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The main object of this paper is to prove that the boundary value problem 

f " ' +  . . . . .  + c  " + ' 1  ~,2. 0" , J,, (J g) ~. - J  )= 

g +g ( f+cg)+c( l_g ,2 )=Oj  (1) 

f (0)  = f ' ( 0 )  = g (0) = g'(0)---- 0, (2) 

f ' (oo)  = g' (oo) = 1 (3) 

has at least one solution for any c>0 .  We also consider the asymptotic behavior 
of solutions as the independent variable becomes large. These equations arise in 
the theory of three dimensional boundary layers and describe incompressible 
flow near a stagnation point. They were derived by HOWARTH in 1951 and their 
significance is discussed in his article [6]. Negative values of c are also of interest 
physically, but, in common with similar problems which have been treated before, 
this case seems more difficult than the case c > 0. In fact DAVEY has shown in [2] 
that the problem has no solution for c < -  1; fortunately, however, physically 
meaningful situations can always be reduced to the case c > - 1. 

References [13], [8], [9], [2], [7] and [10] contain earlier theoretical work in 
the same general area as the present paper. The first four of these references deal 
with the well-known Falkner-Skan equation 

f " ' +  " +2  1 , 2  f f ( - f  ) - -0 ,  (4) 

a full discussion of which appears in [3]. Note that when c =0  equations (1) reduce 
to (4) plus an easily solved equation for g. It follows from known results about 
(4) that the problem (1 ) - (3 )  therefore has a solution when c =0;  hence we shall 
consider only c > 0. 

The proof of our result will be based on a discussion of the topology of the 
space of initial conditions. It will be clear that the method applies to more general 
problems, but for simplicity we shall restrict our discussion to the problem (1)-(3) .  

We begin with several topological propositions concerning the Euclidean 
plane E 2. 

Lemma 1 [11, pg. 73]. Let ~ be a connected subset of E 2 which intersects both 
U andE 2 -  U, where U is a subset of E 2. Then y intersects a U, theboundary of U. 
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The next lemma may be found in a dual form involving closed sets in reference 
[11, pg. 137]. The present form is an obvious consequence. 

Lemma 2. Let A and B be open subsets of E 2 with components A* and B* such 
that A* riB* is disconnected. Then A u B ~e E 2. 

Lemma 3. Let S 1 , $2, T1, T2 be open subsets of E 2, with $1 c~ T 1 and $2 n T2 
empty. Suppose there are components Q1, Q2, R1, R2 of S1, Sz, T1, Tz respectively, 
such that Q1 c~ Q2, Q1 c~ R2, Q2 c~ R1, and R 1 • R2 are all non-empty. Then 
S1uS2uT1uT24=E 2. 

Proof. In Lemma 2, let A =S1 u $2 and B =T1 u T2. Let A* be the component 
of A containing Q1 u Q2 and let B* be the component of B containing R1 u R2. 
The hypotheses imply that Qlc~R2 and Q2nR1 are non-empty and disjoint; 
thus to apply Lemma 2 it is sufficient to show that at least one of these sets is a 
union of components of A* c~ B* (in fact, they both are). 

Suppose that Q1 n R 2 is not such a union. Then there is a component f2 of 
A * n B *  which intersects both QinR2  and E2-(QlC~R2). By Lemma 1, f2 
intersects a(Q1 c~R2) and so f2 intersects aQx or OR2. If, for example, there is a 
point pel2c~OQ1, then we have first of all pef2=~peA*=c, peS lWS2 and 
p e f2 =~p e B* =~p e Ti w T 2 . Then secondly we have also p e ~ Qi =~p • S1 =~p e S 2 

pq~T2 =~peTi. But peTi  c~ dQ1 is impossible because T 1 and Q1 are disjoint open 
sets. Other cases being handled similarly, this completes the proof. 

Remark. These results are also true in higher dimensions. In [4] we used them 
to discuss the existence of solutions which are bounded on ( - o o ,  oo) for systems 
of differential equations, and it seems likely that other problems can be found 
for which a method based on Lemma 3 would be useful. (The proof of the above 
lemma which we gave in [4] was incomplete.) 

Lemma 4 [11, pg. 123]. Let p and q be points of E 2 which are separated by a 
closed set K (that is, p and q lie in distinct components of E 2 - K ) .  Then p and q 
are separated by some component of K. 

In order to prove the existence of a solution to (1) - (3) ,  consider for each 
pair of real numbers (~, fl) the solution f ,  g of (1), (2) such t h a t f "  (0) = ~, g"(0) = ft. 
We now define sets S 1 , $2, TI,  T2 as follows: 

S 1 = {(~, fl) [ there exists an x + > 0 such t h a t f '  (x~) > 1, a n d f '  (x) >= 0 for 0 < x_< x ~ } 

$2 = {(~, fl) I there exists an x + > 0 such that g' (x~-) > 1, and g' (x) >__ 0 for 0 _< x _ x~- } 

T1 = {(~, fl) [ there exists an x i- > 0 such t h a t f '  (x 7) < 0, a n d f '  (x) < 1 for 0 -< x _< x ~- } 

T2 = {(ct, fl) [ there exists an x 2 > 0 such that g' (x2) < 0, and g' (x) < 1 for 0 _< x _< x2 }. 

Clearly $1 c~ T 1 and $2 c~ T2 are empty. 

Lemma 5. The sets S1, $2,1"1, T2 are open. 

(The precise definitions of $1, $2, T1 and T2, and the use of this lemma were 
suggested to the author by conversations with Professor J. SnRgIN and Dr. J. B. 
MCLEOD about their work in this area. Also, we were introduced to this problem 
as a result of a series of lectures by Professor SERRIN and the ensuing notes [12]). 
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Proof of Ikmma S. Equations (1) can be written in the form 

where 

I f "  en(X)] ' = -- (1 - f '  2) en(X) 

[g" en(~)] ' = - c(1 - g' 2) em~) 

x 

n(x) = ~ ( f(s) + c g(s)) ds . 
0 

(5) 

(6) 

We first show T1 and T2 are open. Let (cq,/31) be a point in T1 and let f l ,  gl 
be the corresponding solution of (1)-(2).  We shall show that xi- in the definition 
of 7"1 can be chosen so thatf~ (x)< 1 on (0, xi-]. This will imply that some neigh- 
borhood of (~1,/31) lies in TI, because solutions of (1) are continuous with 
respect to initial conditions. Suppose xi- cannot be chosen as described. Then there 
must exist a yl  > 0 with f~ (Yl)= 1, f~ (y )<0  in a neighborhood of Yl. But then 

f'l'(yl)=O, and by the uniqueness of solutions of (1) we must have f ~ ( x ) = l ,  
contradicting (2). Thus T 1 is open, and similarly, 7"2 is open. 

To prove that $1 is open let (0~2,/32) be a point in $1 and note that (1) implies 
0r 2 >0. Let f2 ,  g2 be the corresponding solution of (1)-(2). We shall show that 
the point x + in the definition of $1 can be chosen so t ha t f~ (x )>0  on (0, x+]. 
This will imply that a neighborhood of (~2,/32) lies in $1, again because of con- 
tinuity with respect to initial conditions. 

Suppose x + cannot be chosen as described. Then there must exist a value 
y 2 > 0  withf~(y2)=O,f~'(y2)=O, and O<f~(x)< 1 for x in [0, Y2]. Alsof~' must 
have at least two zeros in [0, Y2]. Just as in the proof that T1 is open, it must in 
fact be true that 

0 < f ~ ( x ) <  1 for x in [0, Y2]. (7) 

From (5) and (7) we see that [ f " e ~ ] ' < 0  on [0, Y2]" Thereforef  ' 'en can have at 
most one zero on [0, Y2] which gives a contradiction. Therefore $1, and similarly 
82, are open. 

It is apparent that the half planes ~<0  and f l<0  are subsets of T1 and T2 
respectively. Let R1 and R2 be the components of T1 and /'2 containing these 
half planes so that, in particular RI c~R2 is non-empty. The definitions of Q1 
and Q2 will depend on the next lemma. 

Lemma 6. There are continuous functions M(.) and N(.) defined on [0, o0) 
such that or implies(s, fl)eS1, while f l>N(l~l)  implies (~, fl)eS2. 

Proof. Integrating the second equation of (1) and using (2) gives 

x x 

g"(x) = / 3 -  Sg"(s)(f(s)+cg(s))ds-e~(1-g'(s)2)ds 
0 0 

x 

=/3--cx--g'(x)(f(x)+cg(x))+ S(f'(s) g'(s)+ 2cg'(s)2)ds. 
0 

(8) 
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For a given (~, fl) suppose 6 > 0 is chosen so that f '  (x) 2 < 1, g' (x) 2 < 1 on [0, 6]. 
Then on this interval ]f(x)l<x, Ig(x)l<x and from (8) - l f l l - ( 2 c + 2 ) x <  
g"(x)~_lfll +(3c + 2)x. 

Now for any fl let 6 =6p be the positive root of 

6 2 
(3c + 2)--~--+1fl16-1. 

Iff ' (s)2 < 1, g'(s)2 < 1 on [0, x], and O<x<6 a, we find 

~a 

Ig'(x)l~ SIg"(s)l ds<= S (l~l-4-(3c+2)s)ds=l. 
0 0 

It follows that Ig'(x)l < 1 and [g(x)l <x ,  at least as long as f ' (x)  2 < 1 and 0 < x <  6p. 
Integrating the first equation of (1) gives 

x 

f "  (x) = o~--f' (x) ( f (x) + c g (x))-- x + I (2f '(s)  2 + c f '  (s) g' (s)) d s 
0 

= > ~ - ( 2 + 2 c )  x 

Therefore, for any ~>0,  we have f"(x)>~r and f'(x)>=~x/2 at least until 
x=~t/(4c+4) or x=6~ or f ' ( x ) > l .  Hence if we set M(lfll)=2]/2-T2-~+2/6p, 
then ~>M(lf l l )  implies (~, fl)zS1. The function N(I ~1) can be defined similarly. 

Now define Q1 to be the component of S~ containing the set ~>M(lp[) ,  
and define Q2 to be the component of $2 containing the set fl>N([ ~ I). In order 
to complete the proof of the theorem we require the following lemma. 

Lemma 7. There exists a number m such that if cr and ~ > m  then (~, ~)~ 
S~ uS2. 

Proof. Suppose cr > 0,/~ > 0 and f '  (x) 2 < 1, g' (x) z < 1 on some interval [0, xa ]. 
Then on this interval we have If(x)] <x ,  Ig(x)l <x ,  and 

f "  (x)>=ot--(2 + 2c) x 

f'(x)>=otx--(2 + 2c) x2[2 

g " ( x ) > ~ - - ( 2 + 2 c ) x  

g'(x)>=~ x-(2 + 2c) x2/2. 

Therefore, for ~t and fl sufficiently large at least one of the values f '  (x), g' (x) 
must exceed 1 before becoming negative. 

Proof of the Main Result. From Lemma 6 it follows that QI c~ R2 and Q2 n R1 
are non-empty and, as we remarked above, R1 n R2 is also non-empty. If the 
same is true of Q1 c~ Q2, then Lemma 3 shows that there is a point (~, fl) in the 
complement of V=SI  u $2 u 7"1 w T2. Suppose, on the other hand, that Q1 c~ Q2 
is empty. Then let W denote the quadrant ~>m,  f l>m. 
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Since Q1 and Q2 are disjoint, any point p in Q2 is separated from any point 
q in Ql by the boundary BQ2 of Q2. By Lemma 4 some component 7 of BQ2 
separates p from q. Also 7 can be chosen independently of p and q because all 
points in the connected open set Q2 lie in the same component of the complement 
of 7, and the same holds for all points of Q1. 

Since Q2 is unbounded 7 must also be unbounded. Furthermore, 7 must 
intersect both W and R 1 . Letting Px be a point on 7 n W we see from Lemma 7 
that Pl eS1. If S* is the component of $1 containing Pl ,  then S* n R 1 is empty, 
since $1 nR1 is empty. It follows that y intersects both S* and E2-S~; hence by 
Lemma 1 7 intersects tgS*. A point p2 in 7r igS* lies in t~S1 nt~S2, and because 
T1 n S 1 and T2 n S 2 are empty, P2 ~ V. 

Thus, in any case there is at least one point (~, fl)~ V. It remains to show that 
if f ,  g is the corresponding solution of (1), t he n f '  ( ~ ) = g ' ( ~ ) =  1. 

From the definitions of $I ,  $2, Tz, and T2 we see that 0 < f ' ( x ) < l  and 
O<g'(x)< 1, as long asf (x)  and g(x) exist. It easily follows from (1) t h a t f  and g 
can be extended to [0, 00). From (5)we conclude t h a t f "  and g"  are eventually of 
one sign; hence f '  and g' are eventually monotone. Let o~ 1 = limf'(x)=f'(oo), 

x--+ o9 

o92=g'(~).  Define q~ and ~b byf'(x)=ogt+q~(x), g'(x)=o92+~k(x). Substituting 
these in (1) and integrating the first equation of (1) yields 

x 

~p' (x) - ~0' (0) + q~ (x) (o91 + o92 c) x + q~ (x) j" (~ (u) + c ~k (u)) d u 
0 

x 

+(1 -o9~) x -  j" tp (s) (3 to I + 092 c+  2q~(s)+ c ~k(s)) ds = 0 .  
0 

The conditions ~p(~)=~k(~)=0  show that tp'(x)=(1-og~)x+o(x) as x~oo .  
Since 0<  o91 < 1 we must have o9, = 1, and similarly o92 = 1, completing the proof. 

We finish with a few remarks about the behavior of solutions of (1)-(3). 
A physically meaningful solution f ,  g must satisfy f '  >0,  g' >0,  and it is clear 
that these conditions hold for the solution obtained in our proof. Using (5) we 
can show further that 0 < f ' <  1, 0 < g ' <  1 , f " > 0 ,  g " > 0 , f ' " < 0 ,  g'"<O on (0, ~) .  

The asymptotic behavior o f f ,  g is more complicated. We are interested in the 
rates at which f ' ~  1, g'~ I. Fortunately the main part of the necessary work can 

8 A r c h .  R a t i o n a l  M e c h .  A n a l . ,  V o l .  33 
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be carried over f rom the discussion of the Falkner-Skan equat ion in [3], (see 
also [1]). We shall outline the procedure briefly; the reader is referred to [3, 
pgs. 534, 536] for  the details. 

Letting q~(x)=f' ( x ) -  l, ~b(x)=g' ( x ) -  l, and u(x)=f(x)+cg(x),  it follows 
f rom (1) tha t  

q / ' + u  q r  + f ' )  ~a = 0  

r + u ~ , ' - c O  + g') ~ ,=o  . 

Eliminating the middle terms in these equations by setting 

we obtain  

-~o I u (s) as ~ f u (s) as 
r (x) = e q~ (x),  T(x)  = e ~ O (x),  

~ " - - q l  ~ = 0 ,  

where ql = 1 - I f '  + �88  2 + �89 and q2 =c(1  +g ' )W�88  2 -1- �89 We know f '  ~ 1, g ' ~  1, 
u' ~ 1 + c, and by carrying out  the procedure in [3] o n f  and g in parallel we obtain 

and 

2 
- r ~ a 1 x -  1 - T - ~  e - ~  (1 +c)  x 2 - a 2  x 1 

f" (x) ,~ ( I + c) x (I -f' (x)) 

2 c  

t - -  X 2 - -  b 2  1 - g  (x)~ba x 1-T'~Ce-�89 

g"  (x) ,-, ( 1 + c) x (1 -- g '  (x)) 

for  some constants a l ,  a2, b l ,  bz. 
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