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1. In~oducfion 

We define a geometrically natural  probabil i ty measure on a funct ion space 
o f  k dimensional surfaces in R". This measure generalizes n dimensional circular 
Brownian mot ion  to an arbitrary smoothness class and its domain  to a compac t  
manifold o f  arbi t rary dimension and topological  type. Then, with respect to this 
measure, we prove several geometric results including the following: 

(7.1) Almost every compact, connected, k dimensional C z'~' submanifoM of R n 
bounds a unique k -k 1 dimensional surface of  least area. 

(8.9) I f  n ~ 2k, almost every C" map of a fixed compact C ~ Riemannian manifold 
of dimension k into R" is an embedding. 

Our  methods combine  geometric measure theory,  probabil i ty theory,  partial 
differential equations, and pseudo-differential operators.  

1.1. The measure. There is a unique (up to scaling) measure on the space o f  
cont inuous real-valued functions on [0, ~ )  which vanish at 0 such that  
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(1) behavior on disjoint intervals is equivalent and independent, 

(2) increasing and decreasing are equally likely. 

That measure is the celebrated Brownian motion [22, pp. 97, 420]. We will be inter- 
ested in the version of  Brownian motion defined on the space 

c( s ~, R") 

of continuous functions from the circle into R". Like Brownian motion on the 
line, this measure can be defined by considering a set of  random Fourier series 

(3) Xo + s Xmm -1 cos mt -t- Ymm -I sin mt (X,n, YmER") 
m = l  

under the measure obtained by giving the coefficients Xm, Y~n independent Gaus- 
sian distributions of mean zero and variance one. It follows from work of G. HUNT 
[25] that 

(4) almost surely the series (3) converges uniformly to an o~-H61der continuous fune- 
1 tion for 0 < ~ < ~. 

The resulting probability measure induced on C(S 1, Rn), called n dimensional 
Brownian motion on the circle, gives a measure on the space of continuous closed 
curves in R ~. To generalize this measure to k dimensional C a surfaces, we replace 
S 1 by an arbitrary compact, connected C ~ Riemannian manifold dg of dimension 
k, and we replace sines and cosines by eigenfunctions 4~m of the Laplacian on ~ ' .  
We consider formal series 

(5) ) ] Bm~m/fl(m), Bm E R", 
m = l  

where the Bm have independent Gaussian distributions of mean zero and variance 
one and the weight function 

fl: Z +  ~ R § 

is chosen large enough to insure that almost every series (5) converges in the C a 
norm (as can be accomplished trivially). The induced measure It on Ca(~ ', R ~) 
has many nice geometric properties (cf. Theorem 6.2). It is invariant under 
rotations of R ~, and open sets in the C a norm are measurable and have positive 
measure. In particular the subspace 8 of  embeddings has positive measure, and 
thus 

(6) there is a measure tt L__ 8 on the space of compact, connected C a submanifolds 
of  R n of dimension k. 

The measure It on cg could not be translation invariant. Indeed, V. SUDAKOV 
([31 ], presented in [23]) has proved that there is no a-finite measure on an infinite 
dimensional, locally convex, Hausdorff linear space under which even the class 
of  measure zero sets is translation invariant. However, for our measure It, this 
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class is invariant under translations by sufficiently smooth functions (Theo- 
rem 6.2(2)). 

The construction of  the measure/z works as well on the space cq'~(.Al, R n) 
of  functions with 0~-H61der continuous qth derivatives. The choice of the weight 
function fl determines the smoothness class of the measure's support quite finely 
(of. (6,6)). In particular, we prove that (Theorem 6.3) 

(7) i f  r ~ (q -}- oO/k + 1/2, c ~ O, and fl(m) ~ cm', then almost surely the 
series (5) converges in Cq:(dr R"), 

a generalization of  HUNT'S result (4) to arbitrary dimension and smoothness 
class. This theorem leads naturally to a canonical choice for the weight function 
fl, given in (6.4), which fits particularly well into the abstract theory of  Gaussian 
measures as generalized by L. Schwartz (cf. 6.7). Indeed, one outcome of  the 
present paper is to provide interesting applications of such measures. 

Remark. A measure provides a discriminating indicator of small sets. Not  
every first category set, for example, has measure zero. Even on the real line 
there are open dense sets of  arbitrarily small Lebesgue measure (let ql, q2 . . . .  
be an enumeration of the rationals and put E ---- k] (qm -- e/2m, qm § e/2m)) �9 
It has been our experience with Theorem 7.1 that to prove a set has measure zero 
involves a more uniform version of a much simpler first category argument. 

1.2. For almost every boundary there is a unique mass minimizing surface. 
Every compact manifold in R n bounds a mass minimizing flat chain modulo 
two, that is roughly, a surface (not necessarily orientable) such that no other has 
less area. Large families of  counterexamples show that such a surface need not 
be unique (cf. the introduction to [17]). Nevertheless we prove that, with respect 
to the above measure (1.1 (6)), almost every compact, connected C 2'~ manifold 
does bound a unique mass minimizing flat chain modulo two (Theorem 7.1). 
This theorem generalizes our earlier result for two dimensional surfaces in R a 
[17, Theorem 7.1]. The largest change in the proof  involves a lemma (7.2) on 
uniqueness for the Cauchy problem for a second order elliptic system of partial 
differential inequalities with merely C 1 coefficients. This lemma, when applied 
to the minimal surface system, implies that two unoriented mass minimizing sur- 
faces with the same manifold as boundary, which are tangent C 2 manifolds with 
boundary in some open subset of the boundary, are identical. 

1.3. TransversaHty and immersions almost everywhere. We shall prove some 
generic geometric properties of the space c~ : cq ( j t  ,, R"). The most basic 
arguments of geometric measure theory about dimension and product integration 
yield our first type of  result: 

(8.2) I f  n ~ 2 k  ( k : d i m ~ ' )  and q >: 2, then almost every BE qf is an im- 
mersion. 

Combining our methods with Sard's theorem proves, in the terminology of  8.1, 
the next result: 

(8.7) I f  a ~ 2k. then almost everv immersion intersects itself transversallv. 
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The result (8.9) quoted at the outset of the paper follows as an immediate corollary 
of these two. 

The author would like to thank the many friends on whose help he has so 
heavily relied, including R. DUDLEY, P. GILKEY, V. GUILLEMIN, R. MELROSE, 
J. SANTOS FILHO, P. SEELEY, and M. TAYLOR. This work has been partially sup- 
ported by the National Science Foundation under Grant  MCS-7621044 and 
graduate support. 

2. Function spaces 

We define the two spaces of  functions fundamental to our work, the H61der 
spaces C ~'~ and the space L~ of Bessel potentials, and state the Sobolev Embed- 
ding Theorem 2.4 which relates them. SEELEY'S article [10] provides a good intro- 
duction to the topics of  Chapters 2 and 3. 

2.1. HOlder spaces. A multiindex oc is a k-tuple (0q . . . .  , ~k) of  nonnegative 
integers. Put ]cr l = Zc% and define the differential operator on R k, 

( i• .. 
= \ -  ~ x d  " ~ x d  " 

Let , / / b e  a C ~ Riemannian manifold and denote the distance from y to z by 
] y - - z  1.Let V b e R  nor C n,andlet  q E Z  + , 0 ~ 7 ~ 1 .  We denote by 

O ' ~ ( ~ ,  V), 

the vectorspace of functions f :  r162 ~ V with 7-H61der continuous derivatives 
of  order q; i.e., func t ions f fo r  which there is a constant C such that, for all multi- 
indices 0~ with ]or ] = q and for all y, z C J//, we have 

[D~'f(y) - -  i f ' f  (z) ] <: C l Y --  z ]:'. 

The least such C is called the H61der constant. We sometimes omit reference 
to 7 if 7 : 0 or to V if n = 1. A subscript C indicates compact support. C q'r 
becomes a Banach space under the norm 

[[f[lcq,'~ ---- sup {H61der constant of  ]D~f(y)l[: q, yE  .//}. 

Put  C ~ = f'~ C q. Then C ~ is dense in C q, but not in C q'v for 7 > O, although 
qEZ + 

the closure of  Coo in C q# contains C r'~ for r -F fl > q -F 7. C q'~ (0 ~ 7 "< I) 
is not locally compact, but closed balls in C q'~ are compact under the C r'~ norm 
if q - F y > r + &  

2.2. Tempered distributions. Let 6a(R k) denote the set of  f E  C~~ k, C) 
such that for all multiindices oc, m E Z § the function Ix I m [D~f(x) [ is bounded. 
The neighborhoods of  zero in 6 a are generated by the sets 

( f ~  .~': lxl m Imf(x)l < ~). 
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The Fourier transform fr-->f  given by 

~(~e) = (2~)-k12 f f(x) e -ix'r dx 

maps S# onto S p. We denote by 6e' the space of bounded linear functionals: 
50 --> C, called tempered distributions. If  g is a measurable function and 

f(1 + Ix[) -m Ig(x)l  dx  < 

for some m E Z, then we have a corresponding linear functional ~ in 5"' given 
by 

g(f)= f fg; 
we identify g and ~. The notions of differentiation, Fourier transform, etc., along 
with their usual properties, extend to the space 6e'. For example, if g E if", one 
defines 

~,(f) : g(f) for f E  6:. 

The Fourier transform maps S:' onto 6a'. 

2.3. Spaces of Bessel potentials. We follow CALDERON'S early treatment of 
the spaces L~ of Bessel potentials [2], corresponding to the development of  Sobo- 
lev spaces in ADAMS [1] or STEIN [11, Chapter V]. 

For  uE R, given f E  6:', one defines its Besselpotential of order u J~E Se' 
by 

(juf). = (1 -F 4:~ 2 i 12)-u:x . 
For 1 < p < c~ we define the space of Bessel potentials 

LP(R k) 

as the image of LP(R k) under ju, with associated norm 

IIflILP u = 11J-Ufl[Lp. 

(1) The spaces L~ are complete and isometric with L p. If  u < v then L~ 3 L~, 
and for f E  L~ we have Ilf[[L~ :> IlfllLff. If  u E Z +, then f E  L~ if and only if 

f has distribution derivatives of orders ~ u in L p, and there is a constant Cp,u 
such that 

(2) C~,~ [IfIILP ------- ~ 11D~T[ILP <= G,~ IIf[lL~" 
u l a l < u  

For u E R, the usual duality between L p and L q (where 1/q -Jr liP = 1) generali- 
zes to L~ and q L-u, with 

(3) I[fgl[D ~ IIfIIL~ II g IlLq_u, 

2.4. A Sobolev Embedding Theorem. The following results hold [cf. 2, Theo- 
rems 6, 5 (e)]. 
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(1) Suppose u ~= v and 
1 1 u - - v  

- -  > 0 .  
q p k 

Then 
L~ C L ~, 

and the inclusion map is continuous. 

(2) Suppose q is a nonnegative integer and 

q -~ l > u -- k/p > q. 
Then 

LP, C C q'u-q-k/p 

and the inclusion map is continuous. 

3.  Pseudo-d i f f erent ia l  opera tors  

We introduce a space of  pseudo-differential operators, and in particular treat 
negative and fractional powers of a modified Laplacian on a compact manifold, 
including various estimates on its eigenfunctions and eigenvalues. 

The differential operator on R k 

[ . o V '  / . o V k  
e = p ( x )  " ' "  ' p E 

satisfies, for any f E  C~(R k) with Fourier transform 

Pf(x) = (2z0 -g f e 'x'r p(x) ~ ' . . .  ~T, k f(~) d~. 
Rk 

. , .  CCk Conversely, given any symbol a(x, ~) E C~ k) (e.g. p(x) ~1 ~k ), we 
can define an operator Op(a) such that, for any f E  Cc(R*), 

Op(a) f (x )  = (2z0 -k f e ix'~ a(x, ~) f(~) d~. 
Rk 

We define pseudo-differential operators as convergent sums of operators arising 
from symbols which are nearly homogeneous in ~e and often of fractional and 
negative degree. Thus the class of differential operators is enlarged to include 
fractional integration. Some authors study larger classes of operators arising 
from more general symbols. We have chosen the simplest definition consistent 
with our needs. 

3.1. Definition. A pseudo-differential operator (or Calderon-Zygmund operator) 
in R k of order m E R is an operator 

A :  C~(Rb--> C~(Rb 

for which there exists a sequence 

am, a,n-I . . . .  E C~176215 k) 
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satisfying 

aAx, t~) = / a A x ,  ~), t > 1, l~I > 1, 

and such that, for each IER,  JE Z, we have 

./ 

(1) [[Af-- Y~ Op(am_i)f][i2 m+S+l ~ C ]If[I@ 
j = O  

for some constant C and for all fE  C~(Rk). We require that these aj have 
supports in x within a single compact set. The following lemma gives an example 
of an L q type estimate sometimes included in the definition of a pseudo-diffe- 
rential operator. 

3.2. Lemma. Let A be a pseudo-differential operator of order m E R. Then 
given q ~ 2 and a compact set K, there is a constant C such that for all f E C~ e) 
with support in K, 

I[ AfIILq_ m ~ C IlfllLq . 

Proof. Let 0 E C~176 k) be such that 

0 ( ~ ) = 0  if I ~ l < l ,  

0(~) = 1 if I ~ t >  2. 

Choose an integer J such that 

2 + 1 >  7 1 -  . 

We will view A as a sum 

(1) A = ~ Op(Oam_j) + A -- Op(am_j) + Op(b) 
j = 0  

J 

where b =  ~ . ( 1 - - O )  am_jEC~(Rk• k) has compact support in both 
j = 0  

variables. By a result of SEELEY [8, Theorem 1 ], there are constants Cj such that 
for all f E C~(Rk), 

(2) II Op(Oam-j) fllLq_m ~ Cj llfllLa__j ~ C 1 I[fllLq. 

Also, for all f E  C~~ with support in K, we obtain with the help of Theo- 
rem 2.4 

l (am_j) f LO_m 

J 
(3) A f  - ~.~ Op 

j = O  

~ C '  A f - -  ~Op(am_j) f~2_m+kfl  2 ~ 
j = 0  2 \ q/ 

<: C" IIfl[z 2 k 2 (by 3.1(1)) = - ( ~ + ,  + - e ( ' - q )  

< C" Ilfll/= (by choice of J)  

C ' "  IlfllLq �9 
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Finally, for all fE  Coo(R k) with support in K, 

[[ Op (b)f[ILL m ~ ~ [1D~(2~)-k f e~.~b(x, ~) f(~) d~ [[zq (by 2.3(2)) 
[~xl<--m+l  

~x=O 

K~ sup If D~,( dx* b(x, ~))j~) d$l, 

where the supremnm is over < - m  + 1 or ~ = 0, x E R k. Hence by 
H61der's inequality 

(4) [I Op (b) fllL~ m <: 1';1 [sup 1[ D~,(e ix* b(x, ~))ILL2] Ilj'l[r2 

K2 IIfllL~ �9 

Combining the above results proves the lemma. 

3.3. Pseudo-differential operators on manifolds. Let eg be a compact Coo 
manifold of dimension k. By a local coordinate neighborhood we mean an open 
subset of ~#/identified with an open subset of R k by means of a Coo bijection with 
a C ~ inverse. We say that A: Coo(J//)~ Coo(Jg) ia pseudo-differential operator 
of order m on d / i f  for every local coordinate neighborhood U and for every 
pair of Coo functions ~0, ~o supported in U 

f ~--> o~A(~f), f E C~(Rk), 

is a pseudo-differential operator of order m on R k. 

3.4. The Laplacian. Let ~ '  be a compact, connected C ~176 Riemannian manifold 
of dimension k. We denote by d the Laplace-Beltrami operator on J / ,  which in 

82 
normal coordinates at a point is simply ~ ~-~x/2. P is the operator of projection 
onto the space of constants; that is 

t ,f=j7 j 1 
P -- A is a normal, second order, elliptic differential operator with positive eigen- 
values ~,1 = 1, 0 < 22 :~ 2a =~ "" corresponding to C ~ eigenfunctions ~ (con- 
stant), ~2, Ca . . . . .  which form an orthonormal basis for L2(.At'). By a result of 
H6RMANDER [4, Theorem 1.1], the function 

e(x, y, 2) = y~ ~bi(x) r 

satisfies (for some constant C~) 

(1) e(x, x, A) = C1A ki2 + O(~(k-1)t2), 

uniformly in x. Integrating over ~g yields 

y~ 1 = C2 2kl2 + 00.(k-1)/2), 

from which one obtains positive constants %, Ca such that 

(2) C3 m2/k ~ ~m ~ C3 m2lk" 
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Now by (1) and (2), there is a constant (74 such that 

M 

II Cm lifo ~ C4M, 
m = l  

so that for 6 > 0 ,  

(3) 

343 

I[ Cm[l~0 m - l - a  < oo. 
m = l  

Using a technique of S~LEY [7] we can define (P -- A) ~ for negative s as a 
pseudo-differential operator of order 2s, via the formula 

i 
(4) A" = ~ / 2~(A -- 2)- '  d2, 

where 2 is a complex variable a n d / '  is the curve beginning at -- oo, passing along 
the real axis to a small circle about the origin, then clockwise about the circle, and 
back to - -o~ along the real axis. Note that 

(5) (P -- A) ~ r ---- 2~r 

4. Approximation 

We prove that equicontinuous families of functions on the manifold dr can 
be uniformly approximated by linear combinations of a finite set of eigenfunctions 
of the Laplacian (Theorem 4.4). In applications this result reduces measure 
theoretic problems to the manageable finite dimensional case (cf. [17, 1.3]). The 
proof requires some estimates on norms of the eigenfunctions (Lemma4.1), 
which later play a vital role in the construction of measures on function spaces 
(Chapter 6). 

In what follows ~ is a compact, connected C ~ Riemannian manifold of 
dimension k. As in (3.4), P - - A  has eigenvalues 2~---- 1, 0 < 22 ~ 23 _--< .. .  
and corresponding eigenfunctions r r . . . . .  Let {U~, 1 _< i <_ L} be a covering 
of  ~ /  by local coordinate neighborhoods identified with disjoint open subsets 
of R k. Let {g~: J#---~ [0, 1]} be a Coo partition of unity subordinate to {U~}. 
We identify a function f on de' with the function SZi f on R k. Notice that, given 
q, ~x, there is a constant C such that for all f 

(1) C-' llflrcq.~Rk ) ~ Ilfllcq.~(~ ) ~ C Ilfltcq.~(Rk>. 

4.1. Lemma. Given u~ R, pC (1,o~), q a non-negative integer, 0 <_ oc <_ 1, 
and e > O, there are constants C1, Ca such that for all ~ > O, 

(1) [I Cm IIL~<Rk) --<-- Ct mulk II Cm [[C O , 

and hence S IIr - l - e - ~ / k  < oo. Moreover 

(2) I] r ~ C2 m(q+~)/k 1[ r 
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Proof. By taking a smaller e if necessary we can assume that 0 < o~ < 1. 
Now for some constant C~, we have by (3.4(4)), (3.3), and (3.2), 

II ~mUZ2~m IIL~ = l[ (P -- A)-u/2 ~m IILu~ (by 3.4(5)) 

i,]~= l Zi~m L p u 

L 

= zj(P --  L1) -~:2 C; ~ IlZi~m[IL" 
i = l  

L 

<: C~' ~ IIZi~mIlCo(Rk) (for some constant C~') 
i=l 

it 
C1L I[ ~m [Ico<~). 

Therefore by (3.4(2)) 

II ~ lilt --<- ZC~ '~/2 II ~ Ilco<~) <---- Cl mu/k II ~bm [Ic ~ , 

for some constant C1. The second inequality follows from (3.4(3)), proving (1). 
Furthermore, if p > k/e, the Sobolev Embedding Theorem 2.4 shows that there 
is a constant C~ such that 

II (~m Ilcq,~> <---- C~m (q+~)/k II ~ IIco. 

Hence by 4(1), (2) holds for some constant C2. 

4.2. Lemma. For any B E L2(J/), put 

am = f B(t) q)m(t) dt, 
.1/ 

so that in the L u norm 

(1) ~amdPrn --~ B .  

Given e > 0 and nonnegative integers u, r < u -- k, there is a positive integer N 
such that 

B - -  m=l~bmcr~e[lBl[cu" 
for all B E C u. 

Proof. Choose d > 0  such that r < u - - k - - d k .  

l am I ~ f I B(t) qbm(t) I dt 
. /r  

C3 fiB(t)4~m(t)ldt 
Rk 

:< C3 [IBllLu 2 [[~bml[zLu 

(for some constant C3) 

(by 2.3(3)) 

C4 IlBllc.<~)II 4'mllco m -~:k 
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for some constant C4, where we have used (2.3(2)), (4.1(1)), and (4(1)). Conse- 
quently, by (4.1(2)), there is a constant C5 such that 

II am~m Ilcr<dO ~ Cs 11 BIIcu~) II t~m [120 m-~lkmrlk 

<= C5 Ilnllo,<dO [[r 2~ m - 1 - ~ .  

Hence by (3.4(3)), (1) holds in the C r norm. If  we choose N so large that 

C 5 ~.~ [[~mll2o m -1-~ ~ e, then 
N+I 

B ~1 amdPmcr ~+lamdPmc r - --< -<- e Ilnllc.. 

4.3. Lemma. Let H be a set o f  equicontinuous functions: .t[ ---> R ~ and suppose 
u E Z +. Given ~ > O, we can f ind a constant C with the property that, for  any 

h E H, there exists an element frE C~(J#,  R n) such that 

Ilh - hllco < 1 and II/~[[c, _--< Cllhllco. 

We omit the proof, a standard regularization argument. 

4.4. Approximation Theorem. Let H be a set o f  equicontinuous functions: 
.1[ ---> R n. Then given ~ > 0 we can f ind a positive integer N with the property 
that, for  any hE H, there exist constants al, a2 . . . . .  asE R n such that 

h -- ,n=I ~ amcbm co ~ n max {l[hllco, 1). 

This result follows easily from (4.2) and (4.3). 

5. Geometric preliminaries 

After presenting the most basic concepts of geometric measure theory, namely 
measures and rectifiable sets, we introduce the concept of mass minimizing 
surfaces. In general we follow the notation of FEDERER'S treatise [14] and our 
previous paper [17]. 

5.1. Measures [24; Sections 7, 10, 11], [14; 2.1.2, 2.2.1, 2.2.3]. A Borelmeasure 
on a topological space X is a countably additive function 

4~: {Borel subsets} --> [0, c~]. 

Associated to ~b there is a countably subadditive outer measure defined on all 
subsets of X, called Borel regular measure. Examples of Borel regular measures 
on R" are Lebesgue measure .LP" and, for any nonnegative real number m, m dimen- 
sional Hausdorffmeasure ~ m  [14 ; 2.10.2]. The Hausdorff dimension of a nonempty 
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subset E of R n is given by 

inf (m ~ 0: ~m(E)  = 0}. 

A measure ~ is called a probability measure if ~(X) = 1. 

5.2. Rectifiable sets [14; 3.2.14]. Let E (  R n and m e g  +. Then E is ~ m  
rectifiable if ~m(E)  < oo and if ~ffm almost all of  E can be covered by countably 
many images of bounded subsets of R m under C ~ maps. 

5.3. Lemma. Let W be an ~,~m rectifiable measurable subset of  Rn ~_ R~-V • R ~, 
with m ~ v. I f  ~ m ( w )  : O, then for ~ "  almost all z E R ~ we have 

~,~m-~(t E R n-v: (t, z) E IV} : O. 

Proof. This is a special case of [14; 3.2.22(3)] with # = v, Z = R', f a 
projection, and g = 1. 

5.4. Jacobians [14; 3.2.1]. Suppose ~ is a k dimensional C ~ Riemannian 
manifold and f E  C1(~  ', Rn). For  a E Jr we introduce the mappings 

Df(a) : Ta,~g -+ R ~, 

A~Df(a): AkTaJg -+ AkR ~, 

where T, and A k have the meanings of [14]. Put 

J k f ( a )  = [[AkDf(a)[[. 

Then the area formula [14; 3.2.22] holds: 

(1) f Jkf(X) d~k(x)  = f card ( f - l ( y ) )  d~,~ffk(y). 
�9 g Rn 

5.5. Mass minimizing surfaces [14; 4.1.24, 4.2.26]. In R" we introduce the 
space Ik+I(R" ) of oriented k -k 1 dimensional surfaces, called integral currents, 
and the corresponding space I z t n ~  of unoriented surfaces, called flat chains k + l k  ~ ] 

modulo two. There is a continuous boundary operator 

a :  l'k+ 1 ~ I~,  

a: I~, 2 + 1  __> 2 

and a lower semicontinuous mass function 

M: Ik+ 1 ~ [0, oo), 

M: I = [0, cx>) k k l  - ->  

which gives the area or volume of the surfaces counting multiplicities [14; 4.1.7]. 
Associated with any surface SE Ik+l (or Ik2+l) there is the set spt S ( R ~. The 
surface SE 2 . . . . .  2 I~+1(Ik+1 ) is mass mmtmtzmg if, whenever S 'E Ig+1(I~+1) and 
a S '  = aS, we have 

M(S') ~ M(S).  
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If  BE Ik(I 2) and 'aB = 0, then there is a mass minimizing surface SE ~k+l(Ik2-t-1) 
with aS ---- B. If  a portion of spt S is a C 2 manifold viewed as the graph of  a 
C 2 function 

U: U-+ R n-k,  

where U is a domain ill R k, then u satisfies the minimal surface system [19, Theo- 
rem 2.2] 

k 
(1) 6'Ju,j = o,  

i,j=l 

where subscripts on u denote partial differentiation, g;y : ~j + u~ �9 uy, and G ~j 
is the corresponding matrix of  cofactors. 

5.6. Interior regularity [15], [13], [6, Theorem 6.7.6]. If  S is a mass mini- 
mizing surface in R n, then spt S -- spt aS is an analytic manifold except for a 
set E where 

2 (1) if SE ]'~+1, then Hausdorff dimension E ~ k -- l, 
(2) if SE Ik+1, then  a~k+l (E)  : 0, and 
(3) if SE I~_1, then Hausdorff dimension E ~ n -- 8. 

5.7. Boundary Regularity Theorem. Suppose that 

(1) SE It,+1 (or I~+1) is mass minimizing, 
(2) aS corresponds to a C q'~ manifold d /  with q >= 2, 0 < oc < 1, and 
(3) spt S is a C 1"~ manifold with boundary at a point b E ~//. 

Then spt S is a C q'~ manifold with boundary at b. 

Proof. Locally we may view the mass minimizing surface as the graph of a 
function u satisfying the minimal surface system (5.5(1)) at interior points. In 
particular each component of u solves an associated linear Dirichlet problem 
which arises by viewing the G ij as given C ~ functions. We infer from the estimates 
of  Schauder [5, Chapter 3, Theorems 1.1, 1.2] that u is of class C2'L In turn G ii 
is of  class C I'~, and hence u is C 3'~, etc. 

Remark. By a result of  ALLARD [12; 5.2, 4], conditions (1) and (2) imply (3) 
for certain b E de', including all b in a neighborhood of the point of dr' farthest 
from the origin (cf. [17, 6.2]). 

6. Measures on spaces of surfaces 

We give a very simple construction of a class of probability measures on the 
space ~ o f k  dimensional surfaces in R", which generalize n dimensional Brownian 
motion to an arbitrary smoothness class and its domain to a compact manifold 
of  arbitrary dimension. The useful properties of these measures include the posi- 
tivity of every open set and a product decomposition. More delicate estimates 
(Theorem 6.3) select a canonical measure (6.4). which fits narticularlv well into 
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the theory of  abstract Gaussian measures as generalized by L. SCHWARTZ (6.7). 
Finally we present in (6.8) another useful notion of "sets of measure zero" due to 
J. P. R. CHRISTENSEN. 

6.1. Construction of the measure. Let n, k be positive integers. Let Jg  be a 
compact, connected, k dimensional C ~ Riemannian manifold, let A denote the 
Laplacian on .,g, and let P denote projection onto the space of constants. Let r 
(constant), r Ca . . . .  be the eigenfunctions of P -- A, normalized with [[ r = 1, 
with corresponding eigenvalues 2~ = 1, 0 < 22 < 23 =< . . . .  Finally, let 0 
o~ =< 1, and let q be a nonnegative integer (which in geometric applications will 
be at least 2). We consider as the space of surfaces cg the closure of Cooin Cq'~(.//, R~). 
cg is a separable Banach space since by (4.2) finite rational linear combinations 
of the r are dense. If  a = 0 t h e n  ~ = C q ;  but if 0~>0,  

c ~ , ~ e ~  L/ C"~. 
rWv3>q+cr 

Let .L# n denote Lebesgue measure on R ~. Define the Gaussian probability 
measure ~ on Borel sets E by 

ff~(E) : (2~) -~/2 f e -Ixl:12 d~nx .  
E 

Note that 

1) E(x 2) - f x ~ d~"x = n .  

we may introduce the product Borel measure Hff  ~ on f i  R" (cf. [24, Chapter 7]). 
Choose a weight function m=1 

/~: Z + ~  R + 

such that, f o r / / ~ n  almost all (B~, B2 . . . .  ) E l-JR ~, 

2) ZBmCm/fl(m ) 

converges in cg (or more generally such that the image of the map T below has 
measure one). This can be accomplished easily by taking fl(m) = I[ Cmllcq,~ mS; 
cf. (6.3) and (6.6). Define the continuous linear injection 

T: cg ~ H R  ~, 

"r:  B'--> (B1, B z . . . .  ) ,  

where Bm = fl(m) f B(t) Cm(t) dt. By (1), 
,1[ 

Hff"(image T) = 1. 

Since T gives an isomorphism between the Borel a-algebras of c~ and Y(ff) [14; 
2.2.10], the measure/-/if" induces a Borel probability measure ~ on c~. The measure 
has the following nice properties: 

6.2. Theorem. The following results hold: 

(1) ~ is invariant under rotations of  R n. 



Measures on Spaces of Surfaces 349 

(2) Let f E ~ and suppose Y f  is square summable (such functions are dense 
by 4.4). Then the translation of  t z by f is absolutely continuous with respect to #. 

(3) Open sets have positive I z measure. 

Proof. (1) holds for # because it holds for c~,. One verifies (2) by applying 
KAKUTANI'S criterion for the absolute continuity of infinite product measures 
[27]. To prove (3), consider the countable set Foff ini te  rational linear combinations 
of  the eigenfunctions ~b m of  the Laplacian A. If  (3) fails, there is an e > 0 and a 
function ff E F such that 

(4) ff{fE ~:  I I f -  < = o. 

By (2) it follows that (4) holds for all cb E F, and we have a countable cover of  
cg by sets of  measure zero. This contradiction of the condition p(cr ___ 1 proves 
(3). 

The product decomposition. As in [17, 4.4], we can view cg as a product of meas- 
ure spaces 

((~, [A) = ((0ON, ~-gN) X ( ( ~  #N),  
where 

~gN = {B E eg: a l  . . . . .  B N = 0}, 

We make the key observation that, by Fubini's Theorem, 

(5) a Borel subset E Q ~ has measure zero if, for some finite set of  natural 
numbers (ml, m2 . . . . .  raN} and for all B E ~, we have 

{ N } 
,~nN (al . . . . .  aN) E R"Xr B + Y~ aidPmi E E 

i=1 
= 0 .  

This result will prove to be a powerful tool in the applications of Chapters 7 
and 8. 

6.3.  Theorem. Let q be a nonnegative integer, let 0 ~-- o~ ~_ 1, c > 0, r > 
(q -b oO/k Jr 1/2, and suppose fl(m) >: cm r. Then for Ilfg n almost all (B1,112 . . . .  ) 
E IIR", 

(1) ~,Bm~b.,/fl(m) 

converges in ~. 

Proof.  Choose I < p < ~ ,  u E R such that 

q + o~ + k/p < u < k(r -- 1/2). 

Then by the Sobolev Embedding Theorem (2.4) and (4(1)), it suffices to establish 
convergence in L~(Rk). Bv a theorem of DELPORTE [21. Cor. 6.4Bl. which aDDlies 
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to L p spaces and hence by (2.3(1)) to Lu p spaces, this is the case if we can show that 

Ell BmCkm/fl(m) N2Vu < c~, 
m = l  

or equivalently by (6.1(1)), that 

,v,([[ r I[LvJfl(m)) 2 < oo. 

But this follows from (4.1(1)) because fl(m) >= cm r and u < k(r -- 1/2). 

Remark. If  ~g is real analytic, so are the eigenfunctions qbm, and fl(m) = e -m 
produces a measure on the space of  analytic maps: d / ~  R n. 

6.4. The canonical measure. A canonical choice for the measure # is given by 

fl(m) = 2~m 

where s > (2q + 2o~ + k)/4. It is clear from (6.3) and (3.4(2)) that B satisfies 
the condition (6.1(2)). In this case the map T is given by 

am = f f ( e  -- A) s ~m, 

which is well defined for any smooth orthonormal basis (q~m} for L2(J/).  The in- 
duced measure is independent of  the choice of basis, as may be verified by a direct 
probability argument or by more abstract methods (cf. e.g. (6.7) below). 

6.5. Brownian motion. We note that the canonical measure (6.4) generalizes 
circular Brownian motion to an arbitrary smoothness class and its domain to 
a compact manifold of arbitrary dimension. Indeed, one obtains the trigonometric 
expansion for Brownian motion on the circle (el. [17, 4.7]) 

(1) :gll2B(t) = X 0 + ~ Xm m-1 cos mt +'Ym m-1 sin mt 
m = l  

by taking ~ = S ~, with eigenfunctions of P -- d {1, cos mt, sin mt}, eigen- 
values {1, m 2, m2}, and q = 0, s = 1/2, o~ < 1/2. (The usual Brownian motion 
on the real line involves an inconsequential modification.) Theorem 6.3 gives the 
sharp result that the series (1) converges almost surely in the C ~ norm 
(0 ~ e < 1/2), stronger than the usual statement that the series converges uni- 
formly to a C ~ function, almost surely [25]. 

We remark that, taking as the domain of our process a compact manifold 
rather than a Euclidean space, imposes an additional demand that the process 
fit together globally: e.g., circular Brownian motion must return to its origin 
after 2z~. For  such a construction local methods do not suffice. 

6.6. The weight function ~. As indicated by Theorem 6.3, the choice of the 
weight function/5 is intimately related to the smoothness class on which the result- 
ing measure is concentrated, often quite finely. We have already mentioned 
that Brownian motion is concentrated on  functions which are (-~ --e)-H61der 
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continuous for all e > 0. In fact, it is known that (putting log log ---- log2, etc.) 

- 1 ] /  1 3 1 1 1 
[ B ( t ) - - B ( O ) ] < = l / 2 t ~  V l ~  + -2-" I~ -7- + l ~  + "'" + (1 + t~) log,- 7 

for small t, almost surely if ~ > 0 and almost never if ~ = 0l (cf. [26, 1.8]). 
Of course, for geometric problems, the wide dispersal of the measure in a geometric 
sense (6.2(3)) is of first importance. Nevertheless, it is satisfying to know that, as 
we would expect, the geometric measure theoretic results of Chapters 7 and 8 
are independent of the precise smoothness class, in that they hold for arbitrary 
admissible choice of the weight function ft. 

6.7. Abstract Gaussian measures. The canonical measure (6.4) fits particularly 
well into the theory of abstract Gaussian measures (cf. [28]) as generalized by 
L. SCHWARZ. Given ~g as before, choose s > (2q + 2~ + k ) /4  as in (6.4). Now 
choose 0 < ~ <  1/2, l < p < o o  such that 

v -~  2s - -  k /2  - -  ~5 > q +  ~ + k i p .  

Consider the composite continuous linear map 

U: L2(~/ ,  R n) ( P - A ) - k l 4 - ~ -  L ~ ~ L p 

(P--A)--vl2 -4 L~ " : rg. 

By (3.4(4)) and (3.2), ( P  - -  A )  -v12 maps L p into L~, and ( P  - -  A )  -k14-~ maps L 2 
into 2 C0,2~ ( LO, _- Lk12+2~ ( . The inclusion L~'  rg follows from the Sobolev 
Embedding Theorem 2.4. Now according to the terminology and theory of 
SCHWARTZ [30], the map u is p-summing because the inclusion L ~176 ~ L p is 
p-summing and the composition of continuous linear maps is p-summing if one 
of them is. Therefore [30, Theorem 2.3, Proposition 2.7, Proposition 2.8] Gaussian 
cylindrical probability /" on L 2 induces a Radon measure #'  of order p on cg. 

We claim tha t / , '  equals the canonical measure # of (6.4). To prove this we 
consider the composite map 

"~ o U: L 2 -->" I ~ R  n 

: ~bm-+ (0, 0 . . . . .  lm . . . .  ) .  

One notes that, via Y o u, F induces the measure/Tfg" on I I R  n (it suffices to 

verify equality on Borel sets of the form E•  R ", where E ( R ~ . Thus 
# '  = # .  M+I 

The abstract approach of SCHWARTZ shows immediately that the canonical 
measure # of (6.4) is independent of the choice of a smooth basis for L z. It also 
implies that/~ has order p for all p < oo, namely 

f f  [Ifll~q,~ d# < ~ .  
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6.8. Christensen zero sets. J. P. R. CHRISTENSEN [20] has proposed for any abe- 
lian "Polish" group G a good general notion of a "set of  measure zero", although 
there is no associated measure unless G is locally compact. 

Definitions. A topological group G is called Polish if G is a complete, separable 
metric space. A Borel subset A of  an abelian Polish group G is a Christensen 
zero set if  there is a Borel probability measure ~, on G such that every translate 
of  A has v measure zero. A property which holds outside a Christensen zero set 
is said to hold almost everywhere. 

Theorem [20]. The following results hold: 

(1) The class o f  Christensen zero sets is translation invariant. 
(2) I f  G is locally compact, then the Christensen zero sets are precisely the sets o f  
Haar measure zero. 
(3) A countable union o f  Christensen zero sets is a Christensen zero set. 
(4) (A partial Fubini Theorem). Suppose G : H •  T is the product o f  two abelian 
Polish groups, T is compact, and A is a Borel subset o f  G. Then A is a Christensen 
zero set i f  and only i f  the Haar measure o f  

{(h, t)E A: h = ho} 

is zero for  almost all ho E H. 

Remark. Although we know of no general relationship between Christensen 
zero sets and our sets of  measure zero (6.1), properties (2)-(4) suffice for the proofs 
of  this paper. All the results o f  this paper hold as well when "almost all" is under- 
stood in the sense o f  Christensen zero sets. 

7. Mass  minimizing surfaces 

As the first application of our measure on the space of  surfaces we prove that 
almost every k dimensional, compact,  connected manifold in R" bounds a unique 
unoriented mass minimizing surface ("Theorem" 7.1), notwithstanding the examp- 
les of families of  manifolds which bound two or more mass minimizing surfaces 
(cf. [17, Intro. ]). This theorem generalizes our earlier result for two dimen- 
sional surfaces in R a [17, "Theorem"  7.1]. The largest change in the proof  invol- 
ves a lemma (7.2) on uniqueness for the Cauchy problem for a second order 
elliptic system of partial differential inequalities with merely C 1 coefficients, to 
be applied to the minimal surface system. 

Let n, k be positive integers with k <= n - -  2. Let ~ '  be a compact,  connected, 
k dimensional C ~ Riemannian manifold, qE Z, 0 _< ~ <_ 1, q -k- o~ ~ 2. As 
our space of  boundaries we consider the set 8 of  embeddings 

8 = {B E Cq'~(Jg, R"): JkB > 0 and B(s) = B(t) ~ s = t}. 

Since 8 is open, (6.1) gives a nonzero measure # on 8. Associated to every B E 
is a fiat chain modulo two and, if d4 is oriented, an integral current, both of  which 
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we shall also denote by B. The following theorem extends our previous results 
for mass minimizing hypersurfaces in R 3 [17, "Theorem" 7.1] to arbitrary di- 
mension and codimension. 

7.1. Theorem. Almost every BE 8 bounds a unique mass minimizing flat chain 
modulo two of  dimension k + 1. I f  ~g is oriented and k : n -- 2, then almost 
every B E 8 bounds a unique mass minimizing integral current. 

Remark. The restriction to hypersurfaces for integral currents stems from the 
current lack of regularity results in higher codimensions (cf. (5.6)). To remove 
the restriction, it would be enough to know that the set of interior singular points 
of  a k + 1 dimensional mass minimizing integral current (where its support fails 
to be a C ~ manifold) has d/f ~ measure zero. 

Proof sketch. In general, the proof proceeds as in [17, 1.2, Chapt. 7]. Some more 
judicious approximations center on the new Approximation Theorem 4.4 (cf. 
[17, 4.6]), but the major change occurs in the use of partial differential equation 
theory to show that (cf. [17, "Theorem" 5.1]) 

(1) two mass minimizing surfaces with the same manifold as boundary, which are 
tangent C 2 manifolds with boundary in some open subset of  the boundary, coincide 
locally. 

The old technique, employing the Legendre transformation, does not generalize 
to higher dimensions or codimensions, while the more general alternate method, 
following ARONSZAJN, requires stronger smoothness assumptions. 

The lemma below, a modification of work of HOgMANDZR, when applied to 
the minimal surface system (5.51), implies (1). Then, for fiat chains modulo two, 
global equality follows by regularity (cf. the remark above). 

7.2. Lemma (cf. [3, Thm. 8.9.1]). Let P be a second order elliptic differential 
operator with real C 1 coefficients in a neighborhood Q of  a point x ~ Let ~? E C2(Q) 
have a nonvanishing gradient. Then there is a neighborhood QI of  x ~ with the 
following property: i f  u 0), u(2), . . . ,  u CO E C2(Q) vanish on (x ~ Q: ~p(x) > ~v(x~ 
and satisfy 

(1) ]puCJ)[ <:K1 ~ [Oau (i)] (1 :< j<= I) 
Icq_~l 

for some f ixed constant K1, then u Cj) [ Qt : 0 (1 ~ j ~ l). 

Proof. First we note that (1) implies 

(2) i puCj) [2 ~ lK 2 ~ [D~u(O 12 (1 <= j < l). 
i~l <1 
l < i ~ l  

Moreover, any C z hypersurface is strongly pseudoconvex for a real elliptic differ- 
ential operator of  order two. Hence HORMANDER'S theorem [3, 8.9.1] and proof  
aoolv. As in that orooL we obtain a neighborhood ~2' o fx  ~ a function $ E Coo(Q'), 
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and an open set to, with the property 

(3/ (x E ~ '  --  (x~ if(x) => if(x~ Q to C (x E g2': ~p(x) > ~p(x~ 

and also such that for any v E C~(~2') and any r large the Carleman estimate 

(4) z ~ f [D~vl 2 e 2r~' ~ K 2 of ' IPvl2e 2~§ 
i~,l <1 t~' 

holds. 
Choose Z E C~(Q') such that Z equals 1 in a neighborhood ~2" of x ~ and put 

v O) : gu O) [ s ( j  = 1, 2 . . . . .  l). Then v ~ E C2(~ ') and v O) : u ~ in co kJ ~2", 
this set containing {x E 12': if(Z) ~ if(x~ �9 Hence there is an e > 0 such that 
if Q1 = {x E 12': ~(x) > i ( x  ~ -- e} then 121 C co U g2" and u ~j) I - -  v<, [ ~x. 
Summing (4) over all the v~ yields 

~ f ID%(J)[ 2e2~ 
I~1<1 t2x 
1 ~ j ~ l  

<= K2 E f I Pv(j) l 2 e2r* q -  K 2  E f I PvO) I 2 e2~* 
l ~_j~l o t  l ~ ] ~ l  D'-- DI 

<: 12K2K2 Z I D~v(j) ]2 e2~, q_ K2 Z f I Pv(j) 12 e2~§ 

1 <j~_l 

by (2), since v~ D1 = u~ DI. Thus if ~ > 212K~K2, 

(3 - 12K2Kz) Z f I D v~ e2*(*(x~176 
Ic, l_~! .0: 
1 < j ~ l  

=< K2 Z f [Pv~176176 
1 ~ j ~ l  D'-- D1 

and hence 

Z f ]D%O)IZ<2K=~- 'Z  f Iev~ 
lal<l O~ l ~ j ~ l  O'--.Q 1 
l < j < l  

Letting z - +  c~, we conclude that u I S2~ = v ]Q~ 0. 

8. Transversality and immersions almost everywhere 

As a second application of our measure on the function space c~ = cq(~g, R n) 
we prove some generic results about embeddings, immersions, and transversality. 
For  example we shall obtain the following conclusions. 

(8.2) I f  n >: 2k (where k ----- dim dr') and q >: 2, then almost every B E 
is an immersion. 

(8.9) I f  n > 2k and q > 2k, then almost every B E c~ is an embedding. 

As usual, corresponding transversality results are based on Sard's Theorem. 

8.1. Definitions. Let n, k, q be positive integers, with q ~ 2. Let J / b e  a com- 
pact, connected C ~ Riemannian manifold of  dimension k. Put  

= Ca(.,//, R"). 
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with measure/z as defined in (6.1). Let Jr be the subspace of  immersions 

and let g be the subspace of  embeddings 

g = (BE J :  a ( s )  = a(t)  s = t } .  

Now suppose eft is a manifold and F E  Cl(vff,  Rm). An element aE R ~ 
is a regular value of  F if DF(t)  is surjective whenever F(t)  = a. Two submanifolds 
eft1, ./V'2 of R ~ intersect transversally (vV'l &uV'2) if T~vV" 1 + T~vV" 2 = R" 
whenever x E eft1 {5 vV'2. A submanifold vV" of  R ~ intersects B E cg transversally 
(el/" A~ B) if im DB(t)  + Ta(ovl/" = R ~ whenever B(t)  EvV'. An immersion 
B E ~r intersects itself  transversally (B d~ B) if im DB(s) + im DB(t)  = R ~ 
whenever B(s) = B(t)  for s =~ t. 

8.2. Theorem. I f  n ~ 2k, then almost every B E ~ is an immersion. 

The proof  requires the following lemma. 

8.3. Lemma. Let  t E ell. There is a sequence o f  integers 1 ~ 11 ~ I2 < . . .  
�9 .. < lk <= N such that {r } gives local coordinates for  J [  at t. The integer N is 
independent o f  t. 

Proof. Assume for contradiction that the lemma is false. Then for all N there 
is a point t s E J// and a vector ~e N E TtN.dg such that 

(D~bi(tN), ~N) = O, 1 <-- i <-- N .  

Then by compactness there is a point too E ~ '  and a vector ~oo E Too.// such-that 

(Oebi(too), ~oo) = O, i = 1, 2, 3 . . . . .  

It follows by Lemma 4.2 that (Df(too), ~oo) = 0 for every sufficiently smooth 
function f ,  which is impossible. 

Proof of Theorem 8.2. It suffices to show that every point of ~ has a neigh- 
borhood Jff on which almost every B E r is an immersion. By Lemma 8.3, for 
every r E J/ '  there is a neighborhood JV" of  r (parametrized by a C 1'I diffeomor- 
phism s from an open set U ( R k onto Jff) and a sequence 1 =< I1 < / 2  < .. .  
. . .  < I x such that (~bli} gives coordinates on vV'. 

By (6.2(5)) it suffices to show that, given f E  cg the expression 
k 

g = f q- ~ Blight , 
i = 1  

is an immersion on vff for s almost all (B11 . . . . .  B1 k) E (R") k. Put 

W -~ ((x, B ,  . . . . . .  B ,  k) E U x  (R") k I Jk(g ~ s) ---- 0}. 

By Lemma 5.3, it now is enough to show that W is ~r rectifiable, with 
. ~"k(W)  = O. 
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In turn, therefore, the proof  will follow if we show that the set 

nk. 8g 
= (x, B, . . . . . .  ~ , )  E U•  ( R )  . 8~--~j (s(~)) 

} is a linear combination of the , l 4 =] 

is jf , ,k rectifiable with o~k(wj )  = 0, because IV = kJ IV]. To this end, assuming 
for convenience t ha t ]  = k, we consider the map 

F: U• (R") k-1 • R k-1 ~ U• (R')  k 

F: (x; al . . . . .  ak-1; ~xl . . . . .  ~Xk_l) ~ (X; B1 . . . . . .  B/h), 

where 
of 

BII = a I - -  ~ i  l (S(X)), 1 <-- l ~ k -- 1, 

of B,k= 

N o w F i s a C  ~ map from a subset of  R", where # - - k + n ( k - - 1 ) + k - - 1 .  
Obviously # --__ nk - -  1 since n ___> 2k. Furthermore we observe that the image 
of  F contains tVk. Therefore Ivk is o~gnk rectifiable and o~nk(Wk) = 0 [14, 2.10.11 ]. 

8.4. Sard's  Theorem [14, 3.4.3]. Let dip be a C m manifoM of  dimension p. Let 
f E cm(uff , Rq). I f  m > p -- q >= O, then almost every point in R q is a regular 
value o f f .  

8.5. TransversaHty Theorem (cf. [16, p. 68]). Let X, Y, Z be C m manifolds with 
d i m X = l  and Z (  Y. Let F E C m ( X x R  q ,Y)  and suppose F ~ Z .  I f  m > 
l >= O, then for  ~ q  almost every s E R q we have F(., s]) d~ Z. 

Proof. Because F J,  Z it is evident that W = F-I (Z )  is a C m submanifold 
of  X. Let z~:X• R q denote the projection map. Since zlE cm(w,  Rq), 
Sard's Theorem shows that almost every s E R ~ is a regular value for re, and one 
checks that F(., s )d ,  Z for every such s. 

8.6. Theorem. Let JV be any submanifoM of  R' .  I f  q > k, then almost every 
B E cg intersects ~# transversally. 

Proof. For  fixed CE (~, consider the C k+l map 

F: dr' x R ' - ~  Rn 

F: (t, a) ~ C(t) + a41(t). 

Since 4~1 is constant, DF is always surjective, and hence FJ~JV. By (8.5) we have 
C + a4h ~ W  for ~ "  almost all aE  R' .  The result now follows by (6.2(5)). 
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8.7. Theorem. I f  q > 2k, then almost every B E J intersects itself transver- 
sally. 

8.8. Lemma. Given ~ > O, there is a positive integer N such that 

(~b,(s) . . . . .  ~bs(s)) ~ R(~bl(t ) . . . .  ,4~u(t)) 

whenever I s - -  t I ~  O. 

Proof. Assume for contradiction that the result does not hold. Then there are 
sequences sj, tj such that [sj --  t j [ ~  O and 

(r (~) . . . . .  cbj(sj)) E R(cb,(tj) . . . . .  dpj( t j ) ) .  

By compactness we can then find points s, t with [s --  t] ~ ~, r E R, such that 

ebj(s) = rcbfit) for all j E Z +. 

Consequently by the Approximation Theorem 4.4 we have f ( s )  = rf(r) if fE  C(d/), 
which is impossible. 

Proof of Theorem 8.7. Let C E J .  It suffices to show that there is an r ~ 0 
such that 

l i B  - CII  < r ~  B A r B  

for almost all B E J .  Choose a finite open covering Ui of J / / a n d  an r > 0 so 
that whenever lIB --  C[[ < r the following two properties hold: 

(1) B embeds t-)i = L/(Uj: Ui A Uj ~ ok) in R n, 
(2) If  U~ A Uj = r then dist(Ui, Uj) > 0. 

By (8.8) we may choose a positive integer Nwith the property that, if U; A Uj = 4,, 
s E U~, and t E Uj, then 

(3) ($1(s) . . . . .  ebN(s)) ~ R(f~(t) . . . .  , dPN(t)). 

Let A be in cg. For  N-tuples (at . . . . .  aN) in (Rn) N we put 

B = A q- ~ ai~bi. 
i~l  

By (6.2(5)) the proof  will be completed if we can show that, for almost every 
N-tuple (a, . . . . .  aN) the condition 

l ib  - -  CII < r 

implies B(Ui) ~ B(Uj). 
We define a C q map 

F: Ui• Uj•  lr Rn•  

F: (s, t, a) -~  ( S ( s ) ,  B ( t ) ) .  
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We note that the relation B(Uj)& B(Uj) is equivalent to the condition that 
F(- , . ,  B)d~ d (the diagonal of  Rn•  R~). Hence by (8.5) we must prove that 
Fd~/I. We show in fact that DF is always surjective. Indeed 

(DF(s, t, B), (0, O, bl . . . . .  bN) > -~ (~Wbid&(s), Zb,d&(t)), 

for (bl . . . . .  bar) E (Rn) N, and by (3) such combinations span Rn• R ~. 
As an immediate consequence of Theorems 8.2 and 8.7 we obtain the following 

result. 

8.9. Corollary. I f  n > 2k and q > 2k, then almost ever), B E cg is an em- 
bedding. 

Note added in proof. The results on generic uniqueness for minimizing integral 
currents of codimension one have been generalized from the area integrand to any C 4 
positive elliptic integrand T with constant coefficients (F. MOROAN, "Generic uni- 
queness for hypersurfaces minimizing the integral of an elliptic integrand with con- 
stant coefficients", Indiana U. Math. J. 30 (1981), 29--45). Furthermore, recent regula- 
rity results of ALM6REN seem to establish generic uniqueness for area minimizing 
integral currents of arbitrary codimension (cf. the remark following Theorem 7.1), 
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