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Introduction

In this paper, there is formulated a linear theory of a three-dimensional,
elastic continuum which has some of the properties of a crystal lattice as a
result of the inclusion, in the theory, of the idea of the unit cell. The equations
yield wave-dispersion relations with acoustic and optical branches of the same
character as those found at long wave-lengths in crystal lattice theories and
observed in neutron scattering experiments. Although specific solutions are not
exhibited in detail, it is apparent from the form of the equations that there
will be interesting surface effects under conditions of both motion and equi-
librium.

The unit cell may also be interpreted as a molecule of a polymer, a crystallite
of a polycrystal or a grain of a granular material. The mathematical model
of the cell is a linear version of ERICKSEN & TRUESDELL’s deformable directors [1].
If the cell is made rigid, the equations reduce to those of a linear COSSERAT
continuum [2].

The method of derivation of the equations is analogous to one used in de-
ducing two-dimensional equations of high frequency vibrations of plates from
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the three-dimensional equations of classical linear elasticity. By the same tech-
nique as that employed in passing from high order theories of plates to classical
theories of plates, the equations are shown to reduce, at low frequencies and
very long wave-lengths in isotropic materials, to those of an elastic continuum
with potential energy-density dependent on strain and strain gradient and kinetic
energy-density dependent on velocity and velocity gradient.

A linear form of ToUPIN’s generalization [&, Section 7] of couple-stress theory
[6—10] is obtained by eliminating the difference between the deformations of
the unit cell and the surrounding medium; and linear couple-stress theory itself
is obtained by eliminating, further, the symmetric part of the strain gradient.
Both of these special cases are also limited to low frequencies and very long
wave-lengths.

1. Kinematics
Consider a material volume V, bounded by a surface S, with X, 1=1, 2,3,

the rectangular components of the material position vector, measured from a
fixed origin, and x; the components, in the same rectangular frame, of the spatial
position vector. The components of displacement of a material particle are
defined as

w,=x,—X,. (1.1)
Embedded in each material particle there is assumed to be a micro-volume V’
in which X; and «x; are the components of the material and spatial position
vectors, respectively, referred to axes parallel to those of the x;, with origin
fixed in the particle: so that the origin of the coordinates x; moves with the
displacement . A micro-displacement w' is defined; with components

14

w;=x,— X;. (1.2)

The absolute values of the displacement-gradients are assumed to be small
in comparison with unity:

ou;

ou;
7
x| < ‘aX; <1, (1.3)
so that we may write
au,-Nau,-:_. g .
ax; ™ = 0;u;, wi=u;(%;,1), (1.4)
ou; ou;
T Ao T _ a7 0 ’
“aX; R ax: :8'1/1/7, ul—uj(x“ xi,t), (15)

where ¢ is the time.

Assume that the micro-displacement can be expressed as a sum of products
of specified functions of the x; and arbitrary functions of the x, and . As an
approximation, retain only a single, linear term of the series:

i =1 Pri» (1.6)
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where ,; is a function of the x; and ¢ only. Then the displacement-gradient

in the micro-medium is

(N 4
3;“7:1/’:'7':

(1.7)

i.e., the micro-deformation v, ; is taken to be homogeneous in the micro-medium V'
and non-homogeneous in the macro-medium V. In view of (1.3),, |v;;| <1.

The symmetric part of y,; is the micro-strain:

Yap=1Wi;+v;) (1.8)

and the antisymmetric part is the micro-rotation:

V=% Wi — ;i) (1.9)

An alternative interpretation of the micro-defor-
mation is that the quantities y,; are proportional to
the components of the displacements of the tips of
deformable directors, as described by ERICKSEN &
TruesDELL [I]. The yy,;; then are the components
of rotation of the COSSERAT triedre [2, p. 122].

We define the usual strain (now the muacro-
strain)

Ill

30+ 0,u,); (1.10)

and also a relative deformation (the difference
between the macro-displacement-gradient and the
micro-deformation)

Vi =04, — v, (1.11)

and a micro-deformation gradient (the macro-gradient
of the micro-deformation):

HijkEaiwjk' (112)

All three of the tensors ¢,;;, y,; and x,;, are inde-
pendent of the micro-coordinates #x;. Typical com-
ponents of y;; and x;;, are illustrated in Figs. 1
and 2.

The #; and y;; are assumed to be single-valued
functions of the x;, leading to the compatibility
equations

Cminn1j0; 08, =0, (1.13)
bmijOi%ip1 =0, (1.14)
0;(&jp + Wjp—Vin) =% 5, (1.15)
where w;; is the macro-rotation:
w;; =%(0;u;— d;u,) (1.16)

and ¢;;; is the alternating tensor.
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deformation y¢y
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2. Kinetic and potential energies
Let the micro-medium be a parallelepiped with volume V' and edges of
lengths 2d; and direction cosines /,; with respect to the axes x;. Let x;' be
oblique Cartesian coordinates parallel to the edges d;, respectively. Then [3,

p- 153]

% =1;x, (2.1)
—3|]l Ll dld ds, (21),

Let g, be the mass of macro-material per unit macro-volume and let o’
be the mass of micro-material per unit macro-volume. We define a kinetic
energy-density (kinetic energy per unit macro-volume):

1 1 s g
T =1 ouityit; + V,f o' (4 +14]) (st -4 AV, (2.2)
VI
where the dot designates differentiation with respect to time. Upon substituting
(1.6) and (2.1) in (2.2) and performing the integration, we find

T:%Qdﬂ“j‘}‘%Q'd:ﬂ/"kj"I"zi' (2.3)
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where
e=on+o, (2.3)s
dl%l = dpdq(apl 6qllk1l11 + 61:2 6q21k2ll2 + 5p35qalkslls) = dlzk (2.3)3

and ¢,; is the Kronecker symbol. In the case of a cube with edges of length 24
parallel to the axes of x;,

lijzaij: d1:d2:d35d. (24)

Then the second term in (2.3), reduces to §o'd?p,;9;;. If the material is com-
posed wholly of unit cells, gyy=0. Then p'=p.

For the potential energy-density (potential energy per unit macro-volume),
we assume a function, W, of the forty-two variables &;;, ¥,;, %;,.°

W=Wl(e;;, vij» %ija)- (2.5)

A small, rigid rotation of the deformed body is described by a rotation,
w;;=constant, of the macro-material and an equal rotation yj,;; of the micro-
material. The associated displacements are

U= O =X Y- (2.6)
The addition of such a displacement leaves W unchanged since the added e,;, y,;

and x,;, are zero.

The assumptions (1.6), (2.2) and (2.5) are the minimum that will lead to
equations which yield the desired dispersion relations for plane waves: including
longitudinal and transverse acoustic and optical branches. More or less than
(1.6), (2.2) and (2.5) would be more or less than what is required.

The unit cell is taken to be a parallelepiped in order to represent the unit
cell of a crystal lattice. However, another shape would only change the tensor
d:;. Also, the cell can be interpreted as a molecule of a polymer, a crystallite
of a polycrystal or a grain of a granular material.

3. Variational equation of motion

We write Hamilton’s principle for independent variations du; and dy,; be-
tween fixed limits of #; and y,; at times #, and ¢;:

t t
0 f(T —W)dt+ [ éWidt=0, (3.1)
)

where J and #~ are the total kinetic and potential energies:
T =[Tav, W= [WdVv (3.2)
v v

and 6%#; is the variation of the work done by external forces.
In the usual way [4, p. 166], we find, from (2.3); and (3.2),,

% 4
5tf=7dt= _tfdtvf (0% du; + %0’ &1 Oya) AV . (3.3)
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As for the variation of potential energy, we first define

ow
ii:E: jir (3-4)
ow
0;;= a,y”, (34)
ow
”"”Ea_x,-fk‘ (3-4)s
Then
OW =7;;0¢;;+0:;0pi; + pijabijn,
=17;;0,0u;+0,;(0;00; — 0;;) + 1,50, 094,
=0;[(v;j+0:5) 0u;] — 0;(v;;+ 0;;) Ou;— 0, 0, + 0, (1 14 Oja) —
— OipijnOYipe
Applying the divergence theorem, we find
oW~ [ oWay
:_fa “+O'“ 6% ayv — f 9; Iutik_l_a'jk) 6'/)7de+ (35)

+‘§f%1 1’7—]—0',”)6%]d5 —}—Sf'n“u”k&pikds.

The form of (3.5) is the motivation for the adoption of the following form
for the variation of work done by external forces:

Wl:r}[ f;0u;dV +V[ D, 0y, dV —I—Sftiéude +5f1}k51p,~kd5. (3.6)

The definitions of ; and y;,, and the fact that the integrands of the volume
and surface integrals represent variations of work per unit volume and area,
yield the physical significances of the coefficients of du; and dy;,. Thus, f; is
the body force per unit volume and ¢; is the surface force per unit area (stress-
vector or traction); @;, is to be interpreted as a double force per unit volume
[4, p. 187] and T}, as a double force per unit area. The diagonal terms of &,
and 7}, are double forces without moment and the off-diagonal terms are double
forces with moment. The antisymmetric part @;;; of the body double force (157k
is the body couple. The antisymmetric part 7j;,; of the double traction T}, is
the Cosserat couple-stress vector. In both @;, and T, the first subscript gives
the orientation of the lever arm between the forces and the second subscript
gives the orientation of the forces. Across a surface with its outward normal
in the positive direction, the force at the positive end of the lever arm acts in
the positive direction. (“Positive” refers to the positive sense of the coordinate
axis parallel to the lever arm or force). Across a surface with its outward normal
in the negative direction, the directions of the forces are reversed.

Substituting (3.3), (3.5) and (3.6) in (3.1), and dropping the integration with
respect to time, we obtain the variational equation of motion:

f[(aﬂii—l’ a'Gij+fj“Qﬁ')6M-dV+
+f a Ht]k+6]k+ @ l’/"lk) 5’(/!7de—{— (37)

+f[t 17+647)]éu ds+f ik ”‘.uiik)awikdsxo'
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4. Stress-equations of motion and boundary conditions

From the variational equation of motion, there follow immediately the twelve
stress-equations of motion:

80;(vij+oy5) +1i=eli;, (4.1)
it;jn+ 05+ D =%0"d5 P, (4.1),

and the twelve traction boundary conditions:

tj:ni (T£f+ Uif) ) (42)1
T=mn;p;j- (4.2),

In view of (3.4), (4.2) and the significance of ¢,;;, y;;, %;;;, appropriate ter-
minology appears to be Cauchy stress for 7,;, relative stress for o;; and double
stress for u,;,. The twenty-seven components of p,;, are interpreted as double
forces per unit area. The first subscript of a u;;, designates the normal to the
surface across which the component acts; the second and third subscripts have
the same significance as the two subscripts of T;,. Typical components of u;;,
are illustrated in Fig. 2.

The linear equations of a Cosserat continuum [2] are obtained by setting
Yip=0. Then o;=7;; and pu;;y=0; and there remain u;;; (the Cosserat
couple-stress) and of;;: which has been regarded as the antisymmetric part of
an asymmetric stress 7,;. However, in the present theory, the Cauchy stress,
7;;, is symmetric and of;;; is the antisymmetric part of an asymmetric relative
stress a,;.

Besides containing the linear equations of a Cosserat continuum as a special
case, Egs. (2.5), (3.4) and (4.1) also include, as low frequency, very long wave
length approximations, linear versions of the equations of couple-stress theory
[6—10] and ToUPIN’s generalization of couple-stress theory [8, Section 7]. These
are considered in Sections 9—12.

If additional terms were retained in the series expansion (1.6) of the micro-
displacement #;, higher order stresses would appear. In addition to stresses
corresponding to double forces per unit area, there would be stresses correspond-
ing to n-tuple forces per unit area. All of the latter would be self equilibrating;
whereas, of the u;;,, only the u;; are self equilibrating.

5. Constitutive equations

For the potential energy-density we take a homogeneous, quadratic function
of the forty-two variables &;;, y,;, #;;;:

_1 1 1
W=g¢in1€81+ 80017 Va1+ 3 %5 1mn%ijn%imn+

T BiinimPii%him T Fijhim®iin €1m+ Eiin1Vij Er1e

(5.1)

Only % x 42 xX43=903 of the 42X 42 =1764 coefficients in (5.1) are independent.
The number of coefficients, the relations among them and the number of inde-
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pendent ones are given in the following table:
Cijr1=Chiij = Cjin1t  9IX9—60= 21
bijr1=0bp1;j: 9IX9—36= 45
Biihimn=Rmnijh- 27 X27 —351 =378
Aijpim: 9x27 =243 (5.2)
fijkim=Fijami:  9X27—81=162
iini=8iju: 9IX9—27= 54

903
From (5.1) and (3.4):
Tpg=Cpgij€ij T 8ijpeVijt+ Tijupg#ijns (53):
Opg=8pqij €ij+ DijpgVii T+ BpqijnPijnr (5:3)2
Bogr =lpqrii®i; T RijpgrVii t FpgrijnHijn- (5-3)a

In the case of a centrosymmetric, isotropic material (referred to as isotropic
in the sequel) the number of independent coefficients is greatly reduced. As
there are no isotropic tensors of odd rank, d;;;,, and f,;;;;, must vanish. The
remaining coefficients must be homogeneous, linear functions of products of
Kronecker deltas. There are three independent products of two Kronecker
deltas and fifteen independent products of three Kronecker deltas. Hence

ci;z‘kz:laz’jaki+Mléih6§£+/“2anaik’ (5-4);
bijkl:bléii6k1+bzaikajl+b36ilajk: (5-4)2
gisz:g15¢j5kz+g25ik5;'z+g35i15;'k: (5-4)s

Aiihimn— N 6ij6klémn + a5 6i7'6km 0,1 ag 5ifakn O+
+a40;4,0;10,y+850;,0;,0,;+ a50,;,0;,0,,,+
+ 70,010, + 30,0, 0,14 0904, 0;,0,,, + (5-4)a
+ 219610 O+ 311 0,103 0, + 190510, 0, +
+ag 6éléjnakm + ay 6ilakn6-;m +a;56, lainéjm‘
The conditions (5.2) require the six relations
=M=, 8283,
ay=4as, Ay=0dy, As=aq, 21 =23,
leaving eighteen independent coefficients. Thus, the potential energy density
reduces to
W=3Ae;ieij+pejei;+3biyiivii+ 2beyiivij+
F2bsyi Vi Qg Wyt Ei+
AT LI Y I e 3 3% ®ijp T T4y Hiji%epr T+ (5.5)
gk B Ay Ry Kk F AroRi e High T @ e e T

1 1 s i ..
+ FsHnin T T BaKijHin T 2 Bs K Ko
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and the constitutive equations become
Tpg=A0pq 8ii T 21 Epq+ 810pgVii T 82(Vpg T Vyp) (5.6)1
Opg=810pg €ii T 282850+ 01050 Vii +0a¥pg + 0a¥ysp, (5.6),
Upgr=81(%;ip0qr +2%,::0pg) + ay (#iig0py + xi,iépq) + ag3;i, 0pg +
gy ;;0,, -+ as(3:50,, +#ipi0y,) + g, 05, + A1gp,, -+ (5.6);

+ ayy (”rpq + ”qrp) T gy g T Bra¥yp, t G15%,gp-

6. Displacement-equations of motion

We may obtain twelve equations of motion on the twelve variables #; and
y;; by first inserting (1.10), (1.11) and (1.12) into the conmstitutive equations
and then the latter into the stress-equations of motion (4.1). There is no necessity
to assume spatially homogeneous material properties. In fact, the coefficients
of elasticity and the densities may be taken as periodic functions, of oblique
coordinates parallel to- the edges of the unit cell, of periods 2d,. This would
represent the periodic structure of a crystal lattice. However, the equations
would then be highly intractable; whereas some of their main features are ex-
hibited with macro-homogeneous material properties, at least for wave-lengths
greater than the dimensions of the unit cell. The isotropic case is especially
simple; but nevertheless it still contains many of the novel properties of the
macro-homogeneous material.

In the case of isotropy, the constitutive Eqgs. (5.6) apply and also (2.4). Then,
for the macro-homogeneous, isotropic material the equations on #; and v,; are

(44282 +05)0;0;u; + (A +p+2g + 28+ b+ by) 0, 0,u; —
— (8, +01) O — (82 + b2) Oy, — (g2 + B3) 0,9, -+ [ = 0,
(@1 + a5) (8, 01941055 + 0, 0;9p1) + (ag + a11) (05 O ri + 0,05 950) +
+ (a5 414) 0,0, rj + 8,0, 0, 911 05+ (g + a15) 0; 0,95, +
+ @100 O Wi+ @13 05 O Wi+ 81 0 44, 05 + €2 (0,5 + 0;u;) -+
+ by (O w0, — Wi3) Oi; + Do (B0; — ;) + b3 (90, — ;) + Py =% 0" 2P,

(6.1)
(6.2)

7. Micro-vibrations
Consider solutions of (6.1) and (6.2) of the form
u,=f;=®;;=0, pi =46, (7.1)
where the 4, are constants. Then (6.1) are satisfied identically and (6.2) become
bléiiAkk+bZAii+b3Aii:%Q,d2w2Aii’ (7.2)

which admit the following solutions:

dilatational mode:
Ay =Agp=Ag;; 4;;=0, 1=,

v7

w5=3 (3, + by +by) /0" d2; (7.3)

(]
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shear modes:

Ayj=4;, i=Ff; Ay=0,  i=f; (7.4),
wsz=3 (b2+b5) /0" d%; (7-4),

equivoluminal extensional modes:
4;,=0; 4;;=0, 1=, (7.51
wf =3 (by+ b3)[0"d%; (7.5)s

rotational modes:

Aii:_Afi’ (76)1
02 =3 (b, — byo’ . (7.6)s

The restriction of the potential energy-density to be positive definite requires
3by+b,-+03>0, by +03>0, by —b;>0.

Hence w;, o, and w, are real frequencies. The corresponding modes are anal-
ogous to the simple thickness-modes of vibration of a plate. Just as the latter
are independent of the coordinates in the plane of the plate, so are the micro-
modes independent of the coordinates x; of the three-dimensional continuum
with micro-structure. Extensional and flexural waves in a plate couple with
thickness-modes, at high frequencies, to form the higher branches of the disper-
sion relations for a plate. Analogously, we may expect longitudinal and trans-
verse acoustic waves, in the three-dimensional continuum with micro-structure,
to couple with the micro-modes to form optical branches.

8. Plane waves, long wave-length
Consider solutions of (6.1) and (6.2) with f; and @,; zero and

w=u;(%1,1), Wi =pii(%1, ). (8.1)

By means of linear combinations, the twelve equations may be composed into
three independent equations and three independent systems of three equations
each:

shear optical I:
(@10 + @13) 01 01 Wazy — (b2 + b3) Yasy = %Q'd%‘/}(zs); (8-2)

shear optical 11: the same as (8.2) except that gy, is replaced with yy, — g5
rotational optical:
(@29 — @13) &1 01 Yiom) — (b — b3) Yiasy = 5 0" A2 Poay; (8.3)

longitudinal system:
k11 010 1y — K15 0y 1/){)1 — k3019 =0ty

koy 011y 4 kgg 04 0 Wﬁ — ks T/’ﬁ + ko010 = %g'd%]}ﬁ, (8.4)
kg Oy uy + kgp 04 811/;{)1 + k33 0,019 — kés#’ =p'd*P,
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where y=3v,;, yn=yu—y and
ky=A+2p+2g +4g+ b1+ b+ b,
koo =285+ a3+ ag+ Sa,0+ 281, + 2045+ 014+ 45,
kys=6a, +2a,+as+9a,+ 6a5+ ag +3ay9+ 2a, + 3 a3+ a4+ ay5,
Rog="Rgg=30a,+ 205+ as+3a;+ ag+2ay; + ayy 4 ay5,
kyy=Fki3 =381+ 28 +3b+ by + b,
Rio=Fyy =285+ 0y + b,
kézzg(bz‘i'bs),
kss =3 (361 + by + by) ;
transverse system I:
Fuy 0y 81y — Ryg Oy Yagy — kg dy Yl1e; = 0%,
Ty Byt + g 1 01 Y1y — Fia Paazy + Ras 01 019 = 3 0 PPy, (8.5)

7€31 0y 95+ ]_332 010, Yazy + —lé% 0,9, Yz — ]-3:'33 Ve = % 9’ az ’;‘:'[12] s
where

7311:,“ +2g,+bs,
-/;22 =20y + a3+ ag+2a+ 2ay, + 20,53+ @y, + a5,
7333 =—2ay+ a3+ ag+ 2ay0— 28y, — 283+ A1y + %5,

7312 2521 =2gp + by + b3,
Fyy =2 (by + by),
'z:,is =2(b2 - bs) ’

transverse system II: the same as transverse system I except that u,, v, and
YPpe are replaced with u;, 95 and gy, respectively.
If, now, (8.1) are specialized to the plane waves

u;=A;iexp[i( % —wi)], vij=Bjjexp[i(§ %, —wi)], (8.6)

four dispersion relations {w vs. £) result:

shear optical waves (SO) (twice):
30’ @20 =0by + by + (419 + a13) 6% (8.7)
rotational optical waves (RO):

30 Pw?="by — by -+ (219 — a13)&%; (8.8)
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longitudinal waves (LA, LO, LDO):

k£ — o ? Ry & ki3 &
ky & k2252+k;2 —z0'd*w? kg &2 =0; (8.9)
ks, & kgy & k33§2+k;3_9'd2w2
transverse waves (TA, TO, TRO) (twice):
51152_9(02 5125 5135
Fné Rl tkn—fo de? Fyp 82 =0. (8.0)
];315 733252 1—63352—}—??;,3——%9%2(02

These dispersion relations are similar to those encountered in a second order
theory of extensional waves in plates [I7]. The relations (8.7) and (8.8) are
like that for the second face-shear mode in the plate. The relations (8.9) and
(8.10) are like that for the coupled extensional, thickness-stretch and symmetric
thickness-shear modes in the plate; ¢.e., one acoustic and two optical branches
in each of (8.9) and (8.10).

In the dispersion relations (8.7) and (8.8) for the non-coupled modes, there
are cut-off frequencies w, and w,, respectively, at which the group velocity
(Aw(dE) is zero. Positive definiteness of W requires

a0+ @3>0, A9 — G50, (8.11)

Hence, the frequencies increase, from cut-off, with increasing real wave numbers.
Below the cut-off frequencies, the wave numbers are pure imaginary with cut-
off values

£=ii< bytbs ) §=:}:i(M)’3‘, (8.12)

Ayt 3 @9 — s
respectively, at zero frequency.
The behavior of the acoustic branches in (8.9) and (8.10), at low frequencies,
is described by w;, o, w; (i =1 for longitudinal and =2 for transverse): the
values, at w=0 and £=0, of the first, second and third derivatives of o with

respect to &, We find

W=7, =0, o] =3F,—h, (8.13)
where
2= +2@e.  TE=Ale. (8.14)
5 oo _ 83 (341 128)°
R Yo A TE (8.15),
i=p — 28 8.1
Iu iu b2+b3 > ( 5)2
B=2(,+ay+ 8-+ 8+ &)+ 20), B=20+a)E,  (816)
B=p'd2[202 + (x + B)%][30, k3 =0 d*(1+B%[6o, (8.17)
1 b (3a 280 _ 28,
¢ = bty (gl 3b,+ 5,1+ b, ) =1+ bat by (8-18)
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G =3[(1+p Ba+pa+(1+2af+pYa—3(1+) (1—20—f)ag—

— (=B Ba+pas—3(1—p) (1+ 20+ ag+20fay, —a(1—fay,+
+a(1+4f) as5],

Gy=3{—(1—2a—f) Bat+pla;—7[1— Qa+p)*las+1(1—20—p)?a,+
+ Ba+p)2ays+ Ba+p) (1+ 200+ f) a5 + 1 (1+ 20 + ) ag +
+aBa+28)ap+2u(e+flantaBa+2f) asta(ltoatp)a,—
—a(t—a—p)ay},

(8.19)

—3(1—28—36% ais].

Positive definiteness of W requires , 4+ 2/, [2>0, while 42> 0 by inspection.

It may be seen that the limiting group velocities §; are less than those that
would be calculated from the strain-stiffnesses 4 --2u and . This phenomenon
is due to the compliance of the unit cell and has been found in a theory of
crystal lattices by Gazis & WaALLIs [12]. Inasmuch as w; =0, the group velocities
at zero frequency are maxima or minima. Which one occurs depends on whether

w;" is greater or less than zero; and this, in turn, depends on whether s greater

or less than A2. Now l:z and 4? are positive quantities that are length-properties
of the material — depending on stiffness ratios, density ratio and the size of

the unit cell. Although & is probably smaller than the l:., the density ratio ¢’/

and the stiffness ratios o and § can make either I or h the greater. Hence, as
the frequency increases from zero, both group velocities can increase or both
can decrease or one can increase and the other decrease — depending on the
properties of the material. There is no analogue in the theory of homogeneous
plates because they do not have multiple stiffnesses and densities. The phenom-
enon does occur, however, in sandwich plates [13] and it has also been found
in a theory of crystal lattices, with complex interatomic interactions, by Gazis
& WaLLls [14].

At the short wave-length limit (£§— oc), the asymptotic values of the group
velocities of the acoustic branches are

1 [ Ryythgg— [(hay—hg) 2+ 4 k314 3
2d 30

(8.20)

from (8.9) and the same expression, with £ replaced by %, from (8.10). These
can be much smaller than (8.13), if

4 (haghgs — kag) < (kapthsg)?, (8.21)
4 (-]522 1_333 - ]_323) < (7322+ 7333) 21 (8'22)
which appear to be possible.
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Regarding the optical branches in the longitudinal and transverse systems,
the former have long wave-length cut-off frequencies e, and w, while the cor-
responding quantities for the latter are w, and w,. Thus, the two systems have
one cut-off frequency in common. One of the two modes is shear and the other
is equivoluminal extension. As in the case of plates, the group velocities of all
four optical branches are zero at the long wave-length cut-off ifrequencies ex-
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Fig. 3. Sketch of possible con-
figuration of real branches of
dispersion curves. T' transverse;
L longitudinal; 4 acoustic;
O optical; 8§ shear; R rotation-
al; D dilatational; T, L low
frequency approximation; T Ee
classical elasticity

cept in the unlikely circumstance of coincidence of cut-
off frequencies within a system (b;=0 for longitudinal
modes or by;=0 for transverse modes). Another parallel
to the situation in plates is that, as £ increases from
zero, the behavior of the optical branches is very sensitive
to small changes in the ratios of material properties. One
possibility is that both lower optical branches have phase
and group velocities of opposite sign; 7.¢., diminishing o
with increasing £. With further increase of &, the ab-
solute values of the group velocities would pass through
maxima, then drop to zero and then increase; i.c., the
dispersion curves first would have a point of inflexion
and then a minimum.

i LA A sketch of a possible configuration of the real seg-
S ments of the dispersion curves is shown in Fig. 3. The
;‘; s four lowest branches (T4, LA, LO, TO) are remarkably
~ ! 7 similar to those obtained by BROCEKHOUSE & IYENGAR

le / 741 [15, Fig. 5] from measurements of neutron scattering in

germanium.

At the corresponding stage in the development of
equations of high frequency vibrations of plates, it is ex-
pedient to introduce correction factors to compensate, as
well as possible within the framework of the theory, for
errors introduced by the restrictive assumption regarding
the variation of displacement through the thickness of
the plate. The analogous restriction, here, is the assumed
homogeneous deformation of the unit cell. The values
of the correction factors are obtained, in the theory of

plates, by matching appropriate points, slopes and
curvatures of the dispersion curves with the corresponding quantities obtained
from an exact solution of the three-dimensional equations. Since the analogue
of the latter does not exist, in the present case, such an adjustment cannot be
made. An alternative is to use experimental data.
There is another aspect of the theory of plates that should be mentioned.
It is possible for a thickness-mode with % -- 7 nodal planes to have a frequency
lower than one with » nodal planes. For example, in an isotropic plate, the
thickness-shear mode with two nodal planes has a frequency lower than that
of the thickness-stretch mode with one nodal plane if Poisson’s ratio is greater
than one-third. Thus, a better approximation is obtained if a sufficient number
of terms is retained, in the series expansion of the displacement, to accomodate
this contingency [1]. The analogue, in the present case, is the possibility of
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the appearance of a micro-mode with frequency lower than that of the dilata-
tional micro-mode (7.3) if additional terms are retained in the series expansion
(1.6). However, because of the complications that would ensue, such a step
does not appear to be warranted at this time.

9. Low frequency, very long wave-length approximation: Form I

This section and the following three are devoted to discussions and deriva-
tions of equations of motion simpler than (6.1) and (6.2) but limited, in applica-
tion, to much lower frequencies and much longer wave-lengths.

As noted previously, when thickness-shear and thickness-stretch deformations
and the associated inertias are taken into account in the theory of plates [I6,
17, 18], thickness-modes of vibration, analogous to the micro-modes, are ob-
tained as well as flexural and extensional modes analogous to the transverse
and longitudinal acoustic modes. At low frequencies, in comparison with the
frequencies of the thickness-modes, and at long wave-lengths, in comparison
with the thickness of the plate, the coupling of the flexural and extensional
modes with the thickness-modes is negligible. As the frequencies of the flexural
and extensional modes approach zero, the thickness-shear deformation approaches
zero but the thickness-stretch deformation does not; rather, it is the stress
associated with thickness-stretch that approaches zero. Thus, the antisymmetric
and symmetric parts of deformation and stress have to be treated differently
in passing from high frequency equations to the classical, low frequency equations.
To obtain equations valid at low frequencies in the case of flexure, the thickness-
shear deformation is made to approach zero by passing to a limit as the associated
modulus of elasticity approaches infinity. The product of the two is indeterminate
and this leaves the thickness-shear stress indeterminate in the constitutive equa-
tions. In the case of extension, the thickness-stress is set equal to zero and the
resulting constitutive equation is used to eliminate the thickness-strain from
the remaining equations.

In both flexure and extension of homogeneous plates, the thickness velocities
are set equal to zero in the kinetic energy, for the low frequency approximation,
because their contributions are negligibly small at the low frequencies to which
the resulting equations are restricted owing to the suppression of the thickness-
shear deformation and the omission of the thickness-stretch stress [18, 19]. The
same is not true of non-homogeneous plates. For example, in a sandwich plate
the rotatory inertia of the facings, about the middle plane of the plate, can be
of paramount importance, even at low frequencies, for certain combinations of
stiffness ratios, density ratio and distance between facings [13].

Now, the thickness velocities are analogous to the micro-velocities ¢, ;; the
thickness of the plate is analogous to dimensions 24, of the unit cell; the thickness-
shear deformation is analogous to the antisymmetric part of the relative de-
formation (y,;); the thickness-shear moduli are analogous to the b,;,,;; and the
stress associated with thickness-stretch is analogous to the symmetric part of
the relative stress (o;;). The known process of descending from high frequency
equations of plates to low frequency, long wave-length approximations can serve
as a guide to the treatment of analogous terms in the equations of the elastic
continuum with micro-structure. However, regardless of the process or of the
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theory of plates, the test of the validity of the resulting equations of motion
is that they yield the same dispersion relations that are found in the limit as
®w—0, £—>0 for the acoustic branches of the general equations. Thus, in the
isotropic case, the values of w;, ; and w;”, in (8.13), must be reproduced exactly.
Attention will be confined, here, to this case because it is much simpler than
the anisotropic form and because (8.13) are available for the final test.

Inspection of (8.13); shows that, as in the case of sandwich plates, it is not
permissible to discard the micro-velocities 9;,;. Their effect is contained in the
h and, as remarked in the discussion following (8.19), 42 can be less than or
greater than 2 depending on stiffness ratios, the density ratio and the dimensions
of the unit cell. Hence, omission of the ¢,; would preclude the reproduction
of the low frequency behavior. The remainder of the process, however, can
follow the analogy with homogeneous plates.

Thus, we let
oi)H=0, (9.1)

by — by —> o0, Yin—0, (9.2)
and proceed to find the effect of these assumptions on the remaining terms.

The isotropic, constitutive equations for 7,, and o,,, separated into sym-
metric and antisymmetric parts, are

Tpq=A0pg it 20080+ 8105,Vii T 282V (09)s (93)
Cipg) =810p5€i5+ 28285+ 0105, 75+ (ba +03) Vi (9.4)
1pq = (b2 — bg) Yppa1- (9.5)

Then, with (9.2), oy, is indeterminate in (9.5) and, with (9.1), (9.4) may be
solved for y,, in terms of &,,:
Vo= —%0pe;+(1—P) ey, (9.6)
where o and f are given in (8.18).
With regard to #;,,, we note first that, since
Voa= OpY—Vpq
and yy,,) is now zero, we are left with

Vo)™ Ppq» Vo™ Epg — Vipg> 9.7)
or, using the expression (9.6) for y,,, we have
Yipg=00pgiitBsg (9-8)
Accordingly, s;;,=0;9;,=0;¥;x + 0y 5 reduces to
250>, 0, (M) % — 5 (1—P) %y, (9.9)
where . .
Rijn=0;0u,="5 ;. (9-10)

Thus, the part of the potential energy-density that is a function of x;,, becomes
a function of #;,,: the second gradient of the displacement. The eighteen com-
ponents of %,;, may be resolved, in more than one way, into tensors whose
components are independent linear combinations of the 0;0;u;; so that other
forms of the energy-density, for the low frequency approximation, are possible.
These are treated in Sections 11 and 12.
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Upon inserting (9.9), (9.6) and (9.2) in (5.5), we find Form I of the low
frequency approximation for the potential energy-density:
W — VIN/ = %i£¢¢81j+/«7 g8k 51’?uk’~‘kﬁ+ 52;‘”‘;’7;'“ + (9.11)
F gk p Ry By B 5 g A5 R B .
where 1 and f are given in (8.15) and &, ...4; in (8.19). The appearance of these
coefficients is preliminary evidence of the validity of the process.
We define new stresses:

. oW .
Vi = e, T i (9-12)1
L oW .
Bijp= i =Mjix- (9-12),
Then
‘?qulépqeii—%—Zﬂ 61,4, (913)1

ﬂpqr = %&1 (ﬁiip 6qr + zﬁriiapq + 21'1:(( 61)7) + dZ (k’piiéqr + %qiiépr) +
2835, 0p,F 2805, , 4 85 (% g+ %, p,) -
The variational equation of motion is now obtained from Hamilton’s prin-

ciple with independent variations d#; alone since, by (9.7); and (9.8), the v,;
are no longer independent of the #,;.

(913).

The variation of the potential energy-density is
OW =7, ;0¢e;;-+f;;50%;;,
=7%,;0,00;+f,;,0,0;0u, (9.14)
=0; [(%jk - aiﬂ«;/k) Outy] — af (%jk - aiﬂiik) Oy - 0; (ﬂi;‘k 3;‘5%)-
Hence
Vf SWav :Sf Wi (% — Bifls i) S dS —

. - . (9-15)
_Vf 0, — 8i/'l‘ijk> ou,dV +sf il ajéukds'

Now, in the last integral of (9.15), the variation 9;0u, is not independent of
du; on S: only its normal component #;9;0u, is independent. We separate the
latter:

Wifhij 050Uy =yl 1p DjOw, +nifi;;,m; Doy, (9.16)
where
DE(éjl—njnl) 31, DEnlal. (9.'17)

7

The terms in (9.16) may be resolved, further, in more than one way. In this
section we follow ToupIN [8] and reserve an alternative resolution [9] for Sec-
tion 12. Thus, for the first term on the right hand side of (9.16), which contains
the non-independent variation D;du,, we write

niﬂijijauk :Dj("iﬂijk Suy) — ’”iDjﬂijk ouy, — (Dj"i)ﬂijk Ouy.  (918)
The last two terms in (9.18) now contain the independent variation d#,. For
the preceding term, we note that, on the surface S,

Dy’(”ilaiik Ouy) = (Dymy) i, duy, 4 Nelpm ap (emzfnl niﬁiik duty).  (9-19)
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By Stokes’s theorem, the integral, over a smooth surface, of the last term in
(9.19) vanishes. If the surface has an edge C, formed by the intersection of two
portions, S; and S,, of S, Stokes’s theorem gives

f g CqpmOp(Cmij Myt s j3 Ot) &S :éﬁ [nim;f;;] dm,ds, (9.20)

where m;=e,,;; s, n, and the s, are the components of the unit vector tangent
to C. The bold face brackets [ ] in (9.20) indicate that the enclosed quantity
is the difference between the values on S; and S,.

Finally, we note that, in the first surface integral in (9.15), we may write
1;0; fijn=2;D; ;s +n;n;Dfi;p. (9-21)
Then, assembling the results in (9.15)—(9.21), we find
J Wav = — 1 0355 — 03fts o) pV +
+sf (n;%i—nin; Dt ;—20; D fisjp+(nm; Dymy—Djim) iy ;3] dup a5+ (9.22)
—i—sfn,-nj,d”kD du,dS —l—cqi [n;mifi; ;] dupds.
This form suggests, for the variation of work done by external forces,
o, =Vkaaude +Sf13kaukds +Sf R,D6u,dS +C¢E~k5ukds. (9.23)

As for the kinetic energy, the micro-velocity ¢,;, in (2.3);, must be replaced
by a linear function of macro-velocity gradients:

Vi Pijn Opthy, (9.24)
where

Biini=%(0:30— 0;10;5) + 0 0;; 6, +3B(0:2 0, + 0:,6;1) (9-25)
so as to satisfy (9.7); and (9.8). Then the kinetic energy-density (2.3); becomes

T:%Qd 7w —|- %Q'd:kmnamdnapdk,

L , 3 . (9.26)
=%Q% + * 0 [Q dﬁkmn(amun) u’k] —"'(1?31:«(@ dgkmnamun) Uy
where
pkmn—d hlqpkhqun:d?nnpk (927)
=%d [6pm6kn_6pn6km+2a(3“+zﬂ) 613126mn+ﬂz(6pm6kn+6pnakm)]'
The total kinetic energy is
T =[TaV = [0t — 4 2(' Gyamn Omhn) ] AV +
4 v ’ ] .oy e (928)
+Sf%—9 n?dpkmn(amun)u'kds;
from which
t t
5f7dt=—fdtf[9ﬁk 10,(0" A3 kmn Omiin)] S04, AV —
o (9.29)

- f dt [ 0" 1y @2 (Dot 4 1, D) 14,45 .
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The variational equation of motion is formed from (9.22), (9.23) and (9.29),
from which follow the stress-equations of motion and boundary conditions:

8;(F;n — Oufiija) + B = 0y — 59, (0" B mn Omlhs) (9:30)
n; T —nin; D — 20D fi; 1+ (nyn; Dymy— Dim )i i+ (0.30)
+%Q,nPd2kmn(Dmﬁn+anﬁn) =13k» ' ’
niiflijn =Ry, (9:30)s
[nim;f;;3] =Es. (9-30)4
The displacement-equations of motion are obtained by first replacing 2¢;;
with 8;u;+ 8;u; and #;;, with 9,8,u,, in (9.13), and then substituting the latter
in (9.30),. The result is
(A4 200) (1 —BV)UV-u—j(1 —EV)UxVUxu+F
=0l — KV V- 4+ ks VxV xii),
where the 2 and %2 are defined in (8.16) and (8.17).

Omitting the body force and taking the divergence and curl of (9.31), we
find the equations governing the propagation of dilatation and rotation:

(9-31)

BRU—BVYrV-u=(1—RV)V-u, (9.32),
T2 — BV V2V xu=(1 — 2 V)V xi, (932),
where the 9?7 are defined in (8.14). For the plane waves
(V-u, Vxuy=(4, A) exp[i(fn-r—ot)], (9.33)
the dispersion relations are
W} =T E 1+ /(14 £, (9.34)

from which follow exactly the properties (8.13). Thus the validity of the ap-
proximate equations for low frequencies and very long wave lengths is established.
The dispersion relations (9.34) are illustrated in Fig.3 by the dashed curves

labelled L and T.

10. Relation to Toupin’s generalization of couple-stress theory

The theory of elasticity with couple-stresses, which is considered in [§—10],
is based on the same kinematics as is classical elasticity; but the potential energy-
density is assumed to be a function of the strain and the curl of the strain instead
of the strain alone. In the linear theory, the components of the curl of the
strain are the same as the components of the gradient of the rotation: eight
independent linear combinations of the eighteen components of the second
gradient of the displacement. For the equilibrium case, TouPrIN [8, Section 7]
has generalized the theory to include all eighteen components. If the inertia
terms are omitted, (9.30) are identical, in form, with Tourin’s Egs. (7.8)—(7.11) *.

* Note that, by definition, ToupriN’s P97 is symmetric in the second and third

indices, whereas j,;, is symmetric in the first two indices. Note, also, that & should
be replaced by —b in TourIiN’s Egs. 4, B, (7.9) and (7.19).
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However, although the form is the same, there are some significant differences.
Equations (9.37) pertain to a low frequency, very long wave-length approxima-
tion to the equa‘ions of a material with micro-structure and the effect of the
micro-structure suvives, in both the potential and kinetic energy-densities,
through the contribution oi the symmetric part of the relative deformation.
This part, y;;, can, in fact be traced to %,; and @,;;, in (9.30), through the
coefficients « and 8 in W. Similarly the contribution of y; to the acceleration
terms in (9.30) can be traced through the coefficients « and g in A,;;; and then
in d?j r- On the other hand, TouPIN’s equations do not stem from considera-
tions of microstructure.

The equations of the material with micro-structure can be reduced to those
of a material without micro-structure (i.e., to a micro-homogeneous material)
by causing the micro-medium to merge with the macro-medium. This may be
accomplished (just as readily, in this case, for the anisotropic as for the isotropic
medium) by passing to the limit as

bijpi—>o,  yij—0, (10.1)

instead of (9.1) and (9.2); and, at the same time, g—>g’, so as to remove the
distinction between micro- and macro-densities (i.e., g;—0 in (2.3),). Then

Vi >0, Hijn> 0,0y =%, (10.2)
instead of (9.7);, (9.8) and (9.9). Accordingly, from (5.1),
W—>W°:%3ijkz'9ij€kz+%ﬁijklmn’~‘¢fk’~‘zmn+fszlm’?ijk Eim (10.3)
and we define new stresses ~
7= E;W" =, (10.4),
817

- oW
= o =l (10.4),
(2]
Also, in the kinetic energy-density (9.26),
d:kmn_>d12>m6kn: (105)
where the dj,, are again given by (2.3),.
In the isotropic case dj,=d?8,, and W? %,@%,; have the same form as
W,#%,,,fi;;;, but the coefficients are 2, u, & ... d; instead of A,f, ... &.
The formulation of the variational equation of motion proceeds as before
and we arrive at the stress-equations of motion and boundary conditions:

8;(Fy — 0;@3j8) + B = 0'tiy — 30, (0’ dg D,ily) (10.6),
n; %y — nin; Dy, — 2n; D, i, + (mym; Dymy — D) iy, +

10.6)
+ 350 1y dym (Dl -+ n, Diiy) = B, ( ’
nyn iy = R, (10.6);
[n; m; fi;:] = E. (10.6),

Without the acceleration terms, (10.6) are now precisely the linear form of
TouriN’s equations; and (9.30), without the acceleration terms, differ only in

that the coefficients in W and W9 (and hence in the stresses) have different
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meanings. However, with the acceleration terms included, the forms are actually

different: the fourth rank tensor d:z, gmn i (9.30) is replaced by the second rank
tensor dj,, in (10.6) so that there are fewer coefficients in the latter.

In the isotropic case, it is only necessary to let
A2, f—pu, x—0, pg—1 (or gg—0, g,—0) (10.7)
in the equations of Section 9, to reach the equations of the micro-homogeneous
medium. Thus, (9.31) reduces to
(Ad2p) (1 —BV)VVu—p(l —BVYV XV xu+F=g'(1—1d2V%4, (10.8)

where Zf and ZOS are obtained from /7 and I3, in (8.16), by employing (10.7). It
will be observed that the left hand sides of (9.31) and (10.8) have the same
form, but the right hand sides have different forms because, with (10.7),
K2=hi—142 The dispersion relations for plane waves, from (10.8) are

wf=v}E(1+LE/(1+ 4a22), (10.9)
where vf=(1--2u)/o’, v2&=plo’; and the properties at w=0, £=0 are
wi=1v;, w;=0, wQ”:gv,-(l?—%dZ) (10.10)

instead of (8.13).

The difference between the equations of the micro-homogeneous medium and
the equations of the low frequency, very long wave-length approximation is
similar to the difference between plane strain and plane stress; or, more ap-
propriately in the present context, to the difference between equations of low
frequency extensional vibrations of plates with the thickness of the plate con-
strained and not constrained to remain constant. In the case of equilibrium,
the difference is solely in the physical interpretation of the elastic stiffnesses.
With stiffnesses determined by experiments falling within the restrictions of
the equations, the two equilibrium theories would be indistinguishable. For
example, the numerical quantity that would be assigned to the stiffness #, in
one theory, would be assigned to y in the other. In the case of motion, how-
ever, there is an essential difference as the number of coefficients is not the
same in the two theories unless g, =g,=0, which is analogous to zero Poisson’s
ratio.

11. Low frequency, very long wave-length approximation: Form II
As noted before, the eighteen components 9,04, may be arranged in inde-
pendent linear combinations which form tensors. One such, indicated by Toupin
[8, p. 404], is the gradient of the strain:
ﬁijkEaigij%(aiaiuk—i_3iakui):2iki~ (11.1)
The potential energy-density, for the low frequency, very long wave-length
approximation, may be expressed as a function of ¢;; and #,;, by setting
Bijn=%nt+ %jpi— i (11.2)
in (9.11), with the result:
WoW=3he;e;;+he e+t R+ Gy iR+ GaRin R+
F By i s % 0

(11.3)
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where
G, =28, — 48y,  Gy= — dy + Gy + 8, (1.4
Gy =A4by, Gy =3, — 5, 5= — 28, + 2ds. '
New stresses are defined by
N oW .
Tiiz—a&ii :1,'7-1:’ (115)1
oW
:u"'k— xi;k —‘u””, (115)2
whence
Ty, =496, ,,—l—z,u, Epg> (11.6),
ﬂpqr :%al( pq”rii+2tsqrxiip+ 6rpﬁqii) +2a26q12pi£+ (11 6)
. N o I A a " D)2
+ “3(5pq"iir+ 5pr"iiq) + 2“4”pqr+“s(”rpq+”q1p)-
The variation of the potential energy-density is

= 6j|:(i'7'k — ailaiik) O] — a/’(%jk - 3iﬂi7'k) Oty +0; (ﬂuk aféuk) .
Now, (11.7); has the same form as (9.14); and the kinetic energy density (9.26)
is unchanged. Hence, the variational equation of motion has the same form
as in Section 9 and leads to boundary conditions like those in (9.30), but with
2n;D; replaced by (n;D;+n,D;), and stress-equations of motion:
8;(Eh— Osfliji) -+ B =0ty — 505 (0’ dyimn Oils) (11.8)

Recalling that fi;;,=@,;, whereas {&,;,=f;;;, the quantity in parentheses on
the left hand side of (9.30); is not symmetric but the corresponding quantity
in (11.8) is symmetric. The latter is a more convenient form for the introduction
of a stress function of the Airy type.

To get the displacement-equation of motion, substitute (11.1), and (1.10)
n (11.6) and the latter in (11.8). The result is

(A2 (1 —BV)VV.u—j(1 —BV) VXV xu+F

11.
—o (i — BV Vi + BV xV xii), o

where X
B=2(+a8+d;+ay+85)/(A+20), =@ +28,+4)2f. (11.10)

In view of (11.4), B=I}, so that the displacement-equations of motion (11.9)
and (9.31) are identical.

12. Low frequency, very long wave-length approximation: Form III
For some purposes it is advantageous to separate the curl of the strain (or
the gradient of the rotation):
i =Ci1mO1Emi = 3Cjim0i Oy, (12.1)

from 0,0;u, as %,; is the part of 9;0,u, that gives rise to couple-stresses. The
double stress is separated, thereby, into a non-self-equilibrating part and a
self-equilibrating part. Now, #,,=0. Hence ¥,; has only eight independent
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components. (They are the components of the dyadic x in Reference [9].) The
remaining ten linear combinations of the 0,0;u, were considered separately by
Jaramirro [20]. They can be expressed as

% =R T 5%+ ¥60a% = 5(0,0;u, + 0, 0;u;+ 0; 8y m;) . (12.2)
Thus, %, ;=% ;;=%;4;=%;3; 1.€., %;;; is fully symmetric.

The potential energy-density, for the low frequency, very long wave-length
approximation, may be expressed as a function of ¢,;, %;; and %,;, by setting

Rijh =X 561 % — %1% (12.3)

in (11.3). The result is
W—)W'—:%‘j.‘811877+/7«81781'7+26_i-17_1177—517+2d—23?”?_€71+

A (12.4)
+3

15 %5+ az"iik"iik‘*‘fgijk”ﬁ”kll»

N

where _
18d, = — 24, + 48, + G5+ 644 — 3 a5,
18d, =28, — 48, —ag, 38y =2 (@) + 8y + &), (12.5)

By =y + s, 3f=a1+4a2_2&3'
The definitions

= _ow __
11-7'—"—‘68“. —T7” (126)1
_ ow _
Hii = m, Bi;=0, (12.6),
= oW = = =
Hijp= T =y =MHiri =HKip (12.6);
where ji;; is the couple-stress deviator, lead to
?pq =ﬂ.5pq8“—l— Zﬂb‘pq, (127)1
ﬂpq:4gl’—‘?q+4‘—i-2ﬁqp+fepqiiiji: ('127)2
ﬁpqr =a (iiif aﬁq +§i1'p6qr + iiiqafp) + zﬁzﬁpqr + (12 7)
o /)
+51%:(0pqijr+ Ogreijpt Orpeisy) -
The variation of the potential energy-density now takes the form
OW =708, + ;0% j+R;jy 0%, ' (12.8)
= 0;[(T;— 0, l8s) Owy] — 8;(T;; — 0, ) Owy + 0, (Bf510m,)
where
B =%eipi s+ iy (12.9)

Again, (12.8) has the same form as (9.14) and so we can find stress-equations
of motion and boundary conditions of the same form as (9.30), but with &,,,
replaced by fz;. Such a form of the boundary conditions cannot be compared
directly with the results of Reference [9] because, there, one of the independent
variations was taken to be the tangential component of rotation — which here
is embedded in the normal derivative Ddun,. To get the alternative form of
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the boundary conditions, we can return to (9.16) and further resolve:
Déu,=20w;n;e;;,+ Dy(n,0u,) — (Dyn;) du, +n,de,,, (12.10)

where w,;(=}e,;,,d,u,) is the rotation and e,, (not summed) is the normal
component of strain #;n,¢;;. Then integration by parts and application of the
divergence theorem and Stokes’s theorem leads, in the notation of Reference
[9], to

6I7V:—I}[(V-E+%V><V-E—V-ﬁ-V)-6udV+
+Sf{"'?+%"x(v‘ﬁ—vﬂm) —(V-p)-n—
—n-Vx[nX(n-g+npg-nn)}-dudS+ (12.11)
+Sf[n-ﬁ.><n—|—2n><(n-ﬁ-n) xn]-(dwxn)dS —}—ann:ﬁ-néemds+
+$ [3&,.5 + (SXn): (n-P+n-Frnn)]-duds,

where s is a unit vector tangent to the edge C.
The variation of work done by external forces is now taken to be

W, =[F-6udV + [ (P-6u+ Q-dwxn+ Rés,,)dS +$E-duds. (12.12)
14 S C

Here Q is the tangential component of the couple-stress vector and R is a double
force per unit area, without moment, normal to S.

The variational equation of motion then yields the stress-equation of motion
V-FLAVUXV- G~V TV F=pii— 1V-(o'd?:Vii)  (12.13)
and the boundary conditions
n-%+inx(V-E—Vi,,) -
— (VB n—nVxkx@n E+n-gnn)]+ign-d:Vi=P, (12:14),

nEXRF2RX (M ER)Xn=0, (12.14),

nn:p-n=R=R, (12.14)
3, s + (sxn) (- E+n-Tnn)] =B (12.14),

The displacement equation of motion is obtained by substituting (1.10),
(12.1); and (12.2); in (12.7) and the latter in (12.13). The result is

A+28) 1 —BVY)UV-u—fg(1 —EV)VxVxu+F

121
=0l — i VV i+ hV xV x i), (12.15)

where

B=(3a+2a)/(A+28), B=03d+a-+2a—pHBA.  (12.16)
In view of (12.5) and (11.4),
B=B—P=1P sy; (12.17)
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so that all three forms of the low frequency, very long wave-length approxima-
tion yield the same displacement-equation of motion. Necessary and sufficient

conditions for positive definiteness of W(=W=W) are
i>0, 3A+28>0,
>0, —d<d,<d, (12.18)

a,>0, 3a3;+2a,>0, [f<O.

Hence /2>0 and we have already seen that 47> 0.

The equations that were considered in Reference [9] are obtained from those
of this section by setting ¥%;;,=0 in the potential energy-density and o'=0 in
the kinetic energy density. Accordingly, the limitation to low frequencies, long
wave-lengths and large dimensions is more severe than was apparent previously.

13. Solution of the approximate equations of equilibrium
In this section it is proved that any solution, u, of the equation

(A+20) (1 —BVYVV-u—g(1 —BV)VxVxu+F=0,  (13.1)
in a region V bounded by a surface S, can be expressed as

u=B—BEVV-B—L(k—BV)Vr-1—5V)B+B,], (13.2),
where
il —BEV)V2B=—F, (13.2);
1

G —BV) 2B =r-(1 —EV)F—42V-F, (13.2)5

by = (4 -+ @))(. + 2i)
and r is the position vector.
Consider a field point P(%, y, z) and a source point Q (&, , {) and define
4nUp=— [ 1 uydlj,, (13.3)
14
where
n=&—8+(y—nt+(—0>% dly—=déidndl.
Then V2U=wu [3, p. 210], or

VV-U-VXxVxU=u. (13.4)
Define
py=V-U, H=-VxU, (V-H=0). (13.5)
Then, from (13.4),
u=Vyp+VxH, V-H=o0, (13.6)
which is Helmholtz’s resolution. Substituting (13.6) in (13.2),;, we have
AVR[R(1—BV)Vyp+ (1 — BV VxH]+F=o0, (13.7)
where k=(1+2/2)/ﬂ,

Define
4z lzBp = f yitemnlle [k(1 - VavVy 4+ (1 — 2 rav xH]l,dV,.  (13.8)
14
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Then [3, p. 210]

M—BVYB =k(1—BV)Vyp-+-(1—BV)VxH (13.9)
and, from (13.9) and (13.7),
g1 —0BV:)V:B = —F. (13.10)
Also, the divergence of (13.9) yields
A —BVAV-B =k(1 -5V P2y, (13.11)
Define
2ky*=r-(1—0LVAB. (13.12)

Then, using (13.10), we have
2kE(1 — BV V2* =4BV-F—r-(1 —BVYF + 241 —3V3)V-B'. (13.13)

Define

By=2k(y—vy%) (13.14)
and find
AU =BV V2By=r-(1—EV)F —42V-F (13.15)
by using (13.11) and (13.13). Also, from (13.14) and (13.12),
2kp=r-(1—0L V) B + B,. (13.16)
Now, define
D=B —5VV-B' — k(1 -5V Vy. (13.17)

By (13.11), V-D=0; which is a necessary and sufficient condition for the
existence of a function H* such that VxH*=D, i.e.,

VxH*=B —5VV-B' — k(1 =5 V3 Vy. (13.18)
Making use of (13.9) and (13.11) we find
(1—BVHVXH*=(1-—1BV)V xH. (13.19)
Next, define
B'=V xH-V xH* (13.20)
and note that, by (13.19) and (13.20),
(1—BVyB'=0, V-B'=0. (13.21)

From (13.20), using (13.18) and then (13.16),
VxH=B"'+B —BVV-B — 31 —BV)V[r-(1—LEV2:B)+ B,]. (13.22)
Then substitute (13.22) and (13.16) in (13.6), to get
u=B"'+B —VV-(B'+B)— 1k, —EV)V[r-1—5V)B +B,). (13.23)
Finally, define
B=B+B". (13.24)

In view of (13.21), we may write (13.23) and (13.10) in the form of (13.2); and
(13.2)g; and (13.15) is already in the form (13.2);. Thus Eqgs. (13.2) are a complete
solution of (13.1). If =0, (13.1) reduces to the equilibrium equation of couple-
stress theory and (13.2) is the solution found in [9]. If both # and i2 are zero,
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(13.1) is the classical equation of equilibrium with body force and (13.2) is the
solution found in {21]. If, in addition, the body force is zero, (13.2) is PAPKoO-
vITCH'S solution [{22]. The proof follows, generally, that in [23] but with an
improvement as a result of an illuminating criticism by E. STERNBERG.

14. Concentrated force according to the approximate equations

In an infinite region V, let the body force be zero outside a finite region
V, which contains the origin and a non-vanishing field of parallel forces F. A
concentrated force is defined by

P::%TOJ FE,av,. (14.1)
In [9] it was shown that, in an infinite region, solutions of equations of the
type (13.2), and (13.2); are
4B =[r'(1— e ") F,dV,, (14.2)
v

AnpB,= —Vf it — e [ (1 — B VG) By — 41V FldVy,  (14.3)

where 7' =) +#n2+ {2 Now

limy; =y, lim# =0. (14.4)

Vo—0 Vo—0
Hence, for the concentrated force, (14.2) reduces to
AmfiB=r1(1 —e¢ )P, (14.5)

In (14.3) the term in the integrand of the form y(r,) Vo Fy is transformed ac-
cording to

ny)VQ-FQdVozvf (Vo (p Fy)—F,-Vyy] d%=sf1pn-FQdS—Vf Fy-VypdV,. (14.6)
The surface integral in (14.6) vanishes because F=0 outside V. Also
VloiLnOI/fFQ-VQw(rl) iAVy=—P-Vy(r). (14.7)
Hence, for the concentrated force,
7EBy=BP-V[r1(1—e ). (14.8)

Equations (14.5) and (14.8) constitute the solution of (13.1) for the concentrated
force. If ;=0 then B,=0 and the solution reduces to that found in [9]. If,
in addition, /3=0, the solution reduces to KELvIN's [4, p. 183].

Acknowledgement. 1 wish to thank Dr. R. A, ToupIN for many valuable discussions.
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