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TW, AND RW+ ARE DECIDABLE’ 

INTRODUCTION 

Sequent calculi (consecution calculi, Gentzen systems) have been a powerful 
tool of formal research since their introduction in [7]. It was recognized 
early on that “standard” sequents or consecutions utilizing sequences of 
formulae could be used to provide Gentzen systems for pure implicational 
fragments of relevant logics. (See [3] and [lo], for example.) However, it 
was a full fifteen years later before the secret to producing Gentzen systems 
with appropriate Cut Theorems for full positive relevant logics was 
discovered. 

In a consecution calculus for, say, classical logic, a sequence of formulae 
can be thought of as implicitly representing the conjunction of those 
formulae when it occurs in the antecedent of a consecution and the disjunc- 
tion of those formulae when it occurs in the consequent. In the relevant 
Gentzen systems previously mentioned sequences of formulae were being 
used alternately to represent intensional conjunction (fusion) and disjunc- 
tion (fission). From this point of view, what Professors Dunn [5,6] and 
Mint [ 161 discovered was the following: since the positive relevant logics 
contain both (truth-functional) conjunction and fusion, two types of 
sequences would be required to gentzenise them - extensional sequences 
to stand in for conjunction, and intensional sequences to stand in for 
fusion. (These systems are singular in the consequent.) Further, such 
sequences must be allowed to be nested within one another, i.e., the ele- 
ments of these sequences must be allowed to be sequences of sequences 
of. . . . The particular character of each type of sequence is determined 
to be extensional or intensional according to the structural rules which 
govern it. 

Another point that was discovered was that a constant truth (t as in [6] 
or its functional analogue as in [ 161) would be needed for a correct CUT 
Theorem. The reason for this is that the straightforward Cut Rule is not 
admissible when consecutions are allowed to have empty antecedents. 
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For the rule would then indirectly license the inference of the infamous 
modal fallacy l-p +. 4 + 4 from the provable t (4 + 4) & p +. 4 --t 4, for 
example. And of course such fallacies are anathema to relevant logics. 

So such Gentzen systems are of a higher order of complexity than their 
progenitors. Consequently, they are more difficult to use. In this paper we 
modify techniques of [6] to gentzenise the positive, contractionless relevant 
logics TW: and R W,“, and for the first time put such complex systems to 
appropriate use, namely that of providing decision procedures. (For more 
discussion of these topics and for detailed proofs of the theorems to follow, 
see [8].) 

It is worth noting that TW, and R W, will be (almost) the strongest decid- 
able relevant systems. [ 191, a truly brilliant work, not only lays the decision 
problem for R to rest, but shows that relevant systems as weak as T+ are 
also undecidable. Indeed, even the “deducibility problem” for TW+ is 
undecidable. 

rWot AND RWof + + 

ZTV,“f and RW:’ are the positive fragments of the relevant logics T (Ticket 
Entailment) and R (Relevant Implication) with fusion and 1, but without W, 
i.e., the Contraction Axiom (4 +. A + B) +. A + B. (We adopt the nota- 
tional conventions of [I].) They can be conveniently formulated from the 
following group of axioms and rules. 

Al. A+A 

A2. A+B+.B+C+.A+C 

A3. B+C+.A+B+.A+C 

A4. A+.A+B+B 

A5. A -B+C+.A+.B+C 

A6. A&B+A, A&B+B 

A7. (A+B)&(A-+C)+.A+B&C 

A8. A+AvB, B+AvB 

A9. (A-+C)&(B+C)-+.AvB-+C 

AlO. A&(BvC)+(A&B)vC 
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Rl. 
I-A+B I-A 

I-B 

R2. 
I-A I-B 

IA&B 

R3. 
tA+.B+C 
I-A oB+C 

A*t+A 

7Wy = Al-A3,A6-All,Rl,R2,andR3. 
For TWY add R4. 

R Wp = 7%‘: + A4. For R Wp’ add R4. 

Before moving to the corresponding Gentzen systems, a few words are 
in order about contractionless relevant logics. Such systems have been of 
interest from very early on in the study of relevant logics. We do not know 
the original date of Belnap’s conjecture that PW (TW,) is minimal in the 
sense that if A + B and B + A are both theorems, then A and B are the same 
formula. However, progress toward its solution was reported by Powers as 
early as 1968, (Those results were eventually published in [ 171.) This prob- 
lem remained one of the most interesting and recalcitrant problems in 
relevant logics until the conjecture was proved in [ 121. (The solution is more 
accessible in [ 131.) 

Interest in full contractionless systems was first stimulated by [15], 
where it is shown (with due acknowledgement to [4]) that a non-trivial 
naive set theory cannot be based on R, T nor E. The problem is that the 
contraction axiom in the presence of other rather minimal logical principles 
will collapse any theory containing the full Abstraction Principle. 

The ability to be used in investigating non-trivial but inconsistent 
theories, i.e., being weakly paraconsistent, has always been a motivating 
feature of relevant logics. And naive set theory has always been near the top 
of the list of interesting such theories - within and outside the relevant 
program. So contractionless relevant logics have found favor amongst those 
who want a logic suitable for such purposes. 

Another point on which the contractionless systems commend them- 
selves is that of being more Catholic than the Pope on a central feature of 
relevant logics. [ 1 ] begins with the claim that “the heart of logic [lies] in 
the notion of ‘if. . . then -‘; . . . .” We take the point to be that the main 
task of a logic is to separate out valid inferences from invalid ones. Contrac- 
tionless systems can be seen as taking this point further. Distinguishing valid 
from invalid inferences is not simply the major task of logic, it is the task. 
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To be sure, logic may say something “about” truth functions, since they 
are needed in the vocabulary to express certain truths about implication. 
But whether or not Excluded Middle, for instance, is to be accepted is not 
a matter to be determined by logic. Accordingly, TW, RW and EW do not 
record any purely truth-functional formulae as logical truths. More 
precisely, no formulae in which an + does not occur is a theorem of these 
logics. 

It is not that such logics deny any of the putative truths about truth- 
functions - or for that matter about quantifiers, or alethic modal operators, 
or what have you. Rather, it is that such matters are to be decided on non- 
logical grounds, and recorded in theories appropriate to those subjects. 

And with respect to taking valid inference to be its proper subject, TW 
outshines its cousins for it is shown in [ 171 that every theorem of TW is 
equivalent to a conjunction of theorems each of which is a disjunction one 
of whose disjuncts is a valid implication. 

As Professor Slaney [ 181 puts it, this fact “establishes a good sense in 
which TW is fundamentally implicational”. Which is as a logic ought to be, 
we might add. 

Finally, one should note that these systems are prime; that is, a dis- 
junction is a theorem just in case one of its disjuncts is. Naturally, this is a 
point on which they recommend themselves to whose who cherish con- 
structivism. 

LTWof AND LRWot + + 

The Gentzen systems for TIV:’ and R Wft are actually a modified blend of 
the work of Dunn [6] and of Meyer [14] and Belnap [2]. The reason for this 
is partially preference and partially convenience. We have come to prefer 
the structural connectives of [ 141 and [2], since they lay bare the direct 
relationship between structural elements and formulae. So we will have an 
intensional binary structural connective, rather than intensional sequences. 
However, sequences are far easier to deal with when it comes to show 
decidability. So we do retain the extensional sequences of [6]. 

So letting ‘X’, ‘Y’, ‘Z’, and ‘W’ with or without subscripts and/or super- 
scripts be structural variables, a structure is defined recursively: 

(1) A is a structure, for any formula A ; 

(2) if X and Y are structures, so is (X; Y); and 
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(3) ifXr,. . . , X, (n > 2) are structures, then so is 

Jw,,. . .,A). 

Note that there are no null structures nor any structures of the form 
E(X). With respect to the latter, we say that our structures are denuded. 
(This is a desirable simplification of [6 ] for the decidability argument.) 
Unless otherwise indicated, semicolons are taken to be associated to the left. 
Parentheses are used to disambiguate notation as necessary. 

Structures of the form of (3) are called extensional structures, exten- 
sional sequences, or e-sequences. Those of the form of (2) are intensional 
structures or i-structures. And we say that a structure X occurs in a struc- 
ture Y just in case 

(1) X is Y; or 

(2) Y is (IV; Z) and X occurs in W or in Z; or 

(3) Y isE(Wr, . . . , WJ and X occurs in some Wi. 

Of course, if X occurs in Y, then X is a substructure of Y, and the appro- 
priate occurrence(s) of X is/are a constituent(s) of Y. (The notion of a par- 
ticular occurrence of a structure is taken as primitive. However, the distinc- 
tion between a structure and a particular occurrence thereof is often ignored 
when it is not likely to cause confusion.) And for 1 < i G n, the “displayed” 
occurrence of Xi in E(X, , . . . , X,,) is an immediate constituent thereof. 
And for an intensional structure, say X; Y, we refer to X as the left con- 
stituent and to Y as the right constituent. 

A sequent or consecution is an entity of the form X I- A. ‘E’, with or 
without scripting, is used as a variable ranging over consecutions. X is the 
antecedent and A is the consequent of X 1 A. And Y occurs in a conse- 
cution just in case it occurs in its antecedent or consequent. The use of 
‘constituent’ is similarly extended. And we say that structures and conse- 
cutions are built up from or built up out of the wffs that occur in them. 

The following structural analogue to the notion of the length or com- 
plexity of a formula will be very useful. So define the structural complexity 
(SC) of a structure as follows. 

(1) 

(2) 

SC(A) = 1, for any formula A; 

sc(X; Y) = SC(X) + SC(Y) + 1, for any structures X and 
Y; and 
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(3) SC(E(XI, . . .,X,))=sc(Xr)+. . .+sc(X,)+ 1, forany 
structures X1, . . . , X,. 

Upper case Greek letters (except ‘2’) are used to range over (possibly 
empty) sequences of symbols drawn from: formula variables and para- 
meters, ‘E’, left and right parentheses, the comma and the semicolon. For 
example I’r XI’, t A represents a consecution. Further, a particular occur- 
rence of X is taken to have been displayed therein. 

Now LTWTt and I~RW..~ can be formulated from the following set of 
axioms and rules. (Two sided rules are indicated by 9.) Following the 
tradition of [7], there are two types of rules, Logical and Structural. But 
since there are two types of structures, there are more structural rules than 
usual - a group for extensional structures, designated with an ‘e’, and a 
group for intensional ones, designated with an ‘i’. The names of the struc- 
tural rules derive from the names of the associated combinatorial rules. 

AXIOMS 
A 1 A, for any formula A. 

RULES 

Structural Rules 

Ke C r1xr2 l-c 
r,E(x, nr, t- c 

Ce I- 'TlqxI,. . .,y,w,. . . ,xn)r2 t-c 
rlE(xI ,..., w,y ,..., x,)r, kc' 

n,O 

We I- 
rl w, x)r2 t- c 

rlxr2 t-c 

ee I- rlqxl ,..., ay, ,..., y,) ,..., xn)r2tc 

+rlE(xl ,..., y1 ,..., r, ,... ,x,)r, kc, 

Cli I- wx w2 c c 
rdy; x)r2 t- c 

Bi I- 
w; (Y; z))r, t c 
wz y;.w2 t c 

B’i I- r,(x; ww, t c 
rl(Y; x; .w, t c 



TW+ AND R W+ ARE DECIDABLE 

Logical Rules 

241 

rlAr2 cc rlBrz kc 
rlA VBr? t-c 

XI-A XI-B 
XtAvB XtAvB 

Yl-A rmz t c 
r,(A --f B; y)rz l-c 

X;A CB 
XtA+B 

rl(A;B)r* l-c 
l--IA 0 Brz l-c- 

XtA YtB 
X;YtAoB 

rlXrz kc 
w; x)rz t c 

wt; x)b t c 
rlXrz t c 

The axioms, all of the logical rules and Ke t, We t, Ce I- and ee t are 
common to the L-systems. To get LTW~f add Bi k and B’i t. For LRW,Ot 
replace B’i by Cli t. 

Next we should establish some terminology. Ke t is an extensional rule 
of weakening, and we speak in the obvious way of a structure having been 
weakened in. Ce t and Cli k are permutation rules, and We t is a rule of 
extensional contraction. Again we speak of a permuted structure and of a 
contracted structure. 

A derivation is a finite tree branching upward with the normal sorts of 
properties, and a proof of A is a derivation oft I- A. We take the notion of 
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a consecution occurrence being immediately above (below) another conse- 
cution (occurrence) as primitive. Being above (below) is the transitive 
closure of immediately above (below). So where Der is a derivation and x 
is a particular occurrence of some consecution therein, the subderivation 
determined by x is the derivation that one would get by deleting from Der 
all consecutions except x and those above it. A branch of a derivation is a 
sequence x1, . . . , x, of consecution occurrences such that x1 has no con- 
secution occurrence above it and x, has none below it, and for all 1 < i < n, 
xi is immediately above xi+ r . 

The weight ofa derivation, say Der, is the length of a longest branch, and 
the weight of a consecution occurrence x in Der is the weight of the sub- 
derivation determined by x. The conclusion (bottom node) of a derivation 
that has weight n is said to be derivable with weight n. 

Finally, the height of a consecution occurrence, sayx, in a derivation Der 
is the length of the branch segment consisting of x and all consecution 
occurrences below it. 

A Cut Theorem in the style of [6] can be established for these systems 
using the argument there with only minor variations. The systems can then 
be shown to be equivalent to their axiomatic counterparts, more or less as 
in [6]. The major difference is that t - I- is required to show that modus 
ponens is admissible in these systems, and to show that importation (R3) is 
admissible in LTW:‘. 

The equivalence theorem can be stated as follows: 

THEOREM 1. t t A is derivable in LTWff (LR IV,“‘) iff A is a theorem of 
TW,Of (R Ivy>. 

The above Gentzen systems are convenient for proving the desired equi- 
valence, but present several problems for the decidability argument. The 
first problem is t - 1. Not only does this rule block the straightforward sub- 
formula property for the systems, but also fails to be degree preserving - a 
property essential to the decidability argument below. 

Reformulation 1 

The easiest solution to this problem is to now do away with t and all of 
its works. We keep the definition of structures as before. There will be no 
null or empty structure. We simply allow consecutions to be entities either 
of the form X k A or of the form k A. To do otherwise is to introduce 
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the ridiculous question of whether or not there are structures of the form 

WI,. . . , X,,), for instance, where each X, is empty. Of course, the 
adopted policy is not without its own headache. Technically, whenever 
we want to say something about consecutions in general we must often 
speak double, once about those of the form X I- A and once about those of 
the form 1-A. 

Of course, when one has a headache, the sensible thing to do is to take 
asprin. Our asprin will be to use double-speak rather than speak double. We 
now allow structural variables to be existentialist variables, that is, they 
range over structures and the dreaded Nothingness. Otherwise, notation 
remains the same. 

We must still occasionally restrict structural variables to range only over 
structures. But with a bit of good will on the part of the reader and a few 
conventions, this is not so cumbersome. In the first place, we insist that 
structural variables never range over Nothingness when used to represent 
an immediate constituent of an e-sequence. And likewise for structural 
variables that occur in the statement of structural rules. 

The simplest method for getting rid oft is to first leave it in and make a 
few modifications (including being empty on the left) to the original formu- 
lations, and then show that we no longer need t. So let the L’systems come 
from the L-systems by 

I. Adding t t as an axiom; 

II. Leaving the structural rules as they are (but note the conven- 
tions on Nothingness); 

III. For L’TIVj’, insisting that (1) the antecedent of the left 
premise of + t- is never empty, and (2) the antecedent of 
the right premise of l- 0 is empty only if the antecedent of 
the left premise is; and 

IV. 

t#t 

For L'R IU+Of, replacing t t by the more general 

r1xr* l-c r1xrz tc 

wc yn t c r,(y; x)rz t- c 

where Y is a t-structure, and a t-structure of course is one 
built up from t. 

It is easy to show that L'TW:' (L'RW,"t) is contained on appropriate 
translation in TW,"t (R W,"t); and the L’-systems are supersystems of the 
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L-systems. (We now say that a formula A is provable iff I- A is derivable.) 
So using Theorem 1 and I - I-, t C and t # I-, we have: 

THEOREM 2. A is provable in L’TWtt (L’R IV,“? iff A is a theorem of 77V,“f 
(R W,“‘). 

But note that this theorem does not allow us to do away with r, since 
there is yet no guarantee that there is a t-free derivation of each provable t- 
free formula. To rectify this situation, one first shows: 

FACT 1. Let Der be an L’-derivation of a consecution I: satisfying the 
following conditions: 

(1) t is not a subformula of the consequent of Zc; 

(2) t is not a proper subformula of any formula occurring in the 
antecedent of Z; 

(3) Z is not of the form I’rE(Yr, . . . ,X, . . . , Y,)I’a I- C, where 
X is a C-structure and some Yi is not a t-structure. 

Then every consecution in Der satisfies (1) (2) and (3). 
Proof: By induction on height. 

Of course, (1) (2) and (3) above are conditions which must be met by 
consecutions occurring in a subderivation of a proof of a I-free formula. 
Now, this fact can be used to show by induction on n: 

LEMMA 1. Vanishing-t Lemma. Let X be a f-structure and let Z be a con- 
secution satisfying conditions (1) (2), and (3) of Lemma 5.1. If C = 
rr(X; Y)rz 1 C is derivable in either L’system with weight n, or if Z = 
I’r(Y; X)rz I- C is derivable in L’RW:’ with weight n, then C’ = rr Yrz I-C 
is derivable with weight < n - where Y is possibly empty if rr and I’2 are. 

The Vanishing-t Lemma makes short work of a proof (by induction on 
weight) of: 

LEMMA 2. A t-free sequent is derivable in L’TW,Ot (L’R W+“q iff there is a 
t-free derivation of it. 

So by Theorem 2, Lemma 2 and known conservative extension results: 
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THEOREM 3. If t is not a subformula of A, then A is a theorem of TWZ 
(RW,“) iff there is a f-free proof of A in L’Z’W,“’ (L’RW~‘). 

Then drop r from the language and let LTW: and LR W,” come from the 
corresponding L’-systems by dropping the axioms f I- c and C f and the f- 
rules. Obviously, 

THEOREM 4. A is provable in LTW,” (LR W,“) iff A is a theorem of i”@ 

(RW,o). 

Reformulation 2 
With tout of the way, we now turn to the next problem for decidability, 

namely the nesting of e-sequences. Even if e-sequences were limited to 
reduced form, as they soon shall be, there are still an infinite number of 
distinct e-sequences that can be built up from a single formula, e.g., 

E(P,P),E(P,E(P,P)),E(P,E(P,E(P,P))), . . . * 

To circumvent this difficulty, let L’TW: (L’R W,“) come from LTW: 
(LR W,“) by adding the further extensional weakening and contraction rules: 

K’e k I‘1E(XI,. . . I xn>r* cc 
iyiqxl,. . . ,xn, wz l-c 

W’e I- 
rlE(x1,. . .,x,,y,w, tc 

bwl,. . . ,xn, y)rz tc 
, n>l. 

We call Ke k and K’e t (for instance) the companion of one another. 
Naturally, K’e k is the prime companion of Ke I-. 

It is easy to see that the prime rules are admissible in the L-systems (use 
the companion rule and ee C); and of course, the L-systems are subsystems 
of the corresponding L’systems. So by Theorem 4: 

THEOREM 5. L’ Equivalence Theorem. X I- A is derivable in L’TW: 
(L’R W,“) just in case it is derivable in LTW: (LRW..). Hence, A is provable 
in 15’2%‘~ (L’R W:) iff it is provable in TW: (R W,“). 

Now let us say that a structure X is denested just in case it has no sub- 
structure of the form E( Yr , . . , , E( WI, . . . , W,), . . . , Y,). Then for any 
structure X, define the denestation of X (dn(X)) as follows: 
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(1) 
(2) 

(3) 

(4) 

dn(A) =A, for any formula A ; 

dn(X; Y) = dn(X); dn( Y); 

dn(E(Xr , . . . ‘,X,,)) = E(dn(Xr), . . . , dn(X,)), where no 
Xi is an e-sequence; 

dn(E(Xr , , . . , E(Y,, . . . , Y,,,), , . . ,X,)) = dn(E(Xr , . . . , 
Yl,...,Ym ,... ,&I)). 

And let us say that a consecution is denested just in case its antecedent is 
(or is empty); and for any consecution X l-A, define dn(X l- A) as 
dn(X) l- dn(A), i.e., dn(X) l-A. (Of course, dn(tA) = l- dn(A) = I-A.) 

The reader will no doubt have noticed that for any consecution Z, dn(E) 
either is E or follows from it by one or more applications of ee l-, in which 
case E as follows from dn(E) by a sequence of applications of ee l-. So 
the following important fact is immediate. 

FACT 2. Denestation Fact. A consecution is derivable iff its denestation is. 

This fact shows that every consecution has an equivalent extensional 
canonical form. But the decidability argument will require that derivations 
have an extensional canonical form. So let us say that a derivation is 
denested just in case each consecution that occurs in it is denested. And let 
us say, that an occurrence of a substructure X of a structure Y is a nested 
e-sequence (in Y) just in case it is an occurrence of an e-sequence as an 
immediate constituent of an e-sequence (in Y). Some further facts and 
lemmas can now be gathered toward proving what is required. 

FACT 3. If Z = rlXrz is such that the displayed occurrence of X is not a 
nested e-sequence, then dn(I’,XI’,) = dn(r, dn(X)r2) = A1 dn(X)A, 
for some A1 and A2, with the “displayed occurrence of dn(X)” in 
A1 dn(X)A, corresponding, in the obvious sense, to the displayed occur- 
rence of X in Z. 

Proof: By a straightforward induction on complexity of Z which is left 
to the reader. 

FACT 4. dn(I’J(X,, . . . ,E(Yr , . . . , Y,,,), . . . , X,)rz) = dn(I’,E(Xr, 
. . . ) y,,...,y,,...,x,)r,). 

Proof: Again by a straightforward induction on complexity. 
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Loosely speaking, what lies behind these two facts (and the proof of the 
upcoming lemma) is this: for any rr, rz, X1, . . . , X,, there are some A,, 
A,, Y,, . . . , Y, such that dn (I’rXr, . . . ,X,I’,) = ArYr, . . . , Y,A,. 
And further, A, and A, are functions of rr and I’2 only. That is, if 
dn @‘,X1,. . . , XJ,) = r,Y,, . . . , Y,A,, then dn (I’rZ,, . . . ,Zkrz) = 
&WI,. . . , l+jA,, for some Wr, . . . , Wj. 

LEMMA 3. dn-Substitution Lemma. Let Z be a structure containing an 
occurrence y of some structure Y such that y is not a nested e-sequence. 
By Fact 5, let dn(Z) = A, dn(Y)A?, Let y’ be the displayed occurrence 
of dn(Y). Then for all structures X such that the substituted occurrence of 
X in Z [X/y] is not a nested e-sequence, dn(Z [X/y]) = (dn(Z)) [dn(X)/v’]. 

Proof: By a long and tedious induction on the complexity of Z utilizing 
the previous facts. 

This lemma can then be used to show by cases: 

LEMMA 4. Denestation Lemma. If I3 follows from IS,(&) by an appli- 
cation of a rule Ru, then either dn(Z) = Zr or it follows from dn(Zr) 
(dn(&)) by a sequence of applications of Ru and/or its companion (and 
possibly Ce t), such that the conclusion of each such inference is denested. 

Finally we have 

THEOREM 6. Denestation Theorem. For any consecution x, C is derivable 
in L’TW: (L’R@) iff dn(x) has a denested derivation. 

Proof: Right to left is obvious by the Denestation Fact. Left to right 
proceeds by induction on the weight of derivation of x. The base step is 
simple and the cases for the inductive step are straightforward using the 
Denestation Fact and Denestation Lemma. 

The essence of Gentzen’s original argument for decidability in [7] lies 
in getting control over the length of sequences and hence the number of 
sequences that can occur in consecutions which could occur in a proof 
search tree for a given formula. We must get analogous control over the 
complexity of, and hence the number of, such structures. The Vanishing-t 
and Denestation Theorems were necessary, but unprecedented steps. What 
remains is more closely analogous to Gentzen’s procedure. 

However, we still have two distinct kinds of structures, where Gentzen 
had only one type of sequence. Moreover, since these types of structures 
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can be nested within one another, we must in a sense get simultaneous 
control over the number of distinct e- and i-structures that can enter into a 
proof search tree. Happily, the needed “simultaneity” is not literal. 

Reduction 

The Denestation Theorem allows extensional sequences to be reduced 
more or less as in [7]. So let us say that a structure is reduced just in case 
no structure occurs more than twice as an immediate constituent of any 
given extensional substructure of it. Then a structure is e-reduced iff it is 
denested and reduced. Of course, a consecution is reduced (e-reduced) 
just in case its antecedent and consequent are (or its antecedent is empty); 
and a derivation is reduced (e-reduced) iff each consecution occurring 
therein is. 

Next let us say that a structure is super reduced just in case it contains 
no e-sequence with two distinct immediate constituents that are occurrences 
of the same structure. Again, the definition is extended to consecutions in 
the obvious way. (Obviously a super reduced structure or consecution is 
reduced.) Then define the super reduct of any denested structure as follows: 

(1) sr(A) =A, for any formula A ; 

(2) sr(Y;Z) = sr(Y);sr(Z), for any structures Y and Z; and 

(3) for any structures Yr , . , Y,, sr (E(Yr , . . , Y,)) = sr (Yr), 
if for all 1 < i < n, Yr = Yi; otherwise, sr (E(Y,, . . . , Y,)) = 

-wl,..., W,), where E(Wr , . . . , W,) is as follows: For 
each Yr, let ki be the number of occurrences of sr (Yi) as an 
immediate constituent of E(sr (Y,), . . . , sr (Y,)). Then 
-wvl,..., W,) is the result of deleting the first ki - 1 
occurrences of sr (Yi) for E(sr (Yr), . . . , sr (Y,)). 

What this tedious definition comes down to is the following: the super 
reduct of a structure is formed by deleting all repetitions of immediate 
constituents of e-sequences and working one’s way out - making sure that 
structures remain denuded throughout the process. Naturally, for any 
formula A and denested structure X, sr (X t A) = sr (X) t sr (A) = 
sr(X) (-A;andsr(tA)= FA. 

Given Ce k and the extensional contraction and weakening rules, it is 
clear that 
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FACT 5. The Super Reduction Fact. A denested consecution is derivable 
iff its super reduct is. 

But the fact gives no reduction control over entire derivations. What we 
want to show is that sr (IS) has an e-reduced derivation if it has one at all. 
The following lemma will clear the way. 

LEMMA 5. Reduction Lemma. Let Inf Zr(C,)/C, be an instance of some 
rule Ru, such that ZZ,(&) and .& are denested. Then either sr(Cs) = 
sr (Xr) or sr (Zs) = sr(&) or sr @a) follows from sr (Cr) (and/or sr (I&)) 
by a sequence of applications of Ce t, Ke I-, K’e I-, We I-, W’e I-, and/or 
at most one application of Ru (if Ru be distinct from the aforementioned 
rules), the conclusion of each of which is e-reduced. Further, if no antece- 
dent of a premise nor of the conclusion of If is an e-sequence, then neither 
is the antecedent of the conclusion of any inference in the above-mentioned 
sequence. 

Proof By induction on the complexity of JZ. 

THEOREM 7. Reduction Theorem. A denested consecution is derivable iff 
its super reduct has an e-reduced derivation. 

Proof: Right to left is straightforward by the Super Reduction Fact. Left 
to right proceeds by induction on weight of derivation. The base step is 
simple, and the inductive step is straightforward by the Super Reduction 
Fact and the Reduction Lemma. 

Degree and Decidability 

The Reduction Theorem will provide a finite upper bound on the 
number of (denested) e-sequences built up from a finite number of formulae 
that need to be examined in a proof search provided that we have control 
over the number of intensionai structures that can be built up from the said 
formulae and need to be considered. To take care of this problem we intro- 
duce a notion of degree. So define the degree (deg) of a formula as follows: 

(1) 

(2) 

(3) 

deg(A)= 1, if A is an atom; 

deg (B & C) = deg (B v C) = deg (B) i- deg (C), for any 
formulae B and C; and 

deg(B+C)=deg(BoC)=deg(B)+deg(C)+ 1, for 
any formulae B and C. 
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Noting that the degree of a formula is supposed to indicate its intensional 
complexity, the definition is obviously felicitous. And given that the struc- 
tural connective is “standing in” for fusion, it is clear that the degree of a 
structure should be defined as follows: 

(1) deg (A) is of course the degree of the formula A as defined 
above; 

(2) deg (X; Y) = deg (X) + deg (Y) + 1, for any structures X 
and Y; and 

(3) deg @(XI, . . .,X,))=max{deg(X1),...,deg(X,)),for 
any structures XI, . . . , X,. 

Anddeg(X/-A)=deg(X)+deg(A),anddeg(l-A)=deg(A). 
Now let us say that a rule is degree preserving just in case for any 

instance of the rule, the degree of the conclusion is greater than or equal 
to that of any premise. Then it is clear that 

LEMMA 6. Degree Lemma. The rules of L’R W,” and L’TW: are degree 
preserving. 

Now reduction and degree will work in tandem to give us the needed 
control on the total complexity of structures that could occur in an e- 
reduced derivation of a given consecution. The virtual coup de grace is 
delivered by 

LEMMA 7. Counting Lemma. For any formula A and any n > 0, there are 
at most finitely many e-reduced structures of degree < n built up from sub- 
formulae of A. 

Proof: By induction on n. The base step is trivial. So choose an 
arbitrary m > 0 and assume: 

INDUCTIVE HYPOTHESIS (IH). For any formula B and any k < m, there 
are at most finitely many e-reduced structures of degree <k built up from 
subformulae of B. Now choose an arbitrary formula A. It will then suffice 
to show that there are at most finitely many e-reduced structures of degree 
< m built out of subformulae of A. 

But any such structure is either 
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(1) 

(2) 

(3) 

a subformula of A, of which there are only finitely many; 

an intensional structure, whose left and right constituents 
are of degree <m (by the definition of degree) and of course 
are built out of subformulae of.4. But by IH there are at 
most finitely many such structures to serve as left and right 
constituents. Whence there are but finitely many intensional 
structures of the required kind; or 

an e-sequence, each of whose immediate constituents is a 
non-extensional structure of degree < m (by the definition 
of e-reduced and degree) and again built out of subformulae 
of A. By IH and (1) and (2) above, there are at most finitely 
many structures to serve as immediate constituents; and by 
the definition of e-reduced, none can occur more than twice 
as such. So there are at most finitely many e-sequences of the 
requisite sort. 

And finitely many + finitely many + finitely many = finitely many. So 
we are finished. 

Of course, the lemma holds equally well for e-reduced consecutions built 
up from subformulae of any of a finite number of formulae. 

Decidability is now clearly in sight. All that remains to be shown are 
well-known and/or by now obvious facts. First, let us say that a derivation 
is irre&ndant just in case no consecution occurs more than once on a 
branch thereof. Recalling the Denestation and Reduction Theorems, it is 
clear that 

THEOREM 8. Zrredundancy Theorem. Any sequent C is derivable iff 
sr (dn (Z)) has an irredundant, e-reduced derivation. 

Next, let us specify as follows a proof search procedure which produces 
the LRW: (LTV:) proof search tree of 2 for any consecution X: 

(1) 

(2) 

Enter sr (dn(Z)) as the bottom node; 

above each ZZ’ occurring with height k (in the tree so far 
constructed) (a) enter nothing, if 2: is an axiom, (b) other- 
wise enter (in some assumed order) all e-reduced z1” such 
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that IX” is a premise of some L’R W,” (L’TW:) rule of which 
2’ is the conclusion and such that the tree remains 
irredundant. 

Obviously 

LEMMA 8. Effectiveness Lemma. The proof search procedure thus 
specified is effective. 

Now let us say that a (possibly null) tree T’ is a subtree of a tree Tiff it 
is the result of deleting some (possibly no) consecution occurrences in T 
and all consecution occurrences above them. Then by the Irredundancy 
Theorem and the above specification 

LEMMA 9. Completeness Lemma. The proof search procedure is complete, 
i.e., Z is derivable iff some subtree of the proof search tree of C is a deri- 
vation of sr (dn (IQ). 

Now, by inspection of the rules 

LEMMA 10. The proof search tree of any consecution has the finite fork 
property. 

Of course L’TW: and L’R W,” have the Subformula Property. But more 
important for our purposes 

LEMMA 11. For any rule of these systems, every formula constituent of 
a premise thereof is a subformula of a formula constituent of the con- 
elusion . 

At last we have 

LEMMA 12. The proof search tree of any consecution has the finite 
branch property. 

Proof: Choose an arbitrary consecution, say C, and let m = 
deg (sr (dn (C))). By the Counting Lemma there are at most finitely many 
e-reduced structures of degree < m built up from the subformulae of the 
formulae occurring in (sr (dn (ZZ))). Wh ence by the specification of the 
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proof search procedure, Lemma 10 and the Degree Lemma, there can be 
but a finite number of different consecutions (occurring no more than once) 
on any given branch of the proof search tree of E - which completes the 
proof. 

So by the Lemmas 10 and 12 and Konig’s Lemma 

LEMMA 13. Finitude Lemma. The proof search tree of any consecution is 
finite. 

Finally, by the Effectiveness, Completeness and Finitude Lemmas we get 
out main result 

THEOREM 9. L’TW,” and L’RW: are decidable. 

Whence by the L’ Equivalence Theorem 

THEOREM 10. 2%‘: and RW: are decidable. 

Given known conservative extension results, it follows that TW+ , RW+, 

T R-a, +&> PW and R W, are likewise decidable. However, the reader will 
have noted the conspicuous absence of EW+ so far. The straightforward 
way to gentzenise EW,“f is to add 

at t 
r,v; q-2 l-c 
rl(t; xjr* t c 

to the formulations for TW,Ot. The resulting systems are equivalent to 
EWtf. However, the proof of Vanishing-t breaks down. So, not being able 
to eliminate t - k, the decidability argument breaks down since that rule 
is not degree preserving. So the decision question for EW+ remains open at 
this point .2 

NOTES 

’ These results were claimed in [ 111 on the basis of subscripted Gentzen systems and 
an argument for decidability for them. However [ 91 shows that those systems are 
not equivalent to TW+ and RW,, and that the decidability argument is in fact unsound. 
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* I am grateful for many helpful suggestions from members of the Logic Group of the 
Philosophy Dept., RSSS at Australian National University, especially Dr. Robert K. 
Meyer. In addition, thanks are due to Bruce Toohey of Australia who is an inspiration 
to logicians everywhere. 
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