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Abstract 

A constructive method is developed to establish the existence of buckled 
states of a thin, flat elastic plate that is rectangular in shape, simply supported 
along its edges, and subjected to a constant compressive thrust applied normal 
to its two short edges. Under the assumption that the stress function and the 
deformation of the plate are described by the nonlinear von K~irm~in equations, 
the approach used yields information regarding not only the number of buckled 
states near an eigenvalue of the linearized problem, but also the continuous 
dependence of such states on the load parameter and the possible selection of 
that buckled state "preferred" by the plate. In particular, the methods used 
provide a rigorous approach to studying the existence of buckled states near the 
first eigenvalue of the linearized problem (that is, near the "buckling load") even 
when the first eigenvalue is not simple. 

1. Introduction 

In this paper we study the nonlinear deflections of a thin, flat elastic plate 
that is rectangular in shape, simply supported along its edges and subjected to a 
constant compressive thrust applied normal to its two short edges. Our approach 
is a constructive one that, in some cases, yields information regarding not only 
the number of buckled states near an eigenvalue of the linearized problem but 
also the continuous dependence of such states on the load parameter and the 
possible selection of that buckled state "preferred" by the plate. In particular, 
we show how to treat cases wherein the first eigenvalue of the linearized problem 
(that is, the so-called "buckling load") is not simple but has multiplicity n= 2; 
since the first eigenvalue cannot have multiplicity greater than two, the methods 
of the present paper together with some well known results for the simple eigen- 
value case provide a rigorous approach to studying the multiplicity of buckled 
states near the buckling load of a rectangular plate. 

The stress function and the deformation of the plate are assumed to be de- 
scribed by a coupled pair of nonlinear partial differential equations (the yon K~ir- 
m~in equations) together with boundary conditions suitable for the simply sup- 
ported plate. By using some techniques related to, but somewhat simpler than, 
those in BERGER & FIFE [5] it is possible to reformulate such a problem in an 
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appropriate real Hilbert space W" so that the basic problem of determining the 
buckled states of the plate is equivalent to one of finding nontrivial solutions of a 
single operator equation of the form 

(1.1) w-2Lw+C(w)=O, weW" 

where L: W'--, W" is a linear, self-adjoint, positive, compact operator, 2 measures 
the edge load, and C: W" -~ W" is a continuous, homogenous polynomial operator 
of degree three which is the gradient of the functional z(w)=�88 w). 

Let 20 > 0  be an eigenvalue of the linear problem w-2Lw=O and let the 
null space JV" c #"  of I - 2 o  L be n-dimensional. When n--- 1 a standard application 
(e.g., see [9, page 56]) of methods used here shows that there is exactly one pair 
of nontrivial buckled states associated with 20. Accordingly, we consider in this 
paper only the case n > 2. Then, since M/" is finite dimensional and L is self-adjoint, 
the method of LYAPUNOV-SCHMIDT (e.g., see [7; 9; 10; 11]) reduces the problem 
of finding solutions of equation (1.1) in W" to that of finding sufficiently small 
solutions ~ = (~1, ~2 . . . .  , ~,) in ~," (Euclidean n-space) of a system 

( . (1.2) --~r C,V+~.r =0  ( i=1 ,2  . . . .  ,n). 
\ j = l  / f 

Here {*)1, v2 . . . . .  v,) is an orthonormal basis for d/', 

2 
(1.3) ~/=-~-o - 1  

is a real parameter, and V= V(~, ~/) is an element of JV • (the orthogonal com- 
plement of J/" in ~r which is analytic in ~ and ~/for [~[<Po and [t/[<~/o (e.g., 
see [11, p. 19]) and satisfies 

(1.4) IIV(~,r/)II<KIr 3, Ir I~/1<~/o 

where K is a constant depending only on Po and ~/o. Thus the existence of buckled 
states in the problem is demonstrated by solving a system of n analytic equations 
involving the load parameter 2. 

It is, of course, well known that finding nontrivial solutions ~ = ~ 0/) in IR" of 
the branching equations (1.2) may be a difficult problem; here, as in an earlier 
paper [7], the most definitive results are obtained when 2 o has multiplicity two. 
For example, in the case of the plate of length l /~ units and width one unit, the 
first eigenvalue (corresponding to the buckling load), 2o=9rc2/2, has a two- 
dimensional null space .AC In w we shall show that on the unit circle S in JV" 
the functional (C(w), w) assumes extreme values at four distinct pairs of points 
4- ui ( i= 1, 2, 3, 4). If these extreme values 01 are defined by 

(1.5) O, = (C(u , ) ,  u,) (i = 1, 2, 3, 4) 

then rain (C(w), w)=Ol<O2<O3=O,=max (C(w), w) and there are eight cor- 
w e S  weS 

responding buckled states of the form 

(1.6) 4-w~=4-Oll/zo~l/2ui+U~), O<~l<th ( i=  1, 2, 3, 4), 
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where Us is an analytic function of r/~/2 and lim ~--1/2 Us=0" Moreover, for 
~/--* 0 + 

small positive r/the potential energies E(w~) satisfy E(wl) < E(w2) < E(Wj) (J----- 3, 4) 
so that, under the assumption that a "Principle of Least Energy" holds, the buck- 
led states +_ wl would be "prefer red"  near 2 o = 9 x2/2 to the remaining six buckled 
states. Similar results hold, for example, for the eigenvalue 2 = 257~2/4 in the case 
of a rectangular plate of length two units and width one unit. 

Our results supplement earlier work by BAUER & REISS [3] on rectangular 
plates and also the more general existence theorem of BERGER & FIFE [5]. In [3] 
buckled states are computed corresponding to the first few eigenvalues and, in 
particular, states related to those for i=  1, 2 in (1.6) are found. In [5] for quite 
general plates it is shown that (at least) one pair of buckled states existsneareach 
eigenvalue 20; these solutions are shown to be continuous in 2 only at 2 o. Thus 
our proof that the states (1.6) actually bifurcate from the zero solution at 2o = 
97z2/2 and are continuous for ;t in some interval with endpoint 2 o may also be of 
interest. 

Let us emphasize here that this continuous dependence on the load parameter 
2 is a stronger regularity result than that usually obtained by topological methods 
alone, and seems to require some new techniques. In order to establish such a 
continuous dependence result in this paper, we employ an implicit-function 
theorem due to MACMILLAN [8] and BLISS [6], which is based upon the WEIER- 
STRASS preparation theorem for systems of analytic functions. 

This implicit-function theorem argument has wider applicability (e.g., see [10]) 
than the simply-supported rectangular plate problem considered here and hence 
yields continuous dependence results in other branching situations also. For  
example, in [7] the authors treated the problem of a clamped plate with the aid 
of finite-dimensional (topological) degree theory. The argument given there in 
the proof of Theorem 2 is incomplete and requires an additional step to establish 
the continuity, in the load parameter, of the solution, but the methods employed 
in the present paper can be used to give a full proof of that result. 

2. Formulation of the Problem SSP 

The mathematical model adopted here for the plate problem is a dimensionless 
one determined in [3] by BAUER & R~ISS. Let f2={(x, y):O<x<l,  0 < y <  1} cor- 
respond to the middle plane of the undetected plate and let at2 denote its 
boundary. We suppose that the deformations of the plate are described by the 
following dimensionless version of the yon K~irm~in equations 

(vK a) A 2 f=  _ �89 [w, w] 

(vKb) A 2 w = [w,f] - 2Wxx, 

where A denotes the Laplacian with respect to x and y and 

(2.1) [u, v] = Uxx Vyy + uyr Vxx-- 2 Uxy Vxy. 

Here w=w(x, y) is a measure of the deflection of the middle plane of the plate 
out of the x, y-plane, f= f ( x ,  y) is an "excess" stress function corresponding to 
the effects of deformation on stress, and the parameter ). is a measure of the 
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load. The determination of w and f i n  g2 by means of the two coupled nonlinear 
partial differential equations (vK), together with the "simply supported" boundary 
conditions 

(be) w=f=Aw=Af=O on Of 2 

shall constitute the classical problem SSP. 

Definition. A classical solution of the problem SSP is a pair of functions w,f  
that belong to C4(t2)n Cz(D) and satisfy (vK) and (bc) pointwise. 

In order to define a generalized solution of problem SSP we first introduce a 
real Hilbert space W" defined as the closure, in the norm II II 2, z of the Sobolev 
space W2, 2 (f2), of the set of smooth functions defined on D and vanishing on 
Of 2. Then it follows that qr consists of functions in W2, 2 (f2) which, by the Sobolev 
embedding theorem, are continuous on D and vanish on at2. A more convenient 
norm and inner product for qir may be obtained in the following way. Since 

~ ( a u )  z u z = +2Uxy+Uyy) u e ~  

and the bilinear form (u, v)= ~AuAv is coercive over ~ (e.g., see [5, p. 232]), 
Q 

there exists a constant K1 such that 

(2.2) K1 II u I1 ~, z < .f (zl u) 2 < II u [I z z, z 

for all ue~V. Thus, the bilinear form (u, v) may be used as an inner product on 
~ ;  throughout the paper we denote the corresponding norm by It II. We point 
out that, although our notation and setting are somewhat similar to those in [5] 
and [7], tbe space ~ here is not identical to spaces in either of those papers (a 
similar situation exists for the operators to be defined in ~ ) .  

Let ,p, ~v be smooth functions in ~ .  Then upon multiplying equation (vKa) 
by q, and equation (vKb) by ~,  and integrating by parts over Ca, one obtains 

(f, r -�89 w; q~) (2.3a) 

(2.3b) 

where 

(2.4) 

(2.5) 

(w, kV)=b(f, w; T)+2c(w;  ~), 

b(u, v; ~o)= S[(UxyVy-UyyVx)~Px+(UxyVx-UxxVy)q~y] 

c(u; ~ ) =  Sux~ox. 

The equations (2.3) suggest the following definition. 

Definition. A generalized solution of the problem SSP is a pair of functions 
w, f i n  ~ satisfying (2.3a) and (2.3b) for all ~o, T in $F'. 

In Appendix B we sketch a proof that every classical solution of problem 
SSP is a generalized solution and, conversely, every generalized solution is a 
classical solution in f~ and on ~2  except at the corners; the arguments used are 
similar to those given in [5, p. 230 and Appendix A]. However, Appendix B may 
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be of interest because it avoids the theory of non-Dirichlet boundary value 
problems by exploiting the special conditions of our particular problem. More 
specifically, because of the boundary conditions (bc) being considered here, one 
can reduce the indicated regularity problem to one for a coupled system of four 
equations in the four functions f ,  d f ,  w, A w and involving only Dirichlet boundary 
conditions, so that the Lp regularity theory for the Dirichlet problem may be 
applied. 

Proceeding as in [5] and making use of (2.2) one can also show for any fixed 
u, v ~  r that b(u, v; ~o) and c(u; ~o) are, in ~o, bounded linear functionals on ~/U. 
From the RIESZ representation theorem it follows that the coupled system of 
equations (2.3) may be recast as two uncoupled operator equations in Yr namely 

(2.6) f =  - �89  B(w, w) 

(2.7) w - 2 Lw + C (w) = O. 

Here B: ~/r x ~C ~ W" is a bounded bilinear operator and L: qC --, ~/U is a bounded 
linear operator such that for all tp in W" 

(2.8) (B(u, v), tp)= b(u, v; tp) u, vE~cV', 

(2.9) (Lu, tp)=c(u ; ~0) u ~qF'. 

Then C: W ' ~ W "  is defined by 

(2.10) C(w) = �89 B(w, B(w, w)). 

Thus, to determine a generalized solution of problem SSP, it is sufficient to deter- 
mine a solution w in ~V" of the single operator equation (2.7). However, application 
of the LYAPUNOV-SCnMIDT technique shows that finding solutions of equation 
(2.7) in ~r is equivalent to finding sufficiently small solutions of the system (1.2) 
in JR". Consequently, the question of existence of buckled states of problem SSP 
is reduced to a finite-dimensional problem. 

3. The Branching Results  for Problem SSP 

The linearized eigenvalue problem associated with the generalized problem 
SSP is to determine nontrivial solutions of the equation 

(3.1) w - 2 L w = O  w~W'. 

This generalized eigenvalue problem can be solved completely for the rectangular 
plate. In fact it is well known that the classical problem 

d2w+2Wxx=O in f2 

(3.2) w=Aw-.---O on Og2 

. . . .  m T ~ x  . 
C~a n - -  rc 2 ( m  2 + l 2 n2)/213/2, has the set of elgentunctlons Urn, = Cm, s m ~  smn roy, - 1 _ 

and associated eigenvalues , ~ m n = f C 2 ( m 2 + l E n 2 ) 2 / 1 2 m 2  ( m ,  n = l ,  2 . . . .  ). One sees 
readily that the compact operator L has the same eigenvalues and eigenfunctions 
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and that, for any I > 0, the first eigenvalue (which is equal to 2,,~ for one of the 
two integers m "nearest"  to l) cannot have multiplicity greater than two. In 
particular, let us note that in the case where l=  [/~, 211= ~.21 = 9 7C2/2 iS an eigen- 
value of multiplicity two so that the null space ~V'(I-211 L) is two-dimensional. 

The following lemma shows that the analogs of Lemmas 1 and 2 in [7, pp. 69- 
70] hold for problem SSP. 

Lemma 1. (a) I f  or, 8, ~ / U ,  then the form (B(~, [3), ~) is symmetric in c~, fl, ~. 
In particular, i f  w~r then 

(3.3) (C(w), w)=�89 liB(w, w)][ 2. 

(b) I f  z is the real-valued functional defined by 

(3.4) z(w)=k(C(w), w) w~#  l- 

then 

1) C is the (strong) gradient of  z (see [4, p. 696]) 
2) C is a continuous homogeneous polynomial operator of degree three (see 

[11, p. 17]). 
3) z(u)=O for ue.Ar(I-2m,L) i f  and only i f  u=O (see [5, p. 233]). 

(c) For each we'tr r the nonlinear operator C has a differential D~, which satisfies 

D,~(h)=B(w, B(w, h))+�89 B(w, w)) 

for all he:t~/" and is Lipschitz continuous in w (see [7, p. 70]). 

Proof. As indicated, parts (b) and (c) are proved in the same way as related 
results in [4; 5; 7]. We sketch a proof of the important symmetry property in 
part (a); then the identity (3.3) and property (b l) are immediate consequences. 
Let ~, fl, ~ be smooth functions in ~//'. Then upon using (2.4), (2.8) and inte- 
grating by parts one sees first of all that 

(B(~,/~), ~)= ~ [~, 8] ~= ~ [fl, ~] ~ = (B(/~, ~), ~). 
Q l'/ 

The remaining relationship required, namely (B(~, fl), ~)=(B(~, ~), fl), follows 
from (2.4) and (2.8) merely by rearranging the indicated terms. The symmetry 
property in part (a) is then obtained for ~, 3, ~ in ~r by a standard limiting 
argument. 

Let 2m. be an eigenvalue of the linear problem (3.1), let ~/=(2/2m.)-1, let S 
denote the unit sphere in the null space ~C(I-2re .L)  and let Q be the orthogonal 
projection of ~g" onto ~ ' ( I - 2 ~ , L ) .  The following theorem is analogous to 
results in [7; 9] and is a consequence of the ordinary implicit-function theorem. 

Theorem 1. Suppose that X ( I - 2 m . L )  is k-dimensional. Let the functional 
(C(u), u) restricted to S have a relative extremum at u*~S and suppose that 
O=_(C(u*), u*) is not an eigenvalue of  QDu.. Then there exists a positive constant 6 
such that for 2 ~ . < 2 < 2 ~ , + 6  the equation (2.7) has a nontrivial solution of  the 
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f o rm w(2) =0//0) 1/2 u* + U*, 

where U* is an analytic function o f  tl 1/2 and lira t/-1/2 U*=0.  
rl~O + 

Other sufficient conditions for the existence of nontrivial solutions can be 
formulated as in [7]. 

This theorem may be deduced using arguments given in [7] and [9] (see, in 
particular, Theorem 4 and Remark 5 in [9] and Theorem 1 in [7]) and we provide 
here only the central ideas. Instead of equation (2.7) it is sufficient to consider 
the associated system (1.2) in ]Rk. If one sets ~i=tll/2fl~ ( i= 1, ..., k) in (1.2) and 
divides by t/a/2, then the resulting system of equations may be written as 

k). 
~ \ / ] j = l  

Because of the extremum property of u* it is possible to find a special orthonormal 
basis vl . . . . .  v k for ~ ( I - 2 m . L )  with v 1 =u*  and such that 

(C(v,), vj)=0 ( j = 2 ,  3 . . . . .  k) 
and 

(D~I (v,), v j) = 0 if i :~j. 

With this special basis and with t /=0 the functionsfi(fl, 0) become, for i=  1 . . . .  , k, 

= - fl~ + (C (u*), u*) fl~ 3,1 + {terms vanishing if (f12 . . . . .  ft,) = (0, ..., 0)}. 

It follows that  ~1 ,  fiE . . . . .  ilk) = (0-1/2, 0, ..., 0) satisfies 

(3.6) f '(fl ,  0)= 0 (i = 1, 2 . . . . .  k) 

and that the Jacobian J = d ( f  1 . . . . .  fk) /8( f l  1 . . . .  , fib) at this point is 
k 

(3.7) J =  I-[ [ -  1 +(D,,(v,),  v,)/O]. 
i=2 

Since 0 is not an eigenvalue of QDu., one sees easily that J4=0 and that the existence 
of a solution of (3.5) of the form f l*(q)=O-1/Z+b(t l l /2) ,  where b is an analytic 
function of r/a/z and lim b(tll/z)=O, follows from the implicit function theorem. 

ff-*O + 

Clearly such a solution fl* generates also a solution r of (1.2), 
which in turn generates the desired solution w* of (2.7). 

The number of relative extrema of (C(u), u) on S satisfying the eigenvalue 
condition of Theorem 1 may, of course, be determined by direct calculation for 
specific eigenvalues Am,. For example, if l = V ~  then the first eigenvalue 211= 
~'21 ---- 97~2/2 has multiplicity two and we have the following corollary to Theorem 1 
(see also Remark 3 below): 

Corollary 1. There exists a positive constant ~ such that fo r  211<2<),11+6 
problem SSP possesses eight buckled states which are o f  the form (1.6) and depend 
analytically on (~, - 211) 1/2. 
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One way to prove the corollary is to exhibit four pairs of points on S at each 
of which the functional (C(w), w) restricted to S has an extremum that satisfies 
the eigenvalue condition of Theorem 1. Such a program is feasible because each 
w in S has the form w = p u t  t + qu21 with p2 + q2 = 1 so that, by using the bilinearity 
of the operator B, (C(w), w) can be written as 

(3.8) (C(w), w) = ap" + 2bp 2 q2 + c q', 

Here 

(3.9) 

(p2 + q2 = 1). 

a---�89 IIB(u~l, ulx)l t  z 

b= IIB(uxx, u21)ll 2 +�89 nil), n(/,/21, u21)) 
c--�89 IIn(u2x, u2~)[[ 2 

and we have also used the relationships 

(3.10) (n(ul  t, U l l ,  B(Ull, u21)) ~--~-(n(u21,/./21), n(u l  1, u21)) ~--0. 

Setting q2= 1 _p2 in (3.8) and completing the square, we obtain 

(C(w),w)=-F(p2--G)2+K,  ( -  l__<p_<l), 

where F = ( 2 b - a - c ) ,  G=(b-c) /Fand K=(b2-ac)/F. If b>a>c,  it follows that, 
on S, (C(w), w) has extrema at precisely eight points: a minimum 01 at _+u 1 - _+ u21, 
a minimum 02>01 at ___u2---___ull and a single maximum value 03 assumed at  
four points 

d-U3 ~" --}-[G1/2Ull+(1--G)l/2u21] and +_u4-- +[G1/2u11-(l -G)l/2u21]. 

Moreover, again using the bilinearity of B, one can in this case reduce the system 
(3.6) to 

(3.1 1 a) f l ( f l ,  0)=fl  I [ _  1 + aft 2 + bfl 2] 

(3.11b) f 2 (fl, O)= fl2 [-- l + b fl2 + c fl~ ] 

so that the eight points _+ u~ correspond to the eight intersections of the curves: 
i l l = 0  and - l +bfl~ +cf122=O, f12--0 and - l +aflZ~ +bf122=O, - 1  +afl2 +bfl~=O 
and - 1  +bfl 2 + cfl~---0. Since the inequalities b > a >  c imply that the normals to 
these curves are independent at the points of intersection, each of the points _+ u~ 
must satisfy the eigenvalue condition of Theorem 1. Thus, it remains to establish 
the following lemma. 

Lemma 2. On S, (C(w), w) has the form (3.8) with b>a>c.  

The proof of this lemma is given in Appendix A. However, let us observe 
here that the principal difficulty in establishing both (3.10) and b > a >  c lies in 
the fact that  B is available only in the weak form (2.8) so that inner products of 
the form (B(f, g), B(u, v)) are not easily estimated. On the other hand, equation 
(2.8) (together with (2.4)) does enable us to calculate certain Fourier coefficients. 
with respect to the eigenfunctions {Umn} of (3.1), and this suffices for our purposes 
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Remark 1. It is natural to ask whether the eight buckled states of Corollary 1 
are the only buckled states branching from the unbuckled state at 211 and 
depending continuously on the load parameter 2. Our methods show that this 
is indeed the case. In fact, Theorem 1 of [9] implies that every nontrivial solution 
of (2.7) continuous and vanishing at 2=21t  comes from a continuous solution 
fl(r/) of (3.5) with fl(0)4:0. These values fl(0) must therefore satisfy the system 
(3.11), which has only the eight nontrivial solutions corresponding to the points 
+_ui(i= 1, 2, 3, 4) at which (C(w), w) has extreme values. 

The situation encountered in Theorem 1 and Corollary 1 represents the non- 
degenerate case in which the existence of solutions continuous in the eigenpara- 
meter can be inferred from the nonvanishing of certain Jacobians of the system 
fi(fl, 0 ) =0  ( i= 1, 2 . . . . .  k). The degenerate situation where such Jacobians do 
vanish is a more difficult problem; however, in the case of a two-dimensional 
null space, we shall present next an approach that yields continuous solutions 
even in the degenerate situation. 

Let us then consider in more detail the case where the null space ~4r(I -2 , , ,L)  
is two-dimensional. Let {Vl, v2} be an orthonormal basis for ~ ( I - 2 , , . L ) .  Then 
the system (1.2) can be written as 

(3.12) - -q~+(C(~xvl  + ~2v2), vl)+ri(~, q )=0  (i= 1, 2), 

where the r ~ are analytic for [~I<Pl  and [q [<q p  The r ~ are also higher order 
terms in the sense that if I r/l<qo then ri(~, rl)/I ~ 13 ~ 0  uniformly in q as 141-* 0 
(see (1.4) and part  (c) of Lemma 1). 

For  r />0 it is again useful to make the substitution 

(3.13) ~i=rl 1/2 fli ( i=  1, 2) 

and to consider instead of (3.12) the system 

(3.14) f ( f l ,  q)= -fl~+(C(fll vl +f12 v2), vi)+si(fl, ql/2)=0 ( i=  1, 2), 

where si(fl, q~/2)=q-3/2ri(qI/~fl, q), si(fl, q l / 2 ) ~ 0  uniformly for fl in compact 
subsets of I/~1 < po/(rl~/2), and the s t (fl, a) are analytic for I/~1 < R = pa /0 t l / 2 )  and 
I t r I< So. By restricting q i to be sufficiently small we may assume also that R >  
(C(v,), v,)-'/2. 

The following lemma (see also [10, Sec. 4A]) will be useful in determining 
continuous solutions of the system (3.14). The lemma is due to MACMILLAN [8] 
and BLmS [6] and is based upon the Weierstrass preparation theorem for systems 
of real analytic functions. It  is convenient to state the lemma in connection with 
the problem of the existence of solutions x=x(~)  of systems of the form 

(3.15) ~i(x, t r)=0 x~]R", a~]R 1 ( i=  1, 2 . . . . .  n), 

where the #~ are real and analytic in a ball Ix12+~2<p 2 in ~,"+t. 

Lemma 3. Suppose that #i(x, O) i =tpk,(X)+pi(x) ( i= 1, 2 . . . . .  n), where the q~, 
are homogeneous polynomials of  degree k i and the p~ satisfy If(x)I/(I x I k') ~ 0 as 

I x l ~ O. Suppose that (-I k~ is odd and the resultant of  the homogeneous polynomials 
i = 1  
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tp'k~ does not vanish. Then there exist positive constants Xo and ao such that for  
Ixl<Xo and la[<~o the system (3.15) has at least one continuous real solution 
x=x(tr)  with x(0)=0.  

The next result implies that, even in the degenerate case, there are at least as 
many nontrivial solutions of (2.7) as there are distinct elements v in S corresponding 
to relative extrema of (C(u), u). 

Theorem 2. Suppose that the null space Jff =d / ' ( I -2m,L)  is two-dimensional 
and suppose that 

(3.16) (C(u),u)~constant for  u in S 

(that is, (C(u), u)~:const, llull~ for u in ~ ) .  Let the functional (C(u), u) restricted 
to S have a relative extremum at u* and set O=(C(u*), u*). Then there exists a 
positive constant 6 such that for 2m, < 2 < 2,n, + 6 the equation (2.7) has a nontrivial 
continuous solution o f  the form 

(3.17) w* (2) = (~l/O) 1/2 u* + U* 

where U* depends continuously on r 1 and l imq-1 /2U*=0 .  In particular, cor- 
~ 0  + 

responding to the absolute maximum and minimum of  (C(u), u) on S, the equation 
(2.7) has at least four nontrivial continuous solutions, two o f  which are analytic in 
(~ --~.mn) 1/2. 

Proof. Let vl =u* and choose v2 so that {vl, v2} is an orthonormal basis for 
,4/'. If b - 0  is not an eigenvalue of QDv~ then Theorem 1 applies and one sees 
easily that, in fact, Vx generates a nontrivial continuous solution of the form (3.17). 
Therefore, let us suppose, without loss of generality, that the degenerate case 
(Dv~ (v2), v2)=(C(vl), v l ) - b  holds. By using the bilinearity of the operator B, 
the system (3.14) can be written as (see also [7, pp. 70-72]) 

(3.18a) f~(fl, ~/)= -fix +bfl~+3efl2fl2+bfl~ fl2+dfl~+sl(fl ,  ~/1/2) =0  

(3.18b) f2(fl,  r/)= - f l2+efl~ +bfl~fl2+ 3dfll fl2 +cfl~ +s2(fl, ~/1/2)=0, 

where c=(C(v2), v2), d=(C(v2), Vl) and e=(C(vl),  v2). But, since b is an ex- 
tremum of (C(u), u) on S, one necessarily has c = d = 0  (see [7, (2.21 a) and Lem- 
ma 3]). Thus it suffices to show that the system 

(3.19 a) f l  (fl, rl) = - i l l  + b fl~ + b fl 1 fl22 + s 1 (fl, /11/2) = 0 

(3.19 b) f2  (fl, ~/) = _ t2 + b t2 flz + c t3 + s 2 (fl, 1/1/2) = 0 

has a continuous solution that generates a solution of (2.7) of the form (3.17). 
Let us emphasize here that although the points (ill, fl2, ~l) = (+- a, O, O) ( a -  b l/z) 

are nontrivial solutions of the system (3.19), ~ ( f l ,  f2)/t~(fll, f12) vanishes at these 
points so that the ordinary implicit function theorem used to establish Theorem 1 
does not apply. 

In order to apply the more general implicit function theorem contained in 
Lemma 3, we first transform {fl ,  f2} into a vector field ~ = { ~ x ,  kv2} under the 

25 Arch. Rat. Mech. Anal., Vol. 54 
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change of variables fll = x~ + a and r 2  = X2" Simple calculations then yield 

(3.20a) 
~P1 (x, ~/)--fl (x 1 +a ,  x2, t/) 

kv2 (x, r/)--f2 (xl + a ,  x2, r/) 
(3.20b) = 2 a  -1 xl x2 + a  -2 x 2 x2 +cx~ + t2(x, t/1/2), 

where the t~(x, a)=s~(xl+a, x2, a) are analytic in a ball [XI2-~-0"2<p 2 in IR a, 
and satisfy t~(x, 0)= 0. Since Lemma 3 does not apply to the vector field T, we 
introduce another vector field �9 ={~1, ~2} with ~1 _ T1 and 

(3.21) ~2(x, r / ) -  T2(x, r / ) - a  -1 x2 Tl(x,  rl)=q~2(x)+q2(x, ~/1/2), 

where q~](x)=(c-b)x32-2a-2x2x2 and q2(x, tr)=t2(x, a)-a-a(x~x2+ xlx]) - 
a - l x z t l ( x ,  tr). Clearly, if we set q~l(x)=2x 1 then the vector field �9 satisfies the 
hypotheses of Lemma 3 if and only if b#:c. But if b=c then (see [7, p. 71]) 

(3.22) (C(zl/31 -~'T 2 V2), ~'1 /)1 "~ Z2 I)2) = b( z2 +z2) 2 

so that (C(u), u) is constant on S, contrary to assumption (3.16). Therefore, since 
�9 = 0  if and only if T = 0 ,  Lemma 3 implies that the system (3.20) has at least 
one continuous real solution x=x*(r/) (0<~/<rS) with x*(0)=0. The solution 
x* (r/) generates a nontrivial continuous solution r* (r/) = (b- 1/2 +x* (r/), x* (r/)) of 
the system (3.19), which in turn generates the desired solution of the form (3.17). 

Finally, proceeding as in the proof of Theorem 2 in [7], one can show that 
if (C(u), u) # constant on S then either the absolute maximum or the absolute 
minimum of (C(u), u) on S must correspond to the non-degenerate situation in 
which Theorem 1 applies. This completes the proof of the theorem. 

Remark 2. Let us take the potential energy of a buckled state of problem 
SSP to be (e.g., see [3, p. 608]) 

E = l [(A w) 2 - 2 w 2 + (A f)2]. 

Then, in terms of a generalized solution of problem SSP, the energy may bc 
written as 

(3.23) E(w)=(w, w)-2(Lw, w)+�89 w) 

so that the potential energy of an unbuckled state is E(0)= 0, whereas the potential 
energy of a buckled state Wo satisfies E(wo) = - �89 Wo) < 0. Let the functional 
(C(u), u) restricted to S have relative extrema 0 at ul and O at Zl, suppose that 
0 <  6) and let u and z be the corresponding buckled states as determined in 
Theorem 2. Since lim rl-1/2u=O-1/2ul and lim rl-~/2z=O-~/2zl and since 

r/~0 + ~/--* 0 + 

(C(O-I/2ul), -i/2 - 1 1 - -i/2 0-i/2 o 
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then for 2 sufficiently close to 2m,(2>2m.) we have E(u)<E(z). Thus, under the 
assumption that a "Principle of Least Energy" holds (that is, that the plate 
selects a buckled state with minimum potential energy), the methods of the 
present paper predict that, among the buckled states generated by the relative 
extrema of (C(w), w) on S, the "preferred" buckled states of problem SSP are 
those states that correspond to the absolute minimum of (C(w), w) on S. 

Remark 3. As an immediate consequence of Remark 2, we see that the buckled 
states w 1 . . . . .  w, obtained in the Corollary to Theorem 1 satisfy 

E(wa)<E(w2)<E(w~) ( i=3,  4). 

(Since E(w3) and E(w4) are equal in the limit as r / ~ 0  +, their order is not deter- 
mined by Remark 2). Thus, if a "Principle of Least Energy" holds, the buckled 
states 4-w~ would be preferred near 2o=9rr2/2 to the other six buckled states 4- w~ 
0"=2, 3, 4) (of course, the possibility remains that under this "Principle" the 
plate actually selects some state distinct from all the 4- w j). 

Appendix A 

Proof of Lemma 2. Let us note first of all that the eigenfunctions {urn.} of 
(3.1) form a complete orthonormal set in W'. In fact, if (v, Urn.)=0 (m, n =  1, 2 . . . .  ) 
then Sum.Av=O ( m , n = l ,  2 . . . .  ) so that, by the completeness of the {u..} in 

L2 (I2), A v = 0 in .W 2 (t2) which implies that v = 0 in # ' .  
An elementary but lengthy calculation using (2.4) and (2.8) now reveals that 

(B(um,, ups), Ujk)=0 unless (m+p+j) is odd and (n+q+k) is odd, in which case 

(B(Umn , Upq), Ujk ) 
2 a ~/4 m p j n  q k [(m 2 + p2 +j2) (n2 + q2 + k 2) _ 

= ='~ (m ~ + 2 n ~) (p2 + 2 q~)( j~  + 2 k 2) [m" + # + : -  2 (m 2 p~ + m~j ~ + p~j ' )J  �9 

_2(m 2 n2 + p2 q2 + f l  U) ]  
�9 [n 4 + q4 + k * -  2 (n2q 2 + n 2 k 2 + q2 k2)] �9 

Equation (3.10) now follows easily from Parseval's equation. In addition, if we 
set x-(9na)/(2aa/*), o,(j, k)=_x(B(uxa, uxO , usk), f( j ,  k)--x(B(uzt, u21), usk) and 
7(J, k)=-~c(B(u2t, u21), ujk), then we find from 0.9) that 

2xZa= ~,, o~2(j, k) 
j ,  k odd 

2~b=2 ~ ~20, k)+ ~ ~O,k)~(j,k) 
j even j ,  k odd 
k odd 

2 x2 c = ~ ~,2 (j, k), 
j ,  k odd 

where the summation indices are positive and odd or even as indicated. 
We consider separately the inequalities a>c and b>a. The first of these 

follows if we can prove that 

(A.1) ~, 6(j,  k)>0,  
j ,  k odd 

25* 
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where 
12 [~*(2-  r/2) + 15 42 ~/2 _ 20r _ 3272] 

(~(~, T/)~_~ (X2 ( ~ , / ~ ) _ _ ~ 2 ( ~ ,  n )  = " ~ 2 ( r / 2 - - 4 ) ( 4 2  + 2 r / 2 ) 2 ( ~ 2 - - 4 ) 2 ( 4 2 - -  16 )  2 . 

The first quadrant of the (4, r/)-plane is divided into six parts by the curves t/= 2, 
(44 - 1542 + 32) t/2 = 2 4 2 (~2 - -  10) across each of which t5 (4, ~/) changes sign; fi (~, r/) 
is positive on three of these regions and negative on the remaining three. It is 
convenient to separate the set A of points (j, k) in the first quadrant satisfying 
tS(j, k ) < 0  in (A.1) into four subsets A~ . . . .  , A 4 defined by 

At = ((~, ~/): ~, ~/odd integers, ~ > 5, ~/> 5} 

Then 

A~ = {(~, 

A~={(i ,  

A,={(1, 

3): ~ an odd integer, ~ > 5} 

1): r an odd integer, 4>3} 

~/): ~ an odd integer, q > 3}. 

~$(j, k)~5(1,  1 ) - ~  [~5(j, k)l. 
j ,  k odd A 

One easily checks that 3(1, 1)>78 x 10 -4 so that (A.1) is proved if ~ IJ(j, k)[ < 
A 

78 x 10 -4. This is verified by estimating separately the ~. [~(j, k)[ (i= 1, 2, 3, 4). 
At 

We shall indicate the estimation procedure for i=  1. Now 

1 2 
1 + - ~  ~-7- + ~ - - )  -- ~-~2- + -~-)  --12 

t$(j, k )=  4 2 16 2 ':4kZ..2+2k2.2 �9 

( ' - 7 )  ' 
For any j, k there holds j z +  2k2> 2]/2jk ,  so that, for (j, k)cA 1, we have 

Use of the integral test yields 
00 00 

(A.2) Elt$(j, k)l_<20S S 4-6~/-4ded~/<5 x 10 -4. 
At 4 4 

Similarly, one finds that ~ 16(s • 10 -4, ~ I f i ( s 2 1 5  10 -a and 
A2 Aa 

Ifi(A k)l <g  x 10 -5. Hence ~ l t~ (j, k)l <5  x 10 -3, which proves that a>c. 
A4 A 

In order to prove that b >  a we obtain a lower bound for b and an upper 
bound for a by methods similar to those above. If A now denotes the set of odd, 
positive integer pairs (A k) for which ~ (A k) T (J, k )<  0 then by plotting the curves, 
in the first quadrant of the (4, r/)-plane, across which either ct(4, r/) or ~(4, !/) 
change sign, one finds that A consists of the points (3, 1) and (3, k), k = 5, 7, 9, .... 
Furthermore 

~ ( j ,  k)~(j, k)=~(3,  1)~(3, 1)+ ~ ~(3, k)r(3, k) 
A k>5  

k odd 

> - 5 . 5 x  1 0 - * - 9 x  10 -a ~ k - 6 > - 6 x  10-* 
k>5  
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so that 
2x2b>2f12(2, 1)+~(1, 1)?(1, 1 ) -6  x 10 -4 

>2(44 x 10-4)+74 x 10-4-6  x 10-4> 15 x 10 -3 

To show that 2tc2a< 15 x l0 -a it suffices to prove the following estimates: 

(A.3) a2(1, 1) < 124 x 10 -4 

(A.4) ~ ct2(1, k)<3 x 10 -4 
k ~ 3 ,  odd 

(A.5) ~ ~2(j, 1 )<10x l0  -4 
j ~  3 ,odd 

(A.6) ~ c t2( j ,k )<3xl0  -`. 
j _ 3, odd 
k ~ 3 ,  odd 

The estimate (A.3) follows by a direct calculation, while (A.4), (A.5) and (A.6) 
may be obtained in essentially the same way as (A.2). For example, using the 
estimate 

[1 2 2 ~2 
~2(j, k)= ~ --)-2---~2-] < 81 1 ( 4)2( 4) =200  

j2k2(j2+2k2)2 1 - - 7  1---~- 

valid for j__>3, k__> 3, we have 

E ~ ~ - ~ r - < ( S x l O  - 1 ) ,  <3x lO-* ,  
od, I 

k> 3, odd k__ 3, odd 

proving (A.6). This completes the proof of Lemma 2. 

Appendix B 

If we denote by 3'I2 the boundary of f2 with the four corners deleted, then 
the regularity result we wish to prove may be stated as follows. 

Theorem B.1. Every classical solution of problem SSP is a generalized solution. 
Every generalized solution is a classical solution in f2 and on 3' f2. 

For smooth ~p, ~b in W" equations (2.3 a, b) follow from (vKa, b) by integration 
by parts. Then equations (2.3 a, b) are obtained for general ~o, ~b in W" by a standard 
limiting argument, using the fact that b(u, v; qO and c(u; cp) are continuous linear 
functionals of c#e#" for fixed u, re#' .  This establishes the first statement in the 
lemma. 

In the proof of the second part of the lemma, much of the detail is the same 
as in the proof of regularity in [5, p. 231 and Appendix A]. We refer the reader 
to that work as well as to the regularity theorems of AGMON in [1] and [2, w 

For any open set G, W=,p (G) denotes the Sobolev space of functions which, 
together with their derivatives of order less than or equal to m, lie in Lp(G). The 
norm in Wm, p(G) is denoted by Ilull~,p. By ZR we mean any open half disc of 
radius R in t2 with boundary 3Z a=  312; R + t32~ R where d 1 Z a is the straight part 
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of t9 Z R and O 1 s c O f2. We shall need the class of functions g~ (ZR) = {rp e C~176 (ZR): 
go=0 on ~l/~a, r p - 0  in a neighborhood of t?2Z R and in 12-I~R} and the Hilbert 
space I~rl,2(ZR) which is the completion of C~(Za) under the norm I]" zR 111,2. 
Finally, in this appendix the inner product (~k, rp) o is that of L 2 (~) .  

Let f ,  w be a generalized solution of problem SSP. Since f ,  we~/- we recall 
that they are continuous on ~ and vanish on ~ f2. 

Now set u =  A f ,  v= A w. Introducing the weak forms of these equations we 
obtain the following system of four second order (weak) Dirichlet problems in 
place of (2.3a, b): 

(a.1) (f, A ~O)o =(u,  tp) o 

(a.2) (w, d rp)o = (v, ~P)o 

(B.3) (u, d Cp)o = - �89 w; tp) 

(B.4) (v, d Cp)o = b(f ,  w; ~p)+2c(w; r 

which are valid for all cp in ~g'. The derivation of (B.1) and (B.2) also uses a 
limiting process, however, we omit the details. 

Let  2Y R be a fixed half disc as described above. For  R' <R,  2, R, henceforth 
denotes a half disc of the same type having the same center as ZR; in particular 
then Z~, c , ?  R and ~1ZR' C 01ZR. Each point of the rectangle t2 is interior to some 
such 2~R,, except for the center when I2 is a square. The interior regularity theory 
needed for such a point is easier than the boundary regularity sketched here and 
will be omitted. 

We may complete the proof of Theorem B.1 by proving the following sequence 
of facts. For  all R'< R, 

(i) u, veWI,~(ZR,)cL,(ZR,)  

(ii) f ,  we W2, 4(SR,) 
(iii) u, veW2,2(~lv)=C~ R,) 

(iv) u = v = 0 on ~ 1 27R, 

(v) f ,  weW4,2(ZR,) 

(vi) u, ve  W4, ~ (~:~,) 
(vii) f ,  w e Wr, 2 (~R') C C" (2R,). 

From (iv) and (vii) it follows easily that f ,  we C4(f2 w a' f2) and A f =  A w =0  on 
a'f2; we have already seen that f =  w = 0 on d f2. That f ,  w satisfy equations (vK a, b) 
pointwise in f2 now follows as in [3, p. 231]. Thus it remains to verify (i)-(vii) 
above. 

It is convenient to state here an ad hoc version of Theorem 6.2 in [1]. 

Lemma B.2. Let geLq (ZR) for some q > 1 and suppose that 

I(g, A ~o)01 --< C [I ~o 11~2 ~- j, p, 

for all q~e~(Z,R) and for some p ' > l ,  some constant C, and an integer je{1,  2}. 

Let p= 1 -  . Then ge Wj, p(Z,R.) for every R' <R. 
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We now restrict ~0 in (B.1-4) to ~ ( ~ g ) ~ ( ~ R ' ) "  Then properties (i), Oi), and 
(iii) may be obtained successively by using Lemma B.2. For  example, terms on 
the right side of (B.4) may be estimated as follows, using H61der inequalities and 
the embedding WI, 2 (27R) ~L4 ('~R): 

Z~ 
I (fxr, % ~Ox)o I < IIf~llo, 2 II wwl[~,~4 l[r 4zR 

In this way (B.4) yields [(v, A ~0)ol < C(~R,f, W, 2)I1~11~.~, for all ~0 e~ (~ : s )  so that 
Lemma B.2 with j =  1 and p = 4 / 3  implies (i) for v; the result for u is proved in 
the same way (the inclusions in (i), (iii) and (vii) are from the Sobolev theorem). 
Property (ii) follows in the same way starting from (B. 1, 2), using property (i) in 
estimating the right hand sides of (B. 1, 2), and then employing Lemma B.2 with 
j =  2 and p = 4. From (ii) it follows that [w, w] and [ w , f ] - 2  wxx are in L 2 (ZR,) so 
that integration by parts in the right sides of (B.3, 4) gives, for cp~&(ZR, ), 

(B.5) (u, ~ ~)o = ( - � 8 9  [w, w], ~)o 

(B.6) (v, A q~)o = ( [ w , f ]  -2wx~,  q~)o 

Property (iii) may be proved along the lines of the proof of (i) starting from 
(B.5, 6) and using Lemma B.2 with j = 2  and p = 2 .  

Because of (iii) we may, for ~oe Cd ~ (~R,), transfer the Laplacians on the left 
in (B.5, 6) from tp to u and v. It follows that in L2 (2~R,) 

lB.7) Au=-�89 and Av=[w,f]-2wxx. 

On the other hand, for tp~&(27R,), 

d~o 
(u, ,t ~0)o = (,t u, ~)o + ~ u - -  

0ts a / l  

whereas from (B.5) and (B.7) we see that (u, A ~p)o=(A u, cp)o. Hence ~ u --6-~n = 0  
for all cp~&(27R,) and (iv) follows. 0~R, 

Properties (v), (vi) and (vii) are proved using Theorem 9.7 of [2]. (Hypothesis 
2 ~ of that theorem can be verified in each case sincef=w=u=v=O on d ~ R  and 
0Z R is piecewise smooth.) For example, (B.1) may be written as ~ Vf. V~p= 

xa, 
- (u ,  tp)o for r so that, because of property (iii), the theorem applies 
with m = 1 and k = 2; we conclude that property (v) holds. A consequence of (v) 
and the Sobolev embedding theorem is that the terms on the right sides in (B.7) 
lie in W2, ~ (Z~,). Then property (vi) follows, in the same way as (v), starting from 
(B.5) and (B.6). By use of (vi), the process that led to (v) now yields (vii), which 
completes the proof. 
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