - ~ ) ) ( a + ) d ~  
t 1 

+ d~ {N'(u(~) - t~), f(~) - 0(~)) + ~oN(u(~) - v(~))} d~ 
I 

By definition of a mild solution, one may approximate (u, f) by functions (v, 0) of the 
type above; passing to the limit in these inequalities and using the upper semicontinuity 
of the derivative N', one has for any 0 ~< s ~< t ~< T 

f~ N(u - u(z))(b+ )d~ <<. f~ N(u - u(~))(a+ )dx 

+ f~ dz f~  {N'(u(~)-  u(~),f(~r)- f(~)) + ~N (u (~ ) -  n(r 

+ - u ( s ) ) d a  - - 

This being true for any 0 ~< a ~< b < T, 0 ~< s ~< t < T, one deduces that 

( f---~ + ~-~) N(u(~) - u(z)) <~ N'(u(~) - u(~),f(~) - f(z)) + oJN(u(~) - u(z)) 

in ~ ' ( ] 0 ,  T [ x ] 0 ,  TD. 

Using the following Lemma with F(x, x) = N(x - x), G(x, x, y, y) = N ' ( x  - x,  y - y), 

will conclude the proof of (19). �9 

LEMMA 3. Let F: X x X - - ,  R be continuous and let G" XxXxXxX-- - ,  R be u.s.c, with 

IF(x, x)l + IC-(x, x, y, y)l ~< C(1 + Ilxll + Ilxll + Ilyll + DII). (22) 

Let u, u, f, f e  LI(0, T; X)  satisfy 
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Then 

-~a + F(u(a), u(":)) ~< G(u(o'), u('r),~o'),f('r)) in 9'(]0, T[x]0, T[). (23) 

d 
-dr F(u(t), u(t)) ~< C_flu(t), u(t), f ( t ) ,  f(t)) in 9'(70, TD. (24) 

P r o o f  o f  L e m m a  3. Let ( e 9(]0,  T[), ( >/0 and p e 9 ( ]  - 1, 1D, p I> 0, j'p = 1. 
Consider the functions (,(a, z ) =  (((tr + z ) / 2 ) p ( n ( a -  ~)/2). For n large enough, 
(, ~ 9(70, T[x]0, TD and (d/Oa + O/Oz)(,(a, ~)/2) = ('(a + z)/2)p(n(a - z)/2). Applying 
(23), 

f;{ 0) } G(u(a), u(z),f(a), f(z))(.(a, z) + r(u(a),  u(z)) ~ + Oz (.(tr, z) dadz  >t 0, 

and then changing variables tr = t + (s/n), z = t - (s/n), one has 

f f {G.(t, s)((t) + F.( t ,  s ) ( ' ( t ) }p(s )dsdt  >>. O (25) 

with G.(t,  s) = G(u(t + (s/n)), u(t - (s/n)), f ( t  + (s/n)), f(t - (s/n))) and F.( t ,  s) = 
~(u(t + (s/n)), u ( t  - (s/n))). 

But if v eL l (O ,  T; X )  and 0 < a < b < T, for n large enough, the functions 
v,(t, s) = v(t + (s/n)) (resp. v(t - (s/n))) are in L1(7 a, b[x]  - 1, I[;X) and converge in 
LI ( ]  a, b[x]  - 1, I[;X) to the function v(t, s) = v(t). Thanks to the continuity of F, 
the upper semicontinuity of G and (22), at the limit in (25) one obtains 

ff , u(o, ,,(,),s(,), ,(,,)c<,)+ . I J  

and then 

f{ G(u(t), u(t), f ( t ) ,  f(t))~(t) + F(u(t), u(t))~'(t)} dt >I 0. 

This proves (24). �9 

REMARK 4. The Lemma may be extended easily to more than one variable: if t) 
is an open set in R N, F takes values in R N, u, u, f, f e L~oc(O.; X) satisfy 

(di% + div,)F(u(a),  u(x)) ~< G(u(tr), u(~),f(tr), t(z)) in 9'([Zxfl) 

then div F(u, u) ~< G(u, u, f, f) in 9'(~). 
This result is closely related to the Kruskov's uniqueness Theorem for entropy 

solutions of first order quasilinear equations ([97, see also [67, [3], [1]). 
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3. Proofs of Theorems 1, 2 and 3 

In this section we use the notations of Section 1. One of the main arguments in the 
proofs is application of Theorem 4 with the functional N(x) = N + (x) (or N +(-x))  
which is convex and Lipschitz continuous. 

We first remark the elementary lemma: 

LEMMA 4. Let u, f ~ X satisfy 

d 
-~tN+(u) <~ N~,(u,f) + coN+(u) 

and 

in D'([0, TD (26) 

lira sup ess N + (u(t)) = O. (27) 
t-- '0 

Then 
(a) I f  f ( t )  <<. 0 a.e. t, then u(t) <<. 0 a.e. t 
Co) SN+(u(t),f(t))e-O'dt >10. 

Throughout this Section, A is a pregenerator with A + co1 accretive and A_., A_. are 
defined as in Theorem 2. We state in a Proposition the corollaries of Theorem 4 
corresponding to this particular situation: 

PROPOSITION 6. Let u, u, f, f ~ A r. 
(a) I f  u is a mild solution of  du/dt + A_.u ~ f, then (16) holds. 
CO) I f  u is a mild solution of  du/dt + Au ~f, then 

d 
N+(x - u) ~< N+(x - u, y - f) + coN +(x - u) in ~'(]0, TD for any (x, y)~ A 

(28) 

and in particular (15) holds. 
(c) I f  u is a mild solution of du/dt + Au ~ f and (28) holds, then (14) holds. 
(d) I f  (16) holds and u is a mild solution of du/dt + Au ~ f, then (14) holds. 

Proof. Recall Lcmma 1: 

N+(x - x, y - y) + coN+(x -- x)/> 0 for any (x, y)~A,  (x, y )eA.  

To obtain the different parts (a), CO), (c), (d) we apply Theorem 4 taking for the data 
{N(x), A, (u, f) ,  (u, f)} in the Theorem 
for (a): {N+(-x) ,  A, (x, y), (u,f)} where (x, y ) ~ A  
for (b): {N+(x), A, (x, y), (u, f)} where (x, y)~ A 
for (c): {N+(-x) ,  A, (u, f), (u,f)} 
for (d): {N+(x), A, (u,f),  (u, f)}. �9 
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Proof  o f  Theorem 1. We first prove that ~r is a pregenerator in ~ .  Let 2 > 0 and 
f ~ ~ .  The inclusion u + 2~r ~ f means that 

d u  /_~ 
u is a mild solution of ~-~ + Au ~ with u(0) = u o. (29) 

Using the definition of a mild solution, it is easy to see (and well-known) that it is 
equivalent to say that u is a mild solution of 

+ A +  u ~  u ( 0 ) = u  o. 
dt 

But (A + 1/2) is a pregenerator and (A + 1/2) + (co - 2-1)1 = A + col is accretive; 
applying Lemma 2 to (A + I/2), there exists a unique solution u of (29); applying 
Corollary 5 with N(x)  = N +(x) and A 1 = A2 = A + 1/2, by Lemma 1 and Lemma 
4(a), we see that the map f - - .  u is order-preserving. This proves part (a). 

Now let X be the functional on 5F defined by 

.A"(u) = f N +(u(t)) e-'~ dr. 

It is clear that .A: is convex nondecreasing, ~r+ = {u e ~;  .h/ '(-u) = 0} and we have 
~C'(u, f )  = S iV+ (u(t), f ( t ) )  e -  ~' dt for (u, f )  6 5f. Using Corollary 5 with N(x)  = N + (x) 
and A 1 = A 2 = A, because of Lemma 1 and Lemma 4(b), one has 

J~/"(u -- ug f -- f) i> 0 for any (u, f ) ,  (u, f) ~ M~o. 

Then part (b) is a particular case of Proposition 2.5(ii) in [2]. 
To prove part (c), use the definition of a subsolution (resp. supersolution): we have 

u ~< ux (resp. v t> va) where ua = (1 + 2Muo )- l(u + 2f) (resp. va) is the mild solution of 

du~ 
d"--t + Auk Elk = f + - -  

U --  U 2 ). ' ua(O) = U 0 

( dva v--v;~ ) 
resp. --~ + Avk ~ Ok = g + - - - - ~ ,  va(O) = vo �9 
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In particular fa ~< f and O <~ ga; thus fx ~< 0a and Uo ~< Vo so that, as above, Ua ~< v~. 
This gives u ~< v and finishes the proof of the theorem. �9 

Proof of Theorem 2. Part (a) follows directly from Proposition 6(c) and (b); actually 
if u is a mild solution of du/dt + A_.u ~ f then the assertion (iii) of Theorem 3 is satisfied; 
if moreover u(0)~< Uo, using I.emma 4(b) and Theorem l(b), we see that u is a 
subsolution for ~r ~ fi For part (b), (iii) =~ (ii) is clear since A_, c A_ and we already 
have proved (ii) =:, (i); it remains to prove (i) =:- (iii). 

Assume that u is a subsolution for ~r ~ f and u(t) ~ D(A) for t E [0, T]. For ~, > 0, 
set ua = (1 + 2~r + 2f); by definition, u ~< u~ where u~ is the mild solution of 
duff& + Aua v f  + (u - u~)/2 with ux(0) = uo. In particular we have u(0) <~ uo. We 
have to prove that u is an exact mild solution of du/dt + A_.u 9f. 

We first prove that 

ua(t)--*u(t) in X for t e ] 0 ,  T] as 2---,0. (30) 

Fix t ~ ]0, T]; since ua is a mild solution of dua/dt + Aua ~ f  + (u - ua)/2, we have 
the integral inequalities 

d ,]ua - xll <~ [u~ - x , f  + u - u~ ] A Y + rollu~ - xll 

= [ u a - x , f - y + U - s f f ~ ] + ( m - 2 - 1 ) l l u a - x l l i n W ( ] O ,  TD 

for any (x, y) e A. 

Applying this with x = x a = (I + 2A)-lu(t), y = (u( t ) -  xa)/2, and integrating the 
differential inequality between 0 and t, we obtain 

and then 

I l u a ( t )  - xall ~< et~ 

+ fl  e"~ - xa,f(s) + u(s) ~ u(t)]d s 

Ilu~(t) - u(t)ll ~< ilu(t) - xall + e"~ - xzli 

+ f: Hu(sl - u(Oli}a  + ~ " (31) 

Since u(O ~ D(A), we have x~---}u(t) in X as 2---}0 and then (30) follows from (31). 
Now remark that u~(t) decreases as 2 decreases (this follows from Proposition 1.1 

in [2]); then, thanks to (8), ilua(t) - u(t)li decreases as 2 decreases. It follows from 
Dini's theorem, that 
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ux(t)---~u(O in X uniformly for t~  [6, T] as 4---.0, for 6 > 0 and 

u o = u(O)=~ ux(t )--. u(t) in X uniformly for t ~ [0, T]  as 4---~ 0. (32) 

Using this, we prove that for 6 > 0, u is an exact mild solution of du/dt + A_.u ~ f  
on [6, T]  and that if u o = u(0), u is an exact mild solution of du/dt + A_.u 9 f  on 
[0, T]. This will complete the proof of the theorem; indeed, it will follow that u is a 
mild solution of du/dt + Au ~ f on [6, T]  for any 6 > 0, and then, by basic properties 
of mild solutions (see [4]), since u is continuous on [0, T], it is a mild solution of 
du/dt + Au ~ f on to, T]; then using part (a) of the Theorem, it is a subsolution of 

~r 9 f and this will finish the proof. 
Let 6 = 0 if u o = u(0) and fix 6 > 0 if u o # u(0). We prove that u is an exact mild 

solution ofdu/dt  + A_.u 9 f  on [6, T]. Fix e > 0 with co9 < 1 and, according to (32), 
consider 4 > 0 such that 

Ilux(t) - u(t)ll ~< e for t ~ [6,  T ] .  (33) 

Let t o = 6 < t l < . . . < t " ~ < T < t ~ + l  with t ~ - t i _ l < e ,  and f l  ..... f . ~ X  with 
Yigi-, Ilf(t) - f / l l d t  < e. For  i = 1,...,n, set g~ =f~ + (u(h) - ua(t~))/4 and, using the 
fact that A + o9I is m-accretive, define by induction Xo, x 1 ..... x. ~ X satisfying 

Since gi ~< f~, we have 

Xo u(6), x i -  x~_ = - -  + Axi ~ gi .  
t i  - -  t i -  1 

X i  - -  X i -  1 
+ A~xi ~f~. 

t i  - -  ti- 1 

Set g = f 4- (u - u~)/4. Since u, u~ are continuous on [6, T-J, we have 

ft, IIg(t) -- gi l l  dt < a(e,), 
d t t_ l  

where a is a continuous function (depending on 2, but not on  ( t i ,  f/)) with o(0) = 0; 
we may assume o(e) I> 8. Since u~ is an exact mild solution of duJdt  4- Au~ ~ g (see 
Lemma 2), we have 

max ( max Ilua(t) - x/ll~ ~< e~'§ - Xol] 4- r/(o'(8)), 
i \ t l - l ~ t ~ t i  / 

where t/is some continuous function with t/(0) = 0. Then, using (33), we have 

m a x (  max ]]u(t)- xi,I ~ <~ (I 4- e~§ 4- r/(a(8)) 
i \ t i - 1 ~ t ~ t l  / 

and this concludes the proof. �9 
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Proof  o f  Theorem 3. Part (a) is already proved: 
(i) =~ (iii) follows from Proposition 6(c) and (b) and was already proved above (proof 
of Theorem 2(a)); 
(ii) =~ (iii) follows immediately from Proposition 6(b) 
(iii) ~ (iv) is immediate as noted in Remark 3 
(iv) =~ (iii) is exactly the statement of Proposition 6(d) 
(iii) =~ (v) follows from Lemma 4(b) and Theorem l(b). 
As noted in Remark 3, according to the parts (a) and (b), the part (c) is only a 
restatement of {(i).~ (ii)} in Theorem 2(b). To complete the proof of Theorem 3, we 

only have to show that if u is a subsolution for ~'~o u ~ f for some u o e D(A) and 

u(O ~ D(A) a.e. t, then (ii) holds. 
Set ua = (I + 2~r + 2f). By Theorem 4, since ua is a mild solution of 

du~/dt + Au k ~ f + (u - u~)/2, we have 

u-u_._____~ f) ~tN+(ua - u) ~< N+ ua - u , f +  2 + ~oN+(u~ - u) in ~'(]0, TD 

for any (u, f) e ~ x ~  such that (15) holds. 
But u ~< ua, so that N + ( u x  - u , f +  (u  - u ~ ) / 2  - f) ~< N + ( u ~  - u , f -  f) and thus 

d 
~ N + ( u ~  - u) ~< N'+(ua - u , f  - f) + toN+(ua - u) in ~'(]0, TD. (34) 

We obtain (14) at the limit in (34) as 2---*0 by using the following Lemma, and this 
will conclude the proof of the Theorem. �9 

LEMMA 5. Let  ( u , f ) ~  ~ x ~ ,  u o ~ D(A) and for  2 > O, ua = (I + 2~r l(u + 2f). I f  

u(t) ~ D(A) a.e. t, then ux---~u in LI(O, T; X) .  

Proof. Since ua is a mild solution of 

du2 u - u2 
d---T + Aua ~ f + - - - f - - ,  

we have 

d [ 
dtllux - xll ~ ux - x , f  + u - A ua 

+ (~ - ~-  1)llux - xll in ~'(]0,  T[) for any (x, y) e A. 

Setting x = x ~ ( O  = ( I  + 2 A ) - t u ( t ) ,  y = (u( t )  - x a ( t ) ) / 2 ,  and integrating, one gets 
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Ilua(t) - u(t)ll ~< Ilu(t) - xa(t)ll + e{~ - xa(t)ll + ~ie{~-~-'~c'-'~llf(s)ll ds 

+ f '  e '~'- a-~'r - u(t)ll-~. 
(35) 

do A 

Since u(t)eD(A) a.e. t, we have xa(t)---~u(t) a.e. t as 2---~0 and by dominated 
convergence, x~---~u in LI(0, T; X) as 2---~0 (note that I l x a - ( I  + 2A)-luoll ~< 
(I - AoJ)-Xllu - %11 and (I + 2A)-tuo---~uo in X as 2---~ 0). 

It is clear that S e c~ 4-~ Iluo - x~(t)II dr---, 0 and also that ~ dt ~ e ~'- a-'~o- s~ Ilf(s)ll ds ~ 0. 
Using (35), the proof of the lemma will be completed if we show that 

fro Ra(u) = dt e"~-~-'~"-S~llu(s) - u(t)ll - - ,0  as 2--~0. (36) 

One easily sees that if u e qr TJ; X), then Ra(u ) ~  0 as ; t ~  0; on the other hand, 
the functionals R~ are equicontinuous seminorms on ~;  thus, by density, (36) holds 
for any u ~ ~.  �9 

R E M A R K  5. Lemma 5 is true for any operator A such that A +coI  is m-accretive. It 

actually means that the closure of D(d,o ) in ~ is exactly {u E ~;  u(t) ~ D(A) a.e. t}. 

4. T h e  L i n e a r  C a s e  

We discuss the particular situation when (5) holds; in the next Proposition we use 
the notation and assumptions of Section 1. 

P R O P O S I T I O N  7. Assume that - A  is the infinitesimal generator of a strongly 
continuous semigroup (S(t)) of bounded positive linear operators on X and denote by 
A' the adjoint of A in the dual space X'. Let u o ~ X and f ~ L I(O, T; X). Then 
(a) A is a pregenerator in X and in the notation of Theorem I, ~t,o is a single-valued 

pregenerator with dense domain in ~ .  
(b) I f  u ~ L I(O, T; X), then the following assertions are equivalent: 

(i) u is subsolution for ~l, ou = f 
(ii) u satisfies (17) and 

d 
dt (w, u - u) + (A'w, u - u)  <~ 0 in ~'(]0,  TD 

for any w E D(A') with w >1 0 (37) 

where a(t) = S(t)u o + So S(t - s)f(s)ds, 
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(iii) for  any w e D(A') with w >1 0 and ~ e ~1([0, T]) with ~ >>. 0 and ( (T)  = O, 

f <A'w, u(t)>~(t)dt <. f <w, u(t)>~'(t)dt + f <w,f(t)>~(t)dt. (38) 

(c) I f  u e~([0,  T], X), then the following assertions are equivalent: 

O) u is subsolution for  ~tuoU ~ f 
(ii) u(O) <~ u o and for  any e > O, there exists a subdivision 

t o = O < t ~ < ' ' ' < t ~ < . T < t * + ~  with t ~ - t ~ _  t < ~  and Xo, X l , . . . , x  ~, 

<w, x, - x , _ l >  
f l , . . . , f ,  e N  with + < A ' w ,  xi><<.<w, fi  > fo r  any 

t i - -  t i _  

w e D ( A ' )  with w>~O such that m a x (  max I l u ( t ) - x i l l ) < e ,  
i \ t t - l ~ t ~ t l  

f "  IIf(t) - f~ll dt < e. 
d/i-1 

(iii) u(0)<, u o and for  some continuous funct ion t 1 with ~/(0)= O, for  all 

sufficiently small e > 0 ,  f o r  all t o = O < t l < ... < t n <. T < tn+ l with 

t i - t i _  1 < ~, and all f l  . . . . .  f n e X  with ZS~',_ 111f(t)-fdldt < e, there exists 

x o = u(O), x 1 . . . . .  x ,  e D(A) such that 

Xi  - -  X i -  1 

ti -- t i-  1 
+ A x  i <<. f~ and max ( max 

i \|t-l<~l<~tt 

Ilu(t) - x~ll) < t/(~). 

Proof. It is clear by the representation of the resolvent by Laplace transform that 
A is a pregenerator. Notice that, for some to e R, Illulll = sup{e-~'l lS(t)ull;  t >>. 0} is an 
equivalent norm on X satisfying (8) and A + toI is accretive for this new norm; also 
if u e LI(0, T; X), the property (17) is the same for the two norms. In other words, 
without loss of generality we may assume that A + e91 is accretive and then use the 
results of Theorem 1. In particular ~r is a pregenerator in ~r (this may actually be 
shown directly). The density of D(duo) in 5f follows from Remark 5 (it may be seen 
directly since D(~CUo ) contains u o + D(A) |  TD, with no(t)= S(t)u o, and 
D(A) | ~(]0, T[) is dense in ~).  Singlevaluedness of SgUo follows from linearity: if 
f, g e ~Uo u, then f -  g e do0; but ~r is an m-accretive linear graph in the Banach 
space ~ ,  endowed with the equivalent norm S e-'~'llu(t)ll dr; since D(~r is dense in 
~r, singlevaluedness of ~r follows by classical arguments. This completes the proof of (a). 

Part (c) is an immediate application of Theorem 2. Indeed using Proposition 2.3 in [2], 

(x, y ) e A c ~ x ,  y e X  and ( A ' w , x >  <<. (w, y> for any w e D ( A ' )  with w I> 0, 

so that (ii) in Proposition 7(c) is exactly (ii) in Theorem 2(b); on the other hand, 
according to the definitions of A_. and of an exact mild solution, (iii) in Proposition 
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7(c) is exactly (iii) in Theorem 2(b). 
To  prove (b), let us state the following result in a lemma: 

L E M M A  6. Under the assumptions of  Proposition 7, v ~ ~ + if and only if  v ~ ~ and 

f (w ,v ( t ) ) ( ( t )d t>~O f o r a n y ~ ( ] O , T [ ) , ~ > l O a n d w ~ D ( A ' ) , w > 1 0 .  (39) 

Proof  o f  Proposition 7 continued. We prove (b). Notice first that  for 2 > 0, 

(1 + Zs~CUo)- l(u + 2f) = u + (I + 2Sr l(u - n) and hence, bydefmition ofa  subsolution, 
u is a subsolution for ~r u = f if and only if v = u - u is a subsolution for ~r v = 0. 
Notice  also (see for instance [5]) that  for ( ~ ~ ( ]0 ,  T D  and w ~ D(A') 

and hence u satisfies (38) if and only if v = u - u satisfies (38) with f = 0. In o ther  
words we may assume u o = 0 and f = 0 (so that u = 0). For  simplicity we denote ~ '  = ~ t  o, 

If u is a subsolution for ~ u  = 0, then u ~< 0 (use Theorem l(c)) and hence (17) 
holds and for any 2 > 0, u ~< u~ = ( / +  2~t ) -*u  and so 

f ( w ,  (u - u~)(t))~(t) <~ any ( e  ~ ( ]0 ,  TD, ( >>- w ~ D(A'), w >>. dt 0 for 0 and 0. 

(4O) 

But if ( ~ ~ ( ]0 ,  TD and w ~ D(A'), the linear functional on 

w: v ~  ~<w, v(t)> ~(t) dt 
.J 

is in D(~t') and 

( ~ ' w ,  v) = S {(A'w, v ( t ) )~ ( t ) -  (w,  v(t))~'(t)} dr. 

Then, using u - u~ = 2Au~, (40) may  be written 

f<.w, 
for any ~ ~ ~ ( ]0 ,  T D, ( />  0 and w ~ D(A'), w >>. O. 

Passing to the limit as 2--~ 0, this gives (37). Thus  we have shown that  (i) implies (ii). 
To  prove (ii) =~ (iii), let w ~ D(A'), w >>. 0 and ~ ~ ~1([0, T])  with ~ >/0  and ~(T) = 0; 

using (37) we have 

(A 'w,  u(t))~(t)dt <~ (w, u(s))~(s) + (w, u(t))~'(t)dt a.e.s.  (41) 
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But (w, u(s)> ~ <w, u(s) + z> <<. IIwll Ilu(s) + z[I for z ~ X + ,  and using (17), 
liminfesss_, o (w, u(s)) <<. 0; passing to the limit in (41), we obtain (38). 

Let us now assume that (iii) holds. By convex combination and density, we have 

f(A'w(t),u(t))dt~ f<w'(t),u(t))dt f o r a n y w e ~ r  (42) 

where 

~+ -- {w ~ ~1([0, T]; X'); w(T) = O, w(t) ~ D(A') for t ~ [0, T], 

A'w ~ ~r T]; X') and (w(t), x )  i> 0 for t e [0, T] and x ~ X+}. 

But ~r may be identified with a convex cone in the dual space ~ '  contained in D(~ ' )  
and if w ~ ~+, ~r is identified with the continuous function - dw/dt + A'w; in other 
words (42) may be written 

(~r u) ~< 0 

For  any 2 > 0, ( / +  2~1')-1(~+) c ~r 
(I + 2~/ ' ) - lw,  one gets 

for any w E ~+. 

and applying the inequality above with 

(w, u - (I + 2~1- lu)  ~< 0 for any w e ~+. 

In particular (40) holds, and then thanks to Lemma 6, u is a subsolution for ~ u  = 0. 

Proof of  Lemma 6. The necessary condition is clear. Let us assume that (39) holds. 
We will prove that v t> 0. It is clear that we have 

(w, v(t))/> 0 a.e. t, for any w ~ D(A') with w >I 0. 

Let w e X' and w/> 0; for any 2 > 0, w~ = (I + 2A')- lw is in D(A'), wx/> 0 and we 
have (wa, x)---.(w, x )  as 2--,0. It follows that 

(w, v(t)) 1> 0 a.e. t, for any w e X' with w/> 0. (43) 

Using standard arguments we now show that v(t)>/0 a .e . t .  Since v is strongly 
measurable, there exists a countable set D in X such that v ( t )e / )  a.e. t; by the 
Hahn-Banach  Theorem, for all x E D there exists w x E X' such that 

<Wx, x> = - N  +(-x), wx <<. N +. (44) 

In particular w x/> 0, and D being countable, we have 

(w~, v(t)) t> 0 for any x e D, a.e. t 

and thus 

(w, v(t)) t> 0 for any w ~ C', a.e. t, (45) 
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where C' is the r X)-closed convex cone generated by {w~,; x ~ D}. But v( t )~ / )  
a.e. t and thus, using (44), we have for a.e. t, the existence of w E C' such that 
(w, v(t)) = - N + ( - v ( t ) ) .  Then, using (45), one obtains N+(-v( t ) )  <<. 0 a.e. t, which 
means v(t) >t 0 a.e.t. �9 

Acknowledgment  

We thank W. Arendt, M. G. Crandall and R. Gariepy for helpful discussions. 

References 

1. Barth61emy, L.: Probl~me d'obstacle pour une b.quation quasi-lin6aire du premier ordre, Ann. Fac. Sc. 
Toulous. IX(2), (1988), 137-159. 

2. Barth61emy, L., and B6nilan, Ph.: Sous-potentiels d'un op6rateur nonlin6aire, Israel J. Math. 61(1), 
(1988), 85-111. 

3. B6nilan, Ph.: Equations d'evolution dans un espace de Banach quelconque et applications, Th6se 
Orsay (1972). 

4. B6nilan, Ph., Crandall, M. G., and Pazy, A.: Evolution Equations Governed by Accretive Operators, 
book in preparation. 

5. B6nilan, Ph., Crandall, M. G., and Pazy, A.: 'Bonnes solutions' d'un probl~me d'~volution semi-lin6aire, 
C.R.Ac. Sc. Paris 306(1), (1988), 527-530. 

6. Crandall, M. G.: The semigroup approach to first order quasilinear equations in several space variables, 
Israel J. Math. 12 (1972), 108-122. 

7. Crandall, M. G.: Semidifferentials, quadratic forms and fully nonlinear elliptic equations of second 
order, to appear. 

8. Crandail, M. G., and Lions, P. L.: Viscosity solutions of Hamilton Jacobi equation. Trans. Am. Math. 
Soc. 277 (1983), 1-42. 

9. Kruskov, S. N.: First order quasilinear equation in several independant variables, Math. U.R.S.S. Sb. 
10 (1970), 217-243. 

10. Lions, P. L.: Generalized Solutions of Hamilton Jacobi Equations, Pitman (1984). 


