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Abstract. We propose a class of parametric smooth functions that approximate the fundamental plus function, 
(x)+ =max(O. x). by twice integrating a probability density function. This leads to classes of smooth parametric 
nonlinear equation approximations of nonlinear and mixed complementarity problems (NCPs and MCPs). For 
any solvable NCP or MCP, existence of an arbitrarily accurate solution to the smooth nonlinear equation as well as 
the NCP or MCP, is established for sufficiently large value of a smoothing parameter o. Newton-based algorithms 
are proposed for the smooth problem. For strongly monotone NCPs, global convergence and local quadratic 
convergence are established. For solvable monotone NCPs, each accumulation point of the proposed algorithms 
solves the smooth problem. Exact solutions of our smooth nonlinear equation for various values of the parameter CL, 
generate an interior path, which is different from the central path for interior point method. Computational results 
for 52 test problems compare favorably with those for another Newton-based method. The smooth technique is 
capable of solving efficiently the test problems solved by Dirkse and Ferris [6], Harker and Xiao [ 111 and Pang & 
Gabriel [28]. 

Keywords: smoothing, complementarity problems 

1. Introduction 

The complementarity condition 

where x and y are vectors in R” and the symbol I denotes orthogonality, plays a funda- 
mental role in mathematical programming. Many problems can be formulated by using 
this complementarity condition. For example, most optimal@ conditions of mathematical 
programming [24] as well as variational inequalities [4] and extended complementarity 
problems [9, 21, 38-J can be so formulated. It is obvious that the vectors x and y satisfy 
complementarity condition if and only if 

x=(x-y)+, 

*This material is based on research supported by Air Force Office of Scientific Research Grant F49620-94-l-0036 
and National Science Foundation Grant CCR-9322479. 
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where the plus function (.)+ is defined as 

(O+ = md!i, 01, 

for a real number 6. For a vector x, the vector (x)+ denotes the plus function applied to each 
component of X. In this sense, the plus function plays an important role in mathematical 
programming. But one big disadvantage of the plus function is that it is not smooth because 
it is not differentiable. Thus numerical methods that use gradients cannot be directly 
applied to solve a problem involving a plus function. The basic idea of this paper is to 
use a smooth function approximation to the plus function. With this approximation, many 
efficient algorithms, such as the Newton method, can be easily employed. 

There are many Newton-based algorithms for solving nonlinear complementarity prob- 
lems, variational inequalities and mixed complementarity problems. In [lo] a good sum- 
mary and references up to 1988 are given. Generalizations of the Newton method to 
nonsmooth equations can be found in [32, 331 and [34]. Since then, several approaches 
based on B-differentiable equations were investigated in [ 11, 261 and [27]. In addition, 
an algorithm based on nonsmooth equations and successive quadratic programming was 
given [28], as well as a Newton method with a path following technique [6,30], and a trust 
region Newton method for solving a nonlinear least squares reformulation of the NCP [22]. 
With the exception of [22], a feature common to all these methods is that the subproblem 
at each Newton iteration is still a combinatorial problem. In contrast, by using the smooth 
technique proposed here, we avoid this combinatorial difficulty by approximately reformu- 
lating the nonlinear or mixed complementarity problem as a smooth nonlinear equation. 
Consequently, at each Newton step, we only need to solve a linear equation. This is much 
simpler than solving a mixed linear complementarity problem or a quadratic program. 

Smoothing techniques have already-been applied to different problems, such as, Zt- 
minimization problems [19], multi-commodity flow problems [29], nonsmooth program- 
ming [ 18, 391, linear and convex inequalities [3], and linear complementarity problems 
[2,3] and [15]. These successful techniques motivate a systematic study of the smoothing 
approach. Questions we wish to address include the following. How to generate new 
smoothing functions? What is a common property of smoothing functions? 

In Section 2, we relate the plus function through a parametric smoothing procedure, 
to a probability density function with a parameter /I. As the parameter B approaches 
zero, the smooth plus function approaches the nonsmooth plus function (.)+. This gives 
us a tool for generating a class of smooth plus functions and a systematic way to develop 
properties of these functions. In Section 3, we approximate the NCP by a smooth parametric 
nonlinear equation. For the strongly monotone case, we establish existence of a solution 
for the nonlinear equation and estimate the distance between its solution and the solution of 
original NCP For a general solvable NCP, existence of an arbitrarily accurate solution to the 
nonlinear equation, and hence to the NCP, is established. For a fixed value of the smoothing 
parameter (Y = $, we give a Newton-Armijo type algorithm and establish its convergence. 
In Section 4, we treat the MCP, the mixed complementarity problem (21). For the case of 
a solvable monotone MCP with finite bounds I, u E R”, we prove that if the smoothing 
parameter p is sufficiently small, then the smooth system has a solution. An efficient smooth 
algorithm based on the Newton-Armijo approach with an adjusted smoothing parameter is 
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also given and convergence is established. In Section 5 we show that exact solutions of 
our smooth nonlinear equation, for various values of the smoothing parameter /3 generate 
an interior path to the feasible region, different from the central path of the interior point 
method [ 171. We compare the two paths on a simple example and show that our path gives 
a smaller error for the same value of the smoothing parameter B. In Section 6, encouraging 
numerical testing results are given for 52 problems from the MCPLIB [7] which includes 
all the problems attempted in [6, 111 and [28]. These problems range in size of up to 8192 
variables. These examples include the difficult von Thiinen NCP model [28, 371 which is 
solved here to an accuracy of 1 .Oe - 7. 

A few words about our notation. For f: R + R and x E R”, the vector f(x) in R” is 
defined by the components (f (x))i = f (Xi), i = 1, . . . , n. The support set of f(x), which 
is the set of points such that f(x) # 0, will be denoted by supp( f (x)}. The set of m-by-n 
real matrices will be denoted by Rm MI. The notation 0 and 1 will represent vectors with all 
components 0 and 1 respectively, of appropriate dimension. The infinity, 1, and l2 norms 
will be denoted by ]I . Iloo, I] . 111 and I] . 112 respectively. The identity matrix of arbitrary 
dimension will be -denoted by I. For a differentiable function f: R” + Rm, V f will 
denote the m x n Jacobian matrix of partial derivatives. If F(x) has Lipschitz continuous 
first partial derivatives on R” with constant K > 0, that is 

IlVF(x) - VF(y)II 5 Kllx - yll, Vx, y E R”, 

we write F(x) E LCk(Rn). 

2. A class of smoothing functions 

We consider a class of smooth approximations to the fundamental function (x)+ = max{x, 0) 
Notice first that (x>+ = I_“, u (y)dy, where e(x) is the step function: 

a(x) = 1 1 ifx>O 
0 ifxF0 

The step function a(x) can in turn be written as, a(x) = [:,6(y) dy, where 6(x) is the 
Dirac delta function which satisfies the following properties 

S(x) 10, 
s 

+CO 
S(y) dy = 1. 

--oo 

Figures 1 to 3 depict the above functions. The fact that the plus function is obtained by twice 
integrating the Dirac delta function, prompts us to propose probability density functions 
as a means of smoothing the Dirac delta function and its integrals. Hence we consider 
the piecewise continuous function d(x) with finite number of pieces which is a density 
function, that is it satisfies 

J 

00 
d(x) 10 and d(x) dx = 1. (1) 

--bo 
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Figure 1. The plus function (x)+ = max(x, 0). 
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Figure 2. The step function 13 (x) = 1 if x z 0.0 if x 5 0. 
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delta function S(x) . 
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To parameterize the density function we define 

,. 1 x 
t(x, PI = $ s 

0 
(2) 

where p is a positive parameter. When B goes to 0, the limit of i(x, jl) is the Dirac delta 
function 6(x). This motivates a class of smooth approximations as follows: 

s 
x 

Sk B> = i(t, j?) dt x ff (x) --bo 
and 

(3) 

Therefore, we can get an approximate plus function by twice integrating a density function. 
In fact, this is the same as defining 

/ 
+O” ixx, B) = (x - t)+i(t, /3) dt = 

--co J 

x 
(x - t)i(r , p) dt. (4) 

-cm 

This formulation was given in [18] and [ 13, p. 121 for a density (kernel) function with finite 
support. We will give our results in terms of a density function with arbitrary support. This 
includes the finite support density function as a special case. 

Proposition 2.1. Let d(x) be a probability densityfunction and i(x, B> = id($), where 
#I is a positive parameter: Let d(x) satisfy the following assumptions: 
(Al) d(x) is piecewise continuous withBnite number ofpieces and satisfies (1). 

W) W4lcqx, = ./-‘,” 1x1 d(x) dx < +CQ. 
Then the dejinitions of $(x, @) given by (3) and (4) are consistent. 

Proof: By the definition (2) and assumption (A2), we have that p(x, /3) defined by (4) 
satisfies 

r z 
j%x, B) =x s ’ d(t) dt -p s ’ td(t) dt 

-co --oo 

By direct computation, 

P’CX, B> = J 
5 

d(t) dt 
-co 
x 

= 
s 

t^(t, /?) dt = sI(x, #?) 
-m 

(5) 

(6) 
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Hence the derivatives of 5(x, B) defined by (3) and (4) are the same and the difference 
between the two representations of j?(x, p) is a constant, say c. If we let x approach -oo 
in both (3) and (4), then j(x, /I) approaches 0 in both, and hence c = 0. Therefore the 
definitions of j(x, /3) given by (3) and (4) are consistent. 0 

Now we give properties of j(x, ,5) that show that it is an accurate approximation of the 
plus function (x)+ as p approaches zero. 

Proposition 2.2 (Properties of fi(x, jS>, j? >O). Let d(x) and i(x, p) be as in Proposition 
2.1, and let d(x) satisfy (Al) and (A2). Then Z?(x, /3) has thefollowing properties: 
(1) 5(x, /I) is continuously differentiable. If, in addition, d(x) is k-times continuously 

differentiable, 6(x, t?I) is (k + 2)-times continuously differentiable. 
(2) -028 5 Ij(x, B) - (xl+ 5 DIP, where 

s 

0 

D1 = Ix Id(x) dx (7) 
-co 

IS 
+bo 

D2 = max xd(x) dx, 0 
-m 

(8) 

(3) 5(x, p) is nondecreasing and convex. In addition, let d(x) satisfy 

(A3) supp {d(x)) = R. 

Then $(x, /I) is strictly increasing and strictly convex in x for a@ed B P- 0. 
(4) 0 5 $‘(x, /3) 5 1 and if(A3) is satisfied, then 0 -C j’(x, #?) c 1. 
(5) Let (A3) be satisfied and D2 = 0, then 

Proof: 

(1) By Eq. (6) in the proof of last proposition, the conclusion follows. 
(2) If x 2 0, by using (5), we have that 

s 

I. 

BCX, B) - (x>+ = x ’ d(t) dt - /9 
-co s 

d 
’ td(t) dt -x 

-co 
co 00 ce 

= -x 
s 

d(t) dt + /3 
s 

td(t) dt - /3 
s 

td(t) dt 

=Z$i(t-;)d(t)ci-/!?~~td(t)~w 
P 
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Therefore 

s 03 b(x, B> - (x>+ 2 -B td(t) dt 2 -f?Dz 
-cm 

and 

ItId dt = BDl. 

Otherwise, x < 0, then 

1 
@(x, /!3) - (x)+ = x 

J 

& 
’ d(t) dt +/3 

f  
’ JtJ d(t) dt 

-m --a0 

s 

0 

rS ItI d(t) dt = 0,s 
-CO 

and 

(3) By Eq. (6) and the fact that d(x) > 0, 

y<x, B) = s % 
d(t) dt 2 0 

--co 

and 

(i’k B> - b’(y, #0)(x - y) = (x - y) lx d(t) dt 2 0 
Y 

Therefore b(x, /?) is nondecreasing and convex. If, in addition, (A3) is true, then 

b’(x, B> > 0 and <$‘<x, B> - $‘(y, /9)(x - y) > 0, for x # y 

So 6(x, /3) is strictly increasing and strictly convex. 
(4) By formula (6), it is easy to see that 0 5 fi’(x, p) 5 1. If (A3) is true, d(x) > 0 and 

c/(x, /3) is strictly increasing. Therefore 0 < j’(x, /3) < 1. 
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(5) By (A3), we have 

JC-;) d(r) dt > 0, x I 0 

and 

d(r) dt > 0, x < 0 

By the similar proof of (2), we have 

/Xx, B) - (xl+ > -DzS = 0 

Therefore 

Now we have a systematic way for generating a class of smooth plus functions. Given any 
probability density function d(x) satisfying (Al) and (A2) we define i(x, /I) and b(x, fi) 
as in (2) and (3) respectively. The smooth function j(x) /3) approximates the plus function 
with increasing accuracy as the parameter #l approaches 0. The properties of the function 
j(x, p) are given in Proposition 2.2 above. 

We now give examples of smooth plus functions. The first example, which will be used 
throughout this paper, is based on the sigmoid function of neural networks [3, 12, 201 and 
defined as follows: 

s(x, a) = 
1 

1 + e--ax ’ 
a!>0 

This function approximates the step function o (x) as (II tends to infinity. Since the derivative 
with respect to x of this function tends to the Dirac delta function as (Y tends to infinity, it 
follows that a! plays the role of $ and we shall therefore take 

1 
a! = -. 

B 

Example 2.1 (Neural Networks Smooth Plus Function [3]). Let 

d(x) = 
e-I 

(1 + e+)2 

Here DI = log2, 02 = 0 and supp{d(x)) = R, where D1 and D2 are defined by (7) 
and (8). Integrating $d( F) twice gives 

j(x, /I) = x + #3 log (1 + e-“) 
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Letting IX = i, we have 

= (Ys(x, a>(1 - S(X, a)) 

Figures 4 to 6 depict the functions p(x, 5), s(x, 5) and t (x, 5) respectively. 
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Figure 4. The p function p(x, (I) = x + d log( 1 + e+“) with a! = 5. 

Figure 5. 
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The sigmoid function s(x, (u) = & with cr = 5. The sigmoid function s(x, (u) = & with cr = 5. 
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Figure 6. The f 
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function t(x, 01) = C,~C~~jz witha = 5. 

Following are several other smooth plus functions based on probability density functions 
proposed by other authors. 

Example 2.2 (Chen-Harker-Kanzow-Smale Smooth Plus Function 121, [15] and 1361). 
Let 

d(x) = 
2 

(x2 + 4)f 

Here Dr = 1, 02 = 0, supp{d(x)) = R and 

Example 2.3 (Pinar-Zenios Smooth Plus Function 1291). Let 

d(x) = 
1 if05xll 
0 otherwise 

Here D1 = 0, 02 = i, supp{d(x)} = [0, 11 and 

i 

0 ifx CO 

b(x,B)= 5 ifOlx (fi 

x- $ ifx>/3 

This function can also be obtained by applying the Moreau-Yosida regularization [13, 
p. 131 to the plus function. 
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Example 2.4 (Zang Smooth Plus Function 1391). Let 

d(x) = 
1 if-isxs$ 
0 otherwise 

Here DI = i, DZ = 0, supp{d(x)} = [-i, i] and 

1 0 if xc-g 

jxx, B) = $j(x + $)” if 1x1 5 $ 
x if x>$ 

Note that in Examples 2.3 and 2.4 above, the density function d(x) has compact support 
while the smooth function F(x, B) is only once continuously differentiable. In Examples 2.1 
and 2.2, d(x) has infinite support while the functions p(x, cr) and b(x, B) are differentiable 
infinitely often. 

We summarize the various functions introduced as follows: 

(x>+ -L a(x) A- 6(x) 

pb, a) = @ x, A 
( > 

,I s(x,a) 
1 

=i x,- 
( > 

-A- t(x,cx) 
1 

=; x,- 
(Y ( > a 

Because of our favorable experience with the function p(x, o) [3] on linear complemen- 
tarity problems and linear and convex inequalities, we chose it for our numerical experi- 
ments. Further comparisons using different approximations to the plus function are left for 
future work. 

3. The nonlinear complementarity problem 

In this section we consider the nonlinear complementarity problem (NCP) of finding an x 
in R” such that 

0 5 x I F(x) 2 0 (9) 
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Here F(x) is a differentiable function from R” to R”. By using the smooth function 3(x, B) 
introduced in last section, we consider the smooth nonlinear equation 

R(x) =x - $(x - F(X), /I) = o (10) 

as an approximation to the following nonsmooth equivalent reformulation of the NCP 

x = (x - F(x))+ (11) 

We first show that a natural residual for the NCP is easily bounded by a corresponding 
residual for the nonlinear Pq. (10). 

Lemma 3.1. 

lb - (x - F(x))+llp I Ix - i<x - F(x), B>II/J 
+ yp maxI&, &}fi, p = 1,2,oo, (12) 

whereyl =n, B=yt;landy,= 1. The constants D1 and D2 depend on the density 
function used and are defined in (7) and (8). 

Proof: 

lb - (x - Fb)>+llp 5 IIX - fib - F(x), B) + m - F(x), B) - (x - W))+llp 
L lb - h - F(x), B>llp + II% - F(x), B) - (x - F(x))+II, 
5 llx - i%x - F(x), B)llp + vp max{Dt, DdB. 0 

The above result is also true for any monotone norm [25]. 
We first consider the strongly monotone NCP, that is there exists a k > 0 such that for 

anyx, y E R” 

(F(x) - F(Y)>~(x - Y) 2 kllx - Y II2 (13) 

Since the NCP is strongly monotone, it has a unique solution [lo]. The following error 
bound for the strongly monotone NCP is given as Theorem 3.2.1 in [31]. 

Lemma 3.2. Let the NCP be strongly monotone and let F(x) be Lipschitz continuous. 
Then for any x E R” 

lb - Xllp 5 C,Ilx - (x - F(x))+(I,, p = 1,2,oo, (14) 

where X is the unique solution of the NCP and C, is a condition constant of F independent 
ofx. 
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Now, we give an error bound for the NCP by using the smooth function j?(x, ,3). By 
Lemma 3.1 and Lemma 3.2, it is easy to get the following lemma. 

Lemma 3.3. Let the NCP be strongly monotone and let F(n) be Lipschitz continuous. 
Then for any x E R” 

lb - Xllp 5 c,w -b<x - F(x),B)llp+r!,max{ol,D~}B>, p = 1,2,co, (15) 

where X and C, are defined in Lemma 3.2, and y!, and the constants Dt, 02 are dejined in 
Lemma 3.1. 

Let the residual f(x) of the nonlinear Eq. (10) be defined as follows 

f(x) = ;WTW4 = $1~ - F(x - F(x), iOIl; (16) 

We now prove that if x is a stationary point of f(x) for a monotone F(x), then x must be a 
solution of the nonlinear Eq. (lo), and hence by (15) x is an approximate solution of the NCP. 

Proposition 3.1. Suppose that d(x) satisjes (Al)-(A3) and p(x, /?) is defined by (4). 
For any monotone NCP, we have that V R(x) is positive definite. In addition, let x be a 
stationary point of f(x), then x must be a solution of the nonlinear Eq. (IO). 

Proof: By definition, 

VR(x) = diag@‘(x - F(x), B))(diag(j’-‘(x - F(x), /3> - 1) + VF(x)) 

By (4) of Proposition 2.2, we have 0 c j’(x, B) < 1 and hence the diagonal matrices above 
are positive definite. Since V F (x) is positive semidefinite, it follows that V R(x) is positive 
definite. Let x be a stationary point of f(x), then 

Vf(x) = VR(x)rR(x) = 0. 

Since VR(x) is nonsingular, R(x) = 0, it follows that x satisfies (10). 0 

When F(x) is strongly monotone and Lipschitz continuous, then the level sets of f(x) 
are compact. We state this result as the following proposition. 

Proposition 3.2. Consider the strongly monotone NCP with Lipschitz continuous F(x). 
Then f(x) defined by (16) has compact level sets. 

Proof: Suppose not, then there exists a sequence {xk} c R” and a positive number M such 
that llxk 112 --+ co as k + co, and llxk - $(xk - F(xk), 8)112 _( M. Then by Lemma 3.3, 

11.~ - .f II2 5 G.W + ~2 maxI&, &MC 
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where X is the unique solution of the NCP. Let k ----f 00, the left hand side of the above 
inequality goes to 00 and the right hand side stays finite. This is a contradiction. Hence the 
level sets of f(x) are compact. 0 

We now show that, for the strongly monotone NCP with Lipschitz continuous function 
F(x), the nonlinear Eq. (10) always has a unique solution. 

Theorem 3.1. Suppose that d(x) safisJes (Al)-(A3), j(x, /?) is deBned by (4), F(x) is 
strongly monotone and Lipschitz continuous. Then the nonlinear Eq. (10) has a unique 
solution. 

Proof: By Proposition 3.2, the level sets of f(x) are compact. So minXeRa f(x) must 
have a solution X, which is a stationary point of f(x). By Proposition 3.1 we get that x 
satisfies (10). If y is another solution of (lo), then 

0 = (x - y)(R(x) - R(y)) = (x - y) j+;’ VR(x + t(y -x)1 dt(x - y> 

for some t E [0, 11. Since VR is positive definite by Proposition 3.1, it follows that x = y. 
Therefore Eq. (10) has a unique solution. 0 

Let x(p) be a solution of (10). Then x(p) = @(x(B) - F(x@)), p). By Lemma 3.3, we 
have the following theorem which bounds the distance between the solution x(/l) of (10) 
and the solution point of the original NCP (9). 

Theorem 3.2. Consider a strongly monotone NCP with Lipschitz continuous F(x). Let 
x(B) be a solution of (10). Then, for the solution X of the NCP (9), we have that 

b(B) -ZIP 5 C,Y, maxi&, 02U3, p = 1,&m 

Here C, is the condition constant defined in Lemma 3.2, yp and D1, 02 are constants 
de$ned in Lemma 3.1. 

By the above result, we know that if p is sufficiently small, a solution of (10) can 
approximate the solution of NCP to any desired accuracy. Hence we can solve (10) to get 
an approximate solution of the NCP. 

For most part of this remaining section, we consider only the function p(x, 01) defined in 
Example 2.1. We explore further the property of real numbers x and y that approximately 
satisfy the following equation 

x=p(x-Yea) 

which is related to Eq. (10) that generates an approximate solution of the NCl? We claim 
that such x and y will approximately satisfy 
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In order to prove this fundamental fact we establish the following lemma, the proof of which 
is relegated to the Appendix 1. 

Lemma 3.4. Let h(x) be deBned as follows: 

h(x) = -x log(1 + S - emX), 6 1 0 

(i) If0 c 6 c 1, then 

max h(x) 5 2. 
rqo,--logSI 

(ii) If8 2 1, then 

n-m XG[-log&O] h(x) 5 max (Slog26, i]. 

(iii) ZfS = 0, then 

max h(x) 5 2. 
XC[O,~) e 

We will now show that if an x and y satisfy 

-2 5 x - - p(x y, a) 5 0, 
a! 

where 61 > 0, then the complementarity condition 0 5 x I y 2 0 is approximatdy 

satisfied for large (Y, in the following sense 

t-x)+ 5 19 C-y)+ I ;, C(h) 
(XY)+ I ---p 

where C(&) is the constant defined in Proposition 3.3. Note that as u + 00, the comple- 
mentarity condition 0 I x I y 1. 0 is exactly satisfied. 

Proposition 3.3. Let x, y E R satisfy 

--615x-p(x-y,a)10, 
CY 

where 61 > 0. Then 

t-x>+ I ;, t-Y)+ 5 2, 
CC&) 

by)+ I Q2’ 

where 

C(&) = max(2, (es1 - 1) log2(es1 - l)}. 
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PrOOf: Let 6 = e-” + emay - 1, since 

-1 ( x - (x - y) - L log(1 + e-+y)) _( 0, 
a! (II 

we have 

1 ( emax + e-‘“Y 5 es1 

Hence 0 5 6 _( es1 - 1. Since 

e --(Ix 5 emax + emcrY = 1 + 6 5 es], 

we have x p - %. Hence 

61 
(-xl+ 5 -. 

a 
Similarly, 

C-y)+ 5 ;. 

Now we consider the estimate of (xy)+. Since edcrx + eeay = 1 + S, we have 

y = --J log(l + S - e--ax), 

Therefore 

y > 0 W 1 + 6 - eeax 5 1 * e-a’ > 6 - 

and 

Case I. 0 -c 6 -c 1. 
If y > 0, then by (17), 

x ( -‘log 6. 
a! 

Hence 

by>+ 5 max -rlog(l+6-ePX) 
xc[O,-!!g a! 

(17) 

(18) 

=- j2 yg==;gsl MY) (Let Y = ax) 

2 
<- - cz? 

(By (i) of Lemma 3.4) 
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Otherwise y 5 0, then 

x > +ogs 20. 

Hence ny I 0, (xy)+ = 0. 
Cuse2. s 11. 

If y 2 0, then by (17), 

x&ogs50. 
a! 

Hencexy 5 0, (xy)+ = 0. Otherwise y 5 0, then x 5 -i logs. If x I 0, then (xy)+ = 0. 
Now we only consider the case x < 0. Therefore 

t-v)+ 5 max -2 log(1 + 6 - e-ax) = L 
XE[-y,O] CY 

Q2 rc~~~8,0,~t~) (Let y = W. 

By (ii) of Lemma 3.4, 

Case 3. 6 = 0. 
In this case, we have x 1 0 and y > 0. By using (iv) of Lemma 3.4, 

1 
(XY)+ i - max h(x) 5 -$a 

a2 xaca) 

Combining the above three cases, we get 

C(h) 
(XY)+ I -. 

a!2 
q 

Even in the case of a solvable monotone nonlinear complementarity problem (e.g. 0 5 
x I F(x) > 0, F(x) := 0), the nonlinear Eq. (10) may not necessarily have a solution. 
However, for all Si L D1 , and 82 2 D2, the following system of inequalities 

always has a solution for #l > 0. In particular, for the p(x, o) defined in Example 2.1 we 
have that for all 61 > log 2, the following system of inequalities 

-315 x -p(x - F(x),a!) 5 0, (20) 
a! 
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always has a solution. Hence by Proposition 3.3, a solution of (20) will approximately 
satisfy the NCP condition 

x 2 0, F(x) 2 0, XTF(X) = 0. 

Consequently, Proposition 3.3 can be used to establish the following useful theorem. 

Theorem 3.3. Consider a solvable nonlinear complementarity problem (9). Let 61 L 
log 2 and u > 0. There exists x satisfying (20), and consequently the NCP conditions are 
approximately satisfied as follows: 

c-x>+ 5 -1, 61 (-F(x))+ 5 -1, f-5 (XTF(X))+ 5 
a! (Y 

9, 

where C(&) is defined in Proposition 3.3. 

We now specify our computational algorithm for solving the NCP by smoothing. The 
algorithm consists of a Newton method with an Armijo line search with parameters 6 and 
asuchthatO<S<landO<a<i. 

Algorithm 3.1 (Newton NCP Algorithm). Given x0 E R” and let k = 0. 
(1) If IlVf WII -= c, stop. 
(2) Direction dk 

dk = -VR(x$‘R(xk) 

(3) Stepsize hk (Armij,) 

xk+l = xk + &dk, & = KlaX{l, 8, a*, . . .), s.t. 

f (xk) - f @k+l) >_ oAkjd;Vf (xk)] 

k = k + 1 go to step (I). 

The above algorithm is well defined for a monotone NCP with a continuously differen- 
tiable F(x). We will state the following convergence theorem [5]. We omit the proof that 
is similar to the proof of Theorem 4.3. 

Theorem 3.4. Consider a solvable monotone nonlinear complementarity problem (9) 
with F(x) E LCk(R”). Then 
(1) The sequence {xk} defined in Algorithm 3.1 is well defined. 

(2) Any accumulation point of the above sequence solves the nonlinear Eq. (10). 

(3) If an accumulation point exists, the whole sequence {xk} converges to x quadratically. 

(4) If, in addition, F is strongly monotone and Lipschitz continuous, then the sequence 
(xk} converges to X, the solution of (lo), at a quadratic rate. 
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4. The mixed complementarity problem 

The mixed complementarity problem (MCP) is defined as follows [6]: 
Given a differentiable F: R” -+ R”, 1, u E I?‘, 1 -e u, where k = R U (+cq --cm}, 

findx, w, v E R”, suchthat 

F(x)-w+u=O 
05x-ZlwzO (21) 
o~ulu-x~o 

This MCP model includes many classes of mathematical programming problems, such 
as nonlinear equations, nonlinear programming, nonlinear complementarity problems and 
variational inequalities. 

By using the smooth function j(x, /3) instead of the plus function, we reformulate the 
MCP approximately as follows. 
Fori = l,...,n: 

Case 1. li = --OO and Ui = 00: 

F;:(x) = 0 

Case 2. Zi > --OO and Ui = 00: 

Xi - li - $(-Xi - li - Fi(x), p) = 0 

Case 3. li = --OO and Ui < CO: 

Xi - ui + $(Ui -xi + I;;:(~),fi) = 0 (22) 

Case 4. li > -Wand ui < 00: 

I;;:(x)-wi+ui=O 

Xi - li - ,G(Xi - li - Wi, @) = 0 

ui-Xi-~(Ui-Xi-Ui,B)=O. 

We will denote the above 4 cases collectively by the nonlinear equation 

R(x,w,u)=O (23) 

Note that the natural residual for the MCP is given by the left hand side of above relation 
with the jj function replaced by the plus function. We denote collectively this natural 
residual by 

r(x, w, u) (24) 
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Now we give a lemma that bounds the natural residual of the MCP by the residual of Eq. (23) 
and vice versa. The proof is a simple application of the properties of the p function. 

Lemma 4.1. Let N be number of equations in (23) and p(x, a) de@ed in Example 2.1. 
Then 

IINx, w ~)I12 5 lb-(x, w, ~)I12 + 
alog 

a0 

lb-(x, w U)ll2 5 IIRk w, ~)I12 + fi1og2 
a0 

Let f(x, w, u) be the residual function of the nonlinear Eq. (23) defined as follows 

f (x, w, u) = ;R(x, w, u)=R(x, w, u) (25) 

Now we state an existence result for the monotone MCP with 1, u E R”. 

Theorem 4.1. Suppose that d(x) sati@es (Al)-(A3) and b(x, /?) is dejined by (4). Con- 
sider a solvable mixed complementarity problem (21) with monotone F(x) and 1, u E R”. 
The nonlinear Eq. (23) has a solution for suflciently small /% 

Proof: We shall prove that a level set of f(x, w, u) is nonempty and compact. First we 
will prove that the set X = {x I f(x, w, u) 5 C} is compact for all C E R. Since f is 
continuous, the level set X is closed. Hence we only need to show that the set X is bounded. 
Suppose not, then there exists ink} E X and there exists 1 5 i 5 n such that xi” goes to 
+oo or -co. Without loss of generality, we assume that xi” goes to +oo. Then the residual 
corresponding to the following equation approaches 00: 

Ui - Xi - $(Ui - Xi - Vi, B) = 0. 

This contradicts the fact that xk E X. Let C = fn max{Di, Dz}~~~, where Di and DZ 
are nonnegative constants defined in (7) and (8). It is easy to show that the level set 
Levc(f) = {(x, w, u) 1 f(x, w, u) 5 C} is not empty. Now we will prove that Levc(f) 
is compact for 

B< 
IIliIll<i<n(Ui - li) 

,/Zmai{Dl, DzJ’ 

We have proven that the x part must be bounded. Therefore, if the level set Levc(f) is 
unbounded, there exists (xk, wk, u’) E Levcf f) such that (wk, uk) are unbounded. Without 
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loss of generality, we assume xk + X and there exist 1 I i 5 n such w: + +oo or 
-oc as k + 03. If wf + -00, the residual corresponding to the equation 

Xi - li - j(Xi - li - Wi, B) = 0. 

goes to 00 as k + 00. But (xk, wk, uk) E Levc(f), which is a contradiction. Otherwise, 
wf + +CS. By the equation 

Fi(X) - Wi + Vi = 0 

and the fact that xk is bounded, we get that as k -+ 00, I$ + +m. Hence, as k -+ cm, 

f(Xk, Wk, U’) 2 i((*i -Xf - b(Uf - Xf - $9 fi))* + (Xf - li - j(Xf - Zi - Wf, 8))“) 

--+ k((Ui - ifi)* + (Xi - li)*) 2 f (Ui - li)* > in max{Di, D*}*p* = C 

for all 

This contradicts (xk, wk, uk) E Levc(f). Hence there exists alevel set of f(x, w, u) which 
is nonempty and compact. Therefore the problem 

min f(x, w, u) 
x.w,u 

must have a minimum, which satisfies 

Vf(x, w, u) = VR(x, w, u)Q(x, w, u) = 0. 

Let hi = diag(@‘(x - 1 - w, /3)) and A2 = diag($(u - x - u, /l)), then 

VR(x,w,u)= [KY!; $ iJ 

Notice that 

and 0 c y(x - f - w, /3)), j?‘(u - x - u, 8)) c 1. When F is monotone, the Jacobian 
VR(x, w, u) is nonsingular. Therefore 

Vf(x, w, u) = 0 d R(x, w, u) = 0. 0 
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From now on, we only consider the function p(x, cr) defined in Example 2.1. The 
following theorem is a direct application of Proposition 3.3. that can be proved by applying 
the Proportion 3.3 to each equation. 

Theorem 4.2. Consider a solvable mixed complementarity problem (21). Let 61 1 log 2 
and a > 0. Then the following system of inequalities, i = 1, . . . , n: 
Case 1. lj = --oO and Ui = Co: 

-1 < Fi(X) = 0 5 1 
a!- cd 

Case 2. li > -CO and Ui = CO: 

-'_(Xj-li-~(Xj-lj-Fj(X),B)iO 
cd 

Case 3. li = --OO and ui < 00: 

0 5 Xi - Uj + j(Ui - Xi + Fi(X), B) 5 $ 

Case 4. li > --OO and ui < 00: 

(26) 

61 & 
-- 5 F;:(X)-Wi+Vj I- 

o! 01 

61 -- 5 Xi - lj - b(Xj - lj - Wi, fi) 5 0 
cd 

-'IUi-Xi-~(Ui-Xi-Ui,B)I:O, 
a! 

where p(x, a) is defined in Example 2.1, always has a solution (x, w, v) which satisjies 
the MCP conditions approximately in the following sense, for i = 1, . . . , n: 
Case 1. li = -CXJ and ui = 00: 

Case 2. li > -CCI and ui = CO: 

(lj -Xi>+ I z7 (--Fi(x)>+ 5 z, 
Case 3. li = --oO and Ui < 00: 

61 
(Xi - Ui)+ I -9 

ff 
(4(X))+ I ZT 

((Xi -li>Fi(X))+ I: %$9 

(-(Ui - Xi)Fi(X))+ 5 y, 
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Case4. li > -mandui < 00: 

Cli -Xi>+ 5 z7 (-Wi>+ I ZV ((Xi - Zi)Wi)+ _< F, 

(xi -Ui>+ I $t (-vi>+ I z, 
C(b) 

((Ui -Xi>%>+ i - 
cd2 ’ 

where C(Sl) is defined in Proposition 3.3. 

Now we state the smooth method for the mixed complementarity problem based on the 
Newton Algorithm 3.1 in which the smoothing parameter will be adjusted. In the algorithm, 
we adjust the smoothing parameter a! inverse proportion to the natural residual r(x, w, u) 
of (24) for the MCP in the following way. Let N be the total number of nonlinear equations 
in (23) and let (x, UI, V) be current point. Let 

Il~bw.vh if Ilr(x, w, u)ll2 < fi 
u(x, w, u) = 

& 
Jis 

(27) 
otherwise . . 

The following smooth algorithm generates an E-accurate solution for the MCP, in the sense 
that the natural residual r(x, w, u) of (24) satisfies Ilr(x, w, u)llm 5 6. 

In order to get an r-accurate solution for the MCP. We need (Y sufficient large. We will 
establish a simple lemma before we get such o. 

Lemma 4.2. Let real numbers a and b satisfy 

(-a)+ I 1, (-b)+ F : and (ab)+ I T, 

then 

bin@, b)l I 
maxI&, XT&J, 

t a! 

where C(&) is defined in Proposition 3.3. 

Proof: Without loss of generality, we assume that a 5 b. If a 2 0, then (ab)+ > a2. 
Therefore 

(min(a, b)( = a 5 ,/m 5 q. 

Ifa (: 0, 

Jmin(a, b)J = 61 -a = (-a)+ 5 -. 
a! 
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Combining the above two cases, the conclusion follows. 0 

Therefore to satisfy Imin(a, b)l 5 E, we choose 01 2 maxt61q6m1. By using 6, = log 2, 

we obtain from the definition of C(St), when a! 2 omax p $, that Imin(a, 6)( 5 E. 

Algorithm 4.1 (Smooth Algorithm for MCP). Input tolerance E, parameter u1 2 v > 1 
and initial guess x0 E R”: 
(1) Initialization. For1 5 i 5 nofCase4of(22),letw~ = (Ft(xo))+, I$ = (-Ft(xg))+, 

k = 0 and (110 = a(xo, wg, ~0). Choose amax 2 $ 
(2) If Ilr(xk, wk, ~k)iico 5 c, stop. 

(3) Newton Armijo step. Find (xk+l , wk+l , Ukfl) by a Newton-Armi,io step applied to 

R(x, w, u) = 0. 

(4) Parameter update. If U(xk+l, !.&+I, uk+l) 2 vffk, set 

*k+l = a@k+l, wk+l, uk+lh 

&W-Wise if llvf (xk+l, wk+l, uk+1)112 5 et set 

Ifmk+l > a-, set ff]lk+l = a!,. Let k = k + 1, go to step (2). 

Let Z denote the index set of the Fi of Case 1, J of Case 2, K of Case 3 and L of Case 4 
of (22). In order to characterize the nonsingularity of VR, we now give a definition of a 
regular MCP Note that the monotone NCP is regular. More generally, an NCP with a PO . 
Jacobian matrix is regular. 

Definition 4.1. An MCP is called regular if 

is nonsingular, for all positive diagonal matrices DJ , Dk and DL, that have the dimensions 
of I .Z 1, I K I and IL I respectively. 

Theorem 4.3. Consider a solvable regular mixed complementarity problem (21) with 
F(x) E LCk(R”). Then 
(1) The sequence {xk, wk, uk} defined in Algorithm 4.1 exists. 
(2) Any accumulation point of the above sequence is an e-accurate solution of the MCP 

(21). 
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(3) Zf an UCCUmUhtiOn point eXiStS, the whole sequence {xk, wk, vk} converges to an 
E-accurate solution quadratically. 

(4) Zf; inn&$ion, the level set {(x, w, v) 1 11 r x3 w, @II2 5 Ilr(x0, ~0, v0>112 + ( 

g v-l ) is compact, the sequence {xk, wk, vk} converges to an E-accurate solution 
at a qu2fratic rate. 

Proof: we denote (xk , wk , vk) by yk and (.f , zz,, 5) by j. 

(1) Let AJ = diag(p'(xJ - 15 - FJ(x),a)), AK = diag(p’(ug - XK - FK(X),~)), 

AL, = diag(p’(xL - IL - w, (Y)) and A Lo = diag(p’(uL - XL - v, a)), then 

X 

+ 

AJ 

Z 

Z -AL, AL, 

ALA-1 AL2 I- 

O 

I-AJ 

Z-AK 

0 

0 

0 
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VF,(x) 0’ 

VF.I(X> 0 
VFK(X) 0 
VFL(X) 0 

0 0 

0 0. 

+ 

1 AL? - I ALL _ 

Hence V R(x) w, u) is nonsingular if the MCP is regular. If F E LC; (R”), then 
{ (xk, wk, uk)) are well defined. 

(2) For an accumulation point j, we have yk, + j. Since the parameter a! can be 
changed only finite many times, then (ilk = d, for all k 2 k. Therefore, without loss 
generality, we consider the sequence {yk, } for fixed 5. In case that f(j) = 0, for 5, 
we have & = CX,,,~. Otherwise, since ]]Vf(yk,)llz -+ 0, there exists an i such that 
]]Vf(y~>]]2 i E. By (4) of Algorithm 4.1, (21 will change to vi&. That contradicts the 
definition of 5. Hence R(j) = 0 for a! = (Y-, y - is an e-accurate solution of the MCP 
(21). The other case is that f(j) > 0 for 6. Since F E LCk(R”), for a compact set 
S whose interior contains {yk,} and j, we have that R(y) E LC;, (S) for some RI. By 
Quadratic Bound Lemma [25, p.1441, we have 

Ilf(yk, + Ak,dki) - f(yk,) - vf(yk,)Thk,dk, 112 5 2[lAk$k, 11;. 

Since VR(y) is nonsingular, on the compact S, there exists K(S) and k(S) such that 

x~VR-~(~)VR-‘(~)X 5 K(S)xTx, Vy E S,x E R” 

and 

~~VR-‘(y)vR-~(y)x > k(S)xTx, Vy E S,x E R”. 

Consequently 

fok) - .f(Yk, + Ak$k,) 

1 -hkiVf(yk,)Tdk, - ‘$‘ii R(yki)TvR(yk,)-TvR(yk,),-lR(yk,) 

2 -hk,Vf(yki)Tdk, - T@(Yk,)‘R(yk,) 
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= ah ’ - TAk,) Ivf(yk,)‘dki 1 

z hk,a(Vf(yki)Td(Yk,)l, 

2(1 -a) 
if kk, 5 KIK(S) 

By the rule of choosing hk, , we have kki 2 S w, where S is the constant used in 
Armijo stepsize. Therefore 

-f-hi) - f(Yki + Akidki) 2 20~&&~vf(ykL)Td(ykL)\ 

= 2as ~~v~(Yk,)‘vR(Yki)-l~~(yki)-~~~(yk~)~ 

Since yk, - j, we have Of(y) = 0. Thus R(y) = 0 and f(J) = 0. This contradicts 
the assumption f(j) > 0. This case cannot occur. 

(3) By the analysis in (2), we have yk, + j, R(y) = 0 and R(y) E LCK, (S). Therefore 

IIR(Y + 4 - R(Y) - wY~T412 5 $- IMlf 

for y, y + d E S. Ford = VR(y)-‘R(y), we have 

lIR(~)ll; - IIRCY +d)II; ? IIR(r)II; - 

2JG 
if IlR(~)ll2 5 KIKcSj 

Hence, if y is close enough to y, the Newton step accepted. According to the standard 
result of local quadratic convergence for Newton Method, Theorem 5.2.1 in [S], the 
conclusion follows. 

(4) IAd’i =o, l,..., be the sequence of different parameters rx used in Algorithm 4.1. 
Let{kj}, i =O, l,..., with kc = 0, be the indices such that the parameter cx changes, 
that is for ki 5 k 5 ki+l - l,ok=&. For~eandya,byJkmna4.1,wehave 

IIR(~o)llz 5 Il~(yo)ll2 + fi1og2 
a0 
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For ko 5 k 4 kl, since f(yk) I f(yu) with ~0, 

IIWYk)llZ I IIWYo)ll2 5 Il~(Y0)112 + 
filog2 

do 

By Lemma 4.1, 

ll~(Yk>llZ 5 IIWYdll2 + 
filog2 

I ll~(YO>ll2 + 
2Jmog2 

a0 a0 

For& and ykl-i, byLemma4.1, 

IIR(Yk,-*)I12 I Ilr(Yk,-I)112 + 
JElog2 

5 IldYo) II2 + 
2+/Tlog2 + filog2 

a1 a0 vu0 

For ki 5 k < k2, since f(yk) 5 f(yk,-1) with czl, 

llwk)112 I II~(Yk~-l)ll2 5 Il~(Yo)ll2 + 
2filog2 + filog2 

(yo 
vu0 

By Lemma4.1, 

Il~(Yk)llZ 5 IIWYdll2 + 
filog 2 

I Il~(YO)ll2 + 
2fi log 2 

+ 
2filog2 

a1 a0 vu0 

Inductively, for CX~ and yki-l, 

p(YkI-1)112 5 Ilr(Yo)ll2 + 
2filog2 + 22/iIilog2 

+...+ 
2filog2 + Olog2 

a0 vu0 U+-XO via0 

forki 5 k < ki+ly 

II~(Yk)ll2 I Il~(Yo)llz + 
2filog2 

+ 
2fi log 2 + + 2filog2 . . . 

I+‘IX0 

+ filog2 

(110 vao v’ao 

Ilr(Ydll2 5 IHY0)ll2 + 
2&Vlog2 

+ 
2%/x log 2 

+*a*+ 
2&v log 2 

U+XJ 
+ 

2filog2 

a0 vu0 lAYtO 

Therefore, for all k we have 

Ilr(Ydll2 I Ilr(Yo)ll2 + 
2+/T log 2 

(110 ( 
1+;+-$+... 

> 

v 2filog2 
5 Ilr(Yo>ll2 + x 

a0 

If the level set (y 1 Ilr(y)ll2 5 Ilr(yo)ll2 + &2<F2) is compact, there exists an accu- 
mulation point. By (2) and (3), the whole sequence converges to an e-accurate solution of 
MCP (21). D 
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We shall give our numerical test results for Algorithm 4.1 in Section 6, after relating our 
smooth approach to the central path of the interior point method [ 171 in Section 5. 

5. Relation to the interior point method 

In this section, we consider the NCP (9). Let the density function d(x) satisfy (Al)-(A3) 
and 02 = 0, and let j?(x, B) be defined by (4). If x solves the nonlinear Eq. (10) exactly, then 

x = jqx - F(x), p> > x - F(x), 

where the last inequality follows from the fact that j(t, fi) > e, from (5) of Proposition 
2.2. Hence 

x > 0 F(x) > 0, 

and x belongs to the interior of the feasible region {x 1 F(x) 2 0, x >_ 0) of the NCP Hence 
an exact solution of (10) is interior to the feasible region. However the iterates of the smooth 
method, which are only approximate solutions of (lo), are not necessarily feasible. For the 
function j defined in Example 2.2 [2, 15,361 , the exact solution x of the Eq. (10) satisfies 

x > 0, F(x) > 0, XiFi(X)=h’, ix l,..., n. 

which is precisely the central path of the interior point method for solving NCP. Methods 
that trace this path but allow iterates to be exterior to the feasible region have been proposed 
in [2, 15, 361. In [ 161, the relation between Smale’s method 1361 and the central path was 
pointed out. For our function b defined in Example 2.1, the solution x of the nonlinear Eq. 
(lo), for different values of 8, constitutes another path in the interior of the feasible region 
that satisfies: 

x > 0, F(x) > 0, XiFi(X) 5 2p2, i = 1,. . . ,n. 

We now compare our path and the central path of the interior point method by using a very 
simple example. 

Example 5.1. Let F(x) = Mx + q, where 

M=[; :I, 4=[::] 
The unique solution is (1,O). Figure 7 depicts the central path of the interior point method 

as well as the smooth path generated by an exact solution of the smooth nonlinear Eq. (10). 
Figure 8 depicts the error along the central path and along our smooth path as a function 
of the smoothing parameter /?. The error is measured by the distance to the solution point. 
For this example, the error along our smooth path is smaller than that along the central path 
for the same value of the parameter fi. 
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0.8 - 

0.8 - 

c10.5- 

con8~l Path 

c- Smooth Path 

0.1 - 

8’ .8 1 1.2 1.4 1.8 1.8 2 
Xl 

Figure 7. Comparison of the interior smooth path generated by an exact solution of the smooth nonlinear Eq. 
(16 versus the c&al path for Example 5.1. 

0.9 - 

0.8 - 

centml Path Emof / 

0.2 - 

0.2 0.4 0.8 1.2 1.4 1.8 1.8 

Figure 8. Error comparison for the central path versus the smooth path for Example 5.1. 
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6. Numerical results 

In this section, we give our computational experience with the smooth Algorithm 4.1 for 
the MCP. We implemented the smooth Algorithm 4.1 with an SOR preprocessor if all 
diagonal elements of the Jacobian matrix are positive. An initial scaling of the function 
Fi (x), inversely proportional to the absolute value of the diagonal elements of the Jacobian 
matrix, is performed if 1 Vi Fi (xc) 1 2 100. The details of implementing the smooth algorithm 
are given in Appendix 2. For comparison, we also give the results for the PATH solver [6]. 
Both algorithms were run on a DECstation 5000/125. Among the 52 test problems, which 
includes all the problems attempted in [ 11,281 and [6], 5 1 problems are from the MCPLIB 
[7], and one is the generalized von Thtinen model from [28] and [37]. Our smooth algorithm 
was run using one set of default parameters and so was the PATH solver. The smooth 
algorithm is written in the C language and implemented by using the GAMSKPLIB [8]. 
A MINOS routine [23] was used to perform a sparse LU decomposition for solving sparse 
linear equations. Both algorithms use the same convergence tolerance of E = 1 .Oe - 6. 

Table 1 gives a simple description of the test problems [7]. 

Table 1. MCPLIB problems. 

Model origin GAMS file Size 

Distillation column modeling (NLE) 
Distillation column modeling (NLE) 
Distillation column modeling (NLE) 
NLP problem form Powell (NLP) 
NLP problem form Powell (NLP) 
NLP test problem form Colville (NLP) 
Dual of Colville problem (NLP) 
Obstacle problem (NLP)(6 cases) 
Obstacle Bratu problem (NLP)(6 cases) 
W-P) 
NJ’) 
(NW 
WP) 
Elastohydrodynamic lubrication (NCP) 
Nash equilibrium (VI) 
Nash equilibrium (VI) 
Spatial price equilibrium (VI) 
Spatial price equilibrium (VI) 
Walrasian equilibrium (VI)(2 cases) 
Walrasian equilibrium (VI)(2 cases) 
Walrasian equilibrium (VI)(2 cases) 
Traffic assignment (VI) 
Traffic assignment (VI) 
Traffic assignment (VI) 
Invariant capital stock (VI) 
Project Independence energy system (VI) 
Optimal control (Extended LQP)(6 cases) 
Optimal control from Bertsekas (MCP)(6 cases) 

hydroc20.gms 99 
hydroc06.gms 29 
methanOl.gms 31 

powellmcp.gms 8 
powell.gms 16 

colvncp.gms 15 
colvdual.gms 20 
obstacle.gms ( 5625 

bratugms 5 5625 
cycle.gms 1 

josephy.gms 4 
kojshin.gms 4 
explcp.gms 16 

ehlkostgms 101 
nash.gms 10 
choigms 13 
sppe.gms 21 
tobingms 42 

mathi*.gms 4 
scarfa*.gms 14 
scti*.gms 40 
gafni.gms 5 

bertsekasgms 15 
freebertgms 15 

hanskoop.gms 14 
piesgms 42 

opt-cont.gms 5 8192 
bett-oc.gms 5 5000 



128 CHEN AND MANGASARIAN 

Figure 9. Smooth versus PATH for small MCP. 

The average CPU times taken by PATH solver and smooth algorithm for all small prob- 
lems are depicted in Figure 9. Figures 10, 11 and 12 depict the CPU times for all remaining 
problems except the von Thtinen model. We note that the PATH solver [6] is faster than 
Josephy’s Newton method [14] and Rutherford’s GAMS [8] mixed inequality and linear 
equation solver (MILES) [35] which is also Newton-based. Figures 9 to 12 indicate that 
our smooth algorithm is faster than PATH solver for the larger problems, whereas PATH 
solver is faster on smaller problems. 

The newest version of PATH (PATH 2.7) that uses a Newton method on the active set [l] 
as a preprocessor, improves solution times on the larger problems. Our smooth method can 
be similarly improved by adding the projected Newton preprocessor. We have compared 
PATH and SMOOTH with a Newton preprocessor on a Sun SPARCstation 20. The results 
are given in Figures 13 to 16. It can be seen that with a Newton preprocessor, the solution 
times are very similar for PATH and SMOOTH for larger problems, whereas PATH is still 
better for the smaller problems. 

As mentioned in [28], the generalized von Thtinen model is an NCP with 106 variables. 
This is a very difficult problem that has challenged many of the recently proposed algorithms 
[28, 371. In order to guarantee that the function F(x) is well defined, we added a lower 
bound of 1 .Oe-7 to variables xi to x26 as suggested by Jong-Shi Pang. We used three starting 
points. In the first, we set all variables to 1, as suggested by Michael C. Ferris; the second 
one is a starting point suggested in [37], while the third is the point suggested in [37] and 
modified by Jong-Shi Pang. SMOOTH, with or without the Newton preprocessor, solved 
the problem from all the three starting points. Solution times did not change by adding 
the Newton preprocessor. We report times for SMOOTH with the preprocessor. Starting 
with the first point, SMOOTH took a long time, 95.44 seconds to solve the problem. From 
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Figure 10. Smooth versus PATH for optimal control problem(beIt-oc.gms). 
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Figure II. Smooth versus PATH for optimal control problem(optront.gms). 



130 CHEN AND MANGASARIAN 

Figure 12. Smooth versus PATH for obstacle problems. 
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Figure 13. Smooth with Newton preprocessor versus PATH 2.7 for small MU? 
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Figure 14. Smooth with Newton preprocessor versus PATH 2.7 for optimal control problem(bert-oc.gms). 
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Figure 15. Smooth with Newton preprocessor versus PATH 2.7 for optimal control problem(opt-cont.gms). 
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Figure 16. Smooth with Newton preprocessor versus PATH 2.7 for obstacle problems. 

the second point, we obtained a solution in 36 iterations and 3.70 seconds and from the 
third point, we obtained a solution in 49 iterations and 7.01 seconds. PATH 2.7 solved the 
problem 7 times out of 10 from the first starting point, 6 times out of 10 from the second 
starting point, and 5 times out of 10 from the third starting point. The average times of 
the successful PATH runs were 2.59, 3.94 and 3.21 seconds for the first, second and third 
starting points respectively. We note that when the artificially imposed lower bounds on x1 
to X26 were removed, PATH failed from all starting points and SMOOTH failed from the 
first and second starting points. However from the third starting point, SMOOTH generated 
a solution with some small negative components which, when set to 1 .Oe-9, gave a solution 
accurate to 1.79539e-7. 

Summing up the numerical experiments with PATH and SMOOTH, we believe that 
comparisons between the two methods without a Newton preprocessor is more indicative 
of their relative effectiveness. With the Newton preprocessor, a lot of the work for the larger 
problems is performed by the Newton preprocessor and hence the nearly equal performance 
of the two methods on these problems. 

7. Conclusion 

Smoothing is an effective approximate reformulation for a wide range of complementarity 
problems to any desired degree of accuracy. Newton-type methods for solving smooth prob- 
lems constitute a powerful computational approach for solving these problems. Paralleliza- 
tion of smooth methods for large-scale problems and their extension to other nonconvex 
and nonsmooth problems, are two promising research areas worth investigating. 



NONLINEAR AND MIXED COMPLEMENTARITY PROBLEMS 133 

Appendix 1 

In order to prove Lemma 3.4, we need the following lemma. 

Lemma 7.1. 
(i) Let’t (x) = xemX, then 

max t(x) smax(t(a),r(b),J-]. 
xeb,bl 

(ii) Let 

g(x) = 
x2 

(1 + J)eX - 1’ 
6 L 0, - lo&l+ S) 6 [a, bl 

(iii) Let h(x) be de@ed in Lemma 3.4, - log(1 + 6) 6 [u, b], f/Zen 

x~~lh(x) 5 max h(ah h(b), s(4, g(b), &p), &t(b), & . 
1 e 1 

Proof: 

(i) By definition, t’(x) = e-I - xemX = (1 - x)eVX, hence I’(X) = 0 implies x = 1. 
Therefore 

ma f(x) 5 max 
xchbl 

f(u),f(b),f(l) 

(ii) Notice - log(1 + S) $ [a, b] and 6 > 0, we know 

g’(x) = 
2x((l + 6>eX - 1) -x2(1 + S)eX 

((1 + 8)eX - 1)2 ’ 

Hence g’(x) = 0 implies x = 0 or 

1+6 
(1 + 6)e” - 1 = yxeX. 
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By (i) and g(0) = 0 

(iii) Since 

h’(x) = - lOg(1 + 6 - e-‘) - 1 +yTemx, 

the point x is a stationary point of h(x) if and only if 

--x 

log(l + S - e-“) = - xe 
x 

1 + S - eBx = - (1 + 6)eX - 1’ 

Therefore, by (ii), 

2 
5 max h(u),h(D),g(u),g(b),~t(~),- 

i 

2 
- 

1+6 t(b)y (1 +qe * cl I 

Proof of Lemma 3.4: 

(i) IfO<S< l,-log(l+6)$[0,-log6].By(iii)ofLemma7.1and 

h(0) = 0, h(- log@ = 0, g(0) = 0, 

g(-log6) =610g%,t(0)=0,t(-10g6)=-610g& 

we have 

max h(x) 5 max 61og*S, -& 
xG[O,-logs] i 

2 
log& - . 

(1 + 6)e I 

It is easy to get 

maxSlog*S5:, 
2s 

6dO.11 s~~1-1+6 
-1ogs 5 2. 

Combining the above inequalities, we get the conclusion. 
(ii) If 6 1 1, - log(l + 6) # I- logs, 01. Similarly to (i), we know 

h(0) = 0, h(- log6) = 0, g(0) = 0, 

g(-logS)=Slog*6,t(O)=O,t(-log6)=-Slog6. 
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By (iii) of Lemma 7.1, 

max h(x) I max S log2 S, -- 
i 

26 
xG[-log&O] 1+6 log” (1 + J)e 

‘) jmax{Slog2S,f]. 

(iv) If 6 = 0, 

Jimoh = 0, .emh(x) = O,_l@og(x) = 0, l&twg(x) = 0, 

_lin+io t (x) = 0, lim t(x) = 0, 
x-00 

For any c > 0, we have 0 = - log(1 + S) $ [c, t-co). And there exists EO > 0 such 
that 

h(c) -c f, g(r) < E, t(c) < f, for0 < e -z 60 

Therefore, for 0 < e < CO 

max h(x) 5 2 
XE[E,DO) e 

Let E approach 0, then 

max h(x) I z. 
X~[O.co) 

Appendix 2 

Here is the actual implementation of the smooth Algorithm 4.1. In the following algorithm 
(Xk ) t”k, uk) is simply denoted by yk. 

Algorithm 7.1 (Smooth Algorithm for MCP). Input tolerance E = l.Oe - 6, and initial 
guess x0 E R” 

(1) Initialization. For 1 5 i 5 n of Case 4 of (22), let wi = (E;;:(xg))+, u; = (-Fi(Xo))+, 
k = 0 and ~0 = cx(yo). 

(2) If Ilr(yO)llm 5 c, stop. 
(3) Newton direction dk 

dk = --VR(yd-‘R(Yd 

In order to avoid nonsingularity, for Cases 24 of (22), if Vi Ri(yk) < l.Oe - 9, let 
ViRi(yk) = l.Oe - 9. 
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(4) Stepsize ik (Armijo) 

yk+l = yk + &dk, hk = maX{ 1,6, s2, . . .}, S.t. 
f(Yk+l) 5 f(yk) 

where 6 = 0.75. 
(5) Parameter update. !?fdyk+l) > ak9 set 

ak+l = dYk+lh 

ak+l = kk. 

Letk=k+l,gotostep@). 

For some of the test problems, some functions are not well defined outside the feasible 
region. In such cases, the line search step (5) may fail. If this occurs, we will try to push 
the next point inside the feasible region by setting the smooth parameter a! to a very small 
value, such as l.Oe - 10. 
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