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1. Introduction 

Let geC ~176 (0, oo). We consider systems of equations 

u, - g (v)x = 0 
(1.1) - o o  < x <  oo, t>O 

Vt--Ux=O 

which are strictly hyperbolic and genuinely nonlinear in the sense of LAx [1], 
that is, g ' >  0, g"~= 0. We assume the reader is familiar with [ 1 ] and [2]. 

We seek a generalized solution of the Cauchy problem for (1.1) with initial 
data u(x, 0)=Uo(X), v(x, O)=vo(x)>O, that is, a pair of bounded measurable 
functions u(x,t), v(x,t) which is defined for - o o < x < o o ,  t > 0  and which 
satisfies (1.1) in the sense of distributions, that is, 

~ {uqbt-g(v)q~x}dxdt+ ~ U o ( X ) q ~ ( x , O ) d x = O  
t > O  t = O  

SS {v~bt-U~x}dxdt+ ~ Vo(X)~(x,O)dx=O 
t > O  t = O  

for all ~b ~ C ~o with compact support. 

An example of (1.1) is given by the equations which govern the motion of an 
isentropic gas. For gas dynamics, v is the specific volume of a fluid element, u the 
velocity and - g  the pressure. For a polytropic gas, the equation of state is given 
by g ( v ) = - a  2 v -v, V__>I. 

We study systems (1.1) for which 

(1.2) limv~+S~-~sg(v)*O, limv p+s g(v)4=O g, f l > l .  
V--~O V--~ O0 

We note that the equation of state of a polytropic gas satisfies (1.2). For simplicity 
we assume 

(1.3) lim Uo(X)= limuo(x), lim Vo(X)= limvo(x)>O. 
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(1.4) 

and let 

In order to state the main existence theorem, consider the classical Riemann 
invariants of (1.1) 

z=u--  IVg'(s)ds,  w=u+ I[/g'(s)ds 
V t~ 

qo(X)-Wo(X)-Zo(X)=2 ~ Vg'(s)ds. 
vo (x) 

Theorem 1.5. There exists a solution of the Cauchy problem for (I.1) i f  (1.2) 
and (1.3) are satisfied and if 

(1.6) TVzo + TWwo <const. lira qo(x). 

Here, the constant depends only on the nonlinear function g in (1.1). 

In the case where g is the equation of state for a polytropic gas, that is, 
g ( v ) = - a  e v -r, ~>1, condition (1.6) reduces to the requirement that TVuo+ 

const. 
Iim p~or-l~/2(x) where po(x)= 1/Vo(X) is the density of the gas at TVp~ y - 1  x~• 

t = 0. A similar result for gas dynamics is given in [9] by different means. 
Theorem 1.5 is proved using a result of [6]. In that paper existence of solutions 

of the Cauchy problem is established for a class of strictly hyperbolic, genuinely 
nonlinear systems, ut+fl (u, v)x=O, vt+f2(u, v)~=O. In terms of a pair of Rie- 
mann invariants z', w', membership in the class is determined by restrictions on 
the global geometry in the z'-w'-plane of the shock curves for the system. A state- 
ment of these restriction is given in Section 2. 

Solutions are constructed in [6] as the pointwise limit almost everywhere of a 
sequence of GLIMM difference approximations Uh = (Uh(X, t), V h (X, t)), h > 0. Con- 
vergence of the approximations follows from a bound on the total x-variation of 
Uh(X, t) which is uniform in h and t. The bound is obtained by estimating the x- 
variation of the composite functions Z'(Uh(X, t), Vh(X, t)) and w'(uh(x, t), Vh(X, t)). 

It is not difficult to show that, in general, the conditions for membership in 
the above class are not satisfied when the shock curves of (1.1) are expressed in 
terms of the classical Riemann invariants (1.4). For example, one condition re- 
quires, roughly, that the strength of the nonlinear coupling of the two equations 
decrease under translation of the shock curves into the bounded region of an 
invariant quadrant for solutions to the Riemann problem. This condition does 
not hold for the shock curves of gas dynamics with g =  -a2o -~, V> 1, and clas- 
sical Riemann invariants (1.4). 

We shall show, however, that there exists a map T: (z, w) ~ (4 (z), ~b (w)) which 
transforms the shock curves of (1.1) in the plane of classical Riemann invariants 
z, w into shock curves which satisfy the conditions of [6] when expressed in terms 
of new Riemann invariants z'= dp (z), w'= ~ (w). It then follows that the x-varia- 
tions of Z'(Uh(X, t), Vh(X, t)) and W'(Uh(X, t), Vh(X, t)) are uniformly bounded in 
h and t, a condition sufficient for existence of solutions [3]. The construction of T 
will depend upon certain properties of the global geometry of the shock curves 
which will be discussed in Section 3. The geometric role of shock curves for 
hyperbolic systems is further illustrated in [4], [7], [8] and [9]. 
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2. Preliminaries 

We now state the existence theorem of [6]. Consider a strictly hyperbolic, 
genuinely nonlinear system 

(2.1) ut+f~(u, V)x=O , vt+f2(u , V)x=O. 

Let z, w be a pair of Riemann invariants for (2.1) and let the left and right shock 
curves of the first and second kind with initial point (zo, Wo) be given respectively 
by 

z = R l ( w ; z o ,  Wo), W<Wo; z = L l ( w ; z o ,  Wo), W>Wo 

(2.2) z = Rz (w ; z o, Wo), w < Wo ; z = L z (w ; Zo, Wo), w > w o. 

These curves give states (z, w) which can be connected on the left (Li) and right 
(Ri) to (Zo, wo) through a shock of the i th kind. 

Let  21(z, w)<22(z,  w) be the characteristic speeds of (2.1) associated with 
z and w respectively. Let 

I2 = {(z, w): z > infzo (x), w < sup Wo (x), w -  z < sup (Wo (x x ) -  Zo (x2))}. 
x x X l  ~ x 2  

The existence theorem is obtained under the following conditions: 

A 1. sup [2i(z, w)l< oo. 
i ,  

OR 1 c3L 1 _ _ .  
A2. If (z,w)~f2, then 1< 0 w '  0w <oo for w4:wo, and 0 <  aR2 ~L2 

- -  O w  ' O w  < 1 
for w * Wo. 

A3. If z ,=Ri(w,;  zt, wt), then z=Ri (w;  zt, wl), w<wt  and z=Li (w;  zr, w,), 
w>wr have only the point (zt, wz) in common. 

A 4. If four points (zl, wt), (zr, w,), (Zm, Win) and (~'m, Win) satisfy z m = R 2 ( w  m ; Zl, w l )  , 

z , = R l ( w , ;  Zm, Wm), ~,m=Rl(ff~m; zl, wl), and zr=R2(wr; Zm, Win), then (z l -~m)+ 
(Wm-- Wr) ~_~ (Zl-- Zm)'~ (Wra-- Wr). 

Theorem 2.3. I f  a strictly hyperbolic, genuinely nonlinear system (2.1) satisfies 
conditions A 1 through A4, then the Cauchy problem has a solution for arbitrary 
initial data Uo (x), Vo (x) in BVloc. 

Loosely stated, conditions A2, Aa, A ,  imply that the strength of shocks of the 
first (second) kind, as measured by the jump Az(A w) in the Riemann invariant 
z(w), decreases under interaction with other shock and rarefaction waves. To be 
precise, let (z~, wt) be a state connected on the left to (Zm, Win) by a shock or rare- 
faction wave of the i th kind, Vi, and let (z,, wr) be a state connected on the right 
to (z m, Win) by a shock or rarefaction wave of the jth kind, Vj. If we solve the Rie- 
mann problem with data (z~, wl) on the left and (z,  w,) on the right and denote 
the wave of the first kind in the solution by U1 and the wave of the second kind 
by U2, then conditions A2, A3, A ,  imply 

(2.4) S t(Ua) + S t(U2) <=S t(Vi) + S t(Vj) 

where the strength S t ( V )  equals 0 if V is a rarefaction wave, equals A z if V is a 
shock of the first kind, and equals Aw if V is a shock of the second kind. For  
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example, if V~ are shocks of different kinds, that is, i~j ,  then it is easy to show 
that U i are both shocks and A 4 is a necessary and sufficient condition for (2.4) 
to hold. 

In the construction of the map T the following condition B4, which is slightly 
stronger than A4, will prove useful because of its simple geometric interpretation. 
Define 

RI (z o, Wo)= {(z, w): z=RI (w; Zo, Wo), W< Wo} 

L2(z o, Wo)= {(z, w): z=L2(w; Zo, Wo), w>=wo} 

Aw=w-wo,  A~=k- iVo ,  A z = z - z o ,  

Then the condition in question may be stated as follows: 

B4. 1. Let (30, ~o)~Rl(zo, Wo). If z=L2(w; Zo, Wo), 
A~=Aw then A~> Az. 

A~=~-~o .  

z=L2(w; Z'0, WO) and 

2. Let (Zo, Wo) ~L2 (Z0, W0)" If z = Rx (w; Zo, Wo), ~= R1 (~; Zo, Wo) and A ~ = 
Az then A~,> Aw. 

The geometric content of condition B 4 is described in Fig. 1. Here P, Po, 
P, Po represent points (z, w), (zo, Wo), (3, ~), (30, Wo), and similarly for Q. 

Thus, B4 implies that the strength of the nonlinear coupling of (1.1) increases 
under translation of the shock curves into the bounded region of the invariant 
quadrant. 

3. Existence of Solutions 

In this section, z and w denote the classical Riemann invariants (1.4). We 
begin by proving a mapping theorem for the shock curves of (1.1). For this 
purpose, it will be convenient to identify curves and regions in the z-w-plane with 
their images under the map R_,/4: (z, w) ~  (a, r/), defined by 

cT=W-l-Z, tl=W--Z. 

For example, the equations of the shock curves of (1.1) are obtained by eliminating 
the shock speed s from the Rankine-Hugoniot relations 

s(u-uo)=g(vo)-g(v),  s(v-vo)=Uo-U. 
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This yields the equation ( u -  Uo) 2 = {g(v)-g(vo) ) { v -  Vo}, which determines, in 
the g-~/-plane, the left and right shock curves of the first and second kinds with 
initial point (go, ~/o) as follows: 

(3.1) 

where 

(3.2) 

g=L l ( r / ;  ao, r/o), r/<r/o; a=L2(r / ;  O'o,r/o), ~---->~o 

g=Rl(rl; ao, rlo), r/_->r/o; a=R2(rl; ao, rlo), ~<rlo 

L, = go + Q, R, = go - Q, Q2 = 4 {g (v (t/)) - g (v (r/o))} {v (r/) - v (~/o)} 

oo 

and v(r/) is the inverse function of t/(v)=2~ V g - ~ d v .  
v 

These shock curves are identified with their counterimages under R-~/4. They 
yield states (L i, r/) and (R~, ~/) which can be connected to (ao, ~/o) on the left and 
right, respectively, by a shock of the i th kind. For convenience, the same functional 
notation, (2.2) and (3.2), is used to denote a shock curve and its image under 
R-~/4, respectively. 

In discussing T we shall say that a shock curve (2.2) or (3.2) lies in a region D 
if t / and  w are restricted so that (a, r/) and (z, w) lie in D. We shall call a region 
W(a, k) of the form 

W(a,k)={(g,~): I g - a l < k r / } ,  k < l ,  

a k-wedge with vertex (a, 0). 
We can now state the main mapping theorem. 

Theorem 3.3. There exists a 2-parameter family of  transformations T(a, 0): 
(z, w) ~ (z', w'), and constants k, cl, c2 (k) which have the following property. For 
sufficiently small k, T(a, O) maps the shock curves of  (I. 1) in 

W(a, k) c~ {cx/O <,1 < c2 (k)/O} 

onto shock curves which satisfy Ai, i=2 ,  3, 4 in the z ' - w '  variables. Furthermore, 
lim c2(k)= oo. 
k-'* O 

In order to prove Theorem 3.3 some lemmas on the geometry of the shock 
curves of (1.1) will be needed. We define 

(3.3) 

by 

T(a, O): (z, w) ~ (z', w') 

z ' = l  -exp(20(a /2-z ) ) -~b(z ;  a, 0), 0>0  

(3.4) w' = - 1 + exp (20 (w - a/2))-- ~k (z; a, 0). 

We shall identify T with the map R ~ 4oToRZ~; that is, using z =  (a-t /) /2,  - /  / 
w= ( a+  r/)/2, a ' =  w '+z '  and r/ '= w ' - z ' ,  we shall consider T as a map of the 
a-r/-plane given by 

T(a, 0): (a, r/) ~ (a', r/') 



Hyperbolic Conservation Laws 249 

where 

(3.5a) 

(3.5b) 

a' = exp 0 (r/+ a - a ) -  exp 0 (r/- a + a) 

r/ '=expO(r/+a-a)+expO(r/-a+a)-2.  

The formulation (3.5) proves convenient for calculational purposes. The choice of 
a and 0 will depend upon the initial data and the function g. 

First, we shall discuss those aspects of the geometry of the shock curves of 
(1.1) relating to the requirement that their image under T satisfy A2. To this end, 
we reformulate Az as follows. 

Lemma 3.6. A2 is equivalent to the requirement that 

- o o <  0L1 OR1 < - 1 ,  1< aL2 0R2 - -  - -  - -  < ~  for r/~r/o. 
d r / '  Or/ d r / '  ar/ 

Proof. The lemma follows immediately from the definition of a and r/. 

From Lemma 3.6 and [5], it follows that the shock curves of (1.1) satisfy A 2 
when expressed in terms of the classical Riemann invariants (1.4). We also have 

Lemma 3.7. The image of a shock curve a=Ri(r / ;  ao, r/o) or a=L,( r / ;  a0, r/o), 
i= 1, 2, under T(a, O) satisfies A 2 / f  

[ ~ - a  I ~ 2-~ I log { (a . -  1)/(a, + 1)} I. 

Proof. Without loss of generality set a=0 .  For concreteness, consider the 
curve a = R l ( r / ;  ao, r/o). Setting t r=R 1 in (3.5a) and (3.5b) with a = 0 ,  we re- 
spectively obtain functions a' = N(r/; ao, r/o) and i/' = D (~/; a o, r/o). Since 

a• aD 
at/' a~ a t / '  

it follows from Lemma 3.6 that A2 is equivalent to the condition 

But 

and 

ON 0D < 0 for r/4= ~/o. 
ar/ < a ~ / -  

ONo___~_=O~\~lORl+l) ~ ar/ 

= O e x p { O ( r / - R 1 ) } I ( ~ - + l ) e x p 2 O R l + ( ~ - - 1 ) l  

( ~R1 _ O---D-D=oexp{O(r/--Ri)}[(~-+l) exp2OR1- , O r ~  ar/ 1) 1" 

ON OD ORx < 
Therefore, - - ~ - < - - - ~ -  for tlg=r/o since ar/ - 1  for t/+r/o. 
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d D > 0  Since dr/ = if and only if 

dr/ \ 0r/ 

it is clear that A 2 holds if 

i 'R' - I)/(--~R~-I + 1)" IR~I__<I-0 - l o g \  dr/ 

In conjunction with the inequality appearing in Lemma 3.7, we prove 

Lemma 3.8. There exists a constant M(k), independent of a, with the property 
that 

dRi <M(k) and dLi <M(k) ,  i=1 ,2 ,  
dr/ drl = 

/ftr=R~(r/;  ao, r/) and a=L~(r/; ao, r/o) lie in W(a, k). Also lim M ( k ) =  1. 
k ~ O  

Proof. Without loss of generality we may assume that a=0 .  Since the shock 
curves tr=Ri(r/;  ao, r/o), tr=Li(r/;  ao, r/o ) satisfy 

( a -  ao) 2 = 4 {g(v (r/))- g (v (r/o)) } {v(r/)- v (r/o)} 
we have 

1 da 
~- (o- ~o) ~ = g'(~(r/)) v'(r/) {~(r/)- ~(r/o)} + {g(~(r/))- g(~(r/o))} ~'(r/). 

Now fix ao, r/o and define e, 6 by a - a o  = 6 r/o and r/= e r/o. Then we have 

L 
a~_ =< I g' (v(~ r/o)) v' (~ r/o) {~(~r/o)- ~(r/o)} I/6 r/o 2 

+ I {g(v(er/o))- g (v(r/o))} v' (e r/o)1/6 r/o. 

For  concreteness, we prove the lemma for R~ and L2, that is, for e > 1. By 
use of (1.2) and g'>O, it follows that g"<O and therefore that v '(r /)<0 and 
v"(r/) > 0. Thus from the concavity of g, the convexity of v(r/), and the mean 
value theorem, we have 

d__d~_ <4 (e~_j_g,(v(er/o))V,(r/o)V,(er/o)=_ (e-l)6 h(e'r/~ 

Now, from Lemma 3.6, we have [r/-r/o [/la-aol<= 1 and hence (e-1)/6__< 1. 

Therefore, since lira d a  = 1, we need only show that there exists a constant 
.-~.o dr/ 

M(k) such that lim h(e, r/)<M(k) and lim M ( k ) =  1. 
~/-~ O,  co k ~ O  

The existence of M(k) follows from the asymptotic behavior of g(v), r/(v)= 
co 

2SV g' (v) dr, and its inverse v (r/). From (1.2), it is not difficult to show that there 
v 
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exists a constant K4=0 such that lim v ~+1 g ' (v)=K 2 and hence that 
v--+O 

[ ~ - 1  ~(~+ 1)/(~- 1) 
lim ~ / ]  v'(r/)= - I/2K, 

r/--~ oO 

(3.9) / ~ - 1  \2(~+1)/(1-~) 
lim ~ - K -  ~/] g ' (v0l) )=K 2. 

Note that the limiting values obtained in (3.9) are precisely those obtained in the 
_ K  2 

special case of gas dynamics where g(v)= v -~. Applying (3.9), we have 
0~ 

h(~, ~) ~ (8 ~) 2(~+ 1)/(~- ~) r/(~+ 1)/(1 -~) (8~/)(~ + 1)/(1 -~)= ~(~+ ~)/(~- 1) 

near ~ = oo. A similar result holds for ~ near 0. Then, since (~r, ~)eW(a, k), we 
have ~ ( k +  1)/(1-k) and the existence of M(k) follows. The proof is complete. 

Next, we shall discuss those aspects of the geometry of the shock curves of (1.1) 
which relate to the requirement that their image under T satisfy B~. (Recall that 
B4 implies A,.)  To do this, we need some notation and terminology. Let ~ and f 
be real valued functions of a real variable and let [a, b] denote a closed interval 
on the real line. 

We define 
[a, b] = [~(a), q~(b)] 

and shall say that (b expands a family of intervals Kl(s)=[s, s+f(s)] or K2(s)= 
I s - f  (s), s] as s increases (decreases) if the length of ~ K  1 (s) or ~bK2 (s) is an in- 
creasing (decreasing) function of s. 

Given 8>0, Zo and Wo, we define the family of intervals I and J by 

l ( z )=I(z ,  ~; Zo, Wo) = [z, z + Z(z, e; Zo, Wo)] 

J(w)=J(w,  ~; Zo, Wo)= [ w -  W(w, 8; Zo, Wo), w] 

(3.10) 

(3.11) 

where 
W = w - R ' ~ l ( z - e ;  z ,w) with z=Lz(w;  Zo, Wo), W>Wo 

(3.12) Z = L 2 ( w + 8 ; z , w ) - z  with w=R-~l(Z;Zo, Wo), z < z  o. 

Here w=R'; l ( z ;  zo, wo) is the inverse of z= R l (w ;  z o, Wo). See Fig. 2. 
Using Fig. 2, we can recast condition B4 as follows: 

8 Z < 0  8W 
Lemma3.13. B 4 is equivalent to the requirement that dz = and--~w<=O, 

that is, to the requirement that I and J expand as z decreases and w increases, 
respectively. 

We note that not all systems satisfy B4. For example, the equations of gas 
dynamics, with classical Riemann invariants (1.4) and with g (v) = - a2 v- r, ~ > 1, sat- 

dZ aW 
i s f y - ~ - > 0 ,  T ~ - < 0 .  However, it will be proved that the images of the shock 

curves in a suitable region under T(a, O) do satisfy B4. To this end, we give a 
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,l(z,~;Zo, W o) 

general mapping lemma. Let ~b and ff be smooth monotone functions of a real 
variable. 

Lemma 3.14. I f  S: (z, w)o(~b(z), ~b(w)) has the property that qb expands I(z) 
as z decreases and ~ expands J(w) as w increases, then S maps shock curves 
z=Rx(w;  Zo, Wo), z=L2(wo; Zo, Wo) onto shock curves which satisfy B4 as func- 
tions of  z'=c~(z), w'=~b(w). 

Proof. Write T =  T 1 o T2 = T2 o T1, where 

Tl : (z, wO=-(z, 41(w)), 

: (z, w) (z2, w2)-  (4' w). 

Since ~b expands I(z) as z decreases, the image of z=L2(w; z o, Wo) under T2 
satisfies B4, i. Since r expands J(w) as w increases, the image of z = R  1 (w; Zo, Wo) 
under 7"1 satisfies B4, 2. Now, it is easy to see that property Ba, ~ is invariant under 
Ti. Therefore T(R1)=T2(TI(R1) ) satisfies B4, 2 since TI(RI) does, and T(L2)= 
T 1 (T 2 (L2)) satisfies B4,1 since T2 (L2) does. The proof is complete. 

In the proof of the existence Theorem 1.4, the parameter a and the total 
variation of the initial data will be restricted so that the approximate solutions 
lie in a region a -  z/2 > O, w /2 -  a > 0. In such a region, we shall show that the larger 
the value of ~/= w - z ,  the smaller the first derivative of q5 and ~b (and hence 0) 
can be taken and still have T expand I and J. The bound on the total variation 
of the data will roughly be of the order 1/0. 

We proceed with the proof of Theorem 3.3 by first applying Lemma 3.14 to 
the map T(a, 0). 

Lemma3.15.  There exist constants k o > 0  , c1>0  , depending only on g, such 
that T(a, O) maps the shock curves z = R1 (w; Zo, Wo), z = L 2 (w; go, Wo) in W(a, k) c~ 
{q>cx/O} onto shock curves which satisfy B4 in the z', w' variables i f  k < k  o. 

Proof. We must find ko and c~ such that z '=(k(z;  a, O) and w'=~k(w; a, O) 
respectively expand the intervals I(z)= I(z, ~; zo, Wo) as z decreases and J(w)= 
J(w, e; Zo, Wo) as w increases provided z, w, Zo, w o are restricted to lie in W(a, ko) c~ 
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To do this, we consider the auxiliary family of intervals 

K(n, O=[n-S(~,  O, n-I, e>O 
where 

(3.16) S (7, 8) = {4 [g (v ( t /+8)) -  g (v (t/))] [v(t/+ 8) - v(7)]} '/2 - s. 

In the a-7-plane, S(t/o, 8) equals the distance, at the point 7=7o+S,  that the 
shock curve a=L2 (t/; ao, 7o) lies above the line through (ao, 7o) with slope + 1; 
and by symmetry this equals the distance that a = R t ( t / ;  ao, 7o) lies below the 
line through (ao, 7o) with slope - 1 .  

Since the z-w-plane is the image of the a-t/-plane under -1 R_~/+, to prove the 
lemma it is sufficient to find constants k and c~ such that exp 0 t/ expands the 
family K(7, 8) as t/increases when t/> c'1/0 and s < k t/. The expansion of K( 7, 8) 
by exp 0 t/follows directly from the following two propositions. 

Proposition 1. I f  [-~-x l o g f  <0, then exp Ox expands the family of intervals 

B 

I 

[ x - f  (x), x] as x increases. 

d 
Proof. ~ {exp 0 x - exp 0 (x - f )}  = {0 exp 0 x} { 1 - (1 - f ' )  exp ( - Of)} > 0, since 

the hypothesis of the proposition implies that 1 - f ' <  exp Of. 

Proposition 2. There exist constants k, c'1 depending only on g in (1.1) such 

[0 i< , that - ~ - l o g  S(7, 8) =el~t~ if s<_-kt/. 

Proof. First, we prove the case where g= - K  2 v-~/?, 7> 1. Here 

2K_~v(1 -~)/2, 2K 
Z " - - - U  W~U'~---~'__-~V (1-7)/2, a=2U 

4K 
t/(vl=--~_f-v (l-')/z, v(7l=E(?-l)t/14K] z/(l-') 

s(n, 8) = c {[(n +8) a - 7 ]  [7 - ( 7  +0~]}  '/~ - 8  

where a = 2 7/(7 - 1), b = 2/(1 - 7), e = (y - 1)/2 7112. Setting 8 = (z - 1) t/ in S(7, 8) 
and S~ (7, 8), we obtain 

S = 7fl  (*, 7) and S~ =f2 (*, ?) 
where 

(3.17) f l  (z, ?) = c {(,"-- 1)(1 -- ,b)} 1/2 _ 0r_ 1) 

f2(~,7)={2a(z'-l--1)(1--z~)+C-C--~--b(,~--l)(1--xb-1)}{(z"--l)(1--xb)} -1/z 

Now it follows from a straightforward calculation that for each 7, the functions f l  
and fz  have precisely third order zeros at ~= 1 (8=0). Therefore, there exist 
constants k, c~ such that If2 Ill f~ I < c~ for z < 1 + k, that is, for ( x -  I) 7 = 8 ~_ k t/, 
and the lemma is proved. 
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The general case follows f rom the asymptotic behavior of g given by (1.2). 
We sketch the proof as follows. Consider 

S (t/, e) = {4 [-g (v (t/+ e ) -  g (v (r/))] [v (q + e) - v (q)] }1/2 _ e. 

We define Sl(q,  z ) = S ( r / , ( z -  1)r/) and S2=S~(q,(T - 1)q); for example, 

(3.18) Sa(rl, z ) = { 4 [ g ( v ( z q ) - g ( v r l ) ) J [ v ( z q ) - v ( q ) ] } l / 2 - ( ' r - 1 ) q .  

By use of (1.2), it follows that  

lim $1 (~/, z)/(7 - 1) 3 q = f l  (v, fl)/(z - 1) 3, 
t/--+ 0 

(3.19) lira $l  (~/, z)/(z - 1) 3 q = f l  (z, ~)/(z - 1) 3, 
//--~ (X) 

lim $2 (q, z ) / ( z -  l)a =f2 ('c, fl)/('c - -  1) 3, 
r /~O 

(3.20) lim $2 (q, z) /(z  - 1 )3 = f  2 (z, ~)/(z - 1) 3 
T/-* oO 

uniformly in r e  [0, Co) for some small %. The lemma follows f rom the continuity 
of q $2/S~ and its boundedness for q near 0 and ~ (implied by (3.19), (3.20)). 

We shall establish (3.19); the proof of (3.20) is similar. To do this, define 
s (% ~/) by 

S1 (r/, T) = s (q, z) 1/z - ( ' r -  1) q. 

03 
Since S 1 (q, z ) = 0 ( z - 1 )  3 f rom [1], we have ~ s(q, 1)=0 and therefore 

1 04 
(3.21) S(~],  T) 1) 5 7 2 + @  ~ ( ~ -  x) 3 ~ , ( , .  x) d x = ( ~ -  1) 5 7 2 + ,o  (~, ~). 

Next, let V1 + y =  1 + l y + p ( y ) .  Then 

51 (q, "c)/(z- 1) q = {1 -4- Sol(V- 1) z q2} 1/2 _ 1 

and 

(3.22) Sl/( 'c - 1) 3 q = �89 So (z, n) / (T - 1)* 7 2 + p (So (.r, n) l ( z -  1) 2 rl2)/(z - 1) 2. 

Using the definition of So given in (3.21), we see that  the behavior of the right 
hand side of (3.22) for r /near  zero or infinity is determined by the behavior of 

O 4 04 
(3.23) ~ s(q, "c) =--0-~4~4 { [g(v(v t / ) ) - -  g (v(r/))] [v("c q) -- v(q)]} .  

By use of s tandard differentiation formulae, it follows that  (3.23) is the sum of 
terms T, each involving derivatives of at most  fourth order. The asymptotic 
behavior of each factor of Ti is determined by (1.2); for example, if 

d 5 
lim v a+ 5 ~ g = L ,  
v--~ oo a~ )  
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then 
�9 d j 

limv#+~--5-ST-.j g=(-1)J+~L/( f l+j)( f l+j+l) . . . ( f l+4 ) for O<j=<4, 
v ~ o o  a I) 

d i 
that is, the limit of v #+j ~ g is precisely the value obtained in the special case 

dv J 
where g=Lv-#/fl(fl+l). . .(fl+4). Using (1.2), it is not difficult to show that 
lim Tdt/2 exists uniformly in z and equals limGdt/2, where G i is the term in the 
r /~0 ~/~0 

special case of gas dynamics which corresponds to Tl. Similar results hold for 
d 4 

limits as t/ approaches oo. Therefore l imT~_ s(~, t/) exists uniformly in r and 
~t-*0 a ' ~  

equals the value obtained in the special case of gas dynamics; (3.19) follows at 
once. 

Combining the previous lemmas, we now prove the main mapping theorem. 

Proof of Theorem 3.3. Fix a. Let 0 < k < 1. Consider the wedge W(a, k) and 
the constant M(k) given by Lemma 3.8. From Lemma 3.7, it follows that the 
image of a shock curve in W(a, k) under T(a, O) satisfies A2 provided that 
I a -  a] <- c(k)/O, where c = log (M(k) + 1)/(M(k)- 1). Therefore, there exists a 
value c2(k) such that the image of a shock curve in W(a,k)n{tl<c2(k)/O} 
satisfies A2. Also lim c2(k)= oo since lim M ( k ) =  1. 

k-~O k~O 

Consider the constants c 1 and ko of Lemma 3.15. For  k < ko sufficiently small, 
we have from the above and from Lemma 3.15 that the images of shock curves 
in W(a,k)c~{cl/O<tl<c2(k)/O } under T(a,O) satisfy A2 and A4 and that 
l imc  2 (k)= oo. 
k- ,0  

The validity of A a in the z', w' variables follows from the starlike property of 
the shock curves proved in [5] and from the fact that T is one to one. 

In order to prove Theorem 1.5 we need an additional lemma. Put 

W'(a, k)=  {(a', r/'): la'l =<kr 

Lemma 3.23. Let c 1 and c2(k) be the constants of Theorem 3.3. Then, there exist 
constants d 1 and d2 (k), independent of O, such that for small k 

T- l (a ,  O)[W'(O, k)c~ {(a', r/'): d,<n'<dz(k)}] 

(3.24) = W(a, k) n {cl/0 < t l < c 2 (k)[O} 
for all a and O. 

Proof. Without loss of generality, set a = 0. First, we shall show that 

(3.25) T(O,O)[W(O,k)]=W'(O,k) for 0>0 ,  0 < k < l .  

To do this, recall that T(0, 0) is given by 

a'  = exp 0 (~/+ a) - exp 0 (~/- a) 

q'=exp O(~ + a) + exp O ( q - a ) -  2. 
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It is not difficult to show that T(0, 0) maps the curves tr = k r/and a = - k  ~/onto 
curves a '=p( t / ' )  and a ' = - p ( t / ' ) ,  where p satisfies p(0)=0,  /~(0)=k, ~(r/)>0. 
Since tr--- _ k r /form the boundary of W(0, k) and since T(0, 0) maps (0, 0) onto 
(0, 0), we have (3.25). 

Next, let G(dl, d2) be the set on the left hand side in (3.24). We shall estimate 
the maximum and minimum value for r/ in G(d 1, d2). To do this, solve for ~/in 
terms of a', r/', obtaining 

~ = ~ 0  log (�89 + ~') + 0 ( �89  r  + 0.  

Since ] a'l  < t/' in W' (0, k), 

r/'+ 1 < (�89 (t/' + a') + 1) (�89 (t/ '-  a') + 1)<t/'2 + 2  
and 

1 
log (d 1 + 1) < rain r/< max r/=< 2 ~  log (dz 2 + 2). 

20 ~ 

Therefore, for sufficiently small k, we have G ~ W(O, k) c~ {Cl/0 < tl < c2 (k)/O} if 
dl and dz(k) are chosen to satisfy �89 log(d 1 + 1)=c~ and �89 log(d~+2)=c2(k). 

Pl'oot of Theorem 1.5. Consider initial data Uo (x), Vo (x) with finite total varia- 
tion. Let a =  lim ao(X ), ~=  lim r/o(X ). Choose k sufficiently small so that the 

X-~ q- o0 X--~ -I- o0 

conclusions of Theorem 3.3 and Lemma 3.23 hold with constants cl, c2 (k), dl, d2 (k). 
Let 0 = (cl + c2 (k))f~. 

We shall apply Theorem 2.3 in the variables (z', w')=T(a, O)(z, w). Condi- 
tion A~ is satisfied since 2i= __+]//g~ and since (1.2) holds. By Theorem 3.3, 
T(a, O) maps the shock curves of (1.1) in W(a, k)n{cl/O<~l<c2(k)/O}=-H onto 
shock curves which satisfy A2, A3, A4 in the (z', w') variables. Therefore, to apply 
Theorem 2.3, we need only show that there exists a constant N such that 

(3.26) TVzo + TVwo < N 

implies that the GtIMM difference approximations Uh=(uh(x, t), Vh(X, t)) with 
initial data Uo(X), Vo(X) lie in H f o r  all x and t (in the sense that (z(Uh), w(Uh))eH). 
Then it follows by [6] that the functional 

F[Vh](t)= ~ 3z'n(t)+ ~ AW'h(t) 
l - s h o c k s  2 -shocks 

decreases as a function of t, a condition which is sufficient for existence of a 
sequence Oh, converging pointwise almost everywhere to a solution of the Cauchy 
problem for (1.1). 

In order to determine N, we need the inequality 

TVx Z'h (X, t) + TV, w'h (x, t) <= 2F [ Uh] (t) 
(3.27) < , , 

= 2TV~ zn(x, t) + 2TV~ Wn(X, t), 

which follows from the facts that A w' <=A z' for shocks for the first kind and 
A z' < A w' for shocks of the second kind. 
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Next, let D be one-four th  the min imum distance f rom T(a, O)((a, ~}  ~ P to  
the boundary  of W'  (0, k) c~ { d l <  r/' < d2 (k)} and let S be the sphere of radius D 
centered at P. No te  tha t  P is independent  of a, 0 and ~. If  the data  satisfies 

(3.28) TVz'o + TVw'o < D, 

then (z h, wh) lies in T-X(a, O)(S)cH at t = 0  and, therefore, by  (3.27) and the 
decreasing proper ty  of  the functional  F, for  all t ime t. 

F r o m  (3.4) it follows tha t  

TVz{~ + TVw~ ~ O M { TVz o + TVwo} 

where M = 2  sup{Iz'-ll+lw'+ 11}. Hence, the difference approximat ions  lie in 
H if s 

TVzo + TVwo < D-~/M(cl + c2 (k)). 

Therefore,  we chose N =  DIM(el + c2 (k)) and  the theorem is proved.  
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