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1. Introduction 

Basic in all of classical physics are balance laws of the form 

~f(x, n(x)) dA x + ~ b(x) d V x = 0, (1.1) 
OB B 

where n(x) is the outward unit normal to the boundary OB of B. In mechanics 
f represents the surface force per unit area on ~B; in thermodynamics f gives the 
heatflow per unit area into B across its boundary. 

In 1823 C A U C H Y  1 established what is probably the most important theorem in 
continuum mechanics; he proved that if f(x, n), defined for each x in an open 
region R and every unit vector n, is continuous in x, if b(x) is uniformly bounded 
on R, and if (1.1) is satisfied for every sufficiently nice region B in R, then f(x,  n) 
must necessarily be linear in n; that is, 

f(x,  n)= T(x)n (1.2) 

with T(x) a linear transformation from R 3 into IR N, the codomain o f f  
When f is the surface force, the field T is called the stress tensor; its value T(x) 

at x is a linear transformation from IR 3 into itself. For  this case CAUCHY also 
proved that i f f  is consistent with the moment balance law 

S (y -x ) / x f ( y ,  n(y)) dA,,+ ~ (y -x) /x  b(y)dVx=O (1.3) 
OB B 

for every B, then T(x) must necessarily be symmetric. 
When f represents the heat flow, T(x) is a linear transformation from IR 3 into 

IR and (hence) can be represented as the inner product with a vector q(x): 

f(x,  n) = q (x). n. 

The field q is the heatflux vector, a concept which plays a major role in the theory of 
heat transfer. 

While CAUCHY'S monumental contribution is uncontested, one cannot help 
but notice the one major drawback 2 to Cauchy's Theorem: the assumed continuity 
of the function x~-~f(x, n). Indeed, as recent studies in the foundations of me- 

CAUCHY (1823), (1827). 
2 As a matter  of fact, NOLL (1973), p. 79 remarks: "I t  is unfortunate that nobody has been able, 

so far, to [establish the linearity of f ]  ... without the ad hoc continuity assumpt ion  ..." 
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chanics have shown, the basic concept is not f but rather the total Jbrce 

F(S) = ~ f(x, n(x)) dAx (1.4) 
S 

on any oriented surface S; the density f is a derived quantity computed by taking 
the derivative dF/dA of F with respect to Lebesgue area measure A. It therefore 
seems pertinent to ask the following two questions: 

(I) Is there a physically reasonable hypothesis that one can place on F that 
yields, as a consequence, the continuity of f ?  

(II) 1 Starting with a general balance law, can one establish, without further 
assumptions, the linearity off ,  at least almost everywhere? 

To answer these questions succinctly, we introduce the notion ofa  Cauchyflux 
F, which is a vector-valued, additive, 2 area-bounded function whose domain is 
the collection of all (plane, 3 oriented) surface elements in R. The density f(x, n) 
is then defined to be the limit as r -~0 (where it exists) of the average density 

F(D,(x, n)) 
A(D r (x, n)) 

over oriented discs Dr(x, n) centered at x with radius r and positive unit normal n. 
It then follows that the density exists almost everywhere on each cross section of 
R, is uniformly bounded, and delivers F through the relation 0.4). 

In terms of F the balance law (1.1) has the form 

F(~B)+ ~ b dV=O, (1.5) 
B 

and, when b is uniformly bounded on R, 

]F(OB) I <= K V(B) (1.6) 

for every body B. We use the term weakly balanced for a Cauchy flux that satisfies 
(1.6); for our purposes (1.6) is simpler to work with than (1.5). 

Similarly, (1.3) implies that for B a cube containing x, 

(y -x )  A f(y, n(y)) dA, 
lim ~" =0. (1.7) 

v(B)-o V(B) 

In our theory a Cauchy flux that satisfies (1.7) at every x in R is said to be moment 
balanced. 

Using these ideas, we are able to answer the questions (I) and (II). In answer 
to (I) we show that a necessary and sufficient condition for f to be a continuous 
function of position is that F have uniform average density in the following sense: 
for each fixed n the one-parameter family 

{ F(Or(x,n))~ 

I A partial answer to this question was given by GURTIN, MIZEL & WILLIAMS (1968) (el Lemma 2), 
whose results form an essential part of our analysis. 

2 Precise definitions of the terms we use can be found in the text. 
3 Because of NOLL's Theorem (1957), Theorem 4, it suffices to define F only on plane surfaces. 
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of functions of x is a uniform Cauchy family t as r--* 0 for x in any compact subset 
of R. As an answer to (II) we show that a weakly balanced Cauchy flux has a 
density which is linear almost everywhere; a weakly balanced Cauchy flux that is 
moment balanced has a density which is linear and symmetric almost everywhere. 

2. Notation 

We write IR for the reals, a .  b and lal for the inner product and norm on IRN, 
and 

Unit (IRN) = {neiRn:  Inl = 1} 

for the set of all unit vectors in IRN Further, Lin (IRN, IRa) is the space (with 
standard topology) of linear transformations of IRn into IR a, 

Lin (IRN)= Lin (IRN, IRN), 

and L ~ Lin (IRN) is symmetric if L equals its transpose L r. Given a ~ IR a and b ~ IR N, 

a | b e Lin (IRN, IRa) 
is defined by 

(a | b) u = (b- u) a 

for all ueiR N, and for the case in which N = Q  we write 

a / x b = a | 1 7 4  

An oriented plane set (o.p.s.) S is a pair (P, n) consisting of a plane Borel set 
P c i R  3 and a unit normal vector n to P. We call P the underlying set of S and 
n s = n  the positive unit normal to S. As is natural, we write - S  and S + x ( x e i R  3) 
for the o.p.s.'s - S = (P, - ns) and S + x = (P + x, ns), where 

P + x = { y ~ i R 3 :  y - x 6 P } .  

Further, - S + x  denotes ( - S ) + x .  We say that $1 =(P1, nl) and $2=(P2, n2) are 
compatible if P~ and Pz lie in the same plane and nl = n2. When such is the case 
we define S 1 w S  z and S 1 c~S z to be the o.p.s.'s (/]1 uP2, nl) and (P1 c~P2, nl), respec- 
tively; similar definitions apply to other set theoretic operations. As is customary, 
in operations involving the underlying set P of an o.p.s. S, we will usually write 
S in place of P; thus x e S  means x e P ,  ~ means ~, etc. 

s P 

We say that a sequence {Sk} of o.p.s.'s tends to an o.p.s. S regularly if each Sk 
is compatible with S and if the area of the symmetric difference (S - SO ~ (Sk -- S) 
tends to zero as k --~ ~ .  

An o.p.s. S is polygonal if its underlying set is a plane closed polygonal region. 
More generally, S is regular ifS is closed (in the plane) and if there exists a sequence 
{S,} of polygonal o.p.s.'s S k c S  and a constant K o > 0  such that {Sk} tends to S 
regularly and 

p(S,) < K o (2.1) 

x It is a tribute to the genius of CAUCHY that we use a notion of his in analysis to prove a result 
of his in continuum mechanics. 
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for all k, where p(Sk) is the perimeter of Sk. (Note that since SkcS ,  the symmetric 
difference of S and Sk is S -S~ . )  An example of a regular o.p.s, is the oriented 
plane disc D,(x, n) with center at x, radius r > 0, and positive unit normal n. 

We consider throughout a bounded open set R in Ill 3. 
By a surface element S we mean an o.p.s, contained in R. A surface element C 

is then a subelement of S if C is compatible with S and C cS .  Finally, a cross 
section rc is a surface element whose underlying set is the (non-empty) intersection 
of R with a plane. 

A body B is a compact  polyhedron in R. A surface element S c 0B is oriented 
by 3B if n s coincides with the outward unit normal to 0B on S. The faces 
S 1, S 2 . . . . .  S o of B will always be considered as polygonal surface elements 
oriented by •B. 

We will consistently use the notation 

Rr= {x s R:  R contains the closed ball with center at x and radius r}. (2.2) 

Clearly, R, is open, R r c R  t if r > / ,  and 0 Rr=R" 
r > 0  

We write V for the Lebesgue volume measure in 1113 and A for the Lebesgue 
surface measure on planes in IR 3. As is customary, we write, e.g., " I V ]  almost 
everywhere" to signify "almost  everywhere with respect to the measure V"; 
similar abbreviations have obvious meaning. 

Let G be an IRN-valued set function whose domain consists of Borel subsets 
of R. Then G is volume-bound~ if there is a K > 0 such that 

[G(D)I<KV(D) 

for every D in the domain of G. Similarly, if G is an IRN-valued function whose 
domain is a set of surface elements, then G is area-bound~ if there is a K > 0 such 
that 

[G(S)[ < KA(S) 

for every surface element S in the domain of G. 
Let A be a set, and let fr (0 < r < ro) be a one-parameter family of ]RU-valued 

functions each of whose domain contains A. Then f ,  ( 0 < r < % )  is a uniform 
Caneby family on A as r ~ 0 if given any e > 0 there exists a c5 > 0  such that 
IL (x ) - f ( x ) l  < e  for all r, 1<6 and xEA.  

3. Properties of the Density 

We assume throughout that an integer N > 0 is given. 
A Cauehy flax is a function F that assigns to each surface element S a vector 

F(S) in IR N and has the following properties: 

(C1) F is area bounded. 
(C2) F is additive on compatible surface elements; i.e., 

F(S1 w $2) = F(SO + F(S2) 

whenever $1 and $2 are disjoint, compatible surface elements. 

Trivially, since a Cauchy flux is area-bounded, it must necessarily be countably 
additive on compatible surface elements. 
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Let F be a Cauchy flux. In applications F(S) represents the net flux across S; 
thus given a body B with faces $1, $2 . . . . .  SQ, the vector F(OB), defined by 

Q 
F(OB) = ~ F(S,), (3.1) 

~=1 

gives the net flux into B. We say that F is weakly balanced if the map B~--* F(~B) 
is volume bounded. 

By definition, when F is a Cauchy flux there exists a constant K > 0  such that 

IF(S) I = KA (S) (3.2) 

for every surface element S. For a weakly balanced Cauchy flux we have, in ad- 
dition, 

IF(~B)I <= KV(B) (3.3) 

for every body B. Henceforth K will always denote this constant. A trivial con- 
sequence of (3.2) and (C2) is 

Lemma 1. Let F be a Cauchy flux. Further, let S be a surface element, and let 
{S,} be a sequence of surface elements that tends to S regularly. Then 

F(S,)--~ F(S) as k --~ oo. (3.4) 

Crucial to the results of this section, and of interest in itself, is 

Theorem 1. Let F be a weakly balanced Cauchy flux. Then given any regular 
surface element S 

F(S) = - F(-- S) (3.5) 1 

and the mapping x~--~ F(S + x) is continuous. 

Proofi Before beginning the proof note that, given any regular surface element 
S, the domain of the map x~--~F(S+x) is the open set ~(S) in IR 3 consisting of 
all x such that S + x ~ R. 

Choose a polygonal surface element S =  (P, n), and let B1, Bz, and B be the 
polygonal prisms 

Bl= 0 (P+~n), B2= U (P-an) ,  B = B I • B  2 
~[0, el ~[0, e] 

(Fig. 1). Clearly, for e sufficiently small B1, B2, and B are bodies. Moreover, - S  

B2 

Fig. 1 

1 Cf. NOEL (1957), Theorem 3; GURTIN & WILLIAMS (1967), Theorem 4. Actually, (3.5) holds for 
every surface element, regular or not. 
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is a face of Ba, S is a face of B 2 ,  and P = B t ~ B 2 . Thus 

F(3B t) + F(OB2)- F(OB) = F(S) + F ( -  S), 
and, since 

V(B)+ V(B1)+ V(B2)=4e A(P), 

if we apply (3.3) to B1, B2, and B, we conclude that 

IF(S)+ F ( -  S)I <4e A(P) K. 

Letting e-+ 0, we see that (3.5) must hold for polygonal surfaces. 

Let S again be a polygonal surface element and choose xe~(S). Then ~(S) 
contains an open ball Q centered at x. Choose yef2 with ( y - x ) .  ns=O. Then 
S + x  and S+y  are compatible, and a simple computat ion based on (3.2) and (Cz) 
yields the inequality 

fF(S + x ) -  F(S + Y)I <__g p(S) [x -  yl, (3.6) 

where p(S) is the perimeter of S. 

Fig. 2 

Next, choose y E f2 with ( y - x ) . n  s > 0, and let B denote the prism, constructed 
in the obvious manner (Fig. 2), with end faces S + y  and - S  + x and lateral faces 
S t, S 2 , . . . ,  S(2. Then B is a body, and 

(2 
F(OB)=F(S+y)+F(-S+x)+ ~ F(S,). 

i - 1  

In view of (3.2), the last term in this relation is bounded in magnitude by 

Kp(S) Ix-yJ.  

Further, V(B)<=A(S)Ix-yl. Thus we conclude, with the aid of (3.5) applied to 
the polygonal surface element - S + x = - (S + x), that 

I F(S + y) - F(S + x)] < K {A (S) + p(S)} I x - y[. (3.7) 

Clearly, (3.7) also holds when ( y - x ) .  ns<O. We therefore conclude from (3.6) 
that (3.7) is satisfied for all ysf2. Thus (3.5) and (3.7) are satisfied whenever S is a 
polygonal surface element. 

Now let S be a regular surface element. By definition there exists a sequence 
{Sk} of polygonal subelements of S that tends regularly to S and satisfies (2.1). 
If we apply (3.5) to Sk and let k--~ o% we conclude, with the aid of (3.4), that S 
satisfies (3.5). To establish the continuity of the map x~---, F(S + x), choose xeN(S), 
let f2 be an open ball in @(S) centered at x, and let y~f2. Since SkcS, @(S)c~(Sk) 
and Qc~(Sk) .  Thus, since 

K {A (Sk) + P(SR)} < C = K {A (S) + Ko }, 
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where K o is the constant appearing in (2.1), (3.7) applied to Sk yields 

I F(Sk + y) - F(Sk + x)[ < C Ix - y I. (3.8) 

Next, since {Sk} tends regularly to S, {Sk+Z} tends regularly to S + z  for every 
z ~ f2, and we conclude from Lemma 1 that F(Sk + z) ~ F(S + z). Thus (3.8) implies 

[F(S + y ) -  V(S + x)l < C I x -  y[, 

and the map xw-~F(x+S) is continuous. [] 

The function f~: R r x Unit (IR3)---~ IR N defined by 

F(D,(x, n)) (3.9) 
f (x, n)) 

represents the average density over discs of radius r. Here, of course, D,(x, n) is 
the oriented disc with center at x, radius r, and positive unit normal n, while R, 
is defined in (2.2). Note that, by (3.2) and (3.9), 

If,(x, n)l < K (3.10) 

whenever F is a Cauchy flux, while (3.5) yields 

f (x, n)= - L ( x ,  - n) (3.11) 

if, in addition, F is weakly balanced. Some less trivial properties of f ,  are given by 

Theorem 2 (Properties of the average density). Let F be a weakly balanced 
Cauchy flux. Then the map (r, x, n)~  f,(x, n) is separately t continuous in each of 
its three arguments. Moreover, for all x e R ,  and any pair of unit vectors m and n 

If~(x, m)- f , (x ,  n)[ < K 0 ( 2 +  r), (3.12) 

where 0 is the angle between m and n. 
Proof. The continuity of the map X~--~fr(x, n) follows from (3.9), Theorem 1, 

and the fact that D,(x, n) is a regular surface element. Next, write D, for Dr(x, n) 
and note that, by Lemma 1, F(Dr+~)-~ F(Dr) for any sequence {6k} with 6k--+ 0. 
Thus r~--~F(Dr) is continuous. Clearly, so also is r~--,A(Dr). Thus the map 
r~--~f,(x, n) is continuous. To complete the proof we have only to establish (3.12), 
since the continuity of n~-,f,(x, n) follows from this inequality. 

Let m, n(m~:n) be unit vectors with angle 0 between them acute, choose r > 0  
with Rr+~J, and let x~Rr.  Let D(m) and D(n) denote the oriented discs with 
center at x, radius r, and positive unit normals m and n, respectively. Then D(m) 
and D(n) intersect in a diameter d; for p=m,n  this diameter cuts D(p) into two 

Fig. 3 

1 Actually, f is jointly continuous, but the proof is far more involved. 



312 M . E .  GURTIN • L. C, MARTINS 

regular subelements D~(p) and D2(P ). Here the subscripts 1 and 2 are chosen so 
that D~ (m) and D 1 (n) form a wedge with interior angle 0 (Fig. 3). Divide the cir- 
cumference of each disc into 2k arcs of equal length in such a way that d is a 
diagonal for each of the two inscribed polygons defined by this division. For 
p=m,n let D~k(p) denote the polygonal subelement of D~(p) whose underlying 
set is the intersection of D~ (p) with the closed polygonal region inscribed in D(p). 
By Lemma 1, 

F(DI k(P)) ---* F(D~ (p)) (3.13) 

as k -* oo. Next, fix k and consider the wedge-shaped body Bk whose faces (without 
loss in generality) are D~dm), --Dlk(n), and k other regular surface elements 
$1, $2 .... , Sk (Fig. 4). Clearly, 

k 

V(Bk)<�89 ~ A(Si)<=nr20; 
i = l  

thus, since 

Bk 
Fig. 4 

k 

F(OB~)-- F(D, k(m)) + F( -- D 1 k(n)) + ~ F(Si), 
i = I  

we conclude from (3.2), (3.3), and (3.5) that 

]F(DI k(m))-- F(D 1 k(n))] ~�89 7~ r 2 0 K(2 + r). 

Therefore, by (3.13), 
[F(D 1 (m))- F(D~ (n))[ <�89 u r 2 0 K(2 + r). 

Obviously, Dz(m ) and Dz(n ) obey an identical inequality; hence 

]F(D(m))- F(O(n))[ = [F(D~ (m)) + F(O 2(m))- F(D l (n))- F(O 2(n)) I 
2 

< E [F(D~(m))-F(D~(n))[ 

<nr2OK(2+r). 

If we divide this inequality by A(D(m))=A(D(n))=nr 2 and use (3.9), we are led 
to (3.12). Thus (3.12) holds when 0 is acute. For 0 not acute we simply choose a 
unit vector p in the plane spanned by m and n with p a bisector of 0, and apply 
(3.12) to m, p and n, p separately. [] 

Let us agree to call (x, n) a density pair if the limit 

f (x, n)= !im f,(x, n) (3.14) 
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exists. The function f so defined on the set of all density pairs is called the density 
of F. When (x, n) is a density pair for every unit vector n, then x is called a point 
of density, and when every x e R is a point of density, then F has density everywhere. 
If this is the case, and if x~-~f(x, n) is continuous on R for each fixed n, we say 
that f is a continuous function of position. 

By (3.10), for a Cauchy flux 

If(x, n)l _-< K, (3.15) 

while (3.11) implies, for a weakly balanced Cauchy flux, that if (x, n) is a density 
pair, then so also is (x, - n )  and 

f (x ,  n) = - f ( x ,  - n). (3.16) 

In general the density will neither be continuous nor defined everywhere. The 
next theorem shows, however, that for a weakly balanced Cauchy flux the density 
is defined at enough points and is sufficiently nice to make analysis meaningful. 

Theorem 3 (Properties of the density). Let f be the density of a Cauchy f lux  
F. Then: 

(i) for each cross section r~ the density f (x ,  n~) exists at [A] almost every 
x e  re, and f ( . ,  n~)e I), 0r); 

(ii) for each surface element S 

F(S)= If(x, ns) dAx. (3.17) 
s 

I f  in addition, F is weakly balanced, then: 
(iii) for each unit vector n , f (x ,  n) exists at [V] almost every x e R ,  f ( . ,  n) is a 

Bor el function, and f ( . , n ) e IJ, ( R ) ; 

(iv) [V] almost every x e R  is a point of density; 

(v) for x a point of density n~-*f(x, n) is continuous on Unit (11t3). 

Proof. Let rc be a cross section, and let M(r0 denote the Borel subsets of (the 
underlying set of) n. For PeM(n) let P= be the subelement of lr whose underlying 
set is P, and define F~ on M(~) by 

F~(P)=F(P~). 
Then, since F is countably additive on compatible surface elements, F~ is a measure 
on ~(~). Further, if D,(x) denotes a (non-oriented) disc in ~ with center at x and 
radius r, 

n,)_F~(Dr(x)) 
fr(X' --A(Dr(x)) " 

Therefore f (x ,  n,~) is the symmetric derivative 1 of F. at x (with respect to the 
measure A). This derivative clearly exists at every point x at which the (ordinary 
measure-theoretic) derivative 2 DF,~ exists, and (i) and (ii) follow 3 from the absolute 
continuity of F= with respect to A. 

1 C f  RUDIN (1974), p. 165. 
2 C f  RUDIN (1974), Definition 8.3. 
3 C f  RUDIN (1974), Theorem 8.6 and its Corollary. 
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To establish (iii) fix n~Unit  (IR 3) and let R(n) be the set of all x ~ R  for which 
the limit (3.14) exists; thus R(n) is the domain o f f ( . ,  n). In view of the continuity 
of r~--,fr(x, n) (Theorem 2), R(n) consists exactly of those points x for which 

limfq(x,n) exists (q rational). (3.18) 
q~0 

Choose r > 0  with Rr+ g. Since R r c R  q for q<r, we conclude from the continuity 
of x~-~fz(x, n) on R z (Theorem 2) that fq(., n) is continuous on Rr. Thus the set of 
all points x~Rr for which (3.14) holds is a Borel measurable subset of Rr, and the 

restriction of f ( - ,  n) to R, r~ R in) is a Borel function. Thus, since R = ~) R1/k, R (n) 
k=l 

is itself a Borel set and f ( . ,  n) a Borel function. Further, it follows from (i) and 
Fubini's Theorem that 

V(R-R(n))=O, (3.19) 

and we conclude from (3.15) that f ( . ,  n)d2(R). This completes the proof of (iii). 
Suppose that (x, m) and (x, n) are density pairs with angle 0 between m and n. 

Then by (3.12) and (3.14), 

If(x, m ) - f i x ,  n)[ < 2K 0, 
which yields (v). 

To prove (iv) let ,/~' be a countably dense subset of Unit (IR3), and let 

R(~g)= 0 R(n), (3.20) 
so that, by (3.19), 

V(R - R (o///[)) = 0. 

To complete the proof, it suffices to show that every x~R(,/~) is a point of density. 
Thus choose x~R(,///l), and note that, by (3.20), (x, m) is a density pair for every 
me,A/. Let n be an arbitrary unit vector. Then there exists a sequence {mi} with 
miE,//g' such that mi---,n. Let 0i denote the angle between ml and n. Then for r, l 
sufficiently small, say r, l< ro, x~Rr ~ R~, and we conclude from (3.12) that 

If,(x, n ) -  f ( x ,  n)l < If~(x, n ) -  f,(x, mi){ + If,(x, mi)-  f ( x ,  ml) { + Ift(x, mi)-- fl(x, n)] 

< K 0i(4 + r + l) + If,(x, m i)-- ft (x, m i) I . 

Choose e> 0. Then (for r, l<  r0) we can choose i large enough to have the first 
term strictly less than e/2, and, since (x, ml) is a density pair for each i, there 
exists a 6 e (0, r0) such that the last term is less than e/2 for r, l < 6. Thus 

If~(x, n)-f~(x, n)l <~, 

and the limit (3.14) exists. Therefore (x, n) is a density pair, and, since n is arbitrary, 
x is a point of density. This completes the proof of Theorem 3. [] 

As we shall see in the next section, Cauchy's Theorem is based on the assump- 
tion that f be a continuous function of position. We now show that this assump- 
tion is equivalent to a condition of uniformity concerning the average density. 

Note that given any compact set A ~ R  the domain of f,(. ,  n) contains A for 
all sufficiently small r. We say that F has uniform average density if given any unit 
vector n and any compact set A in R the one-parameter family f,(. ,  n)(r>0 suffi- 
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ciently small) is uniformly Cauchy convergent on A as r--* 0. This is, of course, 
equivalent to the requirement that F have density everywhere and that the limit 
(3.14) be uniform on any compact subset of R. 

Theorem 4. Let F be a weakly balanced Cauchy flux. Then the following two 
statements are equivalent: 

(i) F has uniform average density. 
(ii) F has density f everywhere, and f is a continuous function of position. 
Proof. That (i) implies (ii) is a direct consequence of the above definition and 

the continuity of x~-*f,(x, n) (Theorem 2). To prove the converse assertion assume 
that (ii) holds. By (3.17) and (3.9) 

If(x, n ) -  f (y, n)l dA r 
Dr(X  , I~) 

If(x, n ) -  f~(x, n)l < A(D,(x, n)) 
< sup [f(x,n)-f(y,n)[,  

yE D r ( x ,  n) 

and (i) follows from the uniform continuity of f ( - ,  n) on each set of the form R~, 
1>0. [] 

4. Linearity of the Density 

Let F be a Cauchy flux with density f We say that f is linear at x ifx is a point 
of density and if the map n~--~f(x, n) is the restriction to Unit (JR 3) of a linear 
transformation T(x) from IR 3 into P~u: 

f (x ,  n) = T(x) n (4.1) 

for every unit vector n. If, in addition, N = 3 and T(x) is symmetric, then f is 
linear and symmetric at x. 

Not every Cauchy flux has linear density. Indeed 1, consider the Cauchy flux 
F with values in p3  defined by 

F(S) =A(S)(u. ns) ns 

where u + 0  belongs to IR 3. F has density f (x ,n)=(u .n)n  everywhere, and f is 
obviously linear nowhere on R. If we consider a cube B in R of width e with one 
pair of parallel faces perpendicular to u, then 

V(aB) 2 
- -  U ,  

V(B) e 

so that F is not weakly balanced. The next two theorems show that being weakly 
balanced is a sufficient condition for linearity everywhere when f is continuous 
and for linearity almost everywhere in general. 

Given a Cauchy flux F with values in ]R 3 and a point x~lR 3, consider the 
function MF x, with values in Lin (11(3), defined by 

MFx(S)= ~ ( y -  x) A f (y, ns) dAr (4.2) 
s 

for every surface element S. (The integral exists by (i) of Theorem 3.) If we identify 
Lin (IR3), in the usual manner, with IR 9, then we may conclude from (3.15) and the 

1 This example arose in private communications with R. LANGNER. 
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boundedness of R that MF~ is a Cauchy flux with values in ~x 9 .We  call MFx the 
moment of F about x. We say that F is moment balanced if, given any x s R and 
any sequence {Bk} of cubes with xeB  k and V(Bk) ~ O, 

lim MFx(~Bk) O. 
-~  V(Bk) 

Theorem 5 (Cauchy's Theorem). Let F be a weakly balanced Cauchy flux and 
assume that: 

(i) F has density everywhere; 
(ii) the density f is a continuous function of position. 

Then f is linear at each point of R. If, in addition, F has values in ]I( 3 and is moment 
balanced, then f is linear and symmetric at each point of R. 

Proof. Let {el} be an orthonormal basis for ~3. Choose x~R and let n be a 
unit vector with 

n. ei>O (4.3) 

for i =  1, 2, 3. Following the classical proof of Cauchy's Theorem we choose 
h > 0  and consider the tetrahedron Bh, shown in Fig. 5, with faces Sh, Slh,Szh, 
and S3h, with n and - e i  the positive unit normals to Sh and Sih, respectively, and 
with x the vertex opposite to Sh. Then Bh is a body for h sufficiently small and hence, 
by (3.3), 3 

IF(c~ B,)I= F(S,)+ i~=lF(S,h) = < KV(B,). 

If we divide this relation by A(Sh), let h-*0,  and use (3.16), (3.17), and the fact that 
f isa  continuous function of position, we find that 

3 

f(x, n)= ~, (n. el)f (x, el). (4.4) 
i--1 

If we have ei- n < 0 for one or more values of i, by considering the new basis with 
each such ei replaced by - e i ,  we conclude, with the aid of (3.16), that (4.4) remains 
valid. Thus (4.4) holds as long as n does not lie in a coordinate plane. But by (v) 

e2 

el Fig. 5 
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of Theorem 3 the map n~--,f(x, n) is continuous on Unit (IR3); thus (4.4) holds for 
all n. If we define T(x): ]R3---~.~ N by 

3 
T(x) v = ~ (v. e,)f(x, e,), 

i=1 

then T(x) is linear and (4.1) holds. Thus f is linear at each point of R. 
Assume now that F has values in IR 3. By (4.2), given any body B, 

MF~(OB) = I T -  I, (4.5) 
where 

I= ~ f (y ,n (y ) ) |  
~8 

with n(y) the outward unit normal to OB at y. In view of (4.1), 

f(y,  n(y)) | (y -- x) = IT(y) n(y)] | (y - x) = T(y) In(y) | ( y -  x)] ; 

thus 

I = T(x) j n(y) | ( y -  x)dAr + j [-T(y)- T(x)] [n(y) | ( y -  x)] dA r. (4.6) 
0B 0B 

Let 11 and I 2, respectively, denote the first and second terms on the right-hand 
side of (4.6). A trivial application of the divergence theorem yields 

11 = V(B) T(x). (4.7) 

Assume now that B is a cube containing x. Then 

1121 <sup  IT(y)- T(x)[ ~ [y-x l  dAr<6]/~ V(B) sup IT( y ) -  T(X)[. (4.8) 
yeB ~B y~B 

Since f is a continuous function of position, T is continuous on R. Thus we may 
conclude from (4.5)-(4.8) that 

MF~ (0 B) , T(x) T_ T(x) (4.9) 
V(B) 

as V(B)--, 0 (with B a cube containing x), and hence, if F is moment balanced, T 
is symmetric on R. [] 

Remark. It is clear from (4.9) that if F is a weakly balanced Cauchy flux, with 
values in IR 3, consistent with hypotheses (i) and (ii) of Cauchy's Theorem, and i f f  is 
symmetric at each point of R, then F is moment balanced. 

In view of Theorem 4, Cauchy's Theorem has the following interesting 

Corollary. Let F be a weakly balanced Cauchy flux with uniform average density. 
Then the density f is linear at each point of R. I f  in addition, F has values in ]R 3 and 
is moment balanced, then f is linear and symmetric at each point of R. 

Both Cauchy's Theorem and the last result require hypotheses over and above 
the assumption that F be a weakly balanced Cauchy flux. One can ask if it 
is possible to establish linearity, at least almost everywhere, without such additional 
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hypotheses. The next theorem, which is our main result, shows that the answer 
to this question is yes. 

Theorem 6 (Linearity almost everywhere). Let F be a weakly balanced Cauchy 
flux with density f Then f is linear at [V] almost every point of R. I f  in addition, F 
has values in IR 3 and is moment balanced, then f is linear and symmetric at [V] 
almost every point of R. 

Our proof is based on 

Lemma 2.1 Let F be a weakly balanced Cauchy flux with density f Then there 
exists afield T: R-+ Lin (IR 3, IR N) and for each unit vector n a subset R,(n) of R such 
that 

V(R-R, (n) )=O (4.10) 
and 

f(x,  n)= T(x) n (4.1 1) 

for every x~R.(n). I f  in addition, N = 3  and F is moment balanced, then T can be 
chosen to be symmetric IV] almost everywhere on R. 

Proof of the Lemma. It is not difficult to exhibit, for each 6 > 0, a class C ~ 
function p~: I R 3 ~ R  such that p~>0, pa=0 outside the closed ball of radius 6 
centered at the origin, and 

S p~dV=l .  
IR 3 

Recall that the domain R(n) of f ( - ,  n) is a Borel set and that f ( . ,  n) is a Borel 
function (cf the discussion in the paragraph containing (3.19)). Thus if we extend 
f (  -, n) from R(n) to all of IR 3 by requiring that f ( - ,  n) =0  on IR 3 -R(n),  then the 
extended function is also a Borel function. We also write f ( . ,  n) for the extended 
function, so that f :  lR3x Unit(lR3)-+R N and the integral 

f~(x, n)= S p~(x-  y)f(y, n) dVy 
~ 3  

defines a function f~: 1R 3 x Unit(lRa)-~lR N. Observe that f~(.,  n) is of class C ~ 
and approaches f ( . ,  n) in/2 (R) as 6--~ 0, and that, by (3.1 5), 

]f~(x, n)] < K (4.12) 

for every xEIR 3 and each unit vector n. 
Now choose e > 0 with R~ :~53 and confine 6 to the interval (0, e). For each sur- 

face element S c R~ let 
F~(S) = ~f~(x, ns) dAx, 

S 

so that, by (4.12), F a is a Cauchy flux on R~. Moreover, f~ is a continuous function 
of position and is, therefore, the density of F ~ everywhere. We now show that F a is 
weakly balanced; once this is done we will be in a position to apply Cauchy's 
Theorem to the density f~. With this in mind, we establish the following identity, 

1 The portion of this lemma concerning the linearity o f f  is due to GURTIN, MIZEL 8~ WILLIAMS 
(1968), and we follow their proof almost verbatim. 
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in which q~: IR3---, Lin(IR N, IR q) is a continuous map and S is an arbitrary surface 
element: 

4)(x)ff(x, ns)dAx= ~ p~ ~ ~(x+ z)f(x, ns)dAxdV~. (4.13) 
S N 3 S - z 

To prove (4.13) let ! denote the left-hand side and write n for ns; then 

1= ~ ~ p~ n)dVrdAx= ~ ~ p~ ~ ( x ) f ( x - z ,  n)dVzdAx. 
S ~  3 SIR 3 

Clearly, (x, z)~--~f(x-z, n) is a Borel function, since it is the composition of a 
continuous function (x, z)~--~x-z followed by a Borel function x~--~f(x, n). There- 
fore, by Fubini's Theorem, 

I = ~ p~(z) S q)(x)f(x-  z, n) dAxd Vz. 
g(3 S 

But 
�9 (x ) f (x -z ,  n)dA,,= ~ q)(x+z)f(x, n)dAx, 

S S - z  

and (4.13) follows. Let B be a body. If S is a face of B, then ns=ns_ ~, and (4.13) 
yields 

~(x)f~ nos(x))dA~,= ~ p~ ~ ~(x + z)f(x, nos_~(x))dAxdVz, (4.14) 
OB ~ 3  O B -  z 

where nan and n0B_~ are the outward unit normal fields to ~B and t~B-z, respec- 
tively. 

We now show that F ~ is weakly balanced. Let B be a body in R e. Then, since 
6e(0, ~), 

B - z c R  whenever p~ (4.15) 

Thus, if we apply (4.14) with alp(x), for each x, the identity map on IR N, and use the 
fact that F is weakly balanced, we find that 

[ If~ no,(x))dAx I < KV(B). 
o, 

Thus F ~ is weakly balanced, and we conclude from Cauchy's Theorem that there 
exists a field T~ Re ~ Lin (R3, ~u)  such that 

f~ n)= T~ (4.16) 

for all (x, n)~R~ • Unit (IR3). 
Let {e~} be an orthonormal basis for R3. Then (4.16) implies 

3 

T~ = Zf~ e,) | e,, 
i--1 

and, since f~(-, n ) -* f ( . ,  n) in/2 (R) (and hence/2 (Re)), T o tends to the field 

3 

T(x) = ~ f(x, e~) | ei 
i - - 1  

is /2(R~). Therefore, letting 6---,0 in (4.16) we see that (for each fixed n) (4.11) is 
satisfied for [V] almost every xeR, .  Since the only requirement on e is that it be 
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sufficiently small, and since R =  ~ R1/k, (4.11) holds for all x in a set R.(n) which 

differs from R by a set of zero volume. 
Our next step will be to establish the symmetry of T almost everywhere. Thus 

let F have values in IR 3. Then, using (4.2), (4.12), and the same estimate as was 
used to derive (4.8), we find that 

IMF~(~ Bo) I < 121//3 KV(Bo) (4.17) 

for any x~R and any cube Bo~R containing x. 
As before, choose e>0,  confine b to the interval (0,0, and fix y~R~. Let 

in (4.14) be the field defined, at each x~lR 3, by 

�9 (x)  w = ( x -  y) ^ w 

for every w~ R 3. Then (4.14) yields 

MF~(OB)= ~p~ ~ [x-(y-z)]/xf(x,  noB_z(x))dAxdV~ (4.18) 
IR 3 ~B z 

for every body BcR~. The inner integral in (4.18) is simply MFy_z(OB-z ) at 
those z for which B - z c R .  Thus, since p0 (for fixed 6) is bounded, and since 
V(B-z)= V(B), we conclude from (4.15), (4.17), and Lebesgue's dominated con- 
vergence theorem that: if F is moment balanced, then F ~ is moment balanced 
(on R~). Assume this is the case. Then Cauchy's Theorem implies that T ~ is sym- 
metric on R~. Thus, since TO-* T in/2 (R~), T is symmetric [ V] almost everywhere 
on R~, and hence, arguing as before, IV] almost everywhere on R. []  

Proof  of  Theorem 6. It suffices to show that 

(4.11) holds for all (x, n)~G • Unit (~:~3), (4.19) 

where G is a subset of R that differs from R by a set of zero volume. Let ~ '  be a 
countably dense subset of Unit(lR3), and let G be the set of all points in ~ R,(n) 

n ~  
that are points of density (cf the statement of Lemma 2). By (iv) of Theorem 3, 
(4.10), and the countability o f ~ / ,  V(R-G)=O. Thus to complete the proof we 
have only to establish (4.19). But this follows from (4.11), (v) of Theorem 3, and 
the fact tha tJg  is dense in Unit(R3). [] 

5. Additional Results 

The classical proofs of Cauchy's Theorem are based on the assumption that the 
density f of F obey a balance law of the form 

~ f(x, n(x)dA:,+ ~ b(x)d V~=0 (5.1) 
OB B 

for every body B, where n(x) is the outward unit normal to 0B at x, and where b 
is a bounded integrable function on R. When this is the case we shall say that F 
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obeys a classical balance law. Our next theorem shows that for a Cauchy flux the 
notion of being weakly balanced is not as weak as it might first appear. 

Theorem 7.1 Let F be a Cauchy flux. Then a necessary and sufficiem condition 
that F obey a classical balance law is that F be weakly balanced. 

Proof. Necessity is obvious, since b in (5.1) is required to be bounded. 

Conversely, assume that F is weakly balanced. To complete the proof it clearly 
suffices to show that there exists a Borel measure/~ on R such that 

F(aB) =/z(B) (5.2) 

for every body B and 

I~(D)I _-< KV(D) (5.3) 

for every Borel set D c R .  Indeed, were (5.2) and (5.3) true, then, by the Radon- 
Nikodym Theorem, there would exist a bounded integrable function b on R such 
that 

#(D)= - I b(x)dVx 
D 

and (5.2) would yield 

F(0B)+ S b(x)d V~ =0,  
B 

which is (5.1). We now establish (5.2) and (5.3). For convenience, we restrict our 
attention to the case in which F is scalar-valued (N = 1); the more general case then 
follows as an immediate corollary. 

Let N denote the collection of all sets formed by taking finite unions of bodies. 
Then the boundary of B e N  is the union of a finite number of closed polygonal 
faces S 1, S z . . . . .  S o and F(c~B) can still be defined by (3.1). Choose B, C e N  with 
V(B c~ C)= 0; then B c~ C must be the union of a finite number of plane polygonal 
regions P1, P2 . . . . .  Pa and a finite number of plane sets of zero area. Let $1, $2 . . . . .  S e 
be the surface elements oriented by OB that have P1, P2, -.., Po as underlying sets. 
Then by (3.5) 

O 
F(a(B w C)) - F ( O B ) -  F(a C) = - ~ [F(S,) + F( - S,) ]  = O. 

i = l  

Thus the map F,: N---~]R defined by 

F,(B)=F(SB) 

has the following properties: 

F,(Bu C)=F,(B)+F,(C) whenever V(Bc~ C)=0,  
IF, (B)I =< KV(B). (5.4) 

The inequality (5.4)i, of course, follows from (3.3), (5.4), and the fact that every 
BEN is the finite union of bodies. 

1 The non-trivial portion of this theorem (sufficiency), within a slightly different framework, is 
due to GURTIN • WILLIAMS (1967), Theorem 6. 
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To facilitate the remainder of the proof, 1 we introduce some notation. Given 
xeIR 3 and 6 > 0  we call 

Q ( X ,  ~ ) =  (yE:]R3;  0 ~ ( x - - y ) j ~ - ~ ,  j =  1, 2, 3} (5.5) 

the box with corner at x and length 6. Here, of course, (x-y)~ are the coordinates 
o f ( x - y ) .  For n =  1, 2 . . . .  , let P, be the set of all xelR 3 such that the coordinates of 
x are integral multiples of 2-", let f2, denote the collection of all boxes with corners 
at points of P, and length 2-", and for any set A c IR 3 let P,(A) denote the set of all 
xeP, for which Q(x, 2-")cA. Finally, let Q(x, 6) denote the set (5.5) when the 
inequality is replaced by 0 < ( y - x ) j  < 6. We call Q(x, 6) a semi-box, and we denote 
by O, the collection of semi-boxes with corners at points of P, and length 2-". 
For B ~  the total volume of all boxes Q(x, 2-") that intercept c3B and have x~ P, 
can be bounded by 2-"  times a constant (that depends on B but is independent of n). 
Thus we conclude from the properties (5.4) that 

IF,(B)- Y, F,(Q(x, 2-"))]<KB2-". (5.6) 
xeP,(B) 

Now let Cc(R ) denote the space of all continuous real-valued functions on R 
with compact support, and equip Cc(R) with the sup norm. For n = 1, 2 . . . .  and 
ge Co(R) let 

A , g =  • g(x) F,(Q(x, 2-")). 
xePn(R) 

Then 
IA.gl < sup Ig(x)l KV(R), 

xER 

and hence A. is a continuous linear functional on C~(R). Further, (5.4)2, the uni- 
form continuity of g~ C~(R), and the additivity of F. imply that 

A g = lim A n g 
n~oo 

exists and defines a continuous linear functional on Cr Thus, by the Riesz 
Representation Theorem, there exists a (unique) real regular 2 Borel measure # 
such that 

A g =  ~gdl~. 
R 

Our next step will be to show that # satisfies (5.2) and (5.3). Choose a box A 
in R and for each integer k > 0  let gk~ C~(R) be a non-negative function, bounded 
by t, with gk(X) = i for all x~ A, and with support in a box that is concentric with 
A and has volume V(A)+ 1/k. Then, as k ~  ~, gk tends pointwise to the character- 
istic function of A and 

Ag k = ~ gkd#-~#(A). 
R 

Moreover, IF,(A)--A, gkl<2K/k for all sufficiently large n; thus IF,(A)--Agk]< 
2 K/k and A gk --~ F, (A). Therefore 

F,(A)=#(A). 

i At this point we could simply appeal to a theorem of GURTIN & WILLIAIVtS ((1967), p. 113); we 
prefer, however, to give a different proof based on a technique, now standard, for the construction of 
Lebesgue measure on Rt u with the aid of the Riesz Representation Theorem (el RUDIN (1974), p. 53). 

Cf,  e.g., RUDIN (1974), p. 139. 
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Since 

n=2 

any semi-box (~(x, 6) with closure in R must satisfy 

= F, (Q(x, 6)); 
therefore 

l.(0(x, 6))I-<_ K v(e(x, 6)) 

for all semi-boxes with closure in R, and hence for all semi-boxes in R. Observe 
now that every non-empty open set in R is a countable union of disjoint semi-boxes 

belonging to ~) (~,. Thus for every such open set D 
n=l 

I~t(D)l < KV(D), (5.8) 

and, since # is regular, (5.8) must hold for every Borel subset of R, so that (5.3) 
is satisfied. Thus for every BeN,  #(0B)=0,  and we conclude from (5.6) and (5.7) 
that 

#(B)=#(/~)= lim ~ #(0(x,  2-n)) = lim Y' F,(Q(x, 2-")) 
n ~ e o  x~Pn(B)  n ~ o e  x ~ P , ( B )  

= F, 
which yields (5.2). []  

Remark 1. In the above proof we established the existence of a measure/~ 
consistent with (5.2) and (5.3). Uniqueness also holds: there is at most one Borel 
measure/ t  on R that satisfies #(B)=F(3B) for every BsN .  Indeed, if/~ is a second 
Borel measure with this property, then, since IM(B)I and [/~(B)I are bounded by 
KV(B) on every BeN,  #.and/1 are regular I and coincide on every semi-box in R 
and hence on ex~ery Borel set in R. This shows that for a weakly balanced Cauchy 
flux F there exists exactly one 2 bounded integrable field b on R such that (5.1) 
holds. 

Remark 2. While the above analysis establishing the existence of a unique 
extension # of F, is carried out in N 3, it is clear that the essential items are additivity 
and boundedness with respect to Lebesgue measure V on ~3  (cf. (5.4)), and it is 
therefore equally clear that completely analogous results hold for IR M. 

To define F(~?B) on a body B it is necessary only to define F on polygonal 
surface elements. Therefore our notion of a Cauchy flux, in which F is defined on 
all surface elements, might, at first sight, appear artificial. We now show that our 
definition involves no loss in generality. 

Let : denote the collection of all surface elements which are finite unions of 
polygonal surface elements. Then as a direct consequence of Remark 2 we have 

1 Cf. ,  e.g., RUDIN (1974), p. 50. 
2 Equating functions that are equal [V] almost everywhere. 
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Theorem 8. Let F: ~_+~N be area-bounded and satisfy 

F(S, u $2) = F(S1) + F (S2) 

whenever $1 and S 2 are compatible and have A(SI r $2)=0. Then F is the restriction 
to :~ of a unique Cauchy flux. 
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