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INFERENCE AND NECESSITY’ 

I. INTRODUCTION 

In recent years we have been concerned with the development of a natural 
generalization of the usual modal semantics. We have been impelled to 
undertake this enterprise by philosophical misgivings concerning the privi- 
leged status accorded certain modal principles by the received semantical 
framework. This concern led to a particular kind of generalization which 
has been set forth and defended elsewhere? It has now become apparent 
that the large body of logical theory which this generalization places at our 
disposal satisfies a philosophical need which transcends the original motiv- 
ation of the work. 

That there is a connexion between modal concepts and inferential ones 
is indisputable. It is not at all unusual, for example, to describe a valid 
inference as one in which, if the premises are true, it is impossible for the 
conclusion to be false. (The earliest roots for this way of characterizing 
deductive validity lie in the logical works of Aristotle). In addition, it has 
often been felt that the concept of necessity has a much deeper cormexion 
with the theory of inference than it’s merely descriptive role. C. I. Lewis, 
for example, seemed to feel that a theory of ‘implication’, (and derivatively 
a theory of necessity) would be dictated by “the facts of deduction”. 
Although such a scheme has obvious appeal, especially as regards the philo- 
sophical motivation of modal logic, it has, historically, encountered grave 
difficulties. 

In what follows we derive the model theory of modal logic from a theory 
of inference. The main features of the derivation are first, that it is highly 
general and secondly, that the original theory of inference is recoverable 
from the derived modal logic. 
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IL INFERENCE 

II.1 

‘If our world were classical, then so might our logic be also.’ Anyone who 
favors (for whatever reason) some non-classical logic is sooner or later 
tempted to deploy this slogan in his own defence. In many cases however 
the strategy does not succeed. For if we do not actually reason in accord 
with the classical canons the fault may lie not in the world but in our 
reasoning. Our inability to add or to reason well will only feebly motivate 
development of non4assica.l arithmetic or logic. If invention is to be 
mothered, then by all means let it be mothered, but through necessity - not 
through failure to take suitable precautions. 

There are, however, moments when we abandon classical methods not 
because we are stupid, but because they fail us. If the Sorites paradox has 
a moral then this is it. It is senseless to reason as if all predicates were 
exact, for they are not, and classical procedures followed here lead us 
unto contradiction. 

It has often been recognized that, from the viewpoint of applied logic, 
the classical treatment of inconsistency is deficient. This is not because we 
sometimes contradict ourselves but rather because often the best data avail- 
able to us is contradictory. All that the classical logician can advise us to do 
is to start again from better data. Sometimes this is wise counsel, but more 
often it is of a piece with what the doctor said when told by a patient: “It 
hurts when I do this”. 

We take the position that consistency, classically conceived, is an ideal 
state of affairs often approximated rather than achieved. In particular, we 
concern ourselves with the question: what principles of inference are suit- 
able for reasoning from inconsistent premises? Our approach is to introduce 
a more general notion of consistency, one which admits of levels or degrees. 
It is this generalized concept of consistency which leads to the notion of 
entailment that we wish to present. 

II. 2. Consistency and coherence 

The classical conception of consistency may be given in terms of (classical) 
provability and the notion of an absurd sentence. The latter is also defined 
using provability: 
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A is absurd iff A I- rr for every sentence a 

Obviously all absurd sentences are provably equivalent and we may let 
“I” stand for an arbitrary absurdity. Next we say that a set, r, of sentences 
is consistent iff: 

Within the classical framework, if for some a, a E r and -ICY E r then r t- 1. 
Classical logic does not distinguish inferentially, between having among 
one’s premises 1, and having simultaneously a and la. To employ a colour- 
ful bit of recent jargon, both premise sets explode. On the classical view, 
reasoning from a set of premises ceases upon its detonation. 

But consider how imperfectly this approach reflects the way that we 
actually reason. Our normal data set is the set of sentences that we believe 
to be true, and few of us imagine that among our beliefs are lurking no in- 
consistent pairs. Of course we recognize that we do not bring into play all of 
our beliefs simultaneously. But activate enough beliefs for any but the most 
trivial ratiocination, and the likelihood is not negligible that among them or 
their assumptions is a contradictory pair. Nor are such pairs always hidden 
from us. Often enough in philosophy, evidence which we think is good evi- 
dence yields contradictory consequences. Our response is sometimes to 
reject one thesis but on other occasions we have no basis on which to decide 
what must be discarded. In these cases we decide to live with the embarrass- 
ment against the discovery of an experimentum crucis or the development 
of a more perspicuous way of speaking. In the meantime the data remains and 
if our decisions are to be rational we must reason with what we have. We do 
naturally distinguish between believing a contradiction and having contradic- 
toy beliefs, avoiding the one with ease and getting no ulcers over the other. 

To make the distinction more formally, we employ the idea of (level of) 
coherence; a concept which embraces the classical notion of consistency as 
a special case. More precisely a coherence function c is a function having as 
its domain the set of all finite sets of sentences and as a codomain the set 
Nut u (w), where Nut is the set of natural numbers (including 0). The 
pointwise definition of c is: 

for 1 4 r 
c(r) = m iff m is the least integer such that there 
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aresetsel,...,a,,aiH-l(19igm) 

and Ej al = I’. 
i=l 

If 1 E r then we adopt the convention: c(r) = (0). 
The idea of an hierarchy of levels of coherence (or incoherence) leads to 

a new concept of derivability. We define a relation between finite sets of 
sentences and sentences written I’ [I- OL (read r forces 01~): 

for c(r) = n(w)r [I- cy iff for every n-fold (o-fold) 
decomposition of r, al, . . . , a,, there is some 
i such that ui I- OL (1 Q i Q n(o)). 

As an attempt to define a kind of entailment in terms of coherence this may 
not be the only one which springs to mind. We hope to show however, that 
the relation indicated by ‘[I-’ is the most natural one among its competitors. 
As a path to a better understanding of ‘[I-’ we compare it to the classical 
notion of provability ‘I-‘. The comparison will be facilitated if we specify 
the two relations by means of rules of inference. These fall into two classes, 
structural rules and operator rules. For the classical propositional calculus 
the following completely determine ‘I-‘. 

Wf 1 
Won 1 
[Trans] 

Operator rules 

n-4-7-0 
n-0 

n--a w rkavp,ru (or)!-r,ru W-7 
w-7 

(-+E) rl-a-+mV-a 
n-0 

(-9 ru (iajl-1 
n-a 
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II, 3. Fotring 

‘[l-’ is determined by a set of rules very like these. The difference is that we 
must stipulate in [Man] that c(I’ u A) = co;‘) and in addition we add one 
rule to the structural set and delete certain of the operator rules. This is a 
source of some satisfaction since it is well known that any relation satisfying 
the classical structural rules determines a consequence relation in Tarski’s 
sense? Thus we can say that there are grounds for calling ‘[I-’ an entail- 
ment relation of some sort. 

We shall delay discussion of the operator rules since our new structural 
rule requires some additional technical vocabulary. 

For II any fmite set we say that C E 2” (C, a set of subsets of a) is an 
mclyster iff: m E Nat and 

VfEma,3xEC, 3yGm:xCf’~l. 

In words: for any way of dividing a into m subsets there is a member x of C 
(i.e., a subset of a which belongs to C) such that x is included in at least one 
of the m subsets into which Q has been divided. We say, derivatively, that a 
set of sets of sentences {{Q, at, . . . , ar,), . . . , (a,, . . . , cyp)} drawn from 
ai, * P * 2 ar,isanm-clusterifftheset{{i,j ,..., m) ,.,., {n ,..., p)jC 2q 
is an mcluster. 

By means of this terminology we now frame a structural rule for ‘[I- 
which depends upon the coherence level of a set r. 

[Cl If c = {Ci,C& . . . , cd is an m-cluster constructed out of 
al, - * .,crkEI’andc(Q=m,then 

cltP,cztP,...,c"tP 
r D-0 

By inspecting our definition of ‘[I-’ we see that we lose the classical 
operator rule (/\I); from r [l- CK and r [t 0 it no longer follows that 
r [j- a A /3. We have this only in the special case that CT) = 1 (given rule 
[Cl). 

It is worthwhile emphasizing that our characterization of ‘[P is a true 
generalization of the classical ‘I-’ and that each of the rules which fails in 
general does hold for the “classical” case: c(I’) = 1. 



332 P. K. SCHOTCH AND R. E. JENNINGS 

11.4. Theories 

Making a distinction between absurd premises and contradictory pairs of 
premises leads to a new and more general concept of a theory. The narrower 
concept is defined in terms of the classical ‘I-‘. 

I  

A is a theory iff for every sentence cr, A k 01 * CI E. A. 

One of the things which makes the notion of a theory mathematically 
attractive is that it may be independently characterized by two closure 
conditions which do not mention A l- CY. These conditions are: 

64 aEA&t--a+fl*/.IEA, 

(b) arEA&flEA=,a~fiEA. 

In mathematical logic theories are employed as generalizations of logics. 
Instead of restricting our consideration to the consequences of some axiom 
set detailing the behavior of logical constants, (a logic), we may wish to 
allow the inclusion of so-called non-logical principles as well. In this case we 
study the whole class of theories which include our base logic. 

Within the approach we have developed we may define: 

Aisanm-theoryiffc(A) = mandd [j- oL * a E A. 

The classical concept of a theory is what we would call a l-theory. The 
closure condition characterization of 1 -theories turns out to be a special 
case of a more general condition, viz., A is an m-theory iff 

(4 aEA&ta+p*flEA 

(b) @I,...> ck) C_ 2A is an m-cluster 

k 

when “ACI” denotes “a,, A . . . A ai;' for Ci = {at,, , . . , at]}. 

To see that this is indeed a generalization we need only notice that when 
m = 1 any ftite subset of A is an m-cluster so that (b) amounts to closure 
under fmite conjunctions. 
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III. NECESSITY 

III. 1 

Here we make precise the connexion between forcing and relational 
semantics, As “[P’ is a generalization of “P’ so our semantics is a 
generalization of Kripke’s. It is the concept of an m-theory which provides 
the key to the relation between inference and modality. 

The language of modal propositional logic PC@) results from the 
language of classical propositional logic by the addition of a new unary 
sentence operator ‘Cl’. Thus it is stipulated that q la is well-formed when- 
ever a is. 

Sentences of the language are evaluated by objects called models which 
may be described as follows: 

A frame is a pair (U, R) where U is a nonempty set and R E Uz is a 
binary relation. Tnrth is defmed for the atomic sentences of the language 
(the set of which is called At) relative to members of U (often called infor- 
mally, possible worlds). More specifically we get a model !IR on a frame 
whenever we give a function K At + 2U which associates with every atomic 
sentence a set ofworlds (informally: the set of worlds in which the sentence 
is true). 

V is extended (uniquely) to a function 11 * II w which evaluates all sen- 
tences of the language by means of the truth-conditions. These are the 
obvious counterparts of the usual truth-table definitions for the classical 
operators, e.g., 

IlaAPP = IMP n IIPIP. 

For the modal operator we have ,” q a =* V VE U: URV * w a where 
I= I= U 

“r a” abbreviates “U E Ilallw”. 
t= 

In words: o is necessarily true in u iff a is true in all the alternatives of 
U. We ensure that particular axioms and rules will hold, by placing 
restrictions on the frame relation R. Some principles, however, hold even 
when no restrictions are imposed. 
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WI ta+P*tOa+& 

are among them. 
Now if we represent by Ok the set of necessary truths with respect 

to the world u in the model%R, i.e., 
1 I 
al g q ia , then on the usual 

U 

semantics Ok is a 1 -theory. 
Many philosophers have objected to the representation of belief and 

obligation, for example, by means of modal operators on the grounds that 
[K] is not a principle which governs such concepts. We may restate this 
objection in the form: belief sets and sets of sentences which ought to be 
true, if they form theories, do not form l-theories. 

Suppose that such sets form m-theories for some m. Then we shall want 
to uncover the truthcondition of the associated modal operator. 

111.2. Premodel theory for modal logic 

If we are to derive truthconditions for O-formulae we must give away the 
truthconditions we have, and trust to our derivation to render them unto 
us n-fold. Accordingly, we do so. 

A premodel ‘$3 for PC(O) is like a model except that no relation is 
specified and no truth condition for Cl-formulae beyond the stipulation 
that II q all~ E 2U. Clearly ‘Cl’ is not behaving semantically as a logical 
constant. Nevertheless, even in these reduced circumstances, it plays a 
crucial role. It permits us to transform inconsistent sets of sentences into 
sets with a non-zero semantical representation. For example, in PC@) 
premodels, 11 (a, 10~) 110 = 4, but 11 @a, q lru)Il@ need not be null. Thus 
the O-operator performs the task of guarding inconsistent formulae, lest 
their contradictoriness prove semantically untoward. We note that in modal 
logics which subscribe to the principle [K] of complete aggregation, the 
guard duty of the q operator is entirely ceremonial. 

Our aim now is to define a modal logic engendered by the forcing 
relation, by singling out from the class of PC(O) premodels the models for 
the logic. We do this in two stages: 



INFERENCEANDNECESSITY 335 

0) We restrict the class of premodels to a special 
subclass called full premodels. 

(2) We derive the underlying structure of the desired 
model and the truth conditions for q la from the 
restrictions imposed by [I-. 

Full premodels 
!j3 is a full premodel iff, 9 is a premodel and VU s.t. Ok is an n-theory, 
a~O(u)~s.t.aHI,aCb&b~l=*IlbllP#~.Thepointofthisrestric- 
tion will become clear in what follows: 

Definition of the n-natural relation 
Let ‘$ be a full PC(O) premodel. For each n E Nut, we define pointwise a 
function r: {xIc@(x)~) = n) + II”. Let u be an element of U such that 
c@(u)@) = n. Further, let A(U) = {&IS: Us * n) be the set of non- 
trivial n-fold decompositions of O(U). 

Thenr@)=((xl,..., x,> I xI E IliY1 [i]n’(l < i Q n) for some 6 E A(U)). 
FinallyifOsr,. . . ,xn)Er(~)wewriteuRxl...xnandcallRthe 

n-natural relation of 24. 

Remarks on the defiition 

(1) The restriction of A(U) to the set of onto functions does 
not incur any loss of generality since c(Cl(u)~) = n. 

(2) Where c@(u)@) = 1 the relation obtained is the l-natural 
relation which is binary. 

THEOREM. If q is a full PC(O) premodel and Ok is an n-theory and 

Rthen-naturalrelation,then~Oa*Vxi,...,x,,uRx,...x,* 

B aor... 0rB a. 
Xl xn 

Roof 

(=9 Suppose that E Da. Then a E q l(u)Q . Therefore 

WU)~ [I- a 0-v Wfl). 
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Therefore, for all decompositions 6 of O(U)@, 3 i: 6-l [i] t- CL 
Therefore, Vxr, . . . , xn, t&xl . . .x, * 3j: xi E IlS-’ [j] ll@ 
and 6-l b] I- o. 

(‘1 

But Ilxjll” = (a k$ ) 0L is a classical theory. Therefore, I- (Y. 
xj 

Suppose that e q lo. Then Q 4 Ok. 

Therefore, Ok [hL cr@(u)Q is an n-theory). 
Therefore, 3 6 E A(u): Vi(1 < i < n), 6-l [i] + a. 

Bythefullnessof’$,3x,...x,EU:uRu,...x,&~ a 
Xl 

& . * * & 12 a. 
xn 

This completes the proof of the theorem. 

The constructions with respect to which natural relations are defined 
give the appearance of excessive particularity. We will show, however, that 
the class of structures so generated determine the modal logic, K, whose 
canonical model is a full PC(O) premodel, satisfying the closure restriction 
of the theorem. 

111.3. The logic K, 

The weakest of the standard modal logics (usually called K) may be axio- 
matized by a single rule (following Dana Scott) in addition to some collec- 
tion of principles adequate for classical sentence logic. The rule is: 

W-4 l-t-0 
WI l-0 

where Cl [I’] = @a 1 OL E I’}. 

The rule may be read as stating that if r (where c(r) = 1) forces p, then 
Cl p-1 t O/3. Semantically this amounts to stipulating that Ok is a 
1 -theory. If we stipulate instead that Ok is an n-theory, the resulting 
rule is the rule: 

[RK, 1 m-0 
q [rj t q p ‘(‘) = na 

The system which results when this rule replaces [RK] axiomatizes the 
logic K, .’ 
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A remark about [RK,] 
The rule illustrates the importance of the guarding function of the 0 
operator. For the set I’ may well be classically inconsistent and therefore 
so far as classical logic is concerned inferentially useless. But as we have 
noted above, if a classically inconsistent set has a finite coherence level 
it does have a non-trivial inferential role. By guarding each member of J? 
with Cl, we salvage this role at the level of classical inference. 

III. 4. n-sty relational semantics 

We now deploy the structures (U, R), U # $, R E U” together with the 
truthcondition derived above in order to provide an adequate semantical 
analysis of the K, logics. In the account of arbitrary models 11)\ for the 
logic K, we require then: 

I= 
w cla * vx1,. . . ,xn: t&xl,. . . ,X” * = a 
U I= Xl 

or.. .or a. 

That this account is adequate follows as usual from: 

[Theorem] r g a * r 5 a. 

When” the right sic of this means as usual: 

V?l&Vu,u E Ilrlp4~ u E Ilallw. 

The only if direction (soundness) may be obtained by 
routine calculations. The if direction (completeness) is 
somewhat more difficult. 

Using the Henkin strategy we construct the K, canonical 
model!LRKn = (UK,,, RKn, VKn) where: 

UK, is the set of K, maximal l-theories. 

uRgnxl . . .x, 0 Va, 

q laEu *aExlor...oraExn. 

b&f) = {u E UKn I a E u} if a E At. 



338 P.K.SCHOTCHANDR.E.JENNINGS 

In order to satisfy all the K, maximal l-theories we must 
prove: 

ECU * cr E u [Fundamental Theorem] .6 

This is proved by induction on the structure of 01. We sketch 
here the ‘hard’ direction of the induction step for (Y of the 
form up: 

Suppose q lp 4 U. 
Decompose O(u) a%~ into n subsets 6r, . . . ,a, such that 
ai k fl (1 G i < n). There must be at least one such decom- 
position for otherwise there would be some finite subset I’ 
of II(u such that I’ [F/3. By [RK,] q [l?] I- 00 and 
thus u I- 00 and since u is a 1 -theory q0 E u contrary to 
hypothesis. Next expand a1 u (10) into a maximal l-theory 
for each i, let these theories be x1, . . . , x,. Clearly 

uRK,,xl.. . x, and by hypothesis F-8; thus by the 

truth-condition PIJo. 

Related results 

(1) q [r] F q ar =) r [F(Y (c(r) = t2). 
” 

The converse of [RK,] follows from the soundness result together with 

(2) ml tpa * r [i-a, n 
the proof of which is trivial. 

(3) Vu: Ok% is an n-theory. 

By the same sort of argument used to prove the fundamental theorem one 
easily shows: 

(4) o(u)-” [t- a! * ‘IRKnOa 
U 

from which the result follows immediately. 
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With these results we have made good our earlier promise. The derivation 
of IJ from [I- has been shown to be adequate. Not only can a modal logic 
be derived from a notion of consequence but within the logic which results 
the originating theory of inference may be recovered. 

IV. CONCLUDING REMARKS 

In Schotch and Jennings (1979) we propose a revision of the classification 
of modal logics which Segerberg introduces (Segerberg, 1971). That 
proposal leaves untouched the classification of extensions of E as classical 
modal logics. In Segerberg’s scheme E is the smallest modal logic which 
includes PC and is closed under [RE] : 

If we consider the connexions between modal logics and inference, it is 
clear from the above that the logic which answers to the classical theory of 
inference is not E but K. We would suggest, moreover, that the claims of 
this connexion are more puissant than the fact that truth sets of modal&d 
formulae lie in 2”. 

It is sometimes suggested that the era of philosophically significant work 
in propositional modal logic is drawing to a close, and that the remaining 
problems are of purely formal interest. We take this essay to have refuted 
that suggestion. For from it may be glimpsed a programme which will draw 
out more and more the connexions between modal logics and systems of 
inference. Divergences from classical inference are almost always grounded 
in deeply philosophical concerns. 

Dalhousie University 
*Simon Fraser University and Dalhousie University 

NOTES 

’ Partlally supported by SSHRC grant 410-78-0084. Section II of this paper was 
presented to the 9th International Symposium on Multiple-Valued Logic under the 
title ‘Multiplevalued consistency’. 
’ See Schotch and Jennings (1979). 
3 No doubt some apology is required here for our lifting of this word from the work 
of Cohen. In our view however this ls too good a name to be left inviolate. In this 
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respect it is like “entailment” which has been employed by a number of authors to 
their own ends. 
4 See Scott (1972, pp. 414-416). 
5 Described in Schotch and Jennings (1979) in a somewhat different way. 
6 In the terminology of Schotch and Jennings (1979) this is the fundamental theorem 
for all normal regular quasi megative logics. 
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