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O. Introduction 

The investigation of physical sys tems- in  particular in hydrodynamics-of ten 
leads to the study of bifurcations of a vector field X or of a diffeomorphismf on 
a linear functional space E. Let the physical system be invariant under a group 
G. We assume that E is a Banach space, that G acts linearly and isometrically 
on E, and that X or f is equivariant with respect to this action. It is then an im- 
portant practical problem to see how the equivariance affects the bifurcations. 
In the present paper we study the bifurcations of a fixed point located at the 
origin of E. The emphasis is on finding explicit procedures to deal with given 
group representations*. The problem is first reduced to a finite dimensional one 
by the use of center manifold theory (Section 1). A further basic simplification is 
generically possible and is achieved by putting X or f in normal form (Section 2). 
By studying an auxiliary polynomial vector field one determines invariant mani- 
folds for the original X or f (Section 3). In simple cases this suffices to give a 
complete picture of the bifurcation. Finally, several examples are examined (Sec- 
tion 4). 

We discuss now a remarkable feature emerging from the examples. For 
definiteness, let X~ be an equivariant vector field depending on the real bifurcation 
parameter #. We assume that the origin 0 of E is an attracting critical point of 
X~ for # < 0 and that it loses its attracting character for/~ > 0. In general one finds 
that for # > 0  attracting manifolds of critical points or dosed orbits may be 
present. The remarkable thing is that for some group representations the bifur- 
cation generically gives only periodic orbits, and no fixed points. The physical 
interpretation of this is that if a physical system has a certain type of symmetry 
and has a symmetric "stable steady state," loss of stability of this steady state 
will give rise to time-dependent behaviour, not to other steady states. An example 
will show what happens. Suppose our physical system is rotating with constant 
angular velocity and is initially in a rotationally symmetric state. If a bifurcation 
occurs, in which symmetry is lost, time independence will be replaced by time 
periodicity as a consequence of the rotation of the unsymmetric pattern of the 
system. 

* A more general study of equivariant bifurcation theory, without linearity assumptions, 
is given in [3]. 
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In general, notice also that for # < 0  the origin 0 of E is invariant under At  x IR 
(where R correspond to time evolution), but fo r /~>  0 the physical state of the 
system* is invariant only under a subgroup �9 of A t  x IR. For  instance if G={1} 
and an attracting periodic orbit appears for g > 0 ,  �9 is the discrete subgroup of 
IR generated by a period. For  other examples, see 4.4, 4.8, and 4.9. The fact that 
Z # A o x l R  is an example of symmetry breakdown, a phenomenon of general 
occurrence and interest in physics. ** 

1. Use o| Center Manifold Theory 

Let A be a linear representation of the group G in the Banach space E. A C k 
function F: E ~  E is A-equivariant if 

In particular, if k > 1, 
F(Agx)=AgF(x) .  

(DF (0)) Ag = Ag (DF (0)), 

(H) 

(1.2) 

and this is the only restriction on DF(O) due to equivariance. We shall distinguish 
the case where F is considered as a transformation of E (denoted by f )  or a vector 
field (denoted by X). 

We study the bifurcation theory for f or X around the origin 0 of E. We 
thus assume that f=f~, or X=X~, depends smoothly on a real parameter kt and 
that 0 is a fixed point off~, or a critical point of Xu, and we investigate the change 
in the structure of the orbits of f ,  or X~ near 0 as # is varied. This problem is 
basically simplified by the use of center manifold theory, as shown by Theorem 1.1 
(for a map f )  and 1.2 (for a vector field X). 

1.1. Theorem. Let 1 < k <_ t < + 0% let E be a real Banach space with C t norm ***, 
and let A be a linear representation of a group G by isometrics orE. Let (x, k t)~ f ,  (x) 
be a Ck function from E x l R  to E such that, for each I~, f~ is Ct: E ~ E, fu is A 
equivariant, and fu (0) = O. 

We assume that Dfo(0 ) has a finite number of isolated eigenvalues of finite 
multiplicity on the unit circle {z: [z I= 1 ) and that the rest of  the spectrum is disjoint 
from the unit circle. 

Let E ~ be the finite dimensional subspace o r e  corresponding to the totality of  
the eigenvalues of Dfo(O ) which lie on the unit circle. We denote by A ~ the restriction 
of A~ to E ~ and we choose on E ~ a Hilbert norm such that A ~ is an orthogonal 
linear representation. 

Under these conditions there exists in E x R a manifoM V with the following 
properties. 

(a) V is tangent to E ~ x IR at (0, O) and V={0} x J where J is an open interval 
around O. 

(b) V is C k and for each # the intersection of V with E x  {/1} is C z. 

* Described by a point in an attracting invariant manifold bifurcating from 0. 
** For a somewhat related study, see MICHEL [9]. 

*** That is, x~-* IIxH is a C t function on E\{0}. 
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(c) V is invariant under A x 1 and locally invariant* under the map f:  (x, # ) ~  
(f.x, It). 

(d) There is a neighbourhood U of (0, O) in E x IR such that i f  (x, It) is a local 
non-wandering point** (with respect to U), then (x, It)~ V and is a local non- 
wandering point of  f restricted to V. 

(e) There is a chart (V, q~) such that ~o maps V onto a neighbourhood of (0, O) 
in E ~ x IR and 

o (1,3) q~(x, It)=(q~.x, It), q~u(0 =0 ,  ~ouAg=Ag ~o u. 

(f) Let h.=q~uofuo~o~-l. The map (x, i t )~hu(x  ) defined in a neighbourhood 
of (0, O) in E ~  IR is C k. Furthermore, for each It, h. is a C t diffeomorphism 
satisfying 

0 0 hA0)=0. 
First notice that, since E ~ is finite dimensional, the closure of A ~ is a compact  

group F. Let  
(x, y)= S dy <y x, ), y> (1.4) 

F 

where d7 is Haa r  measure on F and ( ,  > any Hilbert  scalar product  on E ~ 
Then (1.4) defines a Hilbert  space scalar product  with respect to which the Ag o 
are orthogonal.  

V is a center manifold for  the map (x, p ) ~  (fu (x), It) at (0, 0). The  existence 
of V follows f rom the work of HmscH, PvcI-I & SHUB [5]. Their  construction can 
be done in a A-invariant manner.  The properties (a), (b), (c), (d) then hold as 
discussed in [12], w Now let C be a closed curve around the eigenvalues of 
Dfo (0) which lie on the unit circle, separating these eigenvalues f rom the rest of 
the spectrum. The opera tor  

1 dz 
P=-2-~i ! z--Dfo(O ) 

is a projection of E onto Eo (see RIESZ & NAGY [11], w and (e) holds with 

~o(x, It) =(Px,  It). 

In particular (1.3) follows f rom (1.2). (f) is a direct consequence of the previous 
results. In particular h~ is a diffeomorphism because Dh~(O) is invertible. 

1.2. Theorem. Let 1 < k <  l< + oo, let E be a real Banaeh space with C t norm, 
and let A be a linear representation of a group G by isometrics of  E. Let (x, It) 
Xu(x) be a Ck funetion from E• IR to E such that, for each It, the vector field X u 
is Ct: E ~  E, X .  is A-equivariant, and X~(O)=O. 

We assume that the Jaeobian operator DX o (0) has a finite number of isolated 
eigenvalues of  finite multiplicity on the imaginary axis {z: R e z = 0 }  and that the 
rest of  the spectrum is disjoint from the imaginary axis. 

* Locally invariant means that there is a neighbourhood U of (0, 0) such that Un  V= 
U n f  V. 

** Let M be a manifold, U~M an open set, and F: U---~M a continuous map (defined on 
U only!). We say that x is a local wandering point if, for every neighbourhood .W" of x, there 
exists an n o such that ,/V'f')Fn,A/'-~O for n>n o. 
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Let E ~ be the finite dimensional subspace of E corresponding to the totality of  
the eigenvalues of DXo (0) which lie on the imaginary axis. We denote by A ~ the 
restriction of Ag to E ~ and we choose on E ~ a Hilbert norm such that A ~ is an 
orthogonal linear representation. 

Under these conditions there exists in E x ]Ra manifoM V with the following 
properties. 

(a) V is tangent to E ~ x IR at (0, O) and V={O} x J, where J is an open interval 
around O. 

(b) V is C k and for each It the intersection of V with Ex{#} is C t. 

(c) V is invariant under A x 1 and tangent to the vector field X : (x, It) ~ (X, (x), 0). 

(d) There is a neighbourhood U of  (0, O) in E x ]R such that i f  (x, It) is a local 
non-wandering point* (with respect to U) , then (x, It)~ V and is a local non-wandering 
point of  X restricted to V. 

(e) There is a chart (V, go) such that go maps V onto a neighbourhood of (0, O) 
in E ~ x IR and 

g0(x, It) = (go~,x, It), go.(0) = 0, gou Ag =A~ gow 

Moreover go is C k and, for each It, go. is C t. 

(f) Let Y. be the vector field on E ~ defined by 

Y.(x) = O gou(go; I x) [X. (go; ' (x))]. 

The function (x, It)}--} Yu(x) defined in a neighbourhood of (0, O) in E ~ 2 1 5  R is C k. 
Furthermore, for each It, Y.  is C l and satisfies 

o o Y. (a z x) = A z Y. (x), Yu (0) = O. 

The proof of this theorem is similar to that of Theorem 1.1. Notice that, 
since go is a linear projection, the appearance of Dgou in the definition of Y. does 
not bring any loss of derivative. 

1.3. Remark on the Condition fj,(0)ffi0 or X~,(0)=0. If A is nondegenerate**, 
then (1.1) implies that F(0)=0.  If A is degenerate, the propertyf~(0)=0 is non- 
generic. Suppose however that Xo is invariant under AG and fo and that 1 r spec- 
trum Dfo(Xo). The implicit function theorem yields then a C k function I t ~  x.  
such that fu (x , )=  x,. By uniqueness, x,  is invariant under AG, and we can apply 
Theorem 1.1 to the map f~ defined by 

f~(x)=ft ,(x + x.)  

(but remember that by assumption 1 ~ spectrum Dfg (0)). 
Similarly, if A is degenerate, the property X . (0 )=0  is non-generic. Suppose 

however that Xo is invariant under Ag, that Xo(xo)=0, and that 0r spectrum 

* Let  M be a mani fo ld ,  U c  M an  open set and  X a C I vector  field on  U. We  say tha t  x is a 
local wander ing  poin t  if, for  every ne i ghbou rhood  LAP Of x, there exists t o such  tha t  

. h / ' n  ~ x t  J I r =  0 for t > t  o 

where ~xt is the time t integral of X. 
** That is, if Agx=x for all gEG, then x=0. 
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DXo(Xo). The implicit function theorem yields a C k function p ~  x~ such that 
X~(x,) =0.  By uniqueness, x~ is invariant under Ag and we can apply Theorem 1.2 
to the vector field X~ defined by 

(x)=X.(x + x.). 

1.4. Remark. We have assumed k < l <  + oo in Theorem 1.1 and Theorem 1.2 
because the center manifold theorem does not hold in the C | or real analytic 
case. If we start with C ~ data, we obtain a C k center manifold V for each finite 
k, but V will in general shrink as k is increased and tend to 0 when k - .  ~ .  

2. Reduction of the Bifurcation Problem by Use of Normal Forms 

Theorem 1.1 (respectively 1.2) reduces the original bifurcation problem to 
a similar one for the diffeomorphism h s (respectively, the vector field Ys), equi- 
variant with respect to the orthogonal representation A ~ in the finite dimensional 
real Hilbert space E ~ This problem is further simplified by discarding non- 
generic possibilities. 

(a) If E ~ is written as a direct sum of subspaces corresponding to the in- 
equivalent irreducible representations of G (over the reals), then A ~ and Dh o (0) 
(respectively D Yo (0)) appear as sums of diagonal blocks. The condition that the 
eigenvalues of Dho(O ) corresponding to different blocks have the same absolute 
value is non-generic (similarly, the condition that the eigenvalues of D Yo (0) have 
the same real part is non-generic). Therefore A ~ is generically a multiple of an 
irreducible representation. 

(b) Let A s denote Dhs(O ) or DYs(O), as the case may be. Generically, for 
small I/~1, either the spectrum of A s consists of a single real eigenvalue 2 s with 
C k- 1 dependence on # (Case I) or the spectrum of -4 s consists of a pair of complex 
conjugate eigenvalues 2s, ~s with C k- ~ dependence on p (Case II). We consider 
these possibilities separately*. 

Case L We notice that the symmetric part S and the antisymmetric part T of 
A~ each commute with A ~ If T=?0, one can find arbitrarily small real e such that 
the spectrum of S + ( I + O T  consists of more than one point (otherwise, since 
T r T = 0 ,  we would have 

det [z - (A s + sT)] = (z - ~,~) d i m E ~  

for small 5, hence identically in ~: this is seen to be false when e--. ~ ) .  Therefore 
in the generic situation we must have T =  0 and S a multiple of 1, that is, Ag = 2 s 1. 
This situation is generic only if the commutant of A ~ consists of just the multiples 
of 1 (that is, if A ~ is irreducible of real type). Notice that 20 = _+ 1 in the case of a 
map, and ~o = 0 in the case of a vector field. 

Case 11. Let A ~ @ 1 be the unitary extension of the representation A ~ to the 
complex Hilbert space E ~  C. The complex subspaces F,  and F~, of E ~ @03, 
corresponding to the points 2~ and ~, of the spectrum of A, @ 1, are invariant 
under A~ 1. In analogy with Case I, let 2~(S+T)  be the restriction of As@ 1 

* In the following discussion we could use the known form of the commutant of an ortho- 
gonal group representation; see H. WEYL [16]. 
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to F~ (S self-adjoint and T anti-self-adjoint). We see that T=0,  S =  1 in the generic 
situation, and the restriction of A ~ | 1 to Fu is irreducible. 

If x z E  ~ let z, be the component along F~ of x@ 1 in the decomposition 
E ~ 1 7 4  Now let z be the orthogonal projection of z, on F=Fo. For 
small I~1 the map E ~  E ~ 1 7 4  C ~ F~ ~ F defined by x ~ z is a linear isomorphism 
(over IR) with C k- 1 dependence on/z. Changing coordinates from x to z, we see 
that A goes over into an irreducible unitary representation A' (the restriction of 
A ~ | 1 to F) and A~ into complex multiplication by 2~. 

Thus, changing coordinates from x to z, the map hu becomes h~,: F ~ F  (or 
the vector field Y~ becomes Y~: F ~  F) and we have 

h'u (z) = 2~ z + higher order (or Y~ (z) = 2, z + higher order) 
! ! - ! v v ,' h', (A' s z) = Ag h. (z) (or Y~ (A~ z) = Ag Y~ (z)). 

We now put h;, or Y~ in normal form* by a change of coordinates z=~k(z'), 

3 

$ ( z ' ) = z ' +  ~ ~km(z') (2.1) 
m = 2  

where ~O,. is a homogeneous polynomial of total degree m in z' and ~'. We suppose 
that k >  3 and, in the case of a map h', make the generic assumption that 2o 3:4:1 
and 2o 4:4:1. In the case of a vector field Y', we assume that 2o 4:0. One can, by 
(2.1), put h' or Y' in the canonical form 

2z'  + P( z ' )+Q(z ' )  

where P is a homogeneous polynomial of degree 2 in z' and 1 in ~.', and Q is 
oa (I zl), Term by term identification in the relations 

~k (2 z' + P (z') + Q (z')) = h' (~, (z')) 
or 

o q,(z') [4 z' + P(z')  + Q(z3]  = 

uniquely determines P and ~,, except for the terms of degree 2 in z and 1 in 
of ~O, which can be chosen to vanish. By uniqueness, the A' invariance is preserved: 

P(a'gz')=a'~P(z') .  

qJ and P are determined by the derivatives up to order 3 of h~, or Y~, and these 
are determined by the derivatives up to order 3 of h. or Y.. Therefore ~ and P 
are C k-a functions of/~. Similarly, the derivatives up to order k of Q(z') with 
respect to z', ~' are determined by the derivatives of h. or Y. and are thus contin- 
uous with respect to/~, z'. In particular there exists a function c(-) independent 
of/~ (for small 1#1) such that c ( . )>0 ,  lim c(u)=0, and 

U - ~ 0  

IQ(z ) l<c( I z l ) l z l  z, IDQ(z) l<c( I z l ) l z l  z. 

Summary: Under the conditions of  Theorem 1.1 or 1.2, the following two cases 
are generic (for Case 1I, assume that k > 3). 

* See SmGva. [14] for the use of normal forms for a simplectic map. The use of normal forms 
in the present context was suggested by JGST d~ ZEHNDER [7]. 
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I. A ~ is irreducible of  real type (its commutant is trivial), and Dhu(O)=2ul 
(respectively D Y e ( 0 ) = 2 , 1 )  where 2~ is real with C k-1 dependence on It and 
20 = + 1 (respectively 20 = 0). 

II. There is a finite dimensional complex Hilbert space F and an irreducible 
unitary representation A' of  G in F with the following properties. 

(e') There is a chart (V, qr such that ~o' maps V onto a neighbourhood of (O, O) 
in F • IR and 

v t v v t q~'(x, I t )=(9,x ,  It), ~%(0) =0, ~o, Ag=ag~o u. 

Moreover, q~' is C k-3 and, for each It, ~o'~ is Ck 

We write the next property separately for maps and for vector fields. 
(f'-map). , , , - l Let h u = q9 u of~ o ~o~ . The function (z, #) ~ h'~ (z) defined in a neigh- 

bourhood of(O, O) in F• IR is C k-3, and the mapping #~h'~ is continuous from IR 
to C k. Furthermore, for each It, h'~ is a C l diffeomorphism satisfying 

r t h'u(A'gz)=A'gh,,(z), hu(z)=2uz + Pu(z)+Ou(z ). 

2. is a complex C k-1 function o f #  such that 12o1=1. P.(z) is a homogeneous 
polynomial of  degree 2 in z and 1 in ~; its coefficients are complex C k-a functions 
of It. There exists a function c( .)  independent of  It such that c(.)>O, lim e(u)=O, 
and .~o 

IQ~(Z) I<c([zI)Izl  3, IDQ~(z) I<c(IzI)Iz[ z, 

(f'-vector field). Let . . . .  1 , -  Y~(z)=Dq~u(~og z) [Xg(~ou lz)]. The function (z, I t )~  
Y~(z) defined in a neighbourhood of  (O,O) in F x l R  is C k-3, and the mapping 
#--* Y~ is continuous from IR to C k. Furthermore, for each It, Y~ is C t and satisfies 

r~(A'gz)=A'g Y;(z), Y;(z)=2,z+Pu(z)+Qu(z) .  

2, is a complex C k-~ function of It such that Re2o=O. Pu(z) is a homogeneous 
polynomial of  degree 2 in z and 1 in ~; its coefficients are complex C k-3 functions 
of It. There exists a function c( . )  independent of  It such that c(.)>=O, limc(u)=O, 
and , ~ o 

IQ~(z)l<=c(Izl)lzl 3, 1OQ~(z)l<=c(Izl)lzl z. 

In specific applications one should, of course, check whether the generic 
assumptions of this section hold. 

3. Invariant Manifolds 

In Case II of Section 2, further analysis of the bifurcation is possible, using 
Theorem 3.1 or 3.2 below, with h'~=~,  Y~=Z~. 

3.1. Theorem. Let ~u: c n ~  ~E" be a C Z diffeomorphism (1 < l<  + oo) depending 
on a real parameter p varying in an interval around 0: 

~u (z) = 2~ z + Pu (z) + Qu (z) (3.1) 

where # ~  2~ is a continuous complex function, and Pu is a homogeneous polynomial 
of  degree 2 in z and 1 in ~ with coefficients continuous in It. We assume that there 



Bifurcations and Symmetry Groups 143 

exists a function c( .)  independent of  It such that c(.)>O, l imc (u )=0 ,  and 
u--+ O 

IOAz)l<=c(Izl) lz l  3, I O Q A z ) l < c ( I z l ) l z l  z. 

We also assume that I ;to I = 1 and I ;t~ [ > 1 for It > O. Let the vector field 

z --, z +;to '  Po(z) (3.2) 

be normally hyperbolic* to the compact invariant manifoM S, and let its f low 
restricted to S be isometric. Suppose also that S is invariant under the transforma- 
tions z ~ ze i` (all real or). 

Then, for small # > 0 ,  there exist OueCl(S,  C") and Su clE" such that 

(a) O r is a diffeomorphism of S onto S,. 

(b) S r is invariant under q)~ and Ou is l-normally hyperbolic to S r. 
(c) Write O , ( z ) = ( l o g  ];tu[) ~'20u(z ). When It~O, 0 u tends in CI(S,  C") to the 

inclusion map 0 o : S ~ C". In particular lim Su = {0}. 

(d) I f  {A} is a group of unitary transformations of (E" such that AO, = OrA 
and A S = S ,  then O r A = A O  r. 

(e) I f  I t ~  �9 r is continuous from ]R to C k, k < l, then It--. 0 r is continuous from 
{it: It > 0} to C k (S, C"). 

We divide the proof  into a number  of steps. 

(I) Let  A : r  ~ C" be a homogeneous  polynomial  of degree 2 in z and 1 in ~. 
Then  the integral of the vector field X(z)= ~ z + A  (z) is 

e (~+~) t  - -  1 
~ x , Z  =e"  z-~ e" A(z )+ ..., ~+~ 

where terms of order  > 5 in [z[ have been omitted. In particular, let 

~ + ~  
X ( z ) = ~ z +  e , + ~ _ l  e - 'P ( z ) .  

Then,  for  sufficiently small a and [ z I < a, we have 

le'z+P(z)-~xzl<C1 Izl 5 

]Oz[e~z+P(z ) -~xZ][< C~ I zt" (3.3) 

where C1 depends on a, but  may be chosen independent  if a, P if ~ + ~ and the 
coefficients of P remain bounded.  

(II) Choosing e '= ; t r ,  - r c < I m a < n ,  P=Pu, we obtain, for  Izl < a ,  

I~p(Z)--~X z 1< Ct( I  Z [) I Z[ 3 

[Dz [ r  l<  c'([ z l) [z 12 (3.4) 

where D,  denotes differentiation with respect to z, ~, c '( .)  is independent  of 
It and decreasing, c ' ( . ) > 0 ,  and l imc ' (u )=0 .  

U-'~0 
�9 See Hmscn, PUOH, & SHUB [4]. If the vector field (3.2) is 1-normally hyperbolic to S, it 

is/-normally hyperbofic for all I < + cx3 because the flow on S is isometric. 
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(III) Let 2. > 1 and make the change of coordinates 

z =(log l J, ul)l/2 ( = ( - ~ )  U2 (. 

The transformation ~ .  becomes 7tu and ~ x  becomes ~ r  where 

(~+ ~)2 e-  ~ 
Y ( O = ~ ( 4  e ' + ~ - I  2 P(O. 

If we write 

(3,4) yields 
~ u ( O = ~ r  ( + R ( O ,  

IR(OI < c'((log 12ul)1/2 0 • log I~t~l x I~l a 

IDcR(()[ < c'((log 12.1)'/20 • log 12.1 • I ( I  2 (3.5) 

for I(I < (log 12. I)- 1/2 a. Choosing b > 0, we shall henceforth assume that I(I < 2 b 
and log [ 2. [ < a2/4b 2. If c" (/0 = c' (2b (log ] 2. [)1/2), (3.5) yields 

IR(OI < c"(/0 • log 12.1 • I(I 3 

]De R (01 < c"(~t) x log [ 2u [ x I ( 12. (3.6) 

Furthermore, using (3.3) and (3.6) we see that there exists an m > 0, independent 
of/~, such that 

I~U.(()l<12.1ml(I, ID~ 7'.(01<12.1 m. (3.7) 

(IV) Iterating 7~ and ~ r ,  we can write 

7.';(() = ~,,r ( +  R.((). 
Then 

R,, +1 ( ( )  = [~ , , r  % (()  - ~ t .  +1) r ( ]  + R .  (~. (()) 
= [ ~ , r  ~rt ( ( )_  ~ , r  (Tj ( ( )_  R (())] + R,(~,(())" (3.8) 

(V) Notice that, by our assumptions on P, 

~ - - ~  
~ . r  ( =  (expn ~ ) ~ . r ' (  (3.9) 

where 
(~x + ~)  2 e - ~  

Y'(0  = (-4 e ,+~_ l  2 P (0 .  

choose /~>0 and C > 0  such that if 12,["<e 2p (that is, \ Therefore, one can 

2 - ~+~  ) 
n _----~---<2B , then 

IDg~,,r~] <C,  I D ~ , r ~ l < C  (3.10) 
for 1( l<2b.  

(VI) Using (3.0, (3.7), (3.8), and (3.10), one verifies that, if # is small enough, 
I ( i<b ,  and [2~l"<e 2~, then 

I g . ( o l < g .  I(I 3 , ID~R.(OI<K.I([ 2 
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provided 
Ka >c"(#) �9 log 12.1, Kk+a~C(l+12.  lm)Kl+Kk[2.[ 3m �9 

If A > 1, A => C(I + 12. ira), we may thus take 

Kn= A c" (p) log 12.1 (1 + 12.13m+ "'"-F 1 2. [ 3m("- x)) 

<Ac"(p)log 12.1" n [2.]3m"<2fle6m# Ac"(lt). 

(VII) We have shown that for Iffl<b, 12.1"<e 2#, and # small, ~ is C 1 
close to ~ . r .  Let 

z(a) (z) =(#+ i~) z +#20'  Po(z) 
cr . 

where - n < a < n .  For small/~ we can find an n such that n ~ a n o  (n+l ) .  

are close to ft. From (3.9) it follows then that, for I~l<b, ~ . r  is Ca close 

to ~zr and ~r is C a close to ~zr if a', a" are suitably chosen. From 
HIRSCH, PUSH, & Snub [4] it then follows that ~ and ~+~  have invariant 
manifolds S' and S", respectively, close to S. But the construction of S' and S" 
(taking the stable and unstable manifolds of S, iterating the action of T~ or 7~ + 
on these, etc.) shows that they are identical. Therefore ~ S ' =  T~+a S', and hence 
S '=  ~. S'. We define S, to be the image of S' when the coordinates are changed 
back from ff to z. The properties listed in the theorem then follow directly from [4]. 

3.2. Theorem. Let Z.: C " ~ C "  be a C t vector field ( 1 < l < + o o )  depending 
on a real parameter # varying in an interval around 0: 

z .  ( z ) :  2. z + p. (z) + Q. (z) 

where ~ ~ 2, is a continuous complex function, and P, is a homogeneous polynomial 
of degree 2 in z and 1 in ~ with coefficients continuous in ~. We assume that there 
exists a function c (.) independent of It such that c (.) > O, lira e (u) = 0, and 

n--* O 

IQAz) l<c( lz l ) l z l  3, ]DQ.(z)l<=c(lzl)lz] a. 

We also assume that Re2o=0 and Re2.>O for p>0. Let the vector field 

z ~  z + Po(z) 

be normally hyperbolic to the compact invariant manifold S, and let its flow restricted 
to S be isometric. Suppose also that S is invariant under the transformations z ~  ze ~ 
(all real a). 

Then, for small p>0,  there exist O.eCt(S ,  ~") and S . c C "  such that 

(a) O. is a diffeomorphism of S onto S.. 
(b) S. is invariant under Z .  and Zu is l-normally hyperbolic to Su. 
(c) Write O.(z)=(Re 2~) x/20.(z). When i ~ O ,  O. tends in CI(S, C ~) to the 

inclusion map 0o: S ~  C". In particular lim S.={0}. 
(d) / f  {A} is a group of  unitary transformations of ~n such that A Z . =  Z . A  

and AS=S ,  then O.A=AOu.  
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(e) l f  # ~  Z,  is continuous from ]R to C k, k<l, then p~Ou is continuous from 
{p: #>0}  to ck(s, r 

One could write a direct proof of this theorem, but it is more convenient to 
apply Theorem 3.1 to the time t integral of Z, :  

e (a~+z~)'- 1 eZ.tp.(z ) + (~.(z). r t z=e~ ' z+  2 . + ~  

Notice that the change of coordinates z ~ ,  used in the proof of Theorem 3.1, 
becomes z=(t Re2u)l/z~ (if t > 0 )  and depends on t. Here we make the choice 
z = (Re 2,) 1/2 ~. 

3.3. Remarks on Theorems 3.1 and 3.2. (a) Under the assumptions of Section 2, 
# ~ 2 ~  is C k-1. Therefore d2/dp is continuous and, for a map, generically, 
dl21/d#*O at ~=0 .  For  a vector field, generically, dRe2/d#4:0 at p = 0 .  Theo- 
rem 3.1 covers the case of a map with dl21/dp>O and Theorem 3.2 the case of a 
vector field with d Re2/dp > 0. Notice that with these assumptions the diameter 
of the invariant manifold S,  tends to zero like ] /~ when p ~ 0. 

The case dl21/dp<O (respectively dRe2/dp<O) is dealt with by changing 
to - # .  

(b) Theorems 3.1 and 3.2 give information on invariant manifolds for p > 0 .  
Similar information for p < 0  is obtained by applying the theorems to ~--~ or 
- Z _  w Since 

- 1  - 1  - 3  - 1  t �9 _u (z) ='~-u z--2_. ~_~, P_u(z) + Q_u(z), 

one has to look for invariant manifolds of 

in the case of a map, and of 

in the case of a vector field. 

(c) From the equation 

dz 
dt =Z--J'o1po(z) 

dz 
dt =z-P~ 

dz z+Po(z)) d z = z _  201 Po (z) resp. ~ = 
dt 

for z one can deduce a system of equations for the polynomials in z, ~ which are 
invariant under the transformations A~ and M,z= zd% This permits the practical 
determination of manifolds S to which the above theorems apply. 

(d) Theorems 3.1 and 3.2 say nothing about the nature of ~ or Z ,  and their 
non-wandering points outside of a small neighbourhood of S~. In simple cases 
one can complete this information and obtain a picture of �9 or Z in a full neigh- 
bourhood of (0, 0 ) ~ E x  IR. 

(e) It would be interesting to prove some differentiability in the dependence 
of Su with respect to #. 
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(f) If we start with C Oo data, Theorems 3.1 and 3.2 will yield a C t invariant 
manifold S t for each finite 1. The set of values of p for which S, is C ~ will, however, 
in general shrink as I increases and tend to ~ when l ~  oo (cf. Remark 1.4). This 
means that, as p increases, S~ becomes less and less differentiable (a late stage 
of "shriveling" of this sort is described in [8]). This loss of differentiability is 
not, however, completely general; it does not occur for the Hopf bifurcation for a 
vector field (see Remark 4.3 below). 

4. Examples 
We assume that the conditions of Theorem 1.1 or 1.2 are satisfied and we 

examine various special cases. 

4.1. The Hopf  Bifurcation for a Vector Field*. Let G={1}, that is, no sym- 
metry is assumed. We suppose that DXo(O ) has exactly two simple complex 
conjugate eigenvalues 20, ~(o=1:0 on the imaginary axis and that dRe2 t /d#>O.  
According to Section 2 we have to study the vector field 

Y~ (z) = 2~ z + a t z 2 ~, + Qt (z) 

for z~C. In view of Theorem 3.2 we consider the differential equation 

dz  
d t  - z + a ~  

and its consequence 

1 d (z~.)=(z~,)+[Reao] (z~.) 2. 
2 dt  

We can take S(x)={0} and S(2)={z: [ z ]2=-Reao}  if Reao<0  (the case p < 0  
is treated similarly). 

For definiteness, suppose that the spectrum of DXt(O) is in {z: Rez<0} 
except for the eigenvalues 2t, )~. Also let Reao<0  (that is, {0} is a "weak at- 
tractor" for Xo). We have the following C l invariant manifolds: S~ 1) ={0} which 
consists of a fixed point, attracting for /~<0,  and S~ (2) which is a one-parameter 
family of attracting closed orbits, present for p > 0. These manifolds contain all 
the non-wandering points of Z ,  with orbit remaining in a neighbourhood 
{z: Izl<a} of 0 in E. This last point follows from an analysis of the (simple) 
structure of orbits of YA outside S(u 1) and S(, 2). In a neighbourhood of St, 1) and S(, z) 
we have the hyperbolicity required by Theorem 3.2. In the rest of the region 
Iz l<(Re2t) l /2b,  we know from the proof of Theorems 3.1 and 3.2 tha tN,  r;  is 
close to Nz(o'). In the region (Re2u) l /2b<z<a,  for sufficiently large b, Y~(z) 
is close to auz 2 ~. We therefore have the situation shown in Figure 1. We summa- 
rize the results obtained. 

4.2. Theorem. Let E be a Banach space with C t norm and X t a vector f ieM 
on E depending on the real parameter p. We assume that (x, kt)~ X , (x )  is C k and 
that, for  each kt, X ,  is C t for 3 > k < I< + oo. The function I~ ~ ~, is assumed to be 
C ~, Xt(r  and the spectrum of  DXt(~t)  is assumed to lie in {2~C: Re2<0} 

* See HoeF [6] and also [10], [1], [2], [15]. 
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4 

4 
Izl 

Fig, 1 

except for two eigenvalues 2~ and ~ such that 

(a) Re2,~=0, Im2u1>0, 
and 

d 
(b) -d~  Re2u>O. 

Under these conditions there are two generic possibilities depending on the sign 
of some coefficient computed from third order derivatives of  X~l. In both cases there 
exist constants a > 0 and 6 > 0 such that X~ is qualitatively described for I x -  ~ [ < a 
and I#-#ll<& Also in both cases the critical point ~ is attracting for #<#1 and 
non-attracting for # > lq. 

(a) In the first case ( i f  ~ is a "weak attractor") there is an attracting C t 
closed orbit for #>#1. Its diameter is " V # - # 1  and its period tends to 2rr/Im 2~, 
as #-~#l .  

(b) In the second case there is a non-attracting C z closed orbit for # < # p  Its 
diameter is N V - - ~ -  # and its period tends to 2~/Im 2~1 as # ~ #1. 

There are no local non-wandering points for I x -  ~ I < a and I # -  #11 < 6 other 
than those indicated above. 

4.3. Remark. In the Hopf bifurcation for a vector field, if X~ is C~~ so is S~. 
Indeed, S t is here a periodic orbit of the vector field, and therefore the image 
of a C ~~ integral curve t -~x ( t )  with dx(t)/dt~=O. HoeF's original proof [6] deals 
with the real analytic case for finite dimensional E. 

4.4. The Case G= IR/Z. Suppose that A is a nondegenerate representation of 
IR/Z = SO (2) in E. Then 0 is a critical point of X~ (see Remark 1.3). The irreducible 
unitary representations of R[Z are of complex (not of real) type; therefore Case I 
of Section 2 does not arise. The eigenvalues of DX~ (0) thus go by complex con- 
jugate pairs, and the results of 4.1 (or 4.2) apply. Let t ~ x ( t )  be the motion on 
the closed orbit S~ 2~ (we assume for definiteness that 0 is a weak attractor for Xo 
and that #>0) .  Then there exists a real continuous function v~ o f #  such that 

x (t) = A (vz t) x (0) (4.1) 
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+ lm2o 
and, when It~O, v~ ~ _ 2nn ' where n is an integer >0. 

To see this notice that the irreducible unitary representation A' of IR[Z in 
F =  t12 is of the form 

A'(u)z=e+2ninUz. 

Since Y' is A' equivariant, the motion on the closed orbit S~ 2) is given by 

y(t)=e2~i~',t y(O) 

where ~% is a real continuous function of It and 

Im2o 
lira o2~ = 
~-.o 21r 

Therefore 

y,,,  

If X~ describes a physical system with rotational invariance, (4.1) means that the 
motion on S~ 2) becomes time-independent if observed in a coordinate frame 
rotating with a suitable constant angular velocity. 

4.5. The Hopf Bifurcation for a map*. The situation is similar to that of a 
vector field. Again we let G={1}, that is, we assume no symmetry. We suppose 
that Dfo(O) has exactly two simple complex conjugate eigenvalues 20, ;[o of 
modulus 1 and that 2oS 4:1, 2o44=1, dl2~l/d#>O. 

4.6. Theorem. Let E be a Banach space with C l norm and f~: E ~  E a map 
depending on the real parameter It. We assume that (x, I t )~fg (x) is C k and that, 
for each It, f~ is C z where 3 < k < l <  +oo. We also assume that f~,(O)=O and that 
the spectrum of Df,(O) lies in {z: Izl<l} except for two eigenvalues A t and ~ 
such that 

(a) 12ol--1, 2oS4:1, 2o44~1, 

d 
(b) --d-fi- la~ I > 0. 

Under these conditions there are two generic possibilities depending on the 
sign of  some coefficient computed from third order derivatives of  fo. In both cases 
there exist constants a > 0  and 6>0  such that fz  is qualitatively described for 
l x l < a  and 1#1<6. In both cases the origin 0 is attracting for It<0 and non-at- 
tracting for It > O. 

(a) In the first case ( i f  0 is a "weak attractor" for fo) there is an attracting 
curve for It>0 which is C t diffeomorphic to a circle, and with diameter ..~]/-fi. 

(b) In the second case there is an invariant non-attracting curve for I t<0 which 
is C t diffeomorphic to a circle, and with diameter ...]~-Z-ft. 

There are no local non-wandering points for I x l < a  and I It 1<6 other than 
those indicated above. 

* See [101, [131, [12]. 

11 Arch. Rational Mech. Anal., Vol. 51 
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4.7. Invariance under O(n). If A ~ is a representation of the full orthogonal 
group O(n), both Case I and Case II of Section 2 can appear. We discuss an 
example of each in 4.8 and 4.9, respectively. For  definiteness we consider maps, 
and we assume that the conditions of Theorem 1.1 are satisfied. 

4.8. Let 20 = 1 be the only eigenvalue of Dfo(O ) on the unit circle, and let A ~ 
be the full orthogonal group o f E  ~ =IR ~, n >  1. We are thus in Case I of Section 2. 
The map h. of Theorem 1.1 is of the form 

h~ (x) = 2~ x + p~ (x) x 

where x ~ p , ( x )  is C *-~ and depends on Ixl only. Assuming k > 3 .  we have 
p ,  (x) = a,  I x 12 + O (I x I z). Generically a~ 4=0, and the non-wandering set of h, in a 
neighbourhood of the origin consists of {0} and {x: p ,  (x) = 1 - ~,}. 

Suppose that the spectrum of Df,  (0) is contained inside the unit circle, except 
for the real eigenvalue 2~, and that k > 3. Also let 

d 
d# 2~>0 

and 
1 d2(x. ho(x)) [ <0  

a~ d(Ixl2) 2 .Ixol=o 

(that is, 0 is a "weak attractor" for fo). 
We have the following invariant manifolds: S~1)={0} which consists of a fixed 

point, invariant under AG, attracting for # < 0  and non-attracting for # > 0 ;  and 
S(~ 2) which is an attracting manifold, C t diffeomorphic to a (n -  1)-sphere. present 
for p> O, andwi~  diame~r t.~,~#~(S~ co:si . . . .  h~ which are 
permuted... ..o. .,.~ .,,,v,. w .,,~ ~,~ .o . ,~ ;:b~ f~:d 77: ~: 

The manifolds S~ I) and S (2) contain all the non-wandering points of f~, with --# 
orbit remaining in a neighbourhood of  0 in E. 

4.9. Let A ~ be a multiple (multiplicity 2) of the full orthogonal group in two 
dimensions O(2), and let Dfo(O ) have exactly two (double) complex conjugate 
eigenvalues 2o, ~o on the unit circle. Let 2~ :~ 1, 2 4 4= 1. We are thus in Case II of 
Section 2. Here F =  C z and* 

h'. (z) = I ,  z + a ,  (z. ~) z + b,(z.  z)~ + Q. (z). 

According to Theorem 3.1 we are led to study the differential equation 

d z = z + 2 o  ~ [ao(z. ~)z+bo(z. z)~]. 
dt 

* To find the form of the polynomial P~(z). let z'. z" be the two components of z, and 
introduce J such that j2=--1 .  We write z=z'-kJz', z*=z'--Jz'. ~=Yq-JY'. ~*=Y--JY'. 
By invariance we find 

?,(z)=A.z~z* + B,z~* 
=(A~-- Bt~)(zz*)~,-l- B.(z~*-l- Trz*)z 
= (A~--B~)(z, z)~+ 2B.(z. ~.)z. 

A~ and B~ are ordinary complex numbers because 0(2) contains the reflexions. 
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Let 

We find 

s=(z,~)=lxx 12+ Ix212, 
= Re(2 ~ 1 a0), 

d =  i det(z, ~,) =2  det(xa, x2) 

fl = Re(2 ~ a bo). 

1 d 
2 dt s=s•176 

1 d (4.2) 
-2 dt d=d• 

We make the generic assumption that ~, fl, ~ + fl are all nonzero. The right-hand 
sides of (4.2) then vanish only in the following cases: 

(1) s = d = 0 ,  (2) s=  T-(e+fl) -1, d=0 ,  

(3) s=d= -T-~ -1, (4) s=  - d =  -T-~ -1. 

The vector field z ~ z _  2 01 [ao (z, ~) z + bo (z, z) ~] is normally hyperbolic to the 
following manifolds: 

SO)={O}. 
[The Jacobian of the field is 1.] 

S(2)={z: (z, ~)= -T- (0~+fl) -1, det(z, ~)=0}. 

[The Jacobian of (4.2) with respect to the variables s, d is (-2_2p/(,+p)). ] 

S O) u S  Ca) where S~  (z, ~)=i  det(z, s  -T-0~-l}. 

[The Jacobian of (4.2) with respect to the variables* s, 6= ( s -d )  �89 is (-2_2p/,). ] 

S(4)={z: (z, ~)= - i  det (z, ~)= ~ - a } .  

We are thus in position to apply Theorem 3.1. For definiteness, suppose that 
the spectrum of Dfu (0) is contained inside the unit circle, except for the eigenvalues 
2u, ~ .  Let [ 2~ [ > 1 for # > 0 and [ 2u I < 1 for # < O. Also let ~ = Re (2 01 ao) < 0 and 

+ fl = Re (2 01 ao + 2o x b0 ) < 0 (that is, fo is a weak attractor). We have the 
following C k invariant manifolds: 
S~')={0} which consists of a fixed point, attracting for #<0 ,  and S~ 2), S~ 3), _,S (4) 
which occur for # > O. S~ z) is a union of curves invariant under f, diffeomorphic to 
circles, and interchanged by A ~ S~ 3) and S[ 4) are two circles invariant under f 
and the connected component of the identity in A~ ; they are interchanged by reflex- 
ions. I f  fl>O then S~ 2) is attracting and S~3), -u'~(4) are non-attracting. I f  fl<O then 
S~ 2) is non-attracting and S~ 3), S[ 4) are attracting. These manifolds contain all 
the non-wandering points of fu with orbit remaining in a neighbourhood of  0 in E. 

Part of this research was sponsored by the Alfred P. Sloan Foundation at the Institute for 
Advanced Study, Princeton, N.J. 08540. Another part was performed while the author was a 
guest in the Mathematics and Physics Departments, Brandeis University, Waltham, Mass. 
02154. 

* If z', z"  are the components of z, we have s--d=(z'-biz')(~'--i2"), hence O=lz'+iz"l. 
** To see this, le t / - /~= {z: z and 2, are parallel to ~}; then S(2) is a union of circles S(2)n/7~. 

Since/ /g is the subspace of ~z  left invariant by the reflexions which preserve ff (~@ 0), we have 

11" 
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