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Abstract. In this paper, we study the problem of finding a real-valued function ,f on the interval [0, I] with 
minimal L2 norm of the second derivative that interpolates the points (ti, y;) and satisfies e(r) 5 f’(t) 5 d(t) 
for t E [0, 11. The functions e and d are continuous in each interval (ti, q+l) and at tl and r, but may he 
discontinuous at t;. Based on an earlier paper by the first author [7] we characterize the solution in the case when 
e and d are linear in each interval (ti, t;+l). We present a method for the reduction of the problem to a convex 
finite-dimensional unconstrained minimization problem. When e and d are arbitrary continuous functions we 
approximate the problem by a sequence of finite-dimensional minimization problems and prove that the sequence 
of solutions to the approximating problems converges in the norm of W2*2 to the solution of the original problem. 
Numerical examples are reported. 
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1. Introduction 

The variational characterization of interpolating cubic splines is due to Holladey [ 1 l] who 
showed that the unique solution of the best interpolation problem 

Ilf”ll~2~0.1~ -+ min, 
f E W*‘*[O, 11, f(ti) = yi, i = 1,2,. . . , IZ, (1) 

is a natural cubic spline; that is, a C2 piecewise cubic polynomial across {to with f”(0) = 
f”(l)=O.HereO=tl <...<f,=Iandyi,i=I,...,n,aregivennumbers,/(.llL2[ah, 
is the usual norm in L*[a, b], and W*.* [0, l] is the Sobolev space of real-valued functions 
with absolutely continuous first derivatives and square integrable second derivatives in [0, 1] 
equipped with the norm 

IlfllW~~~I0.11 = IlfllL~[0.1] -I- Ilf’llL2[0,1] + llf”llp[l),~]. 

*The first author was supported by National Science Foundation Grant Number DMS 9404431. The second 
author was supported by a Frangois-Xavier Bagnoud doctoral fellowship and by National Science Foundation 
Grant Number MSS 9114630. 
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The Holladey’s result becomes transparent if we write the interpolation conditions as 

s 

1 

Bi(t)f”(t)dt=di, i=1,2 ,..., n-2, 
0 

where Bi are the normalized B-splines of order two with support [ti, ti+z] and di are the 
second divided differences (see e.g., de Boor [3]). Applying the Lagrange multiplier rule 
(permitted since Bi are linearly independent) one obtains that there exist Lagrange mul- 
tipliers ;li, i = 1,2, . . . , n - 2, such that any solution of (1) is also a solution of the 
unconstrained optimization problem 

1 
S[ 

n-2 

0 
0.5~(t)~ - xhiB,(t)u(t) 

i=l 1 dt + min, u E L2[0, 11, 

where we take the square of the norm and multiply by 0.5 without changing the solution. 
The minimum is attained at the minimizer of the integrand, hence 

n-2 

u(t) = f”(t) = C li Bitt); 
i=l 

that is, the second derivative of the solution is piecewise linear across {ti} and hence the 
solution of (1) is a C2 piecewise cubic polynomial. 

Let us consider the problem (1) with the additional requirement f be convex, i.e. f” > 0. 
In order to apply Lagrange multiplier rule we assume that di > 0 (which implies the quasi- 
relative interior condition according to Borwein and Lewis [4]). Then there exists numbers 
ht , . . . , h,-2 such that the problem of convex best interpolation reduces to the problem 

n-2 

0.5u(t)2 - Chi Bi(t)u(t) dt + min, u 1 0, ti E L2[0, 11. 
i=l I 

Taking minimum of the integrand for u 2 0 results in the following expression for the 
second derivative of the solution: 

u(r)=f”(t)=mar(O,~*iBi(t~} fora.e.tE[O,ll. 

This result was obtained by Hornung [12] and later extended in a number of papers far 
beyond the interpolation setting, see Borwein and Lewis [4], Chui et al. [5], Dontchev 
[6], Micchelli et al. [14], Micchelli and Utreras [15]. Numerical procedures for solving 
convex best interpolation problem are developed in Andersson and Elfving [ 11, Dontchev 
and Kalchev [8], Irvine et al. [13]. 

The Lagrange duality approach has been further developed in a previous paper [7] by the 
first author, where the following problem was considered: find a real-valued function in 
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the interval [0, l] that interpolates the points (ti, yi), has a minimal L2 norm of the second 
derivative, and its graph is between the graphs of two given functions e and d; that is, 

II~“IIL~cI,II + min, 
f(ti) =yi, i = 1,2, . . . . ti., 

e(t) I f(t) 5 d(t) for all t E [0, 11, (2) 

where e and d are continuous in each interval (ti, ti+l) and at 11 and tn but may be discon- 
tinuousatti,i =2,..., (n - 1). In [7] necessary conditions for the solution of problem 
(2) were obtained which are summarized in the following lemma: 

Lemma 1.1. ([7]). Assume there exists a function I++ E W2.2[0, l] with @(ti) = 
yi, i = 1,2 ,..., n, such that e(t) c q(t) < d(t)for all t E [0, 11. Then there exists 
a unique solution f of problem (2). Furthermore, the second derivative f" of the so- 
lution is absolutely continuous with f “(0) = f “( 1) = 0, and there exist real numbers 
li, i = l,..., n, and nonnegative regular measures ~1 and ~2, supported on the sets 
T, = (t E [0, 11: f(t) = e(t)) and T2 = {t E [0, 11: f(t) = d(t)), respectively, such that 

’ f”‘(t) = li + 
s 

d(pl-p2) fora.e.t,ti~til,i=l,..., n. (3) 
t 

The proof of the lemma presented in [7] uses the Hahn-Banach theorem in a way sim- 
ilar to deriving the maximum principle in optimal control. We note that the constants 
li,i = 1,2 ,..., n, and the measures pj, j = 1,2, in (3) are the Lagrange multipliers 
corresponding to the interpolation conditions and to the inequality constraints, respec- 
tively. 

The following condition is equivalent to but more transparent than the assumption used 
in Lemma 1.1. Let f (t+) and f (t-) denote the right and, respectively, the left limit of a 
function f at t. Throughout this paper we assume that the following condition holds: 

e(h) < ~1 < d(td, e&A < Y,, < d&A, 
max{e(ti+>, e(ti-)) < yi < min{d(ti+), d(ti-)}, i = 2, . . . , n - 1, 

(4) 

Based on Lemma 1.1 and on the additional assumption that the constraining functions 
e and d are linear in each interval (.ti, ti+i), it is proved in [7] that the unique solution f 
of problem (2) is a C2 piecewise cubic polynomial (a C2 cubic spline) with knots ti, i = 
1, . . . , n, and with no more than four additional knots in every interval (ti, ti+i) where the 
solution reaches or leaves the constraints. It turns out that this result can be easily sharpened: 
the number of the additional knots in each interval is no more than two. Furthermore, if 
two knots in a given interval correspond to the same constraint, then this constraint is 
active between the knots. The precise result is stated in Theorem 2.1 in the following 
section. 
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The primary purpose of this paper is to develop an approach for solving problems of 
the type (2) numerically. This is done in Section 3 where we present a reduction of the 
problem (2) to a convex unconstrained finite-dimensional optimization problem whose 
objective function can be computed explicitly by solving independently n - 1 simpler 
optimization problems for each interval [ti, ti+i]. Thus standard algorithms can be applied 
that use the values of the objective function only. In Section 4 we treat the problem (2) 
with arbitrary continuous constraining functions e and d. We replace e and d by piecewise 
linear and continuous functions and consider an approximating problem which can be 
solved by the method developed in Section 3. We then prove that the sequence of the 
solutions to the approximating problems converges in the norm of W2,’ to the solution 
of the problem (2). In Section 5 we present numerical examples. An application of our 
approach to optimal motion planning in the presence of obstacles is reported in a separate 
paper [91. 

Although quite natural in the context of curve fitting and computer-aided geometric de- 
sign, the problem of best interpolation “in a strip” (2), according to the authors’ knowledge, 
had not been considered prior to the work [7]. Opfer and Oberle [ 161 studied the problem of 
positive best interpolation, that is, the problem (1) with the additional constraint f(t) >_ 0. 
Applying a variational method based on the Du-Bois-Reimond lemma, they proved that the 
solution of this problem is a C2 cubic spline with no more than two additional knots in each 
interval [ti, ti+i]. Fischer et al. [lo] developed a local algorithm for computing a positive 
cubic spline in one interval [ti, ~+i]. 

In a recent manuscript, L.-E. Andersson and T. Elfving [2], apparently independently of 
the work [7] and using a different approach obtained a characterization of the solution to 
problem (2) for the cases of piecewise linear and piecewise cubic constraining functions. 
They consider this problem as a minimum norm problem in a Hilbert space and, apply- 
ing the Lagrange multiplier rule to the interpolation conditions (following [15]), reduce 
the problem to the projection of a certain function depending on a finite number of pa- 
rameters, on the admissible set defined by the constraining functions e and d. From this 
analysis they conclude that, in the case of piecewise linear constraints, the solution is a 
C2 cubic spline with no more than two additional knots in each interval [ti, ti+i]. This 
result is stronger than the corresponding result in [7] where the solution is shown to have 
no more than four additional knots; however, it can be easily deduced from Lemma 1.1. 
For completeness we present this analysis in the proof of Theorem 2.1, where we also 
derive some further properties of the solution that provide the basis for our numerical ap- 
proach, In addition, while both [2] and [7] consider piecewise linear and piecewise cubic 
constraints only, in the present paper we also consider the case of arbitrary continuous 
constraints. 

On the computational side, the authors of [2] reduce the problem (2) to a system of 
nonlinear equations to which they propose to apply a Newton-type method. Here we 
convert (2) to an optimization problem to which one can apply a standard optimization 
code. These two approaches are different and it would be interesting to compare practically 
specific numerical implementations of them; this, however, is beyond the scope of the 
present paper. 
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2. A characterization of the solution 

First, we introduce some terminology. Given an interval [& , ti+t ] and a function f defined 
on it, we say that the point t E (ti, ti+l) is a single touching point on the constraint 
e if f(t) = e(r) and e(t) < f(t) < d(t) for all t # t, t E [ti, ti+r]. An interval 
[tt , r2] C (ti, &+I), rt < r2, is a subarc on the constraint e if f(t) = e(t) for all t E [rr , rz] 
and e(t) < f(t) < d(t) for all t E [ti, rt) U (Q, ti+l J. A touching point and a subarc 
for the upper constraint d are defined in the same way. A pair (rt, rz), tt, r2 E (ti, ti+]), 

is a touching pair if f(tr) = e(tt) and f(r2) = d(q), and e(t) c f(t) c d(t) for all 
t#~l,t#~2,tE[~i,ti+ll~ 

Theorem 2.1. Assume e and d are linear in each (ti, ti+l), i = 1,. . . , n. Then, there 
existsa unique solution f ofproblem (2). Thesolution f isa C2 cubicspline (a C2piecewise 
cubic polynomial) with knots ti , i = 1, . . . , n, and no more than 2n - 2 additional knots 
in [0, l] where the solution reaches or leaves the constraints. In every interval [ti, ti+l] the 
following cases are possible: 
1. the constraints are not active (no additional knots); 
2. a single touching point on one of the constraints (one additional knot); 
3. a subarc on one of the constraints (two additional knots); 
4. a touching pair (two additional knots). 
If in some interval [ti, ti+l] there is a subarc on one of the constraints, then there are no 
subarcs on the other constraint in [ti-1 , ti+2]. Moreover, f “(0) = f"(I) = 0 and the$rst 
interval [tl , tz] and the last interval [t,-1 , t,,] do not contain subarcs. 

Proof: From [7], the solution f is a C2 piecewise cubic polynomial with knots ti, i = 
1 ,..., n, and with no more than four additional knots in every interval (ti, ti+l) where the 
solution reaches or leaves the constraints. 

We prove that if for some [ti, ti+r ] one of the constraints is active in aproper interval (with 
length > 0), then the other constraint is nonactive in [ti, ti+r ]. Let rr , r2 be two additional 
knots, tr, 9 E [ti, ti+l], tr < r2, let tr be the right end of a proper interval where the 
lower constraint e is active, and let r2 be the left end of an interval or a single point where 
the upper constraint d is active, that is, e(t) < f(t) -z d(t) for t E (tt ,r2). Since f" is 
continuous in [0, 11, the Taylor expansion in t E [rr ,521 gives us 

f (t> = f (td + f’(t&t - ~2) + ; f”(t)@ - ~2)~ = d(t) + ;f”(i)(t - t2)2, 

for some 7 E [t, rz]. Taking into account that f(t) -z d(t) for t E (rt, r2) we conclude 
that f”(t) c 0 for any 5 arbitrarily close to and less than r2. Hence, f”(r2) 5 0. On 
the other hand, f “(tt) = 0 since tr is the right end of an interval where F = 0. From 
Lemma 1.1, the third derivative f “’ has a jump upward at tl . Hence, the linear function 
f”(t) is strictly increasing for rr < t < r2 and f”(q) = 0, thus f”(ra) > 0. The obtained 
contradiction implies that such a location of the additional knots is impossible. The proofs 
for the remaining cases are completely analogous. Hence, both constraints can be active in 
some [ti, ti+l] in a touching pair only. 
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Let tt E [t;, ti+t] be the right end of a subarc on the constraint e and let r2 E [ti+t , t/+2] 
be the left end of a subarc on the constraint d. Then f”(tt) = 0 = f”(r2) and, since tt 
and r2 are additional knots, f”(t) > 0 for t > rt and t near tl, f”(t) < 0 for t < r2 and t 
near 3. But f” is piecewise linear with one knot, ti+l, between tt and r2, a contradiction. 
The proof for the other case is analogous. 

Lemma 1.1 implies that f “(0) = f “( 1) = 0. If [tt , rz] is a subarc in the first interval 
[ti, tz], then f" is linear on [tt , tt]. From f "(tl) = f "(tl) = 0 we have f" = 0 in [ti, r2]. 
Since tl is an additional knot, f"(t) # 0 for t < tl, t near tt , a contradiction. This proves 
the theorem. 0 

3. Reduction to convex optimization 

In this section, we consider problem (2), where e and d are linear in every interval (ti, ti+t). 
First, we show that problem (2) can be rewritten as the following two-stage minimum 
problem: 

4(z) -+ min, z ER”, (5) 

where 

4(z) = min I] f"ll~2 
f(ti)=yi, f'(ti)=Zi, i =1,2,...,n, 

e(t) I f(t) 5 d(t) for all t E [0, 11. (6) 

Throughout (1. II ~2 denotes ]I . (]Lz[o. I). Denote by F the feasible set of problem (6) and by 
Q(z) the feasible set of problem (2). Let zt = (f *)'(ti), i = 1,2, . . . , n, where f * is the 
solution of (2). From the condition (4) in Section 1 it follows that the sets F and Q(Z), for 
all z E R”, are nonempty. Since f * is a feasible solution for problem (2) with z = z*, we 
have 

On the other hand, a feasible solution for problem (6) is also feasible for problem (2). 
Hence, 

Combining the above inequalities we conclude that 

min4(z) = 4(z*) = I] f*"ll$ = 71;1Fnllf"11$. 
ZER" 

Thus z* is the unique solution of (5). 
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The function 4 defined in (6) can be written as 

n-l 

4(Z) = CA(Zi,Zi+l)9 
i=l 

where 

&kit Zi+l> = ~~~llf”ll~2~f,~li+,l 

f(h) = Yi, f’(h) = Zi9 

f(h+l> = yi+l, f’(ti+l> = Zi+lv i = 1,2, . . . , n - 1, 
e(t) 5 f(t) 5 d(t) for all t E [tj, ti+l]. (7) 

It is clear that, if fi(z) is the solution of the ith problem (7) defined on [ti, ti+l], then the 
concatenation of the fi(z) on [0, l] is the solution of (6). Thus, the function 4 can be 
evaluated by solving n - 1 independent problems of the form (7) on each interval [ti, ti+l]. 

Theorem 3.1. The function C/J is convex, coercive, and has a unique minimum in Rn. 
Moreover, the problem (5) is Tikhonov well-posed; that is, every minimizing sequence 
converges to the unique solution. 

Proof: The convexity of 4 follows from the fact that $ is the value function of a convex 
minimum problem. Let z = hz’ + (1 - )c)z*, 0 5 h 5 1, let f1 be the solution of problem 
(6) corresponding to z’ , and let f 2 be the solution to problem (6) corresponding to z*. Then 
hf 1 + (1 - A) f * is feasible for problem (6) corresponding to z. We obtain 

wz’ + (1 - Qz2) 5 IlVf9” + (1 - a>(f*>“l~;2 

5 hll(f ‘1”11;2 + (1 - uI(f*)“l1~2 
= A#(z’) + (1 - Q#(z2), 

hence 4 is convex. 
Let f (z, .) denote the solution to problem (6). Then, for i = 1, . . . , n - 1, 6+1 n1 

Yi+l - yi = Zi(ti+l - ti) + s J f “(z, a)dadal. 
f I 

,, 

Using the Cauchy inequality we obtain 

(fi+l - ti)lZil - IYi+l - Yil 5 f”(z,cW.d~l 5 Ilf”(z>ll~2. 

Since the differences yi+l - yi, i = 1, . . . , n - 1, do not depend on z, 4(z) + M as 
z -+ co. Thus 4 is coercive. 
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The minimum of problem (2), exists and is unique, hence 4~ attains its unique minimum 
in Rn. Let {zk} be a minimizing sequence; that is, 

@(zk) i @(z*> + Sk, 

where z* is the solution of problem (5) and & -+ 0 as k -+ 00. By the coercivity of 4 
with respect to z, it follows that the sequence (zk} is bounded. Without loss of generality, 
assume that zk -+ 2 for some i E R”. Then, from the continuity of 4 and the uniqueness 
of z* we obtain that 2 = z*. This proves the Tikhonov well-posedness. 0 

In further lines we describe a procedure for computing the values of the objective func- 
tion f$. The value of 4(z), z = [zi, ~2, . . , z,], can be computed as the sum of n - 1 
independent terms +i(zi, zi+i), i = 1, . . . , n - 1, defined by (7). These computations can 
be accomplished in parallel. 

For simplicity we demonstrate the procedure for computing the values of @i (zi, zi+i) on 
the problem with two knots a and b: 

Ilf”ll~2~,,,hl + min (8) 

f(a) = CI, f’(a) = ~1, f(b) = ~2, f’(b) = ~2, 

e(t) I f(t) 5 d(t) for all t E [a, b], (9) 

where e, d are linear in [a, b] with e(a) < ci < d(a), e(b) < c2 < d(b). Clearly, the value 
of #i(zi, zi+t) is the value of the objective function of problem (8) when cl = yi, c2 = 
y;+i, si = zi, s2 = Zi+i. From Theorem 2.1, the solution to problem (8) is a C2 cubic 
spline with knots a and b and no more than two additional knots. The following cases 
are possible in (a, b): the constraints are not active, a single touching point, a subarc, a 
touching pair. The idea is to compute solution candidates (i.e. piecewise cubic polynomials 
that are feasible for problem (8), if any) corresponding to the four possible cases and then to 
choose the one that has the least second norm of the second derivative. We now show that 
the determination of solution candidates in the four possible cases reduces to elementary 
computations. 

1. The constraints are not active: A cubic polynomial fr has the form 

f~ (t) = kl (t - a)” + kz(t - a>2 + k3(t - a) + k4, 

where the coefficients kl , k2, k3, and k4 are obtained from the boundary conditions (9) 
by solving a system of four linear equations. 

2. A single touching point: A piecewise cubic polynomial f2 with a single touching point 
6 E (a, b) on the lower (or on the upper) constraint is written in terms of unknown 
parameters ki and mi, i = 1, . . . ,4, as 

.f2(t) = 
kl(6 - Q3 + k2(6 - t)2 + k3(6 - t) + k4, t E [a, 61, 
ml(--6 + t>” + m2(-6 + t)2 + m3(-6 + t) + m4, t E [a, b]. 
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Theunknownski,mi,i = l,..., 4, and 8 are determined from the boundary condition 
(9), the condition that 6 is a single touching point, and from the continuity conditions 
for the function and its first and second derivatives in [a, b]. Once the location of the 
touching point 6 is known, the ki and mi, i = 1, . . . ,4, are obtained by solving a system 
of linear equations. The location of the touching point 6 is determined from the condition 
that f[ is continuous in (a, b) which results in a cubic equation for the value of S. This 
equation is solved with the help of Cardano’s rule. There may be none, one or more 
than one solution of this equation in the interval (a, b). Thus there may be up to three 
solution candidates with a single touching point on a given constraint. 

3. A subarc: A piecewise cubic polynomial which has a subarc on the lower constraint 
can be described in terms of the additional knots denoted by 6i,&, 61 < 82, and the 
coefficients ki, mi, i = 1, . . . ,4, as 

kl(& - G3 + k2(81 - tJ2 + kj(& - t) + k4, t E b, &I, 

t E [b, 621, 

ml(-~2+t)3+m2(-82+t)2+m3(-82+t)+m4, t E [S2,b]. 

The unknowns Si, 82, ki, mi, i = 1, . . . (4, are determined as the unique solution (if it 
exists) of a system of linear equations obtained from the boundary condition (9), the 
condition that Si and 82 are the ends of a subarc, and the continuity of the function and 
its first and second derivatives in [a, b]. A similar procedure applies for a subarc on the 
upper constraint. 

4. A touching pair: A piecewise cubic polynomial which has a touching pair (Si ,I&), Si < 
82, is written as 

kl(& - t)” + k2(81 - t)2 + k3(& - t) + kq, t E Ia, &I, 
f4W = ml(-61 + tj3 + m2(-61 + tj2 + m3(-61 + t) + m4, t E [SI, 821, 

g1 C-82 + o3 + g2(-62 + tj2 + g3(-62 + t) + g4, t E [a29 bl. 

Theunknownski,mi,gi, i = I,..,, 4, and the additional knots Si ,82 are determined 
from the boundary condition (9), the definition of the touching pair, and the continuity of 
the function and its first and second derivatives in [a, b]. The location of the additional 
knots is determined from two coupled polynomial equations using any root finding 
method. Once the additional knots are known, the coefficients ki, mi, gi, i = 1, _ . . ,4, 
are determined from a system of four linear equations. 

In each of the cases (14) the functions fi (t) (if exist) are C2 piecewise cubic polyno- 
mials in [u, b] that are calculated analytically. Then we determine, by finding the maxima 
of fi - d and -fi + e, whether fi satisfies the inequality constraints, i.e. whether fi is a 
solution candidate. 

Simple observations help to reduce the number of solution candidates that are examined 
when solving problem (8). For example, if there is a solution candidate for which the 
constraints are not active, then it is the solution and there is no need to consider other cases. 
If there is a solution candidate that has a subarc on a given constraint, then there is no 
solution candidate that has a single touching point on the same constraint or a subarc or 
touching point on the other constraint. Conversely, if there exists a solution candidate that 
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has a single touching point on a given constraint, then there is no solution candidate that 
has a subarc on the same constraint or a subarc or touching point on the other constraint. 
If there is a solution candidate which has a touching point or a subarc, then the solution of 
problem (8) must have either a touching point or a subarc and there is no need to consider 
the case of a touching pair. All these considerations are taken into account in the procedure 
which solves the examples presented in Section 5. 

Remark 3.1. The function 4 is convex in R”, hence it is Lipschitz continuous and almost 
everywhere differentiable. We do not know whether this function is smooth everywhere. 
The domain R” of the function 4 splits into regions corresponding to all possible configu- 
rations of the additional knots; in the interior of each region the constraints do not change 
their status (active or nonactive). In the interior of each of the regions 4 is analytic. How- 
ever, we conjecture that since the marginal function of an optimization problem is typically 
nonsmooth, the first derivative of 4 may have jumps on the boundaries of the regions. 

Remark 3.2. The case when e and d are cubic in each interval (ti, ti+l) can be treated 
analogously; here some additional analysis is needed when there are two subarcs in the 
same interval. An example with piecewise cubic constraints is presented in Section 5. 

4. Arbitrary continuous constraints 

In this section we consider problem (2) on the assumption that the constraints e and d 
satisfy the condition in Lemma 1.1; that is, there exists @ E W2,2[0, I] which interpolates 
(ti, yi) and e(t) < $(t) < d(t) for all t E [0, I]. For simplicity we assume that e and 
d are continuous functions; the case when e and d are discontinuous at ti needs some 
more technical details. Denote by f” the unique solution of problem (2). We study the 
convergence of the following method for solving problem (2). First, we introduce a grid 
{tj}‘J’=, which covers {ti} and approximate e and d by continuous functions e, and d,,, 
that are linear in each interval [rj, rj+t], j = I, 2, . . . , m - 1. Then new interpolation 
conditions f (rj) = Sj, tj # ti, are introduced where sj are treated as parameters. In order 
to preserve the interiority condition we allow sj to vary between e, (rj) + 6 and dm (tj) - E 
for some sufficiently small 6 > 0. Then we apply the procedure described in the preceding 
section minimizing also with respect to sj. 

The rigorous description of the method is as follows. Let {e,) and {d,) be two sequences 
of continuous functions that are linear in each interval (ri, tj+i), j = 1,2, . . , m, 0 = 
r, < -c2 < ... < tm = 1, such that e, + e and d,,, -+ d uniformly in [0, I]. Without loss 
of generality, let {tl, . , t,) C {ti, r2, . . . ,rm}. Let.& c {1,2, . . . . m)bethemaximalset 
of indices such that if j E S,,,, then there exists i = u,(j), 1 5 i 5 n such that r,j = ti. Let 
3, = {I, 2, . . . , m)\S,,,. Let EO > 0 be such that for all m, d,(t) - e,(t) > co, t E [0, I], 
and y: - e,(ti) > ~0, d(ti) - yi > 60, i = I,. . , n. Let E,,, < ~a/4. We consider the 
following problem as an approximation to problem (2): 

@(s, z) -+ min, (10) 
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subject to 

sj = h,,,(j), j E &, enz(rj> + cm i sj 5 dm(rj) - em, j E S,, z E R”‘, 

W, 4 = min IIf”ll~2~0.11 
f E iP2[0, 11, 

f(tj) = Sj, f'(tj) = Zj, j = 1,2, . . . , Pn, 

e,(t) _( f(t) i d,(t) for all t E [0, 11. (11) 

Problem (10) is a finite-dimensional minimization problem of the type treated in Section 3. 
Using an argument similar to that in Section 3 it can be verified that function Q is convex 
and coercive in z uniformly in s, for s in its domain. Problem (10) has a unique solution and 
every minimizing sequence converges to the solution. The unique solution f of problem 
(11) corresponding to the unique solution (s, z) of problem (10) is a C* piecewise cubic 
polynomial with knots rj, j = 1, . . . , m, and no more than two additional knots for 
every interval (tj, rj+l), j = 1,. . . , m - 1, where the following cases are possible: the 
constraints are not active, a touching point, a subarc, a touching pair. The value of @(s, z) 
can be computed as the sum of m - 1 independent terms: 

m-l 

*('3 z, = C @jCsj* sj+l, Zj, Zj+l), 
j=l 

(12) 

where 

*iCsi* sj+19 Zj7 Zj+l) = min ](f”]]~Ztr,,r,+,l 

fCrj> = sj, f’(T,j) = Zj, 

f(rj+l) = sj+l, f’(rj+*> = Zj+l, j=1,2 ,..., m, 

em(t) f f(t) 5 d,(t) for all f E [rj, tj+l]. (13) 

The procedure described in Section 3 can be used for computing Qj. Thus, for a given 
m one can solve the problem (9) by applying standard optimization software. Iterating on 
m, one can then use the approximation obtained as an initial guess for the next iteration 
until a stopping test terminates the computations. The following theorem shows that this 
procedure is convergent. 

Theorem 4.1. Let e, and d,,, be defined as above and let l m + 0 be a sequence such that 

Oc6,Cimax co, 
i 

min 
j=l ,*,...,m 

{ (Ctj+l - rj)/816}]. (14) 
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Let f m be the unique solution ofproblem (11) corresponding to the unique solution (sm, z”) 
of problem (IO). Then 

lim ]]f” - f”]]~2.2ta,tj = 0. (13 m-+-co 

Proof: We first show that for every sufficiently large m there exists a function fm which 
is feasible (i.e., satisfies the interpolation conditions and the inequality constraints) for both 
problems (2) and (10) and, moreover, 

Jr& II( - (fO>“llp = 0. 

Let g be feasible for problem (2) and such that e(t) < g(t) -C d(t) for all t E [0, 11. 
Define fin = f” + S,(g - f”), 0 < 6, < 1. The function fin is feasible for problem (2) 
and e(t) -C fm(t) < d(t) for all t E [0, 11. We will choose 6, so that S, -+ 0 as m + oo 
and 

em(t) I .fm(t) i drn(t)v (16) 

for every sufficiently large m and for all t E [0, 11. Let (Y be the minimal distance from g 
to the constraints; that is 

min k(t) - 4OL oyj;, I&) -WI , 
1 

and let 

T = (t E [0, 11: Ig(t) - f’(t)1 5 a/2). 

We select 6, to be a sequence of positive numbers convergent to zero and such that 

6, 2 Zmax SUP lent(t) - e(t>l, SUP Idm(t> -d(t)1 . a! tao.11 rEI0.11 I 
(17) 

Let t E T. We have 

fm(t) - em(t) = f'(t) + sm(g(t) - f'(t)) - em(t) 

= f’(t) - g(t) + ~rn(g(t> - f’(t)) + g(t) - e(t) + 0) - em(t) 

L -a/2 + s,(g(t) - f’(t)) + a + e(t) - e,(t) p 0 

for m sufficiently large. Analogously, 

fm(t> - dm(t) = f’(t) - g(t) + Sm(g(t) - f’(t)) + g(t) - d(t) + d(t) - d,(t) 

I E/Z + sm(g(t) - f’(t)) - a + d(t) - d,(t) 5 0 
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form sufficiently large. Let t $ T. Consider first the case f’(t) - g(t) > o/2. We have 

L&> - e,(f) = f”O> - s(t) +&MO - f’(t)) + s(f) - e(t) + 4) - e,(f) 

1 a/2 + btgtt) - f’(t)) + a + e(t) - e,(t) S 0 

for m sufficiently large. Furthermore, 

Ed0 - 4fz(~) = fOW - d(t) + &iW) - fOW) + d(t) - d,(t) 
5 bl(g@) - fO(0) + d(t) - &(t) I 0 

because of the choice of 6, in (17). Finally, let f”(t) - g(t) < -a/2. Then, 

P(t) - e,(t) = f’(t) - e(t) + k(g(t) - f’(t)> + 0) - e,(t) 
L 4&W - f”(Q) + e(t) - e,(t) 2 0 

because of the choice of S, in (17), and 

Pw - 42(t) = fOO) - g(t) + 4n(g(t) - fOW) + g(t) - d(t) + d(t) - d,(t) 
< -(r/2 + &I(g(t) - fO(t)> - a! + d(t) - d,(t) 5 0 - 

for m sufficiently large. Thus (16) is proved. Clearly, (fm)” += (f’)” L2-strongly as 
m+ 00. 

We now construct the desired sequence {f”‘}. Suppose that dm(tj) - fm(tj) -c E, for 
some rj, j = 1,. . . , m, for a fixed sufficiently large m. Since em < $~a, we have j E $,,. 
Let 

Pyw) = 
I 

-Cl - Ti - YJ')~(~ - rj + y,?)", t E [tj - y,?, rj + y,?], 

0 otherwise, 

where (v,?)~ = fm(tj)-dm(tj)+2E,. If -e,(rj)+f”‘(rj) < cm for some rj we take ~7 
with negative sign and with v,,, such that (~,y)~ = -fm(rj)+e,(rj)+2~,. Because of( 14) 
the supports of ~7, j = 1, . _ . , m, are disjoint. Let pm = Cj py , where the summation 

is for all j such that either dm(tj) - fm(rj) < .G,,, or -c,(rj) + fm(rj) < E,. Note that 
p”(t) is a C2 function and (pm)” + 0 L2-strongly as m -+ 00. Define f” = f”’ + pm. 
By construction, for every m sufficiently large, f” is feasible for both problems (2) and 
(10). Moreover, limm+aa (I(fm)” - (f”>“IIL~ = 0. 

The remaining part of the proof is standard. Since 

II(f”>“IIL~ 5 IIP)“llL~ -+ II(fOY1lL~ 



246 DONTCHEV AND KOLMANOVSKY 

as m -+ 00, it follows that the sequence {(f”)“} is bounded in L*[O, I]. Hence, one can 
extract a subsequence {(f”“)“} which converges weakly to some h E L*[O, 11. Define 

fO)=Y,+t(Y.-yr~l 0 - crMa)da + ) s, I(t - o)i(t)dt. (18) 
Since (f”“)” + i L*-weakly, f”” -+ f^ in CIO, l] as mk + 00. Hence, f^ is feasible for 
problem (2) and because of the weak lower semicontinuity of the L*-norm we have 

Since the minimum of problem (2) is unique we obtain that (f ,,)I’ --+ (f O)” L*-weakly 
and II(fmkY'II LZ + II (f’>” II L2 as mk + 00. Hence, (f ,,>‘I 9 (f O)” L*-strongly. Using 
the representation (18) we complete the proof. 0 

The transformation of the numerical approach outlined before Theorem 4.1 into a com- 
putational procedure requires further analysis supported by numerical examples; this is a 
subject of continuing research. 

Remark 4.1. From Theorem 4.1 we immediately obtain the following result. Consider 
problem (2), where e and d are continuous, piecewise linear in every interval (t;, ti+r), 
i = l,..., n, and satisfy the interiority condition. Let the knots of e and d be 0 = ti < 
t* < ... < Tm = l,{tt ,..., r,} c {ti ,... , r,,,). Then, the unique solution f of problem 
(2) is a C’ piecewise cubic polynomial with knots rj, j = 1, . . . , m, and no more than 
two additional knots in every interval (rj, rj+i), j = 1,2, . . . , m - 1. In every interval 
(rj, ri+i), the following cases are possible: the constraints are not active; there is one 
additional knot that is either a single touching point or an end of a subarc whose other end 
is either rj or rj+l ; there are two additional knots that either form a touching pair or are the 
ends of one subarc, or are the ends of two subarcs whose other ends are rj and rj+i . 

Remark 4.2. Suppose that in problem (2) the constraints e and d are continuous and satisfy 
inf,,to.l] Id(t) -e(r)] > 0, e(Q) I: yi I d(ti), i = 1, . . . , n, but the interpolation points are 
not necessarily strictly between e and d; that is, either e(Q) = yi or d(ti) = yi for some 
ti . For this case Lemma 1.1 does not apply. Assume that the feasible set is nonempty, 
i.e. there exists a function q E W***[O, l] with @(t;) = y;, i = 1,2, . . . , n, such that 
e(t) 5 q(t) I: d(t), for all t E [0, 11. Then problem (2) has a solution f" and the solution 
is unique, see [7]. Let {r,} be a sequence of positive numbers convergent to zero. Consider 
the following problem as an approximation of problem (2) for m sufficiently large: 

IIf”llL2 -+ mh 
f(ti)=Yi BE,, ifyi =d(ti), 
f(Q) = yj + Em, ifyi = e(tj), 

f (ti) = Yi9 if e(ti) < yi < d(ti), 

e(t) F f(t) 5 d(t) for all I E [0, 11. (19) 
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Let f m be the unique solution of problem (19). Using the argument in the proof of Theo- 
rem 4.1 it can be shown that f m + f" in the norm of W2.2[0, 11 as m -+ oo. From this 
result we obtain that if e and d are piecewise linear (cubic) across the grid {ti), then f o is a 
C’ cubic spline with no more than two (four) additional knots in every interval (ti, &+I). 

5. Numerical examples 

We present numerical results for three examples. The first example illustrates the algorithm 
for the case when the constraints are continuous and linear in each interval [ti, ti+r 1. The 
second example has discontinuous constraints that are linear in all intervals (ti, ti+ t ) but one, 
where the lower constraint is cubic. The third example illustrates Remark 4.2. The BFGS 
code with approximation of the gradient from Optimization Toolbox and Spline Toolbox, 
both from.Matlab 4.0 have been used in computations. As initial values of the derivatives 
.zi at the knots ti we choose the derivatives of the function with minimal second norm of the 
second derivative that interpolates (ti , yi) (the natural cubic spline). For all the examples 
the computational time was from 3 to 7 minutes on Hewlett Packard (HP) Workstation, 
9000 Series, Model 715/50 with a 50 MHz PA-RISC 7100 Processor. The computations 
were terminated when the norm of a finite-difference approximation of the gradient of the 
objective function becomes less than 10-6. 

Example 5.1. This example has 16 interpolating points ti, shown by “0” in figures 1 and 
2. The constraints e and d are indicated by the dashed lines. The constraints are continuous 
functions and linear in each interval (ti, t;+t ). The unconstrained cubic spline is shown by 
the solid line in figure 1. It significantly violates the constraints. The constrained cubic 
spline is obtained by the method described in Section 3. It is shown by the solid line in 
figure 2 and has nine additional knots indicated by “*“: five single touching points, one 
subarc in the 12th interval and one touching pair in the 14th interval. The L2 norm of the 
second derivative of the unconstrained spline is 3.711, while the L2 norm of the second 
derivative of the constrained spline is 4.93 1. 

Example 5.2. The second example (see the unconstrained cubic spline in figure 3) has 
constraints that are discontinuous at several ti and the lower constraint is cubic in the fourth 
interval. There are also additional interpolation conditions on the end slopes: f’(0) = -2, 
f’(16) = -2. The specified end slope conditions force the unconstrained cubic spline 
significantly violate the constraints. From the development in Section 3 it is clear that the 
case of additional (Hermite-type) conditions for the slopes at the ends of the interval [0, l] 
can be easily handled by the algorithm. The case when e and d are cubic in each interval 
(ti , ti+r ) can be treated similarly to the case when e and d are linear in each interval (ti, ti+l). 
The solution has four subarcs and three touching points and is given in figure 4. 

Example 5.3. This example illustrates the discussion in Remark 4.2 for the case where 
some interpolation points are on the boundary of the feasible region. Here n = 2, tl = 0, 
t2 = 25,fW = 0, f (25) = -1 and there are additional constraints on the end slopes 
f ‘(0) = -2, f ‘(25) = 2. The constraints e and d are indicated in figure 5 by the dashed 
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Figure I. The unconstrained spline in Example 5.1. 

The Second Nom is 3.711 

2. The constrained spline in Example 5.1. 

The Second Norm is 4.931 
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Figure 3. The unconstrained spline in Example 5.2. 

I \J I I I t I 
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.Secon4d 
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10 12 14 16 

The Norm is 5.706, End Slopes are -2 and -2 

12 14 16 

Figure 4. The constrained spline in Example 5.2. 
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..-0 5 10 15 20 25 

Figure 5. The constrained spline in Example 5.3. 

lines. They are continuous and piecewise linear in [tl , tz]. The constrained spline is shown 
in Figure 5 by the solid line. The knots Xj, j = 1, . . . , 15, are indicated by “0” and the ten 
additional knots are indicated by “*“. 
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