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DEFINING SETS AS SETS OF POINTS OF SPACES 

By a “set” we understand any collection into a whole A4 of definite 
well distinguished objects m of our intuition or thought. (Cantor [4], 
1895) 

$0. INTRODUCTIOIi 

Cantor’s definition of a set as “any collection” has come under 
intense investigation, occasioned by the paradoxes and leading to type 
theories and comprehension axioms. His requirement that the ele- 
ments be “well distinguished,” on the other hand, has seemed a near 
banality. Yet in the dominant nineteenth century conception, while 
the continuum contained points, the continuum was not made up of 
well distinguished points. Cauchy, Weierstrass, Dedekind, Cantor, 
and others made tremendous efforts to understand the continuum and 
it took most of the century for these efforts to culminate in modelling 
the continuum by a set. 

This paper uses topos theory to formalize a development of sets out 
of spaces and compares it to nineteenth century developments. In the 
nineteenth century sets were first conceived as sets of points of spaces. 
and then various assumptions and discoveries were made relating 
spaces to their sets of points until eventually spaces could be defined 
as sets of points with some structure. Then set theoretic thinking 
displaced geometric intuition in the foundations of mathematics, 
although neither was rigorously formalized as of 1900. In the present 
formal development sets are defined precisely by the requirement that 
their elements be well distinguished: The sentence “x = y v 1 (x = JJ)” 
is true when “x” and “y.’ are variables ranging over a set and not 
when they range over any other space. 

Two axiom systems are used. CS describes a category of sets, in 
fact a topos to be called Ser. The axioms of synthetic differential 
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geometry, SDG, describe a topos of smooth spaces and differentiable 
maps. This topos is called Spaces. This version of SDG makes Set 
definable over Spaces. 

Section one describes toposes briefly. Section two defines Set, and 
section three introduces Spaces. Section four defines Set as a sub- 
category of Spaces. Section five makes some historical comparisons. 
Section six wraps up by describing another way to get Set from 
Spaces, and shows that in a certain sense the difference between Set 
and Spaces depends entirely on the failure of the law of excluded 
middle in Spaces. 

$1. TOPOSES IN BRIEF 

This paper does not assume familarity with category theory or toposes. 
It only requires enough background in logic to make the following 
p&is of topos logic reasonably comprehensible. For fuller treatment 
of topos logic see [l 11, or [l] and [24]. 

A topos can be thought of as a universe of ‘sets’ and ‘functions.’ 
Any model of the ZermeloFraenkel axioms (or any reasonable set 
theory) gives a topos where the ‘sets’ actually are sets, and the ‘func- 
tions’ actually functions. But a topos does not have to be very much 
like a model of ZF. The standard terminology calls the ‘sets’ objects, 
and the ‘functions’ arrows, and we will use this terminology to avoid 
prejudging the relation between any given topos and classical set 
theory. 

In a topos any two objects A and B have a product A x B, com- 
parable to the Cartesian product in a model of ZF. Given two arrows 
f: A + B and g: A -+ B there is a subobject of A called the equalizer 
off and g, and often written {a E A v(a) = g(u)}. The notation is 
correctly suggestive. Think of the equalizer as the ‘subset’ of A where 
the ‘functions’ f and g agree. There is also an object B”, intuitively 
the ‘set’ of all ‘functions’ from A to B. 

In fact, each topos has a kind of set theory suited to it, called the 
internal set theory of the topos. It is a multi-sorted set theory, where 
each variable has one of the objects as sort. For an object B there are 
variables ranging over B and quantifiers (VX E B) and (3x E B) rang- 
ing over B. There are no unrestricted variables or quantifiers in the 
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internal set theory of a topos. Sentences in the internal set theory of a 
topos will always be put in quote marks. The law of excluded middle 
is not valid in all toposes. That is. in the internal set theories of some 
toposes there are sentences “p” such that “9 v 19” is not true and 
neither is “(llcp) -+ cp.” We will see an example in section three, 
together with a proof that excluded middle must fail for it. In other 
toposes, including all models of ZF, excluded middle is valid. The 
axiom of choice may also fail in a topos, but we will not be con- 
cerned with that. 

In any topos, proof by contradiction is valid in proving a negation: 
If “cp A $” implies a contradiction then “q” implies “1 $.” So 
“cp -+ (77~~)” is always true. 

The main conceptual difference between the topos approach and set 
theory is that in the topos approach arrows are primitive, not element- 
hood. For example, a singleton object in a topos, usually called a 
terminal object, is defined as an object such that every object B in the 
topos has exactly one arrow to it. Compare singletons in set theory, 
where every set has exactly one function to each singleton. Every 
topos has singletons. We can take one singleton, call it 1, and define 
an element of an object B to be an arrow x: 1 + B from 1 to B. We 
write x E B. (These are often called “global elements,” as compared 
with “generalized elements” which we will not use.) 

Directly from the definition, I has exactly one arrow to each sin- 
gleton, so each singleton has exactly one element. The terminology 
is justified. But the definition is much stronger than just saying a sin- 
gleton has one element. Section three describes an object D in @aces 
which has at least two arrows to itself. In fact it has infinitely many 
but we will not prove that. So D is not a singleton. Yet, by the 
axioms of section four, D has only one element. The situation is 
simply that the axioms imply there are many arrows from D to D and 
exactly one arrow from 1 to D. The axioms are consistent with them- 
selves - they are only inconsistent with the idea that an arrow ought 
to be determined by its effect on elements, the way a function in 
classical set theory is. Section four gives some intuitive geometric 
motivation for the properties of D. 

An object is empty, or initial, if it has exactly one arrow to every 
object in the topos. Compare the empty set in a model of ZF. It has 
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exactly one function to each set. It follows in topos theory that if the 
topos is not trivial (if the objects are not all isomorphic to each other) 
then an empty object has no elements. But since an object is not 
defined by its elements, there can be many empty objects in a topos. 
In general there can also be objects with no elements, which are never- 
theless not empty in this sense. But both the axiom systems used here 
include axioms saying an object is either empty or has an element. 

The definition of the equalizer off and g is also much stronger 
than saying every element a E A with f(a) = g(a) is in {a E A If(a) = 

&4). 
Finally, we come to quantifiers. Saying “(Vx E @q(x)” is true in 

the internal set theory of a topos is equivalent to saying “cp(x)” is 
true for “x” a variable over B. It is stronger than saying rp(h) is true 
for each element h E B. The sentence “(3x E B)(p(x)” is weaker than 
asserting there is some element h E B with “v(b)” true. (See [ 121 or 
[25] for the correct interpretation of quantifiers, using generalized 
elements.) These distinctions collapse in the special case of Set. 

The topos axioms are given in full in many of the references listed 
below. [19] is the clearest source, although Mac Lane specializes very 
quickly to a topos of sets with the axiom of choice. 

52. THE TOPOS OF SETS 

The categorial definition of sets was first conceived by Lawvere, [ 131, 
and the version given here is based on [28]. The axioms CS consist of 
the topos axioms plus four more, intuitively true of sets: 

(CS, 1 An empty object has no elements. 

(CW Every object either is empty or has elcmcnts. 

KS,) The law of excluded middle is internally valid. 

(CS‘t 1 There is a natural number object - intuitively a set of 
natural numbers. 

Neither of CS, and CS, implies the other. Omitting CS, gives a theory 
satisfied by any Boolean valued model of ZF. In such a model with a 
nontrivial Boolean algebra there will be sets A such that x E A is not 
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true for any x, but for some x its truth value is intermediate between 
‘true’ and ‘false.’ Such a set A is not empty in our sense, and yet has 
no elements. All the axioms except CS, are satisfied by Spaces, and 
we will see the axioms of Spaces are inconsistent with CS,. 

From CS it follows that: For every pairf: A + B and g: A + B, if 
for every a E A f(a) = g(u), then f = g. So an arrow is fully deter- 
mined by its effect on elements. Consequently the structure of an 
object is fully determined by its elements, since in the topos approach 
all structure is determined by arrows. 

So in Set we can interpret the internal quantifiers as simply quan- 
tifying over elements. A singleton is precisely an object with one ele- 
ment, and equalizers can be defined just in terms of their elements. 
Any model of ZF gives a model of CS. But a model of CS does not 
necessarily give a model of ZF. It will give a model for the axioms 
of extensionality, pair set, sum set, powerset, and infinity, plus a 
restricted axiom scheme of separation where only bounded quantifiers 
are allowed. The axiom of choice does not follow from CS and we 
will not take it as an axiom. Stronger axioms can be formulated. See 
[ 131, [23], and [28]. 

$3. SYNTHETIC DIFFERENTIAL GEOMETRY 

Lawvere introduced the project of axiomatizing differential geometry 
in [14], and [12] gives an excellent introduction. [9] and [22] construct 
models for the axioms, The axioms SDG begin with the topos 
axioms. Objects may be called spaces, and arrows may be called 
maps, since that is how they should be thought of. Elements may be 
called points. So 1 is a one point space. The axioms call for a space R 
with specified points 0 E R and 1 E R. (So “1” names an arrow I: 
1 + R, not to be confused with the singleton space 1.) And there are 
mapsf:R x R-+Rand -:R x R + R.ThinkofRasalinewith 
arithmetic structure something like the usual real numbers plus 
infinitesimals. 

WG, > R, 0, I, +, - forms a commutative ring. That is, the 
usual axioms of commutativity, distributivity, x + 0 = x, 
and so on are true internally for variables over R. 
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(SDG,) The ring is nontrivial. 0 # 1. 

(SD& 1 R is a field in this sense: 
“(Vx E R)[l (x = 0) --+ (3~ E R)x - y = Z]” is 
internally true. 

There is a constant zero map from R to R, and a squaring map defined 
by “r2 = r - r.” The equalizer of these is named D = {r E RI? = 0 f . 
Call D the space of infinitesimals of square zero. The central axiom of 
SDG is the axiom of line type: 

(SDG,) “(‘4’~ RD)(3!b E R)(Vd E D)f(d) = f(0) + 6. d" 

Intuitively, SDG, says every mapJ from D to R is linear around f(O), 
with a uniquely determined slope “b.” This captures one classical 
idea of the derivative. In slightly anachronistic terms, the derivative of 
g: R -+ R at 0 was sometimes defined as the slope of the graph of g 
on an infinitesimal interval around 0, an interval so small g is linear 
on it and so has a well defined slope. We take D to be that interval. 
Then D can be translated along R to define the derivative of g any- 
where on R. To find the derivative at x E R we look at the interval 
{x + did E D>. In fact, it follows from the topos axioms plus SDG, - 
SDG, that every map between any two spaces has a unique derivative 
defined on the whole domain of the map, the chain rule holds, and 
the usual rules (g + h)’ = g’ + h’ and (g * h)’ = g’ * h + g * h’ hold 
for maps g: R + R and h: R -+ R and their derivatives g’ and h’. 

We can prove “D # {O}” by contradiction. Intuitively, we will 
prove that a map from {O} cannot have a uniquely determined slope. 
Suppose “D = (0)” is true, or more explicitly “(‘id E D) d = 0.” 
Then trivially “(Vd E D)f(d) = f(0) + 0 * d = f(0) + I - d.” By 
the uniqueness of “b” in SDG4 WC conclude 0 = I and that contra- 
dicts SDGz. So “D # (0)” and the equivalent “l(Vd E D) d = 0” 
arc internally true. And D has at least two distinct maps to itself: the 
constant zero map and the identity map defined by “l(d) = d.” 

On the other hand, “(Vd E D)ll(d = 0)” is also true. By SDG,, 
since D is a subspace of R, WC have “l(d = 0) -+ (3~ E R) d - y = 1.” 
By algebra this implies “l(d = 0) + (Sly E R) 0 = d* *y2 = I2 = 1.” 
From the contradiction to SDG2 conclude “ll(d = O).” Nothing in 
D is affirmatively different from 0. 
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As a consequence, “d = 0 v l(d = 0)” is not true for “d” a 
variable over D. More generally, since D is a subspace of R, “x = y v 
1(x = y)” fails for “.x” and “y” variables over R. In any topos an 
object B is called decidable if and only if “x = y v -I(X = y)” is 
true for variables over B. By the axioms of SDG most spaces are not 
decidable. We will call a space discrete if and only if it is decidable. 

Starting with the line R one gets the plane R x R, or R*, and all 
the euclidean spaces R” and subspaces of them defined by equations, 
plus infinite dimensional spaces such as the function space RR or more 
generally BA for any spaces B and A. The axioms of SDG can be 
extended to cover integrals, differential equations, continuity and 
compactness, and so on: [2], [20], [22]. Different extensions may suit 
different purposes. No such extension is important here except that 
the axioms of [20], for example, imply Spaces has a natural number 
subject. So we add an axiom: 

(SDG,) There is a natural number object N. 

N is provably discrete, as it intuitively ought to be. 

$4. DEFINING SETS OVER SPACES 

We need two further axioms: 

(SDG) Every space either is empty or has points. 

This implies for every space B and points h, E B and h, E B, “h, = h, v 
-I(/+ = h?)” is true even if B is not discrete and the corresponding 
sentence with variables over B is not true. (The topos theoretic proof 
is simple, but technical. Intuitively, SDG, says points are the smallest 
spaces, so two points in any space are either wholly coincident or 
wholly disjoint.) It follows that 0 E D is the only point of D, since 
any point p E D has “-11(p = U).” 

You could picture D’ as a point and a rate of motion along the line. 
Then a map f, D -+ R is specified by giving its base point f(O), and a 
scalar “h” saying how the rate of motion is scaled up or down byf. 
So if the scalar is negative, the motion is reversed, and so on. Or, if 
you want to keep actual motion out of it, think of D as just enough 
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of the line to allow the possibility of a rate of motion, but not enough 
to allow even the possibility of a rate of change in the rate of motion. 
(There is a space just enough bigger to also make a rate of change in 
a rate of motion possible; Kock calls it Dz and uses it to define 
second derivatives in [12].) This space cannot include two distinct 
points, since then it would be a finite interval and all sorts of complex 
motions would be possible in it. See the discussion with intuitive 
diagrams of D and other infinitesimal structures in [26]. 

SDG, has been studied before, especially in [lo], but not for the 
present purpose. The next axiom is new in SDG: 

(SDG,) Every space M has a unique discrete subspace TM such 
that every point of M is in TM. 

Call TM the set of points of M. The word “set” is justified because 
the discrete spaces collectively, plus all arrows between them, form a 
model of CS. (See [21], which also shows which of the usual models 
of SDG verify SDG, and SDG, .) They form -a category of sets, a 
subcategory of Spaces, and we will call this category Set. 

The law of excluded middle is valid in Set, since it is valid in any 
model of CS. But more than that, in the internal set theory of Spaces 
any sentence of the form “IJJ v -IV” or “(-11(p) -+ Q” is true if all 
free variables of “q” range over discrete spaces. “p” may have quan- 
tifiers over any space and constants referring to points of any space. 
Conversely, if “Q v -IV” is true for every sentence “q” whose free 
variables range over A then let “p” be “x = y” for “x” and “y” 
variables over A to see A is discrete. In this sense the law of excluded 
middle is ‘valid over discrete spaces’ in Spaces itself. 

Lawvere has maintained that classical logic is associated with 
constancy - that is, with objects which admit only trivial variation 
[16]. This applies to discrete spaces, in that a map from any space 
to a discrete space is locally constant. (This should be intuitively 
plausible. Compare continuous maps of classical topological spaces. It 
has technical explications either in terms of sheaf semantics generally 
[251 or in terms of the usual sites for models of SDG [l2], [22].) And 
here we find classical logic is valid precisely over the discrete spaces of 
Spaces. 
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$5. GEOMETRY AND THE BEGINNINGS OF SET THEORY 

Listen to one of the mathematical pioneers of set theory: 

The development ol set theory had its source in the effort to produce clear analyses of 
two fundamental mathematical concepts, namely the concepts of argument and of func- 
tion. Both concepts have undergone quite essential changes through the course of years. 
The concept of argument, specifically of independent variable, originally coincided with 
no further defined, naive concept of the geometric continuum; today it is common 
everywhere, to allow as domain of arguments any chosen value-set or point-set, which 
one can make up out of the continuum by rules defined in any way at all. Even more 
decisive is the change which has befrrllen the concept of function. This change may 
be tied internally to Fourier’s theorem, that a so-called arbitrary function can be rep- 
resented by a trigonometric series; externally it finds expression in the definition which 
goes back to Dirichlet. which treats the general concept of function, to put it briefly, as 
equivalent to an arbitrary table . . . It was left for Cantor to find the concepts which 
proved proper for a methodical investigation, and which made it possible to force infi- 
nite sets under the dominion of mathematical formulas and laws . . . 

Sets of infinitely many elements had already been objects of mathematical operations, 
especially in geometry, where one was long accustomed to comparing sets in respect of 
their power [Miirhfigkeit, cardinality]. Yet this practice failed to find more than an 
external analogy. Even if Cantor, as he incidentally”stated. borrowed the notation or 
the concept of power from Steiner, still the corresponding geometric formulations have 
little to do with the kind of thought which lies at the base of set theory. 

(Schoenflies [27], 1900) 

Until the 20th century, mathematicians had little idea of function 
spaces B” with differentiable structure; but for finite dimensional 
spaces, especially R, R2, and R3, suitable versions of SDG fit closely 
to 18th and 19th century ideas. (I will put aside debate on particular 
theories of infinitesimals.) 

Using axioms SDG, -SDG,, each space M has an underlying set 
of points TM, and each map between spacesfi A + A4 has an under- 
lying function Ifi TA + TM. But the underlying sets and functions 
are far too weakly axiomatized to supply foundations for geometry. 
The axioms imply TR is a fieId with 0, I, +, * inherited from R. 
Further axioms, as in [20], imply TR is an ordered archimedean field 
including many irrationals: all algebraic numbers, and definable tran- 
scendentals such as K or e. This is the level of Schoenflies’ “naive 
concept of the geometric continuum.” approximating the pre-Cauchy 
view. 

Cauchy offered a less naive, somewhat further defined concept 
of the continuum with his theory of convergence. He gave his well 
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known criterion for convergence, which is important because it does 
not mention the limit of the series and so does not explicitly pre- 
suppose there is a limit. He gave a good argument for the necessity of 
his criterion: If a series of real numbers does converge to a limit then 
the series meets his criterion. But as to sufficiency he simply said: 
“when the various conditions arc fulfilled, the convergence of the 
series [to some limit] is assured.” ([7], chap. VI) In effect he took 
completeness of the real numbers as axiomatic. He offered no defini- 
tion of the real numbers nor any reason for believing his series con- 
verge except geometric intuition. 

We could add an axiom to SDG matching Cauchy’s conception: 
Every series in I-R which meets Cauchy’s criterion has an element of 
TR as limit. Uniqueness of the limit follows from other axioms as in 
[20]. But this axiom has to be formulated for I-R, not R. The theorem 
“(8 = 0) -+ -rl(d = 0)” prevents any order relation on R from 
distinguishing between 0 and infinitesimals of square zero. Conver- 
gence can never define a uniq’ue limit in R. (See [22] for a study of 
convergence in context including the infinitesimals of SDG and also 
those of non-standard analysis.) So Cauchy’s theory of convergence 
led towards set theoretic as opposed to geometric foundations. 

Yet the new axiom does not give any independent definition of the 
set I-R, just as Cauchy gave no definition of the real numbers. (With 
hindsight we can say it implies I-R is isomorphic to the now standard 
real numbers, defined as equivalence classes of sequence of rationals. 
But it does not imply that TR equals that set.) We still need axioms 
on R as well as the new one on TR. 

This half geometric, half set theoretic approach did not suffice for 
Weierstrass and his followers. So both Dedekind and Cantor worked 
to describe a set R of real numbers, working only with discrete collec- 
tions, using the law of excluded middle; in short, working in Set 
rather than Spuces. This is why Zermelo considered Dedekind and 
Cantor cofounders of set theory [32]. 

Dedekind began “The Nature and Meaning of Numbers” by 
explaining he would deal with things and that: 

A thing is completely dctcrmincd by all that ciin be tirmed or thought about it. A 
thing (I is the same as h (identical with b), and b the same as a, when all that can be 
thought concerning a can also be thought concerning b, and when all that is true of h 
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can also be thought of a . . . . If the above coincidence of the thing denoted by (I with 
the thing denoted by b does not exist, then are the things a, b said to be different, a is 
another thing than b, b another thing than a: there is some property belonging to the 
one that does not belong to the other. ([8], pp. 44-45) 

The practical content of this passage is simply that identity is decid- 
able. “u = b v ~(a = b).” 

Dedekind went on to reject Kronecker’s kind of constructivism. 
([8], p. 45) At the time, this rejection essentially meant affirming the 
law of excluded middle. So Dedekind emphasized exactly the logic 
which distinguishes Set from Spaces in his foundations for natural 
numbers and the continuum. 

Cantor studied more varied sets of points of spaces, not only the 
set of all points on the line but points of other spaces and various sets 
of points distributed along the line. The opening quote for this paper 
was the first line of his ‘Beitrkige zur~Begrz?ndung der transfiniten 
Mengenfehre.’ He was more explicit on the logic of set theory in a 
passage published in 1882: 

A manifold (an aggregate, a set) of elements, belonging to whatever sphere of con- 
cepts, is called IveIl defined, when on the basis of its definition and the logical principle 
of the excluded third it must be seen as internally determined. both whether any object 
belonging to the same sphere of concepts belongs to the said manifold as an element or 
not, nnd also, whether two objects belonging to the set are identical to each other or 
not, despite formal differences in the way they are given. ([3], p. 150) 

So Cantor also recognized that set theory required the law of 
excluded middle; and, although he was primarily concerned to say 
that identity does not depend on how the elements are described, he 
associated excluded middle with the decidability of identity. 

Dedekind and Cantor each defined a set of real numbers, R, with 
arithmetic structure and an order relation; and both postulated that 
this represented the set of points on the geometric line with their 
arithmetic and order relation, In our terms, they defined [w within Set 
and added an axiom TR = R plus others for arithmetic and order. 
The methods used to define R, and to describe its geometric and 
analytic structure set theoretically, were easily generalized to many 
other sets and geometric structures. This gave the “quite essential 
changes” Schoenflics noted in “the concept of argument.” 

The “even more decisive” change in the concept of function can 
also be partly modelled in SDG. It was less closely tied to logic than 
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the first change, and it ended up establishing set theory in a sense 
foreign to the spirit of SDG. 

The axioms of [20] plus SDG, and SDG, imply that for each map 
f: R -+ R the function I-f: TR + TR is continuous and differentiable 
in Cauchy’s e--8 sense, and so is its derivative and so on. That is, I” 
has derivatives of all orders in the e-6 sense. They do not imply that, 
given a function g: IYR -+ TR which has derivatives of all orders, 
there is some mapf: R + R with I-f = g. Weierstrass’ work required 
clear definitions of the kinds of functions, he would work with so he 
took up Dirichlet’s idea of a function as an arbitrary pairing of a 
value g(x) to each value of x; and then he could explicitly restrict his 
attention to functions continuous in the c---b sense or functions dif- 
ferentiable in the e--b sense or whatever. We could match the case 
where he considered functions with derivatives of all orders, by adding 
an axiom to SDG saying that the set of maps from R to R, T(RR), is 
precisely the set of all functions from I-R to FR with derivatives of all 
orders in the e--S sense But at this point the apparatus of Spaces 
begins to seem unnecessary. (There are reasons even within set theor- 
etic foundations for wanting a topos of smooth spaces, but they have 
only recently become clear.) WC could just begin with Set and R and 
the e---8 definitions; and develop geometry and analysis on set theor- 
etic foundatrions. And that is what mathematicians did. But only 
after some more work was done in set theory. 

It is well and good to focus attention on a given subset of the set 
of all functions from R to R but what do we know about that set of 
functions itself? The axioms of [20] plus SDG, and SDG, give a good 
approximation to the knowledge up to Cauchy’s time. They say it 
includes T(RR) so it includes polynomials, and sine and cosine and 
exponential functions, and functions gotten by composing these. It 
also includes functions defined differently on different parts of 88 such 
as r(x) = 1 for x rational and T(X) = 0 for x not rational. Some of 
these, including the example given, were dubious at Cauchy’s time but 
not altogether unthought of. (In. Spaces it is false to say “(Vx E R) 
x is rational or x is not rational” so the given formula for r cannot 
define a map from R to R.) At Cduchy’s level, using an axiom to 
make the set of points in R complete, we can define all the bizarre 
functions the Weierstrassians found by means of convergence. But all 
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these functions have either natural or perverse geometric definitions. 
We are still far from working with arbitrary functions from 88 to R. 

The problem was to deal directly with the infinite set R, apart ,from 
its geometric meaning. Cantor solved the problem. He brought W 
“under the dominion of mathematical formulas and laws” with his 
transfinite set theory and, as Schoenflies says: “geometric formu- 
lations have little to do with the kind of thought which lies at the 
base of set theory.” Cantor put great stress on membership and made 
functions less important - although he did not reduce functions to 
the low status that later set theorists would. Set theory had to move 
on to the axiom of choice, the axiom scheme of replacement, and the 
continuum hypothesis in an effort to describe R and the set of func- 
tions from R’ to R well enough to give mathematicians confidence in 
them. The axioms CS can be seen as making set theory a part of 
geometry, and the definition of Set within Spaces .makes that concep- 
tion concrete. But that conception is of little use in understanding the 
formal structure of Zermelo -,Fraenkel set theory. 

The line came to be defipled as R with additional structure. Smooth 
maps were dejined to be functions with derivatives of all orders. The 
set theoretic approach to geometry displaced the synthetic approach, 
although this happened more slowly than some histories suggest. 
Sophus Lie was untouched by it in the 1890s ([ 181, for example), Elie 
Cartan was nearly so in the 1930s [5, 61. Hermann Weyl’s great work 
in mathematics and physics in the 1920s like Tullio Levi-Civita’s, is 
often remote from set theoretic foundations, making heavy use of 
infinitesimals, although both men believed c-6 style foundations were 
better in principle. See [ 17, 29, 30, 3 I]. In fact analysis split from 
geometry when s--6 methods gained ascendency in analysis, around 
the mid-nineteenth century, while synthetic methods remained common 
in geometry until the mid-twentieth century. But set theory came to 
dominate geometry as well. 

Along the way infinitesimals disappeared. This is hardly surprising 
from our point of view since I-D is a singleton. The only point in the 
space of infinitesimals of square zero is 0. But the disappearance of 
infinitesimals is only a symptom of a deeper loss. The independent 
reality of spaces and maps almost disappeared from mathematical 
consciousness as everything was reduced to sets. This is not the place 



88 COLIN McLARTY 

to argue the merits of such a reduction, except to note that one of 
Lawvere’s original motives for topos theory was to give a simple, 
natural, directly geometric foundation for differential geometry. 

96. MORE ON EXCLUDED MIDDLE 

We have seen one way of beginning with a universe of smooth spaces, 
formalized as Spaces, and arranging to make the law of excluded 
middle true: Restrict attention to the discrete spaces, over which the 
law is already valid, and call this subcategory Set. So, for example, 
Ser. does not include the infinitesimal space D. This works because 
of the special axioms SDG, and SDG,. But there is another way of 
forcing the law of excluded middle in any topos, namely, passing to 
double negation sheaves [28]. In terms of the internal logic this means 
not restricting the objects considered but re-interpreting truth so that 
a sentence “q” is true in the new sense if “llq” is true in the 
original logic. For example, “ll(d = 0)” is true in the internal 
set theory of Spacers if “d” is a variable over D. So we take “d = 0” 
as true in the new sense, and this is equivalent to “(Vd E D) d = 0” 
so in this sense “D = (O}.” This construction can make objects 
isomorphic which were not originally isomorphic. 

Passing to double negation sheaves creates a new topos which in 
our case we shall call Spaces,, , but only for a moment. SDG, and 
SDG, imply SpacesY7 has the same categorial structure as Set. That 
is, the two are equivalent. This is much stronger than just saying both 
are models of CS. So we might as well take them to be the same 
category. Details are in [21]. Then Set has two different relations to 
Spaces. It can be embedded into Spuces as the subcategory of discrete 
spaces or as the quite different subcategory of double negation sheaves. 
These sheaves can be interpreted geometrically as indiscrete spaces in 
this sense: Given spaces M and L a map f a: TM + L from the set of 
points of M to L may or may not extend to a mapf: M --f L depend- 
ing on whether or not such an extension can be continuous and differ- 
entiable. If L is discrete thenf” extends to f if and only if it is locally 
constant. L is indiscrete if every such f 0 extends to an f in exactly one 
way. Continuity and differentiability are vacuous constraints when L 
is indiscrete - compare indiscrete spaces in standard topology. 
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One conclusion to draw is that the difference between Set and 
Spaces hangs directly on the failure of the law of excluded middle. 
Either way of beginning with @aces and requiring excluded middle 
winds up with the same category Set. 
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