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Preface

If one derives the fundamental properties of solutions of the boundary-value
problems for elliptic systems of partial differential equations using a variational
approach, as was done, for example, in the book [1] of J. NECAs, one realizes the
important role of the coerciveness inequality (compare also [2]). PartI of this
work presents some consequences of the coerciveness inequality, and yields the
existence, uniqueness and continuous dependence of the solution upon the given
data.

In Part I, the general theory of Part I is applied to the linear theory of three-
dimensional elasticity, where inequalities resulting from coerciveness have been
called KorN’s inequalities and have been studied by KorN [3], FRIEDRICHS [4],
Eypus [5], PAYNE & WEINBERGER [6], GOBERT [7] and others. We present here
new proofs for the previous results and extend them to some mixed boundary-
value problems with more general boundary conditions, in which displacements
and tractions are prescribed in the normal and tangential directions to the bound-
ary. The cases of elastic supports are also considered.

1. Notation. Preliminary Definitions

Let a Lipschitz* region Q in N-dimensional Euclidian space Ey and positive
integers m and «,, s=1, 2, ... m, be given. L,(Q2) will denote the space of real
functions which are square-integrable on Q (in the Lebesgue-sense). W(Q)
denotes the subspace of L,(Q) consisting of functions whose derivatives up to
order k, in the sense of distributions, are in L,(£2).

Let us introduce the scalar product on W{P(Q) by means of

(L.1) (v,u)= Y [D*vD*udX,

lalsk 2

* We call a region Q< Ey Lipschitz if it is bounded and its boundary I" has the following
properties: a) to each point X&I” an open hypersphere Sy about X exists, such that the inter-
section Sy N I"may be described by means of a Lipschitz function, and b) Sy I divides Sy into
exterior and interior parts with respect to Q.
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where «
p* olel

ox... ox

Il

Let W denote the Cartesian product [] W§*(Q), and let two bilinear forms
A(v, u), a(v, u) be given on WxW: =1

(1.2) A@uw=[ Y ¥ ajD'v,DludX
!)r,s=1'|i|l§r'¢c,-
JI=Ks

where a}; are bounded and measurable on 2, and

m Kke=1 i
(13) awwy=]{Y Y Y b2 peyar
I'r,s=1i=0 |ajsxs—1 on

where b} are bounded and measurable on the boundary I'. Furthermore, let 2(2)
be the space of real functions with compact support in  which are infinitely

differentiable, let W§*(2) be the closure of 2(Q) in W{¥(2), and let W= [ W{(Q).
° s=1
Let V be a closed subspace of W, such that W= V< W. Define
f@=] ¥ f0.dx

where f,€L,(£2). Let g be a linear continuous functional on V such that g(v)=0
for veW. Moreover, let uye W.
We say that ueWis a weak solution of the boundary-value problem if

(1.4) u—uyseV

and if for each veV the relation

(1.5) A(v, )+ a(v, w)=f(v)+g(v)
holds.

Let the operators N, v, mapping Winto L,(Q), [=1, ... h, be given in the form

m

Ivlv= Z Z nlraDavr

r=1|a| Sk,

where n,,, are bounded and measurable on Q. Suppose that these operators form
a coercive system™ on W, i.e.,

h m
1.6) veW = IZIIIN:vIIiﬁ Y livli,2clvly, e>0.
= r=1
We assume furthermore that
h
(L.7) veW = A(v,v)2c ) [Nvol,,
I=1
(1.8) veW = a(v,v)=0.

* See the theorems of Section 3 for necessary and sufficient conditions for coerciveness.
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2. Fundamental Properties of the Weak Solution of the Boundary-Value Problem
Let us put

9={v<—:v, ium1|iz+a(v,v)=0}
=1

and
(v, w)=A(,u)+a(v,u),

and denote by V]2 the factor-space of classes v ={v+ p, veV, pe 2} with the norm

Iolly,e= infllo+ply.
pe?

Theorem 2.1, Let the relations
A, u)=A(v,u),
a(v, u)=a(v,u),

define two bilinear forms on V]? x V|2, Let (1.6), (1.7) and (1.8) hold. Then

h
e G.ze: 3 INGIE+aG. D) 251
holds for each veV|2.

Proof. Suppose the contrary holds. Then there exists a sequence of elements
veV/2 such that

(22) 1Bally,p=1
and
S U |
23) T INGIE, +a G, 5) <,
=1

Let V=K @2 be the orthogonal decomposition of ¥ by means of the scalar pro-
duct (see (1.1))

i

(05, Uy, -

s

Denote by vy the orthogonal projections of v on K. We have

||5n||V/g'=|[”nx"V-

As the immersion of W{(Q) into L,(2) and L,(I), respectively, is compact and ¥V
is weakly compact, we can choose a subsequence of v, (denoted again by v,)

m
such that v, g —vy (Weak convergence), v, x >vg in [ | Wi~ (Q)anda(v, g, v,x) —
s=1

a(vg, vg). Then (2.3) implies vge# and consequently v, =0. By virtue of (2.3) and
(1.6), v,x —~ 0 in ¥, which contradicts (2.2).

Theorem 2.2. Let the form ((v, u)) define the bilinear form ((v, &)) for veW2,
ucW/?,ve®, ucii. Let (1.6)—(1.8) hold. Then a necessary and sufficient condition
JSor the existence of a weak solution of the boundary-value problem is

24) pe? = f(p)+g(p)=0.



308 I. HLAVACEK & J. NECAS:

In this case the solution is determined except for an element pe P. Moreover

2.5) l#llwp < cluollw+ 1 flliL,ym+ lglly) .

Let (v, w)y and (v, w)y be scalar products in W and V, supplying norms equivalent to

[Z o] '

in W and V, respectively. Let Q and R denote the orthogonal complements of # in W
and V, respectively, by means of these scalar products, and let ugy, ug be the corre-
sponding orthogonal projections of u.

Then we may choose uy and w' =uy-+(u—ug)g, respectively, as the represen-
tatives of u, and

(2.6) luglw + 4’ llw < c(luollw + Il gz, =+ lIgly) .

Proof. The necessity of (2.4) follows from (1.5). If (2.4) is satisfied, let us seek
a weV/2 such that

(2.7) (@, w)=F()
holds for #eV/, where
F(®)=f(v)+g(®)—((v, u0)).

The condition (2.1) enables us to use the Lax-Milgram theorem. Hence there exists
a unique element W which satisfies (2.7). Evidently, any element u of the class
u=iy+w is a solution of the problem. The remaining part of the theorem is
obvious.

Remark 1. Let us take (v, u)y =(v, u)y for v, ueV. Then applying this scalar
product to the orthogonal decomposition of W, we obtain

W=DQ=2DRDD
and consequently,

u=uy+ug—Ugr=uoptugptu—up—up=tg+u,z+(Uo—u)p=up+tuys.
Remark 2. Put
h
@={vev, l;umniz=0}.
Let
A(w, u)=A(u,v),
h
0<A(v,0)Sc )y [No]Z,
I=1

hold for veW. Then a necessary condition for the existence of a solution is

2.9 pe# = a(p,u)=f(p+g(P).
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In fact, the assertion follows from (1.5) when we note that the Schwarz ine-
quality for A(v, ) implies A(p, u)=0.

Theorem 2.3. Ler (1.6)—(1.8) hold and let p,eV’, i=1, 2, ... r be a system of
linear continuous functionals on V such that

h r

@9) veV, ¥ Nl +a( )+ Y. (p()*=0 = v=0.
=1 i=t

Then
h r

(2.10) I_ZI IN;oll, +a(o, ")+.; (B:®)*2clvlly

holds for each veV.

Proof. The method is analogous to that of Theorem 2.1. Suppose the contrary
holds. Then elements v,V exist such that |v,|y=1, v,—v in V, v,»v in

[T Wi=—1%Q), a(v,, v,) >a(v, v), and
s=1

@10 T UM+ a0+ X () S

Hence by transition to the limit # — o0, v=0 follows. (2.11) and (1.6) yield v, -0
in ¥, and we have a contradiction.

Remark 3. Let the hypotheses of Theorem 2.3 hold. Put

= {ve V,i;(p,-(v))2 = 0} .

Then
h
veV, = (0, 0)2¢; ( S IN;ol2,+ a(o, v))zcz o3 .
=1

Remark 4. Let the hypotheses of Theorem 2.3 hold. Furthermore, let the
system p; be linearly independent on £, i.e., let Z o; p(p)=0 for each
pe? imply Z af =0. Let us choose in Theorem 2.2

(=, [NoNudX +4 (a0 +ale0)+ 5 p ).

=10
Then
R=V,.

Indeed, let veR. Then (v, p)y =0 for pe 2. Schwarz’s inequality implies that

h
2.12) 12 JN,UN,de+%(a(v, p)+a(p, v))=0;

=1
consequently,

r

Z pi(®) p,(p)=0

22 Arch. Rational Mech. Anal., Vol. 36
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for every pe 2. Hence

3 (pi@)*=0

and therefore veV,.

Conversely, let veV,. Then (2.12) yields (v, p)y =0 for every pe#, and there-
fore veR.

3. Coerciveness of the System N,v
Let us consider operators N;v having the form

3.1 No=) Y n, D%v,,

s=1|a|Sxs

and let us define
(3.2) | Ng= T m (08 Es .. &y,

laj=xs
NEcas ([1], [2]) proved and Besov generalized ([8]) the following results.

Theorem 3.1. Let n;,, be constants for |a| =x,. Then the system N,v is coercive
on W if and only if

3.3) the rank of the matrix (N, ,&)=m

Jor each €eCy, £+0, where Cy denotes complex N-dimensional space.

Theorem 3.2. Let n,,,C(Q)* for |a| =x,. Then the system N,v is coercive on W
if and only if (3.3) holds for EcEy, if XeQ, and for EeCy if XeT'.

Example. Let m=N, x, =k, = -+ =Kk, =1. Let the system N,» be defined by
dv;  Ov;\ ., L oy, .
the operators (a—xj Tx,)’ i,j=1,... N, i=%jand —a—x—i—, i=1,... N. If we order

these operators as follows:

0v, 0v,  O0v, Ovy  0v, 0v, = Ovy
dx;’ 0x, 0%, dx3 dx; T oxy 0x,°

ov, Ov, O0Ov, dv, Ovy Jvs duy
0x, 0xy  0x,° " Oxy  0x,  0x3° 7 Oxy’

then the transposed matrix N, & will have the form

61’ fz, 53’ ...fN, 0’ ---0, ses ...0
0’ 61’ Oa ~"05 62’ €3a "-st Os Oa oo 0
0’ 0, 615 0’ Oa Os 62, 0 '-~0, 63, 64, "'EN’ 0, ...0

0, 0, 0, & 0, 0 0 &..0, 0, &, 0,...0, &,...

0, o, L&, 0, 0, &, 0, 0, &,
Obviously, the rank of (¥,,&) is equal to N for each §eCy, £<+0. Hence the system
N,v is coercive on W.

* C(£2) denotes the space of functions, which are continuous on © and have continuous
extensions to I
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