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Preface 

If one derives the fundamental properties of solutions of the boundary-value 
problems for elliptic systems of partial differential equations using a variational 
approach, as was done, for example, in the book [1] of J. NEbAS, one realizes the 
important role of the coerciveness inequality (compare also [2]). Part I of this 
work presents some consequences of the coerciveness inequality, and yields the 
existence, uniqueness and continuous dependence of the solution upon the given 
data. 

In Part II, the general theory of Part I is applied to the linear theory of three- 
dimensional elasticity, where inequalities resulting from coerciveness have been 
called KORN'S inequalities and have been studied by KORN [3], FRIEDPaCHS [4], 
EYDUS [5], PAYNE & WEINBERGER [6], GOBERT [7] and others. We present here 
new proofs for the previous results and extend them to some mixed boundary- 
value problems with more general boundary conditions, in which displacements 
and tractions are prescribed in the normal and tangential directions to the bound- 
ary. The cases of elastic supports are also considered. 

1. Notation. Preliminary Definitions 

Let a Lipschitz* region f2 in N-dimensional Euclidian space En and positive 
integers m and xs, s = 1, 2 . . . .  m, be given. L2(f2 ) will denote the space of real 
functions which are square-integrable on f2 (in the Lebesgue-sense). W2~k)(t2) 
denotes the subspace of L2(f2) consisting of functions whose derivatives up to 
order k, in the sense of distributions, are in L2(f2 ). 

Let us introduce the scalar product on W2(k)(I2) by means of 

(1.1) (v, uh= Z ~D'vD'uclX, 
l~l ~k 

* We call a region ~2~E N Lipschitz if it is bounded and its boundary/'has the following 
properties: a) to each point XEF an open hypersphcre S x about X exists, such that the inter- 
section Sx t~Fmay  be described by means of a Lipschitz function, and b) SxN/'divides S x into 
exterior and interior parts with respect to 12. 
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where 0l~l 
D ~  

dx'?...Ox~ ~ 

Let W denote the Cartesian product f i  W~')(f2), and let two bilinear forms 
A(v, u), a(v, u) be given on W• W: ,=1 

(1.2) A(v,u)= S ~ Z a[]DivrDJus dX 
O r ,  s = l  li ~_x. 

j ~1r 

where a~ are bounded and measurable on 12, and 

~,  Kr--I f 
hr s o y  r ~ .  j , .  

(1.3) a(v,u)= I Z Z -,.-~-Cn, " u ~ . .  
r r, s= l i=Olel_~xs-1 

where b~ are bounded and measurable on the boundary F. Furthermore, let ~(12) 
be the space of real functions with compact support in f2 which are infinitely 

o o m o 

differentiable, let l?l'[2(k)(~r~) be the closure of ~(I2) in w~k)(12), and let W= I-[ W~')(12) �9 
O 

Let V be a closed subspace of W, such that W= V= W. Define 

m 

f(v) = I Z f~ vs dX 
~ s = l  

where fs~L2(12 ). Let g be a linear continuous functional on V such that g(v)=0 
o 

for wW. Moreover, let Uoe W. 

We say that u ~ W is a weak solution of the boundary-valueproblem if 

(1.4) u - Uo E V 

and if for each w V t h e  relation 

(1.5) A (v, u) + a (v, u) =f (v)  + g (v) 

holds. 

Let the operators N~v, mapping Winto Lz(f2), 1= 1 .... h, be given in the form 

N , v = ~  2 ntr,D'vr 
r = l  I~l_~xr 

where ntr, are bounded and measurable on f2. Suppose that these operators form 
a coercive system* on W, i.e., 

h 

(1.6) w W  ~ Z IINtvll2~ + ~ Ilvrl122>ellvll 2 ,  c>O. 
/=1 r = l  

We assume furthermore that 
h 

(1.7) w W  =~ a(v, v)>c • ]lNlvll2z, 
l = l  

(1.8) yeW =~ a(v,v)>O. 

* See the theorems of Section 3 for necessary and sufficient conditions for coerciveness. 
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2. Fundamental Properties of the Weak Solution of the Boundary-Value Problem 

Let us put 

and 
((v, u))= A(v, u)+ a(v, u), 

and denote by V]~ the factor-space of classes ~ = {v + p, v~V, pc ~} with the norm 

II~llv/~-- infl[v+ pllv. 

Theorem 2.1. Let the relations 

A(~, ~) = A(v, u), 
v ~  , u ~ f i  , ~,, f i~ V / #  , 

a (~, fi) = a (v, u), 

define two bilinear forms on V/~ x V/~. Let (1.6), (1.7) and ( l.8) hold. Then 
h 

(2.1) ((V, v))-> cl (~=llNtvl122+a(v,'v))>czl[vl12/a, 

holds for each ~ V / ~ .  

Proof. Suppose the contrary holds. Then there exists a sequence of dements 
~eV/~ such that 

II ~. II v/~, = 1 (2.2) 

and 

(2.3) 
h 1 

I = l  n 

Let V=K @~ be the orthogonal decomposition of V by means of the scalar pro- 
duct (see (1.1)) 

~(vs, u,)K,. 
s = l  

Denote by VK the orthogonal projections of v on K. We have 

II~.llv/~= lIv.I, IIv. 

As the immersion of W~l)(I2) into L2(f2) and L2(F), respectively, is compact and V 
is weakly compact, we can choose a subsequence of v,K (denoted again by V,K ) 

m 

such that V,K~V K (weak convergence), v,K --~VK in l--[ W<K:-2 1)(-f2) anda(v,K, V,K ) 
S = I  

a(v~, VK). Then (2.3) implies v~e~ and consequently v~ =0. By virtue of (2.3) and 
(1.6), V,K 4 0  in V, which contradicts (2.2). 

Theorem 2.2. Let the form ((v, u)) define the bilinear form ((~, fi)) for ~EW[~, 
fi~W/~, v ~ ,  u~fi. Let (1.6)-(1.8)hold. Then a necessary and sufficient condition 

for the existence of a weak solution of the boundary-value problem is 

(2.4) p e ~  =~ f (p )+g (p )=0 .  
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In this case the solution is determined except for an element p e ~ .  Moreover 

(2.5) Ilfill~,/~, ~ c(lluollw+ IlflltL21m + Ilgllv,). 

Let (v, u)w and (v, U)v be scalar products in Wand V, supplying norms equivalent to 

in W and V, respectively. Let Q and R denote the orthogonal complements of ~ in W 
and g, respectively, by means of these scalar products, and let u~, us be the corre- 
sponding orthogonal projections of u. 

Then we may choose uQ and u' =Uo + (u-Uo)s,  respectively, as the represen- 
tatives of ~, and 

(2.6) II%llw+ [lu'llw< c(lluollw + IIf[ItL2~ + Ilgllv,). 

Proof. The necessity of (2.4) follows from (1.5). If (2.4) is satisfied, let us seek 
a ~eV/~ such that 

((~, ~) )=F(~)  (2.7) 

holds for ~eV/~, where 

F (~) =f(v)  + g (v) - ((v, Uo)). 

The condition (2.1) enables us to use the Lax-Milgram theorem. Hence there exists 
a unique element ~ which satisfies (2.7). Evidently, any element u of the class 
fi =rio + ~ is a solution of the problem. The remaining part of the theorem is 
obvious. 

Remark I. Let us take (v, U)v=(V, U)w for v, n e e  Then applying this scalar 
product to the orthogonal decomposition of IV, we obtain 

W = ~ ) Q = ~ R ~ D  
and consequently, 

u'=uo + Ua-UoR=Uoa + Uo~,+ u-ua-uz~=u~+ uo~,+(Uo--U)a=u~ + Uo~,. 

Let 
A (v, u) = A (u, v), 

h 

O< A(v, v)<c z IIN~ vI122 
/ = I  

hold for yeW. Then a necessary condition for the existence of a solution is 

(2.8) p e ~  A =~ a(p, u)=f(p)+ g(p). 

Remark 2. Put 
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In fact, the assertion follows from (1.5) when we note that the Schwarz ine- 
quality for A(v, u) implies A(p, u)=0. 

Theorem 2.3. Let (1.6)-(1.8) hold and let p~eV', i=1, 2 ... .  r be a system of 
linear continuous functionals on V such that 

h 

veV, ~ [[Ntvllz2,+a0,, v)+ ~ (p , ( t ) )2=0 =~ v=0. 
l = l  i = 1  

(2.9) 

Then 

(2.10) 
h 

E I]~vH~z+a(v,v) + ~ (P,(V))2>cllv]l~ 
1=1 i = l  

holds for each veV. 
Proof. The method is analogous to that of Theorem 2.1. Suppose the contrary 

holds. Then elements r, eV exist such that IIv,[Iv=l, v,---v in V, vn--*r in 

W~'-1)(f2), a(v,, r,)-*a(r, r), and 
a = l  

(2.11) ~, [[N, vn[[ZL,+a(v#, Vn)+ ~ (p,(v#)) 2 < I .  
I = 1  l = 1  n 

Hence by transition to the limit n--* o% v = 0 follows. (2.11) and (1.6) yield v,--*0 
in V, and we have a contradiction. 

Remark 3. Let the hypotheses of Theorem 2.3 hold. Put 

Then (' ) v~Vp ~ ((v,v))~cx Z=lllN~vllf.2+a(v,v) ~c211vll~. 
l 

Remark 4. Let the hypotheses of Theorem 2.3 hold. Furthermore, let the 

system Pi be linearly independent on ~ ,  i.e., let ~ eiPt(~)=O for each 
r i = I  

p e ~  imply ~ e~ =0. Let us choose in Theorem 2.2 
' = 1  

h 

(v, u)v = ~,, I N: v N: u dX + �89 (a (v, u) + a (u, v)) + ~ p,(v) p,(u). 
1 = 1 ~  i = 1  

Then 
R= Vp. 

Indeed, let reR. Then (v, P)v =0 for pE~. Schwarz's inequality implies that 

h 

(2.12) ~_, ~ NzvNlpdX +�89 p)+a(p, v))=O; 
I = I D  

consequently, 
r 

p, (0 p, (e) -- 0 
' = 1  

22 Arch. Rational  Mech. Anal., Vol. 36 
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for every p r  Hence 

and therefore v~Vp. if 1 
Conversely, let wVp. Then (2.12) yields (v, p ) v - 0  for every p e ~ ,  and there- 

fore veR. 

3. Coerciveness of the System Art v 

Let us consider operators N z v having the form 

(3.1) lqtv= ~. ~ nz~,D%,, 
s=l I~16r~ 

and let us define 

(3.2) Nl, ~ = E n,s,,(X) ~ '  r r 
I~1 =x, 

NECAS ([1 ], [2]) proved and BESOV generalized ([8]) the following results. 

Theorem 3.1. Let nl~ be constants for [~1 =x~. Then the system Nlv is coercive 
on W if and only if 

(3.3) the rank of the matrix (Nts ~)=m 

for each ~ C N ,  ~ ~0, where CN denotes complex N-dimensional space. 

Theorem 3.2. Let nt~eC(O)* for I~1 =x~. Then the system Nlv is coercive on W 
if and only if (3.3) holds for ~ ~ g~ if X~ f2, and for ~ ~ C N if Xe F. 

Example. Let m =N,  x~ =xz . . . . .  Xm = 1. Let the system Ntv be defined by 
/ av~ 9vj ~ 9v~ 

the operators ~-b~xj +--~7), i , j = l ,  ... N, i , j  and --~[, i = l  . . . .  N. If we order 

these operators as follows: 

9V 1 9V 1 9V 2 9V 1 903 001 9V N 

9x1'  9x2 t 9x~' 9x3 ~ Oxl '"" 9x--~ ~ 9 x l '  

91) 2 91) 2 OV 3 9V 2 90  N ~V 3 9V N 

9X  2 ' 9 X  3 | OX 2 ' " "  ~ X ~  + ~X----~' 9 X  3 . . . .  OX N ' 

then the transposed matrix Nt s ~ will have the form 

l r ~2, r . . . .  CN, 0, . . . 0  . . . .  0, r 0 . . . .  0, r Ca, ""r 0, 0 . . . .  

0, 0, r 0, 0, 0, Cz, 0 . . .0, C3, r . . . .  CN, 
0, 0, 0, ~1 0, 0, 0, ~2. . .0,  0, ~3, 0 . . . .  0, 

, 0, "41, 0, 0, "~2, 0, 0, . . ir  

. . . 0  

0 iiit" ~4, 

.~ 

Obviously, the rank of (Nt~ 0 is equal to N f o r  each qeCN, ~#0. Hence the system 
Nt v is coercive on IV. 

* C(~-) denotes the space of functions, which are continuous on ~2 and have continuous 
extensions to F. 
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