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Abstract. In the paper, an algorithm is presented for solving two-level programming problems. This algorithm 
combines a direction finding problem with a regularization of the lower level problem. The upper level objective 
function is included in the regularzation to yield uniqueness of the follower’s solution set. This is possible if 
the problem functions are convex and the upper level objective function has a positive definite Hessian. The 
computation of a direction of descent and of the step size is discussed in more detail. Afterwards the convergence 
proof is given. 

Last but not least some remarks and examples describing the difficulty of the inclusion of upper-level constraints 

also depending on the variables of the lower level ate added. 
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1. Introduction 

‘l%o-level programming problems occur in a large variety of different situations in eco- 
nomics (cf., e.g., certain problems in the principal-agency theory [20]), in technical 
branches (as for instance various design problems [13, 171) as well as in chemistry and 
physics [18]. The last problem is related to the computation of the equilibrium state of 
chemical reactions at higher temperatures [23]. Although the chemists technically are not 
able to observe in situ the single reactions, they described the final point of the system by 
a convex programming problem. Its optimal solution gives the amounts of each substance 
of the equilibrium state. Now, if we are forced to construct a chemical equilibrium hav- 
ing additional properties such as, e.g., a large amount of one single substance or a lack 
of another, we have to consider this system as being a parametric one, the parameters of 
which are determined by the input into the chemical reactor. Now, for realizing the goal 
just mentioned, we have to select values for these parameters such that the optimal solution 
of the resulting problem has the desired property. This leads to a two-level optimization 
problem described as follows: 

Let, in a slightly more general setting, the parametric optimization problem for comput- 
ing, e.g., the equilibrium state in chemical reactions be given as 

W(y) := ArgminIf(x, y) I g(x, Y) 5 0, h(n, Y) = 01. (1.1) 
XER” 
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Then, the problem of evaluating a parameter vector y such that an element x E q(y) has a 
certain desired property reads as 

F(x, y) --f “min” 
yERm 

G(Y) I 0. x E Q(Y), 
(1.2) 

whereF,f,gi,hj:R”xR”‘+R, i=l,..., p, j=l,..., 4, G:R”+R’,g(x,y)= 

(Sl(X,Y)7...9 gp(w))T, h(x,y)=(hl(x,y),...,h,(x,y))T, G(y) = (G(y),..., 
G~(Y))~, and F(., .) gives a mathematical description of the global goal to be achieved. If 
q(y) does not reduce to a singleton for each y, problem (1.2) is not well-posed. Namely, the 
nonuniqueness of the lower-level solution x(y) E W(y) for at least one parameter vector y 
causes that x(y) cannot be substituted in the upper-level problem (1.2). Thus, for evaluating 
the objective function value F(x(y), y) at some point y we have to give a finer rule for 
selecting x E q(y). One such rule (i.e., one auxiliary problem for treating problem (l.l), 
(1.2)) consists in solving the hierarchical problem (P): 

F(x(Y), Y> -+ mp 

G(y) 4 0, 
(1.3) 

where 

X(Y) E Mjn IF(x, Y) Ix E *‘(Y>). (1.4) 

Although there are other interesting attempts for attacking two-level programming problems 
(cf.,e.g., [14,15,18,19]), weprefersolvingproblem(P) which will beexplainedinSection2 
(cf. also [ 111). The bibliography of VicenteKalamai [24] summarizes a large part of the 
theory of bilevel programming problems especially concerning algorithms. 

The content of this paper is as follows: In Section 2 we describe some auxiliary results 
as well as a certain regularization approach for solving problem (P) which will be outlined 
and discussed in Sections 3 and 4. Some remarks concerning the constraints of the type 
G(x, y) 5 0 instead of G(y) 5 0 will be given in Section 5. 

2. The regularization approach 

2.1. Preliminaries 

The mathematical programming problem described by (P) is in fact a three-level problem. 
For computational reasons, one tries to reduce the problem to a two-level one by means 
of approximation techniques. Therefore we prefer an approximation achieving one impor- 
tant aim, namely that by regularizing problem (1.1) the solution of problem (1.4) will be 
approximated. Having this aim in mind, consider the following problem: 

W”(y) := Awnin tf (x9 y) + crF(x, Y) I g(x, Y) 5 0, h(x, Y) = 01. (2.1) 
XER* 
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This problem is a regularization for (1.1) if, e.g., the following conditions are satisfied: 

(Al) All problem functions are sufficiently smooth: F, f, gt , hj E C2(R” x Rm, R), i = 
1 p, j = l,..., 9, Gi E C2(Rm, R), i = 1, . . . ,l. 

(A2j. &tain convexity assumptions are satisfied: f (., y), gi(*, y), i = 1, . . . , p, are 
convex on R”, hj(*, y), j = 1, . . . , q, are affine, V& F(., y) is positive definite on R” 
for each fixed y. 

Denote by 

M(Y) := ix I&, Y) 5 0, h(x, Y> = 01 (2.2) 

the feasible set of problem (1.1) for each y. Then, for 01> 0, the objective function of 
problem (2.1) is strongly convex. Thus, for each y such that M(y) # 0, problem (2.1) has 
a unique optimal solution. The following theorem shows that problem (2.1) realizes the aim 
stated above. Thereinafter, the following notion is used: 

A point-to-set mapping C : RS + 2R’ is said to be uppersemicantinuous at w  E R” if and 
only if for each open set V C_ R’ satisfying IZ (w) C V there exists an open neighbourhood 
U c R” of w  such that E(w’) c V for each w’ E U. 

Theorem 2.1. ’ Consider the point-to-set mapping T : Rm x R+ + 2Rn defined by r(y , cx) 
:= Q”(y). Let the assumptions (Al), (A2), 
(A3) M := {(x, y) I G(y) 5 0, x E M(y)} is nonempty and bounded, and the following 

generalized Slater’s condition at y” be satisfied: 
(A4) There exists .? satisfying g(.?, y”) < 0, h 0, y”> = 0 and the gradients { Vx h j (2, y”) : 

j=l,..., q} are linearly independent. 

Then, 
1. r(. , .) is upper semicontinuous at (y”, cr”), y” E Rm, CYO 2 0. 
2. For each (y, cr) E Rm x R with a > 0 and each optimal solution x(y, a) of problem 

(2.1) we have the following two inequalities 

F(x(Y, a), y) 5 m;lnIF(x, Y) Ix E *(y)l, (2.3) 

f (X(Y, a), Y) 2 (P(Y) := m;ln{f (x, y) Ix E M(Y)). (2.4) 

3. Under the conditions of part 2, 

2.2. Solvability 

In the next theorem, we show the existence of optimal solutions for problem (P). 
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Theorem 2.2. Considerproblem (P) under the conditions (Alj(A4) (for each y). Then, 
problem (P) has an optimal solution. 

Remark 2.3. In general, the solvability of a problem min,{w(z) 1 n(z) ( 0), where K(Z) is 
defined as an optimal value function of a certain parametric optimization problem K(Z) := 

min,{c(r, z) ] r E M(z)} does not imply the solvability of the problem 

n-M-$6-, z) I r E M(z), ak> 5 01 
r.2 

(cf., e.g., [16]). In the case of problem (P), we obtain the following: 

1. The feasible set of the problem 

$iynIFk Y) I G(Y) 5 0, x E ‘u(y)} 

is bounded by (A3) and closed by [l, Theorems 3.1.1,3.1.5,4.3.3]. 
2. By (Al), F(., .) is continuous. 

(2.5) 

Thus, problem (2.5) has a (global) optimal solution which coincides with a global optimal 
solution of problem (P). 

Remark 2.4. Due to (A3), the regularization 

min{F(x, y) I G(y) 5 0, x E Q”(y)) 
X.Y 

(2.6) 

has an optimal solution (x(a), y(u)) for each a! > 0 which is contained in the set M. Thus, 
for cx \ 0, the sequence ((x(o), y(~r))}~,a has only bounded accumulation points and the 
function values F(x(cr), y(a)) are also bounded. 

3. The algorithm 

3.1. Motivation 

Motivated by Theorem 2.1, we will try to compute an optimal solution for problem (P) by 
searching for an accumulation point of the sequence of optimal solutions of the problems 
(2.6) for (Y \ 0. By strong convexity of f(., y) +crF(., y) on R” for each fixed y, problem 
(2.6) itself is equivalent to the following nondifferentiable optimization problem with an 
implicitly defined objective function: 

mJln(%(y) I WY) 5 01, (3.1) 

where a,(y) := F&(y), y). x,(y) E W(y) V y. If we assume that the function Q,,(.) 
possesses a directional derivative 

@&(y; r) := i%tt-‘[@,(y + tr) - @,(y)l 
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for each direction r and each point y, then the problem (3.1) can be solved using the 
following prototype of an algorithm: 

Descent algorithm: 

Step I. Select y” solving G(y’) 5 0, set k := 0, choose a0 and E, 6 E (0, 1). 
Step 2. Compute a direction rk, llrkII 5 1, satisfying 

Q&(yk; rk) 5 sk, 

V,Gi(yk)rk 5 -Gi(yk) +sk, i = 1,. . . ,l, 

and sk < 0. 
Step 3. Choose a step-size tk such that 

Qcr(yk + tkrk) 5 Qu(yk) + etksk, 

G(yk + tkrk) ( 0. 

Step 4. Set yk+’ := yk + tkrk, k := k + 1. 
Step 5. If a stopping criterion is satisfied: 

if o is sufficiently small, then stop 

else set (Y := Sa and compute x,(yk). 

Goto Step 2. 

To inspire life into the algorithm a more detailed description of Steps 2 and 3 is necessary. 
We do not intend to give a more concrete rule for determining the values of .s and 6, since, on 
the one hand, the choice is dependent on the concrete nature of the functions f, F, G, g, h 
and, on the other hand, this presupposes a comprehensive computational experience which 
we do not have yet. 

3.2. A direction of descent 

3.2.1. The directional derivative of the optimal solution of the lower level. If the optimal 
solution of problem (2.1) is directionally differentiable then the directional derivative of the 
function Q,(.) is guaranteed to exist because of the smoothness of the function F(., .). The 
following theorem gives sufficient conditions therefore. 

Let 

L,(X, Yv & CL) := f(x, Y) + aF(x, y) + kTg(x, y) + pTh@, y) 

be the Lagrangian of problem (2.1). If assumptions (Al)-(A4) are satisfied at y = y” then, 
a feasible point x of (2.1) is optimal if and only if the set of Lagrange multiplier vectors 

&x(x, y”> := I@, P) I VxLz(x, YO, L LL) = a J. 2 0, ~Tg(Xv YO) = 01 



232 DEMPE AND SCHMIDT 

is not empty. Moreover, in this case, A,(x. y’) is a bounded polyhedron [7], i.e., it is equal 
to the convex hull of its finite set E&(x, y”) of vertices. 

Lemma 3.1 [4,22]. Consider problem (2.1) and let the assumptions (Al)-(A4) be sat- 
isfied at y  = y”, x,(y”) E V(y”). Then, the vectorfinction x,(e), defined by the unique 
optimal solutions of problems (2.1) forfired a! > 0, is directionally diflerentiable at y’. 

Actually, Lemma 3.1 is a corollary of the results in [22] and is independently due to [4]. 
As an immediate result of this lemma the directional derivative of the function Qcr (.) exists. 
But, for computing a direction of descent which could successfully be used in Steps 2 
and 3 of the algorithm, we need a rule for the calculation of the directional derivative of 
the function x,(.). One such rule is given in the following theorem using the additional 
assumption 

(A5) For each nonempty set K C I(x,(y’), y’) := {j : gj(xa(y’), y”) = 01, all matrices 

v.rgi(&(Y)v Y>q 

Vxhj(xa(y)vY), 

composed by the gradients with respect to x are locally of constant rank around y”. 

Lemma 3.2 [4]. Ifthe assumptions (Al)-(A5) are satisfied for problem (2.1) at y  = y’, 
x,(y”) E V(y”) then, for each direction r” thereexistsavertex (A’, p”) E EAn(xn(yO), y’) 
such that: XL (y’; r’) is the unique optimal solution of the following convex quadratic pro- 
gramming problem Q,(y”, r”, A”, /A’): 

~dTV~XL,(x,(yo). y’, A’, p”)d + dTV$L,(x,(yo), y”, ho, u”)ro + mjn 

Vxgi(xa(y’), y”)d + Vygi(xa(y’)~ y”)ro y i7 
ifg > 0 

- 7 if i E I(x,(y’), y’) 

Vxhj(x,(y’), y”)d + V,hj(xa(y’), y”)ro = 0, j = 1,. . . , q. 

Remark 3.3. This lemma was given earlier by [21] and [12] but they imposed the linear 
independence constraint qualification w.r.t. x. Vice versa (AS) and (A6) below are weaker 
than this assumption, since they are satisfied for instance for linear inequality constraints 
of an arbitrary number with right hand side perturbations [5]. 

3.2.2. The direction jinding problem. Now, for computing the direction of descent rk 
used in the descent algorithm, we can use the following problem, in which the value of 
sk is minimized. The additional constraints of this problem are given by the necessary 
and sufficient optimality conditions of first order for the quadratic convex programming 
problem QU(yo, r, I, p) used for the computation of x&(y’; r), which are modified by the 
application of an active-set strategy for dropping the complementarity constraints. 
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Problem D,(y’, li, CL, K): 

s+ min 
d,r.v.o.s 

@L(yO; r) := Vx~Myo), YOM + VyWdyo), y")r 5 s 

V,Gj(yo)r 5 -Gi(yo)+s, i = l,...,l 

v~xL(&(yo)9 YOY A* PL)d + V,2,LMY0), YO, J-9 cL)r 

+v,Tgkz(yo)> YOhJ + V,TW&(Y0)9 YOb = 0 

icK 
i E I@ (yo) yo) 

n 9 

Vxhj(xa(yo)9 YOM + Vyhj(&(YO), y")r = 0, j  = 1,. . . , q  

I+ >_ 0, i E K \ (j : Aj > 0}, I+ = 0, i @K, llrll 5 1. 
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(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Unfortunately, the optimality of (do, r”, u”, w”, so) for D,(y’, )c, p, K) is not sufficient for 
the fact that do is equal to xk (y’; I-‘). This is due to the possibly discontinuous behaviour 
of xA(y”; r) with respect to r if p > 0. To overcome this difficulty, we use the following 
theorem: 

Theorem 3.4 141. Let for problem (2. l), in addition to (AlHAS), atso 

(A@ ThegradientsIVgi(x,(yO), ~‘1, i E ~(xa(yO), ~‘11 U {Vhj(xcz(YO), ~‘1, i = 1,. . . , ql 

with respect to both x and y are linearly independent 

be satis#ed, then, 

{d I 3 {r”),“=, converging to r’such that iizx&(y’; rk) = d} 

= U {d Id is an optimal solution ofproblem Q,(y”, r”, A, cc)}. 
(-L/4E~&I(&(Y%Y”) 

Note that assumptions (A4)-(A6) are weaker than the linear independence constraint qual- 
ification with respect to n which can easily be seen in the very simple 

Example. 

min((x - l)* : x + y 5 0, x - y 5 0) at y = 0. 
x 

Consequently, for computing a direction of descent needed in the above algorithm, in the 
worst case, we have to solve problems D,(y’, J., CL, K) for all vertices of A,(x,(yO), y”) 
and all sets K satisfying {j : )Lj > 0) E K C I(x,(y’), y’). Let &(y’, )c, CL, K) denote 
the optimal value of problem D,(y’, k, p, K). Then, we also have the following necessary 
optimality condition for problem (2.1): 
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Theorem 3.5 [S]. If@, (y’), y”) is an optimal solution ofproblem (2.1) and ifassumptions 
(Al)-(A6) are satisjkd at y = y”, then 

3.2.3. A modified direction$ndingproblem. Define the optimal value function of problem 
(2.1) as 

G(Y) := m;lnLf(x, Y) + cfF(x, Y) Ix E M(Y)). 

Then, by [6, Theorem 2.3.2.1, or [lo], the directional derivative of this function exists 
provided that assumptions (Al)-(A4) are valid. This directional derivative can be computed 
by solving the following linear programming problem: 

By linear programming 

maxIVyW(yo), y”, a, cL)r: 0, cL) E A(x(Y”L Y”)) 
= maxWyW(yo), y”, A, pb-: @, II) E EA(X(y”), Y”)l. 

Denote the set of optimal solutions of problem (3.9) by 

S,(y”; r) := Ar~yP’yL(x,(yo~, Y’, a, cL)r I (J-, LL) E &&(Y~)~ Y’>I. (3.10) 

For our convergence proof in Section 4 we need modified direction finding problems 
which will be developed in the sequel. 

The necessary (and sufficient) optimality conditions for (3.10) are given as: There exists 
a vector d E R” satisfying 

Vxgi (xa(y”>~ y”)d + Vygi @a (Y”>9 y”)r 3 iv if hi > 0 

- 9 if i E Z(X~(~‘), y”) 

V.x~j(xcx(y”), y”)d + Vyhj(xa(yO), y”)r = 0, j = 1, . . . ,q- 

These are exactly the conditions guaranteeing nonemptiness of the feasible set of problem 
Qa(<ro, r, Ai, CL). ‘IJw 

{d ] 3 {#)jf?=“=, converging to r such that jirnirxL(y”; rk) = d} 

= u (d ] d is an optimal solution of problem QU(yo, r, A, p)}, 
(A.CL~~ESdY”:~) 

where ES,(yO; r) is the vertex set of S,(y’; r). It should be mentioned that for proving 
Theorem 3.4 for each optimal solution d of problem Q,(y”, r, 1’, p”) the existence of a 
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sequence (r“}r=i converging to r has been shown such that S,(y’; rk> = ((A’, CL’)} for each 
k. Then, XL (y”; rk) is equal to the unique optimal solution of problem Qa (y’, rk, ho, p’). 
Consider the inverse mapping to S,(y’; r) with respect to r: 

T,(hO, p”) := {r: {(A’, PO)) = S,(yO; r)}. 

Let cl A denote the closure of a set A. Then, if problem Q,(y’, r, ho, PO) has an optimal 
solution, then we have r E cl T,(h’, PO) and for r’ E T,(A”, PO), the directional derivative 
x’(y’; r’) is computed by QU(yo, r’, A’, p”). 

Lemma 3.6. The set T,()c’, p”) is open, its closure is a convex cone with apex at zero. 

Let, for r E cl T,(h’, PO), the index set of active constraints in the problem Q,(y”, r, 
Lo, PO) be denoted by K(r) and set 

Tz(I.‘, p”) := (r E T,(h’, p”) : K(r) = K} 

for some set KEN := {K : {i : $’ > 0) E K G Z(x,(y’), y’)). If the index set of 
active constraints is fixed, then the necessary (and sufficient) conditions for optimality of 
the problem QU(yo, r, ho, PO) are linear in d, r, u, w. Hence, TU’()co, p”) is also a convex 
set with cl T,” (Lo, PO) being a convex cone with apex at zero and we have 

cl T,(k’, p”) = cl u TUK()co, PO). 
KEN 

Lemma 3.7. Let (A6) be satisfied and let T,” (Lo, p”) have a nonempty interior Then, 
the gradients {V,gi(x,(y’), y”) : i E K} U {Vxhj(x,(y’), y”) : j = 1, . . . , q) are linearly 
independent. 

Let M = (K E N : T,” (ho, PO) has a nonempty interior}. 

Lemma 3.8. Let assumptions (Al)-(A6) be satisfied. Then, 

cl T,(k’, p”) = cl u T,E:(A’, p’). 
KEM 

In the sequel we will use the following assumption 

(A7) Let y” E Y, (ALo, PO) E EA, (x,(y), y) and let K E M. Then, strict complementarity 
slackness is satisfied for the optimal solution xL(y”; r) of problem Qa (y”, r, )L”, p”) for 
each r E int TaK(Ao, p’). 

Now, if the assumptions (Al)-(A7) are satisfied, and if (do, r”, u”, o”, so) is an optimal 
solution of the problem D,(y’, ho, p”, K) with so < 0 then, r” E cl T,(h”, p”) and, for 
each sufficiently small E > 0 there exists r’ such that jjr” - r’ II 5 E and r’ is an interior 
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point of some set 7’,‘,()1’, /JO), K E M by Lemma 3.8. Then, problem &(y”, r’, ho, p”) 
has a unique multiplier by Lemma 3.7 and by (A7) we have 

V&i(xa(yO), y”)x’(yo; r’) + Vygi(Xa(yO), Y”)r’ < Ov vi = O 

for each i E I (xU (y’), y”> \ K and 

v.rtTi(Xa(Y”), y”)X’(yo; r’) + Vygi(Xcy(yO), yO)r’ = 0, Vi > 0 

for each i E K \ {j : h.s > 0). Thus, using the positive homogeneity of d with respect to r 
as well as a similar property for u and o, we obtain 

Corollary 3.9. Let the assumptions (Al)-(A7) be satisfied for problem (2.1) at y  = y”, 
x,(y’) E V(y”), cx > 0. Then, for computing a direction of descent we have to choose 
(ho, p”) E EA,(x,(y’), y”) and a set K satisfying 
1. {j : hy > 0) g K G Z(xa(yo), y”) ana’ 

2. the gradients {Vxgi(xa(y”), y”) : i E K} U {VXhi(xa(yo), y”) : j = 1,. . . ,q} are 
linearly independent 

such that the optimal value of the problem Di(y”, ho, p”, K) is less than zero, where 
problem 0: (y”, A’, p”, K) is given as follows: 

s + min 
d.r.“.o.s 

Q&(y’; r> := V,F(x,(y”>, y”)d + V,F(x,(y”), y”)r I s 

V,Gi(yO)r 5 -Gi(yO) + S, i = 1,. . . (1 

V&L&dy”), Y’, A’, I-Lob’ + V$LkAy”), yoy ho, p”)r 

+ V,Tg(x,(y”), y”b + V,TWa(y”L Y’)W = 0 

Vxgi(xa(Y”), YOM + Vygi(xa(y”), y”)r 1 O&Jy$ yo) + s 
- 9 , i$K 

Vxhj(x,(yO), y”)d + V,hi(xa(yO), y”)r = 0, j = 1,. . . , q 

ki+vi+s>O, iEK, Vi = 0, i #K, llrll L 1. 

Consequently, the direction finding problem to be solved in Step 2 has some similarities 
with the minimization problem in Theorem 3.5: In Step 2 we are searching for a set K 
satisfying 1. and 2. of the above corollary and a vector (h.‘, p”) such that the optimal value of 
problem Dz(y”, ho, PO, K) is sufficiently small. It is indeed possible to detect such a set if 
and only if the optimality condition in Theorem 3.5 is not satisfied. In fact, it would also be 
acceptable to search for the minimal optimal function value of problem Dz(y’, ho, p”, K) 
subject to (k”, p”) E Eh,(x,(y”), y”) and all sets K with the above properties. But this is 
a combinatorial problem whose solution is time-consuming. The above strategy could be 
used to minimize this effort. 



AN ALGORITHM SOLVING TWO-LEVEL PROGRAMMING PROBLEMS 237 

It should also be noticed that assumption (A7) does in general not imply that a strict 
complementarity slackness assumption is satisfied for the lower level problem. If this 
condition should be violated then there exist an index k E I(x,(y’), y”) and a set K with 
the above properties such that 

VxgkMYO), yOW(yO; r) + VygkMYO), YOb- = 0 

and vk = 0 for each r E T,” (A’, /LO), where the set T,” (A’, PO) has a nonempty interior. 

4. Convergence of the algorithm and computation of the step-size 

4.1. Convergence forfied (Y 

In the prototype of the descent algorithm we used a kind of Armijo step-size rule, i.e., we 
proposed the selection of the largest number tk in {p, p*, p3, p4,. . .}, where p E (0, l), 
such that 

QU(yk + tkrk) 5 @,(yk) + etksk, E E (0, l), and G(yk + tkrk) 5 0. (4.1) 

We first show convergence of the algorithm for fixed (Y > 0 thereby clarifying one possible 
choice of the stopping criterion in Step 5 of the algorithm. Clearly, the algorithm com- 
putes a sequence {(x, (yk), yk))k”,i having an accumulation point (x,(y’), y”) by (A3) and 
Theorem 2.1. 

Lemma 4.1. Let a! > 0 and let {yk, Ak, pk}& be a convergent sequence such that besides 
(Al)-(A7) the following assumptions are satisjied: 
1. there exists a set K satisfying the conditions 1. and 2. of Corollary 3.9 
2. the optimal values sk of the problems Dz(y”, A’, pk, K) are less than zero and bounded 

awayfrom zero, i.e., there exists s < 0 such that sk 5 s, k = 1,2, . . . . 

Then the following properties are valid: 
1. Let i,(y) be the optimal solution and i(y), b(y) be the corresponding multipliers of 

the enlarged problem 

m;ln{f(x,y)+crF(x,y):gi(x,y)=O,iEK, hj(x,y)=O, j=l,..., q}. (4.2) 

Then, for each k there exists tk > 0 such that 

h(yk + trk) = x,(yk + trk), (4.3) 

k(yk i- trk) = &(yk + trk), i E K (4.4) 

hi(yk + trk) = 0, i 6 K (4.5) 

3<yk + trk> = p(yk + trk) (4.6) 
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for each 0 5 t 5 tk, k = 1,2, . . . , and some multipliers 

(UYk + trk), p(yk + trk)> E A,(x,(yk + trk), yk + trk). 

2. Zero cannot be an accumulation point of the sequence {tk),“_, , i.e., there exists t > 0 
suchthartk>t,k=1,2 ,.... 

Proof: The first part of the proof consists of the following: ifArk is determined by 
D,“(y”, hk, pk, K) then the conditions gi (i,(y), y) 5 0, i 6 K and hi(y) 2 0, i E K are 
satisfied for sufficiently small I > 0. Afterwards in the second part we show that tk can be 
calculated as stated in the theorem. 

By the properties of the set K, Lemma 3.7 and (A2), the optimal solution i,(.) and the 
optimal multipliers i(.), fi(.) of problem (4.2) arTcontinuously differentiable at y = yk [6]. 

If for the solution i(y) and the multipliers ($(y), c(y)) of problem (4.2) additionally 
the inequalities gi(&(y), y) 5 0, i 6 K and ki(y) > 0, i E K are satisfied then the 
triple (L(Y), i(y), b(y)) with ii(y) = 0, i @ K, gives the optimal solution of problem 
(2.1) together with optimal multipliers since the necessary conditions for optimality for 
the convex programming problem (2.1) are satisfied in this case, too. This will be shown 
for y = yk + trk, t E [0, tk] (tk > 0) in what follows. It is obvious, that Z,(yk) = 
x,(yk) and (k(yk), b(yk)) E A,&(yk), yk). By the choice of rk as part of an optimal 
solution (dk, rk, vk, mk, sk) ofproblem Di(yk, hk, pk, K), wehaverk E TUK(hk, pk>. Thus, 
dk = xh(y”; rk). Moreover, we can drop the constraints with index i @ K in problem 
QU (yk, rk , hk, pk) since they are inactive by 

Vxgi(&(yk), yk)X’(yk; rk> + Vygi(&(Yk)v yk)rk 5 Sk < 0. (4.7) 

But then, problem Q@ (yk , rk, hk, pk) turns out to be equivalent to the convex quadratic op- 
timization problem used for computing the directional derivative of Z;,(.). This shows that 

dk = xL(yk; rk) = V,i(yk)rk, u” = V&(yk)rk, i E K, gk = Vyfi(yk)rk. (4.8) 

Thus, by ii > 0, i E Z(x,(yk), yk) and v,! > 0, i E K \ {j : ii > 0) we have 

ii(yk + trk) = ii + tVYii(yk)rk + o(t) > 0, i E K 

and 

&!i(k(Yk + trk), yk + trk) = gi(IZ,(yk), yk) 

+ ~W.xgi(L(Yk)~ yk)V,2(yk)rk + V,gi(ia(yk), yk)rk) + o(t) c 0, i e K 

for sufficiently small t > 0 by (4.7). Hence, for each k there exists tk > 0 such that 
&(yk + trk) and i(yk + trk) indeed satisfy gi(ia(yk + trk), yk + trk) 5 0, i # K and 
ii(yk + trk) > 0, i E K, Vt E [0, tk]. As a result the optimal solutions of (2.1) and (4.2) 
coincide for t E [0, tk]. 
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By (A2), (A5) and the results in [8, Chapter 31 the bound tk is determined by 

tk = min{min{r > 0: 3i $ K with gi(ia(yt + tr’), yk + rr’) = 0), 

min{r > 0: Eli E K with &(yk + trk) = O]}. (4.9) 

This implies Part 1. 
Let (y”, A”, PO) be the limit point of the sequence {(yk, Ik, pk)}F=t. Let r” be an ac- 

cumulation point of the bounded sequence (rk). By (A2), (A5) and well-known results 
in parametric optimization [6], the optimal solution i,(.) as well as the optimal multi- 
pliers i(.) and $(.) are continuously differentiable at y = y”. Hence, by (4.8) we have 
lim V,&(yk) = V&(y”), lim V,i(yk) = V,i(yO), limV,b(yk) = V,p(y’). Thus, by 
(4.8) and by our assumptions, (V&(y”)rO, r”, V,i(y”)ro, VYb(yo)ro, so) is an optimal 
solution of problem Dz(y”, Lo, CL’, K) with so ( S. 

Now, arguing by contradiction, let lim&, tk = 0. Let i(k) be defined such that the 
minimum in (4.9) is attained for i = i(k). Take an infinite subsequence (k E lc} such that 
i* = i(k) and 0 < tk f 1 for all k E Ic. Then, i* E K or i* 9 K for all k E Ic. Hence, 
either one of the following two conditions is satisfied for all k E K: 

gi&(yk + tkrk), yk + tkrk) = 0 if i = i* q! K (4.10) 

or 

ii(yk+tkrk)=O ifi E K. (4.11) 

In dependence of the occurring case we have 

0 = gi(&((yk + tkrk>, yk + tkrk) = gi(&(Yk), Yk) 

+ tk 
( 

4tk) 
Vxgi(G(Yk)~ Yk)vy~~(Yk)rk + vygi(i(Yk)v Ykjrk + 7 

> 

I gi&(Yk), Yk) + vxgi(&(Yk)7 Yk>vy-Gcr(YkP-k +Vy&(%((Y”h YkPk 

4tk) 
+- 

4tk) 
t k 

ssk+- 
t k 

by gi(%x(Yk)v yk> ~0, 1~ tk > 0, i.e., Vxgi(&(yk), yk)V&(yk)rk +Vygi(t,(yk), yk)rk 
+gzOifi=i*#Kor 

0 = ii(yk + tkrk) = ii + tk ($+fq 

4tk) 
>hi(Yk)+$+- 

dtk) 
rk 

2 -Sk + - 
tk 

by Ai > 0, and 1 2 tk > 0, i.e., LJ~+ 9 < 0 if i = i* E K. Both conditions contradict _ 

9 + 0 and rk + so c 0. This proves the Lemma. 0 



240 DEMPE AND SCHMIDT 

It should be noticed that the functions ,?(.), i(.), /;(.) are continuously differentiable on 
[0, tk] provided that the assumptions of the above lemma are satisfied. 

Lemma 4.2. Let the assumptions (Al)-(A7) be satisfied on the set M. Then, for the 
sequence {(xU(yk), yk, rk, dk, Ak, pk, vk, w k , s k, Kk)}k”,, computed by the algorithm for 
fixed cx > 0, the sequence (sk)~=, has zero as the only accumulation point. 

Proof: Arguing by contradiction, lets < 0 be a number such that 

@&(yk;rk)~sk~sand~m~sk=s 
+ (4.14) 

for all sufficiently large k and at least one subsequence of the sequence of points computed 
by the algorithm (which, without loss of generality, can be identified with the sequence 
itself). Now we can consider two cases: 
First let us assume that lhk+Jk > 0. Then 

Qa(yk + tkrk) 5 @,(y”) + eetjsj 5 @,(y”) + es 2 tj. 
j=l j=l 

can be calculated and limk+oo #a(yk + tkrk) = -00, which is an obvious contradiction. 
Secondly, let b,,, tk = 0. Assume without loss of generality, that (tk} itself converges 

to zero. But then we have tk = pjk, k = 1,2, . . . , and lim&., jk = co and at least one 
of the inequalities in Step 3 of the algorithm must be violated by @k-l, i.e., at least one of 
the following inequalities must be true: 

4P,(yk + pj,-‘r’) - @,(yk) 
@k-l > &Sk 

Gj(yk + @-Irk) > 0, i = 1,. . . ,l. 

(4.15) 

(4.16) 

Since k tends to infinity and 1 < co, at least one of the inequalities holds infinitely often. 
Let this be (4.15). Consider the sequence ( (Ak, vk, Kk)}rC, used in the direction finding 

problems Di(y”, Ik, pk, Kk) in the steps of the algorithm. Choose an arbitrary infinite 
subsequence {k E K) such that Kk c K for each k E K. 

As a result of the last lemma, tk cannot converge to zero. Thus, there exists k* such that 
for each k 1 k*, k E K we have pk-’ K rk. But then, 

&Sk < 
aa(yk + pj*-lrk) - @,(yk> 

PA--l 

F(2,(yk + +lrk), yk + +‘rk) - F&(yk), yk) 
= 

@k-l 

= VXF(Z,(yk>, yk)VYi,(yk)rk + VYF(k(yk), yk)rk 

0@-*) < sk + 0(+-l) 
+- - pik-l - @k-l 
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by (4.14), where &(y) is the optimal solution of the problem (4.2). Passing to the limit on 
both sides of this inequality leads to ES < s which contradicts E E’ (0, 1) and s c 0. 

Thusforsomei E {1,...,1}, 

0 < Gi(yk + @-Irk) = Gi(yk) + pj”-lV,Gi(yk)rk + o(pjk-‘) 

5 Gi(yk) f  ph-’ (-Gi tyk) + sk) + o(P”-‘) 

5 phB1 (-Gi (yk) + sk) + o(P”-‘) 

which means 

0(&1) 
-Gi(yk) +sk > -- 

@k-l 

or E&+mGi (yk) 5 limk-,, S’ = s < 0. Thus, Gi(yk + pjk-‘rk) 5 0 for each sufficiently 
large k since pJi-i tends to zero. 

This contradiction to (4.16) completes the proof. 0 
It should be noticed that, if the linear independence constraint qualification with respect 

to x as well as strict complementarity hold for problem (2.1) at y = y’, then the optimal 
multiplier and the set Kk in problem 0: (yk, AR, pk, Kk) are uniquely determined for each 
sufficiently large k. Hence, in this case, Lemma 4.2 gives the idea of a convergence proof 
for the descent algorithm. 

It is a direct consequence of Lemma 4.2 that, as a stopping criterion in Step 5 of the 
descent algorithm, we can take a rule based on the distance of the optimal values of problems 
D,(yk, A, CL, K) from zero for all possible selections of h, p, K. 

4.2. Convergence for variable a! 

Now, we can turn over to state the convergence result for the above algorithm. But, here 
again the possibly discontinuous behaviour of the directional derivative XL (. ; .) causes an 
additional difficulty. Namely, if the optimal values of problems D”,(yk, A’, pk, Kk) tend 
to zero for {(ak, yk, )ik, pk, Kk)}rcl converging to (0, y”, ho, CL’, K’) there is no guarantee 
that the necessary optimality condition of Theorem 3.5 is satisfied even if xh(y’; r) exists 
for each r. Then we only have that @c(y’, A’, CL’, K’) > 0. This difficulty is due-to the 
vacancy of lower semicontinuity of the point-to-set mapping A.(., a). To overcome it 
we introduce the notion of y-active constraints and approximate the optimal solutions of 
problems Dz(y, A, p, K) bysolvingproblems Dt(j, i, ii, K) atperturbedpoints (5, i, I;). 
Let Z,(n, y) := {j : 0 > gj(X, y) 2 -v} for y > 0 sufficiently small. Now, the whole 
descent algorithm can be stated more concretely as: 

Step I. Select y” solving G(y’) 5 0, choose a starting value for (Y, a small E’, a sufficiently 
small y, E E (0, l), a factor 8 E (0, l), a w c 0, and set k := 0. 

Step 2. Choose (Kk, hk, pk) with 

Ck, P”) E EAJ&(yk>, ~‘1 and (j : A! =- 0) _C Kk E Z(x,(yk), yk) 
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satisfying condition 2 of Corollary 3.9, such that (&, rk, uk, uk, sk) is an optimal solution 
for problem Dz(yk, Ak, pk, Kk). 

If sk < w then goto Step 3’. If sk 2 w and not all possible (kk, pk, K”) are tried then 
continue with Step 2. If all (Ak, 1~~) and all Kk tried to be used then set w := w/2. If 
I w 1 c E’ then goto Step 2’ else to Step 2. 

Step 2’. Choose ( Kk, hk, pk) satisfying 

Kk C &Mykh yk) 

and condition 2 of Corollary 3.9 as well as 

such that (dk, rk, uk, mk, sk) is an optimal solution for the problem D,“(y”, hk, pk, Kk). 
If sk < w then goto Step 3’. If sk > w and not all possible (kk, pk, Kk) are tried then 

continue with Step 2’. If all Kk tried to be used then set w := w/2. If lw I < E’ then stop. 
Step 3’. Select the largest number tk in (p, p*, p’, p4, . , .}, where p E (0, l), such that 

On(yk + tkrk) 5 Qa(yk) +.ctksk, and G(yk + tkrk) 5 0. If tk c E’ then drop the actual 
set Kk and continue searching for a new set Kk in Step 2’. 

Step 4. Set y k+l := yk + tkrk, k := k + 1. 
Step 5’. If a! > E’ then o := Bcz, x,(yk) E \u”(yk), goto Step 2, else verify IskI _( E’. If 

true then goto Step 2’, else to Step 2. 

A new variable w for the control of access to Step 2 or 2’ is additionally included. Its 
value is compared with s at the end of Steps 2 and 2’. 

The value E’ must be so small that according to Lemma 4.1 the exit in Step 3’ can only 
be used if a set K is selected in the Step 2’ such that the problem Dt(y”, ;Ik, pk, K) has a 
negative optimal value, but the corresponding direction r is a direction of ascent. This is 
obviously possible, if K is nowhere a set of active constraints locally around yk. 

The choice of y seems to be a difficult task. But, on the first hand, there is a pos- 
itive y” such that r,(x(y’), y”> = Z(x(y’), y”) for each 0 < y < y”. Moreover, the set 
I (X (y”), y”) \ I (X (yk), yk) should contain only a few elements (one or two) for sufficiently 
large k for most of the instances. On the one hand, searching for a direction of descent by 
use of the Step 2’ of the algorithm can result in a drastic increase of the numerical effort at 
least if y is too large. Thus, we suggest to use the Step 2’ only in the case when the values of 
@&(yk; rk) and o are sufficiently small and then only for small y. On the other hand, if the 
Step 2’ successfully terminates with a useful direction r and with a set K 9 I(x,(yk), yk), 
then the calculated descent in the objective function value can be expected to be much larger 
than during the last iterations. 

For proving the convergence of the descent algorithm to a stationary point y” of problem 
(P) we need the additional assumption 

(A8) For each (h, II, d, X) satisfying 

x E ‘P”(yo>, (A, PCL) E Aob, Y’>, d # 0, 
Vxgi (x, y”)d = 0, for i satisfying hi > 0, 

V&(x, y”)d = 0, for i = 1, . . . , q, 
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we have 

dTVzX L&, y”, h, p)d > 0. 

This assumption guarantees that problems (1.1) and (2.1) have unique optimal solutions 
locally around y”. Hence, convergence of y to y” and (Y to zero from above imply the 
convergence of xcl(y) to x(y’) and that the optimal solutions of the problems (1.1) and (1.4) 
coincide. 

Theorem 4.3. Let the assumptions (Al)-(A7) be satisfted for problem (P) on M. Take 
y  > 0 suficiently small and #xed. Let the sequence ((yk, hk, pk, d’, rk, sk, tk, vk, wk, 
Kk)}FC1 be computed by the descent algorithm where ak \ 0. Thus if y” is an accumulation 
point of (yk}& satisfying the additional assumption (A8), then (xo(y”), y”) is a stationary 

point of problem (P). 

Proof: The proof will be divided into three parts: In the first one we show that, if (xa(y’), y”) 
is not stationary then a problem Dzk (yk, Ak, pk, K) with negative optimal value sk is possible 
to construct for k sufficiently large. In the second part it will be derived that a sufficient de- 
crease in the objective function value can be obtained by use of these selections (hk, pk, K). 
The third part proves that the fixed set K can infinitely often be taken. 

Assume that (xe(y”), y”) is not a stationary point of problem (P). By the assumptions 
and according to Lemma 3.1, \u”(yo) reduces to a singleton and the solution function 
x0(.) is directionally differentiable at y = y”. Thus, by Corollary 3.9, there exist (A’, PO) E 
EAo(xo(yo), y”) and aset K having the appropriate properties such that the optimal function 
value of problem D,“(y”, Lo, PO, K) is less than zero. Let, without loss of generality, the 
set K with this property be unique (else, choose a suitable subsequence, which is a choice 
of an infinite number of elements out of finitely many possibilities, in what follows). Due 
to y > 0 we have K c Z(xa(y’), y”) c 1, &(yk), yk) for sufficiently large k. Moreover, 
by [ 1, Theorem 5.3.2.1, ( (lk, pk)}, computed by the algorithm in the Step 2’, converges to 
(A’, CL’). Thus, the optimal function value of problem D$ (yk, Ak, t.~~, K) also converges 
to the optimal function value of problem Dg(y’, ho, NO, K), i.e., it will be less than zero 
for sufficiently large k. 

Let (dk, rk, vk, tik, sk) be an optimal solution of Dft(yk, Ak, pk, K). Let r” be an accu- 
mulation point of the bounded sequence (rk}rzl. Analogously to the proof of Lemma 4.1, 

(V,&(y’)r’, V,&(y”)ro, V,,&(y”)ro, so) isanaccumulationpointof ((dk, vk, gk, sk)}& 

with (V&(y”)ro, r”, V&yO)rO, VYl;c(yo)rO, so) being an optimal solution of DE(y”, Lo, 
PO, K), since assumption (A8) is satisfied at y = y”. But then, due to the proof of Lemma 
4.1, there exists to > 0 such that 

gi(fO(Y” •k tore>, y” -I- tore) < 0, i $?’ K, ii(y” + tore) > 0, i E K. (4.17) 

Hence, the optimal solution i,(y) of the enlarged problem (4.2) is also optimal for (2.1) 
for each y in a sufficiently small neighbourhood of y = y” + tore and sufficiently small 
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OL > 0. Moreover, by Lemma 4.2, to > 0 can be chosen such that 

@o(yO + tore) = @o(yO> + t”aqyo + .$-O; rO) < Q,o(yO) + to&So (4.18) 

by @b(y” + tr”; r’) = V,F(&(y’ + tr’), y” + ~r”)V&(yo + er”)ro + V,F(Po(yo + 
tr’), y” + &Yr”)ro with $ E (0, to) tending to so for f” -+ 0, and 

Gi(y” + tore) = Gi(yO) + tOV,,Gi(y* + tr”)ro < 0 (4.19) 

for all i , Hence, by continuity of x. (.), there exists an open neighbourhood U of (y”, r”, 0) 
such that, for each (y, r, cz) E U, a! z 0, the inequalities (4.17)-(4.19) are satisfied as well. 

Now, by lim yk = y”. lim CZ& = 0 and r” being an accumulation point of {r”]& we have 
(yk, rk, a!‘) E II for sufficiently large k. Thus, the point jjk+’ := yk + fork will be a suitable 
choice for the next iteration point for sufficiently large k, i.e., the selection of a step-size in 
Step 3’ of the modified algorithm is indeed possible. Hence we come up to the following 
conclusion: If the set K is taken in the direction finding problem, then the algorithm selects 
a step-size tk > to :, 0 and a new point yk+’ = yk + tkrk is computed for which 

Qor (yk + tkrk) 5 @,t (yk) + tk.csk 

holds. Moreover, by {u”}& tending to zero and liGlr-, x,(y’ + tkrk) = xo(yk + tkrk) we 
have 

(Qlak(yk + tkrk) - Q,t+l(yk + tkrk)( 

= 1 F(x,r(yk + tkrk), yk + tkrk) - F(r &t+l (yk + tkrk), yk + tkrk)( 5 - tkssk/2 

by sk < 0 for sufficiently large k. Hence 

Q,r+l (yk + tkrk) 5 @,t(yk) + tkssk/2 (4.20) 

for sufficiently large k. 
Now, since the optimal value of the direction finding problems Dik (yk, A’, F&, Kk) with 

Kk c /(x,,(yk), yk) and {j : hj > 0) E Kk, (A, ,x) E Eh,r(x,n(yk), yk) converge to 
zero for k --f 00, the modified direction finding problem D$(yk, Ak, pk, K) will be used 
for computing the direction of descent infinitely often in the algorithm. It can be shown 
in full analogy to the proof of Lemma 4.1 that the sequence It”} of step-sizes taken in 
these iterations cannot converge to zero since the optimal values sk are bounded away from 
zero. But then, Q,~+I (yk+‘) converges to minus infinity by (4.20) which cannot be true by 
Remark 2.4. ci 

5. Remarks about the inclusion of G&y) instead of G(y) in the upper level 

The more general problem (PG) consists in the folIowing: 
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where 

(P(Y) = mjn{Fk Y> I G(x, Y> i 0, x E WY)) 

1. The next examples will be used to show the more complicated nature of this kind of 
problems: 

Example 1. 

x2 + y + min 
Y 

-x-y50 

where x solves 

x --f min 
x 

XL0 

Its optimal solution x = y = 0 differs from the optimal solution of the problem where 
the upper level constraints are shifted into the lower level. A shift of x 2 0 leads to 
unsolvability. For this reason G(x, y) 5 0 are really additional constraints which can 
not be shifted. 

2. The problem (PG) can be embedded in a class of multilevel programming problems 
(similar to [2]). In this case a distinction to which minima the upper-level constraints 
belong is necessary. Primary this is a decision depending on the model, but the place of 
the constraints may also change the solvability and the number of applicable mathemat- 
ical methods. If the constraints belong to min, then the feasibility of the choice of y is 
checked after computing the “answer” n(y) on y by solving the first minimization prob- 
lem. Otherwise, the feasible set of the lower level may become smaller. - Although 
the practice is the most important influence to this decision the existing programming 
techniques are easier to apply to the constrained minimization over x . 

3. Considering such more complicated problems the difficulty of the choice of a starting 
point arises. Therefore we propose to solve 

which can be done by the suggested algorithm because every pair (y, z) with W(y) # 0 
and z = 0 is a starting point of this new two-level problem. 

Another possibility is a penalty approach [ 111 which seems to be less adapted to the 
most applications because of the peculiar optimality definition which was necessary in 
[ 1 l] to prove the convergence of their algorithm. In comparison with the most other 
authors [ 15, 18, 191 their optimal solution is only a feasible one. 



246 DEMPE AND SCHMIDT 

Now, problem (PG) is shown as a sequence of problems (PG),: 

(P,(Y) + min 
Y  

where 

G-t(Y) = ma(Y), Y) 

and 

X,(Y) E ArgmW(x, Y> + Q+‘(x, y) I W, Y) 5 0, x E M(Y)). 

4. But an additional difficulty arises: Changing cx to a smaller one it may happen that the 
new feasible set of the two-level problem becomes empty. 

The influence of this phenomenon can be partly avoided by a supplementary decrease 
of cx or a small change of y. The full extent of this difficulty shows the following 
example: 

Example 2. 

(x - 1)2 + y2 + mj 

where x solves 

(x - 1)2 + y2 + m;‘” 

x-y50 

0 5 y I 0.75 

where x also solves 

y + m;‘” 

05x52 

In the case a! = 0 the feasible set of the second minimization is equal to [0, y] in 
contrast to its emptiness whenever a! # 0. 

Appendix 

Proof of Theorem 2.1: 

1. Upper semicontinuity of P(., .) follows by straightforward application of Theorems 
3.1.1., 3.1.5., and4.3.3. of [l]. 

2. Inequality (2.4) is implied by x(y, o) E M(y). Inequality (2.3) follows since otherwise 
at least one point in q(y) would give a better solution for problem (2.1) than x (y , a). 

3. Part 3 is a simple consequence of Part 2 and upper semicontinuity of P(y, .). 0 
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Proof of Theorem 2.2: 

1. If the optimal value function Q (.) defined by @ (y ) = F(x (y ) , y) with x (y ) given by ( 1.4) 
is lower semicontinuous on Y := {y 13 x such that (x, y) E M} in the sense that V y  E Y 

lim WY’) 2 WY), ---- 
d+y 

then (P) has an optimal solution, since Y is bounded by (A3) and Q(y) > -oc on Y 
with Q(j) < 00 for at least one y E Y by (Al) and (A3). 

2. Now, we show that m(e) is lower semicontinuous on Y. Let y” E Y be arbitrarily 
fixed. Then, by (Al)-(A4), and Theorems 3.1.1., 3.1.5., and 4.3.3. of [l] q(e) is upper 
semicontinuous at y”. Thus, by (Al) and Theorem 4.2.2. in [l], Q(.) is indeed lower 
semicontinuous at y”. q 

Proof of Lemma 3.6: Let r E T,(h”, PO). We have to show the existence of an open 
neighbourhood U(r) of r with U(r) E T,(L’, PO). Arguing by contradiction, let there 
exist a sequence {r“}& converging to r with rk @ T,(A’, PO) for each k. But then, 
since the linear programming problem (3.9) has an optimal solution for each k, there 
exist vertices (kk, pk) E S,(y’; rk) with (lo, p”) # (hk, pk) for each k. Fix an infinite 
subsequence (k E K) to guarantee that (Ai”, pk) = @I, II’) for each k E K. But then, 
(hi, pi) E S,(y”; r) by upper semicontinuity of the solution set mapping of parametric 
linear programming problems with fixed feasible sets [ 1, Theorem 5.2.2.1. This contradiction 
proves the openness of T,(A’, p’). 

Clearly, if r E T,(h’, ,u’), then tr E T,(A’, ,u”) for f > 0. 
Let r’, r” E T,(h’, p”). Then 

V,Lt-dy), Y, J-O. P”)r > V,LMy), y, L p)r (A-1) 

for each (k, p) E E&(x,(y), y) \ {(A”, PO)} for r = r’, r = r” implies the validity of 
(A.l) also for r = 6r’ + (1 - 6)r” and 6 E [0, 11. 0 

Proof of Lemma 3.7: Let r’ be an interior point in T,” (A’, p”) and let there exist yi, i E 
K, 6j, j = 1, . . . , 4, Ci~K v: + C~=l6~ > 0 such that 

C YiVxgi(&(Yo)3 Y”) + ~JjVxhj(x.CY”~9 Y”) = 0. 64.2) 
icK j=l 

Then, for each feasible point (d, r, u, o, s) of D,(y”, Lo, pot K) with r E TaK(ko, p”) we 
have by using (3.6) and (3.7), 

C Kvxgi(&(Yo)9 Y”)d + ~SjV,hjtX.(Y”)9 Y”)d 
ieK j=l 

+ C Yivy&Ti(Xa(Yo)9 y”)r + ~~jVyhj(&(y"), y”)r 
ieK j=l 

4 

= C Evygi(xa(Yo), Y”)r + C6jVyhj(&(y"), y”)r = 0. 
icK j=l 
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Since this equation is valid for each r in some neighbourhood of r’, we have 

C Yivygi(&(Yo), Y”) + ~6jVyhj(&CYo), Y”) = 0. 
icK j=l 

Equations (A.2) and (A.3) together contradict (A6), which proves the lemma. 

04.3) 

0 

Proof of Lemma 3.8: By definition, 

who, PO) 2 u T,K(hO, PO>. 
KEM 

Due to Lemma 3.6 it is sufficient to show 

Tut~“, r-Lo1 E u cl T,K(AO, PO). 
KEM 

Let r E 7”(A”, PO). We show the existence of a set K E M such that r E cl Z”K(ko, FO). 
Using this inclusion, we obtain r E cl T,K()cO, p”) c cl UKEM 7”()L”, p”) for each r E 
Z”(A’, CL’), i.e., the lemma is valid. Arguing by contradiction, let there be no set K E M 
with the desired property. Then, 

r c T,(h”, CL’) \ U cl TaK(ho, PO) 
KEM 

and this set is open due to Lemma 3.6 and finiteness of M. Hence, there exists an open 
neighbourhood U(r) of r with 

U(r) C TatAo, PO) \ U ~1 T,K()cO, p”) 
KEM 

C u cl T,“(h’, p”) c U aff TaK(ho, p’), 
KeN\M KEN\M 

where affA denotes the affine hull of a set A, since (A U B) \ B E A for arbitrary sets A 
and B. But, the last inclusion cannot be valid since an open set cannot be contained in the 
union of a finite number of lower-dimensional subspaces. 0 
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Note 

1. This and some other proofs can be found in the Appendix. 
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