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Introduction

The regularity of weak solutions of the Navier-Stokes equations has been in-
vestigated by a number of writers. In particular, SERRIN [8] showed that under
rather moderate assumptions, weak solutions in the case of a conservative external
force are C* in the space variables. He further conjectured that these solutions
are actually analytic in the space variables and it is the purpose of this paper to
demonstrate this.

As a consequence of the analyticity, unique continuation properties for solu-
tions of the Navier-Stokes equations will follow. Recently, DYER & EpMUNDS [2]
have obtained such properties directly without recourse to analyticity.

Although the analyticity in space and time does not appear to be valid in
general, MAsSUDA [7] has established it in an interesting special context. He con-
siders solutions of the Navier-Stokes equations which satisfy the condition of
adherence on a spatial boundary with the external force analytic. In turn, he
obtains a corresponding unique continuation property as a corollary of his
result.

Our proof of the spatial analyticity leans heavily on certain representation
formulas employed by SERRIN in [8]. We shall make use of these formulas to
estimate the successive spatial derivatives of the weak solutions of the Navier-
Stokes equations that we will consider. This method of establishing analyticity
was developed by GEVREY [5] and has been most recently used to great advantage
by FRIEDMAN [4].

The arrangement of the paper is as follows. In Section 1 we state our principal
result; its proof is given in Section 4. Sections 2 and 3 contain preliminary material
needed for the proof.

The author wishes to thank Professor JAMES SERRIN for his interest in this
work, as well as Professor EUGENE FaBEs for several helpful discussions.

1. The Main Theorem
We will consider solutions of the Navier-Stokes equations

v,—Av+v-gradv=f-—grad p
dive=0
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is some open region R of space-time. Here v=uv(x, t) denotes the velocity vector
and p the pressure. By a weak solution of these equations in R, we will mean a
vector v which is weakly divergence-free and which satisfies the condition

[ [, ¢+ (v, AP)+(v, v - grad ¢)] dx d1=—[[ (f, p) dx d¢

for all C®, divergence-free vectors ¢ with compact support in R.

For such weak solutions SERRIN has obtained a regularity theorem under the
assumption that » and v, belong to certain Lebesgue spaces. These are the spaces,
denoted by L™*(R), consisting of all functions g(x, ¢) for which the norm

T2 1/s
gl = (TI ({l1gex t)l’dx)s”dt)

is finite, G x(Ty, T,) being an arbitrary cylinder with compact closure in R.
SERRIN’S regularity theorem may then be stated as follows:

Theorem 1.1. (SERRIN [8]). Let v be a weak solution of the Navier-Stokes equa-
tions with veL* ®(R) and v,eL? *(R). Assume that the external force feL'''(R)
and is conservative. Suppose further that veL"*(R) where

n 2
—+—x<1,
r s

n denoting the dimension in the space variables. Then v is of class C® in the space
variables, and each derivative is bounded in compact subregions of R.

Our objective will be to establish

Theorem 1.2. Under the same assumptions as in Theorem 1.1 the solution v is
analytic in the space variables.

We remark that the solutions to the initial value problem constructed by
KiseLEV and LADYZHENSKAYA [6] for n =2 and n=3 with f conservative, satisfy the
hypotheses of Theorem 1.2; and so it will follow from this theorem that they are
spatially analytic.

In the case of a non-conservative external force f(x, t), the conclusion of
Theorem 1.2 still applies if we assume that f is spatially analytic in the sense that
the k' order derivatives, 8% f(x, t), of f satisfy estimates of the form

|8% f(x, t)| Sconst k¥(const.)* (k=0,1,2,...)

in any subset having compact closure in R.

In the proof of Theorem 1.1 a key role is played by a pair of representation
formulas. These formulas will also serve as the foundation of the proof of Theo-
rem 1.2 and we wish to quote them here.

The first of these is formally a consequence of the vorticity equation. In the
three dimensional case, letting w =curl v and considering any cylinder G x(T,,T},)
having compact closure in R, G being a domain in E3, the formula in question is

(1.1) o(x, = T_[ é[(grad,,h(x—y, t—1), Q(v(y, 1), w(y, V)))dy dr +b(x, 1)
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for (x,t)eGx(Ty, T,). Here h(x, t) denotes the heat kernel:

const. t~¥ e X4t 450
h(x, t)= 0 <0

Q(v, o) is a bilinear vector funtion of v and w, and b(x, t) is a solution of the heat
equation in G x(Ty, T,). The common hypotheses of Theorems 1.1 and 1.2 are
enough to assure the validity of (1.1).

Together with (1.1) use will also be made of the formula for recovering the
vector v from its curl, w:

1.2 v(x, t)=‘_£grad (Ix=yD) Vxo(y,Hdy+a(x, 1),

where for fixed te(Ty, T3), a(x, t) is a harmonic function in x for xeG.

In the higher dimensional case formulas similar to (1.1) and (1.2) are given in
[8], with w replaced by an appropriate tensor.

Our point of departure in proving Theorem 1.2 will be the representation
formulas (1.1) and (1.2). In fact, we will assume that » and w are solutions of (1.1)
and (1.2) in the cylinder G x(Ty, T,), and we will further suppose that they are
bounded in this cylinder as is assured by Theorem 1.1. It then follows from (1.2)
that a(x, ) is also bounded over this cylinder. Hence the successive derivatives,
o%a(x, t), of the harmonic function a(x, ¢) will satisfy estimates of the form

(1.3) | 3% a(x, t)] < const. k*(const.)*,

when (x, t) is restricted to a subset with compact closure in G x(T;, T,). Since
the function b(x, t) on the right of (1.1) is a solution of the heat equation in
G x(Ty, T,), its spatial derivatives will also satisfy estimates of the same type.

The main features of the situation just described are contained in the hypo-
theses of Theorem 1.3 below. Hence we will be able to regard Theorem 1.2 as a
consequence of Theorem 1.3.

Theorem 1.3. Let u(x, t) =(uy (x, t), ..., u,(x, t)) be a bounded solution of

u(x,)=1{ | Ax-y,1—-1)f(u(y,v))dydr

T, ly|<L

1.4
a9 +| II L@(x—y) gu(y,0)dy+o(x, 1
y| <
in the cylinder [| x| <L) x(Ty, T,). Here &/ (x, t) and #(x) are m x m matrices, the
entries of <7 (x, t) being constant multiplies of first order spatial derivatives of the
heat kernel
(dmny™2 e I 450

h("”)={ 0 £<0

while those of %#(x) are constant multiples of first order derivatives of the potential
kernel
const. [x]| "% n>2

const.log|x| n=2.

p(X)={

Finally, f and g denote entire analytic mappings from E™ into E™.
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Assume now that @(x, t)=(¢,(x, 1),..., @.(x, 1)) is analytic in x in the sense
that for any subset H with compact closure in [|x|<L]x (T, T,), there exist
constants A and a so that

(1.5) 100;(x,DISAK a*  (j=1,2,...,m)

for (x,t)eH, k=0,1,2,.... Then u(x, t) is analytic in x, in the same sense,

2. Preliminaries on Analytic Functions

In this section we will describe the class of real analytic functions that we will
be dealing with.

It will be convenient to introduce the following norm and semi-norm for
functions ¢ (x) defined in the ball | x| <r:

I¢(x)l,=|8l|lg|<p(x)|

and
oI = sup  (12OZB) - ocpcn).
Ix<r,|zl<r \ [X—X|
We note the following self-evident properties:
2.1 L)Y (D)=l ¥ (x)],
and
(22) LoV (P <o) [¥ () 1P+ ()P ¥ (x)], -
Let « denote the multi-index («, ..., «,). We shall use the notations
a“l aan
D Y ,
@ (%) (6x°{‘ ax:") @(x)
al=oyla,l,  lol=loy|+... 4],
and
x*=x,"...xm.

We will be concerned with the class of real analytic functions ¢ (x) defined in
| x| <r whose derivatives satisfy inequalities of the form
D30 ()], < Ala]! ¢ pll 1

2.3) |D;(p(x)|£u)§A|“||¢l+vplal glett,

Here, when a=0, |«|!*!~% and |«|!*!*¥ are to be interpreted as 1. In fact, in this
section it will be convenient to adopt the convention: k? =1 when k =0.

With é and v suitably restricted, the class of functions defined by (2.3) has a
certain closure property under multiplication which is stated in Corollary 2.1
below. To establish this property we require the following.

Lemma 2.1. Let {5,} and {t,} be multi-sequences and suppose that
| sl §Slallal+6 and |t¢|§T|fl|lal+z.

26*
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Then if either 6 or e< —3
al
Pt

where A depends only on & and e.
Proof. We may assume S=7=1. Applying Stirling’s formula

a lk\kTte sk <aklkmY ek,

<AST'dllal+m" (4, e)

we find that

ol o!
. : 18] +3 Iyl +e
p+;=1 ﬂ!y! spty éb ;:a ﬁ!y! Ipl Iyly

<a e|¢|a| 'ﬁ' |7| -1+ -3+
= “; S BT
« - e o] —7)!
=q%el 'a'Z] (g —j)H Yy J! (Iﬁ|ly|1) '

Btr=a

= 181=J
The last sum on the right can be evaluated by making use of the multinormal

theorem to expand each power in the identity
Gop XY G4 o) = 4 x )1,

which yields
jial =D _ ot

B+y=a ﬁ'v' al ’
181=J

Hence, applying Stirling’s formula once more, we obtain

ol
ﬁ+Ey: aﬁ')"

laf
<a?|al*t ZOJ"*”(IaI —j)~t

Spt

3y (lal+4 |a|/2._*” N—1+e 2 —~348 —3+e
e D e N e e

lal/2
<a’|aleltt (const. la|~#*¢ Y 7" const. |a| 3*° Y k *”)
\ j=0 k=0

lal/2
=const. |a|'™*¢ ) j7Hpconst. [afflt? Y kTR
= k=0

The desired result then follows by separately considering the cases (@) e< —4
6< =4, (b) e>—1>0 and (¢) e=—%>0 with the aid of the elementary estimates

const. m’*!  if p>—1

i < Jeonst. log m if p=-—1
= -]

=1 Y PP=const. if p<—1.
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From Leibnitz’s formula

. o
Dilo()¥ ()= T Zrr Dlo(x) Dp(x)
Bty=alt y:
together with (2.1) and (2.2) we immediately obtain

Corollary 2.1. Suppose that
| D p(x)], 4 |al'™?pl* ol

| D2 (x)[ W< A|a)lel+Y plel glel +1
and
| D2y (x)], < Bla]™~? p!*l o'l

| DL ()| S Blaf* plel gl
with 0>% and v> —4%. Then

| D2(0(x) ¥ (%)) |, <K AB || =2 ple! g1
[D2(p(x) Y ()| Sk ABa|!*7 plet glel !

where the constant k depends only on 6 and v.
In the next corollary we want to consider vector-valued functions. If v(x)=
(v1 (%), ..., v, (x)), we will use the notations
Iv('x)lr= max Ivj(x)lr
155k

and
0(x)|% = max | o;(x)|*.
1575k

Corollary 2.2. Assume u(x) is a vector-valued function taking values is E™
whose derivatives satisfy

| DZu(x)|, < A]all ¢ plel glol

@9 | D2 UGS Ala] ™+ gl gl

with
>4 and v>-1.

Suppose further that f(w) is an entire analytic mapping from E™ into E'. Then

[Dif(u(x))l,gy [a]lel =3 plel glel

@3 | D2 (uE)|® Sy lalel* plel glet*,

where y depends on f, é, v and A but is independent of «, p and o.

Proof. Without loss of generality we may assume that f(w) is a single, entire
analytic function with the power series expansion

fwy=Y az v’
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Repeated application of Corollary 2.1 yields
]Dzuﬂ(x)l,,§xlﬂl_1Am lallﬂl-éplal L
ID:uﬁ(x)|$")§Kw_1Am |“|I¢I+vp|al ol

for $>0. Hence
[ D2 f(u())|, s 1af*172 plel 1ol

| D2 £ (w () |yl 1 plel g+
where
y=ao+ ¥ ay 11 410,
p>0
Remark. For the application we have in mind, the estimates (2.4) will be known
to hold only for the derivatives of # of order <p. It is clear that the conclusion
(2.5) will still be valid for the derivatives of f(u) of order <p.

3. Estimates for Potentials

In this section we will derive some estimates for potentials which will be used
in the proof of our main result.

Let A(x, t) and p(x) denote the heat and potential kernels respectively:

_f@ry™m2 A for £>0
h(x, t)_{O for t<0

and

const. |x|™"*? for n>2

p(x)= _

const. log | x| for n=2.
We will require estimates for higher order derivatives of these kernels. In the case
of the heat kernel, these will be based on some known properties of the Hermite
polynomials, H;(s), s€(— 0, +®), j=0, 1, 2,.... They are defined through the
orthogonality conditions

+o0 YA i
_.LHj(S)Hk(S)e_‘zds={(l)/”2 gt for j;lli
and we quote from [9] the following properties
d\ _g ; o2
(&) (E—) e =(—1Y*""Hys)e®
and
(3.2) | H,(s)| Sconst. 2772 (j1)1/2 e***/2,

In what follows b will denote a positive constant, although not necessarily the
same one each time it occurs.

If we differentiate the heat kernel repreatedly we obtain, for >0

D% h(x, ty=const. (4£)~1=1*m12 o= xI%41 g ((41) ),
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where by (3.1)
0.(N=(=D"""H, (y)) Hy, (y2)...Ho, (7).

In view of (3.2)
|0, ()| Sconst. b!™ |o|lel/2 ¢ IP17/2,

This implies the following pair of estimates for D3A(x, t):

3.3) | D% h(x, )| <const. bl*! [o)1eV/2(4 )~ Uel+m/2 o= 3 (%40
and

blel o)t
(3.4) | D% h(x, t)] Sconst. W—-zm—a 0<d<1),

for >0, with the constant in the last estimate depending on 6.
From this point on we will use the notation d%v(x) to denote a derivative of
v(x) of order k.

Lemma 3.1. Assuming f to be bounded and S=0, we set

G5 eGo=( [ 0FhG-y1-0f0,0dyde

S A<jy|<B
and

v (x, t)=sj | |£A T h(x—y,t=1) f(y,)ndo(y)dr

where n=n(y) is a direction cosine and do(y) denotes the element of area on the
sphere |y|=

Then for a< A and any £>0,

k
3.5) o, r)l.,gconst.”—m( s 16,9,
@=aF™ udpre
and
k 1.k
3.6) lo(x, )% <const. — K sup 170, 9))

(A_a)k+1+£ <iyl<B
S<t<t

for k=0, 1,2,..., with the constants depending on & and upper bounds for B and t.
Similarly,

b* k*
3.7 x, )|, Sconst. —————( su s
) WG, ) Aare (B 09
<t<t
and
b* Kk
(3.8) [¥(x, t)If,"’gconst. '—"‘m( sup | f(y, T)')
U= s

Sor k=0, 1,2,..., with the constants depending on ¢ and upper bounds for A and t.

Proof. We will only prove (3.5) and (3.6), the proof of (3.7) and (3.8) being
quite similar.
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Applying (3.4), we obtain

|@(x, £)| Zconst. b"k"( sup Ifol) |

A<|yl<B A<lyi<B |X—y
S<t<t

In 26+k+2 j

with 8€(0, 1) at our disposal. For | x| <a the first integral on the right is estimated
as follows:

dy < 1 dy

A<iyi<B |x=yP 2= (4_a)*te 4 p5i<n lx_y,n-z(%w—l)

where 0 is so chosen that 2 (—;—

integral. The desired result (3.5) then follows immediately.

The second estimate (3.6) is easily seen to be a consequence of (3.5) by noting
that

+d6— 1) >0, thus ensuring the existence of the last

lp(x, DI <const. |grad, (x, )i,

and that each component of grad, ¢(x, t) is of the form (3.5a) with k replaced
by k+1.

Lemma 3.2. Suppose that f is bounded and that P>Q=0. Set

o(x, )= j [ & 2 h(x—y,t=1)f(r, 1) dydr.

Then for t> P abi=e
bk kk/Z
(3.9 lo(x, t)|,=const. (-—1;)7‘/—2‘( “P If(r,Dls)  (k21),
and
k1 k2
(3.10)  o(x, H]¥ Zconst. e (e V0 9l)  (k20).

Remark. When &£ =0, (3.9) is not valid. It is replaced in this case by

(3.11) l@(x,1)|,=(const. +const.| log(t—P)|)( sup |/ (y,7)ls)

Q<t<P
for t> P, where the first constant depends on P, Q and an upper bound for .

Proof of Lemma 3.2. Application of (3.3) yields

l(x, 1)|,<const. b* K*/*( sup lf(y,t)l,,)j(t——t)"("”)/zdt

g<t<P
je—i(lx y13/4(t-1) [4([—1’)]_"/2 dy.
E"

By a simple change of variable the last integral is easily seen to be a constant.
Hence from

P
ft—)"**P2dr<const.(t—P) 2 (k21)
2

for t> P, we obtain (3.9).
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The estimate (3.10) is derived from (3.9) by exactly the same argument as in
the proof of Lemma 3.1.

The estimates which appear in the next lemma are the analogues of those in
Lemma 3.1 for integrals involving the potential kernel. Their proofs are based on
the estimate

b* k*
la’;P(X—.V)l <const. m‘r (kz20),

which is easily established inductively and parallel the proofs in Lemma 3.1.

Lemma 3.3. For fixed t, assume f(y, t) to be bounded as a function of y. Set
o(x, 0= [ & p(x=yf(y,0dy

A<|y|<B
and

y(x, t)=| IS , & p(x=nf(n,Hnda(y)

where 1 =n(y) is a direction cosine. Then for a< A and any ¢>0

b*k*
(3.12) lp(x,1)|, Sconst. W(Ag;;gqlf(y, 1),
and
b* Ik
3. (u)__ [
(3.13) lo(x, )| < const A—aF (;malf(y,t)l)

for k=0,1, 2,..., with the constants depending on ¢ and an upper bound for B.
Similarly,

bk kk
(3.14) [¥(x,1)|,<const. m( Jup f(r, D),
and
b* k*
(3]
(3.15) [¥(x, )| Sconst. W(I:I‘?AU()’, t)l)

for k=0, 1, 2,..., with the constants depending on & and an upper bound for A.

The principal estimates that we will need concern the preservation of Holder
continuity under the application of singular integral operators whose kernels are
either second spatial derivatives of the heat kernel or second derivatives of the
potential kernel. In the case of the heat kernel our estimates will be a consequence
of the following.

Theorem 3.1. Assume u(x,t) is a bounded measurable function of (x,t) in
E"x(S, T), S=0. Suppose further that u(x, t) has compact support in x which is
independent of t, and that

lu(x, )—u(x, )| S Alx—Xx|"

for xeE", Xxe E" and S<t<T. Then if

v(x, t)=_f foin(x—y,t—du(y,t)ydydr

S En
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we have
(3.16) |v(x, ) —v(x,f)|<const. A| x —X|*
for xeE", XeE" and S<t<T, with the constant independent of t. Moreover,

(3.17) sup |v(x,t)|<const. 4
s<ier

where the constant depends on T.

Proof. The proof of (3.16) can be patterned on the proof of a closely related
result of FABESs [3] (see pp. 109 —111), and we shall not include the details.

To prove (3.17) we use the fact that
foin(y,)dy=0 (x>0).
E”

Hence

v(x,t)= tjsE_[ th(y, ) [u(x—y,t—1)—u(x,t—1)]dydr
so that by the assumed Hélder continuity of u
lo(x, t)IéAjEI" [0y h(y, Dl y|"dydz.
Inserting the estimate (3.3) for 63}1( ¥, 1) into the integrand, the desired result then

follows after a brief calculation.

Lemma 3.4, Suppose that for each fixed 1€(S, T), S=0, the function f(y, 1) is
Hoélder continuous in y for |y| <A with exponent p. Assume, further, that

sup |f(n,D4<c0 and sup |f(y, D) <oo.

S<t<T S<t<T

Then for each te(S, T) the function

g(x, t)=£ ' II<A6§ h(x—y,t=0)f(y,0)dydz

y

is Holder continuous in x for | x| <a< A with the same exponent. Moreover, for any
A€(0, 2)

sy |EGOI o [sup 1 DP+—— sup 1. 9)] ]
' lg(x, 0, |~ “ls<e<T P (A—a)*** s<e<r i

with the constant depending on 2, A and T.

Proof. We shall first construct a special cut-off function ¢(y) as follows: let
¢(s), se(— o0, + o0), be a fixed C* function, say,

1) -G =M |s—s]*
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with ¢c(s)=1 for s£0,¢(s)=0for s=1 and 0=¢(s)<1 for 0<s< 1. Now for a< 4,

let =4 —a and set
P(»=¢ (_____Iyl—((;/13+5/3))'

Then @(y)=1 for |y|<a+6/3, (y)=0 for |y|>a+28/3, 0<Ze(p)<!1 for
a+d/3<|y|<a+24/3 and

u

(3.19) 00)- o (DS |y =31

With the aid of ¢ we decompose f into a sum of two function by writing

f=of+(-@)f=fi+f:.

This leads to a corresponding decomposition for g:

(3.20) g=g+¢;

where .
gi(xst)=j j aih(x—yat_T)fi(ysr)dydTa l=],2
S |yl<4
Since f, (y, 7) has compact support contained in |y] <4 we may apply (3.16)
of Theorem 3.1 in conjunction with (2.2) and (3.19) to obtain

[g(x, )|¥ <const. sup |o(») f(y, 1)I$

S<t<T

(3.21)

Sconst.  sup |£ (. DIP+—— sup 110 DL)
S<i<T (A—a) s<c<r

To estimate the Hélder constant for g, (x, t) we make use of the inequality

|aﬁh(x")—aih(f,t)léconst.|x_)‘c|”( 1 1 ) 1

|x|n+2 (I-y+u + |§|n+2 I=-9+n 'ty‘
for >0, x+0, x+0, where ye(0, 1) with the constant depending on y. The in-
equality is established by a suitable application of the mean value theorem together
with the estimate (3.4).

Since f, (», 7) vanishes for |y|<a+ /3, the above inequality yields, for | x| <a
and |X|<a,

lgz(x, t)“gz(f; t)l

t

[0z h(x—p,t=0) =0 h(Z—y, t—=D)] f2(y, 1) dy d1

S a+8/3<|yl<4

<const. Ix—il“ssuprl(l —oM)f (¥, D4

dy dy ]jf dr

. — + — —
[ly—xx>a/3 [x—y["P 20 s [X—y[MTEOTTR 5 (t—1)

_ 1
sconst. |x = X" —5g=5y SUp 1f (1, )l4-
d S<t<T
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Hence
(3.22) | g2 (x, 1)|* <const.

where A=2(1—1).

Combining (3.20), (3.21) and (3.22) we obtain (3.18) for |g(x, ). The proof
of (3.18) for |g(x, t)|, runs along the same lines; accordingly the details are
omitted.

Finally we need estimates of the same type as in the last lemma for singular
integral operators whose kernels are second derivatives of the potential kernel.
It is well-known that such operators map Hoélder continuous functions with
compact support into Holder continuous functions of the same order (see e.g. [1]).
With this as our basis we can establish the estimates stated in the lemma below,
by paralleling the steps used in proving Lemma 3.4.

(—A:;)';,”J,Tsil:grlf()’, I

Lemma 3.5. Suppose that for a fixed t,f(y, t) is Holder continuous in y for
ly| <A with exponent y. Assume, further, that

f(: DI <0 and |f(y,1)l4<o0.
Then the function

g(x,t)=' IAﬁfp(X—y)f(y,t)dy

yl<

is Holder continuous in x for | x| <a<A with the same exponent. Furthermore

lg(x, t)la(z”)} @ 1
G2y I const [110, 01 + s 17040l

with the constant depending on A.

4. Proof of the Main Theorem
In order to prove the desired analyticity of a bounded solution u(x, t) of

t

u(e,t)=[ [ Lx—ypt—1)f(uy,1))dydr

T: Ivl<L

+ [ Bx—y)g(u(y,n)dy+o(x,1)

Iyi<L

4.1

in the cylinder [| x| <L] x (T, T,), it will be sufficient to prove the analyticity in x
over any sub-cylinder [|x|<R]x(S,T) where T, <S<T<T, and R<L. Ac-
cordingly, we replace (4.1) which u satisfies in the given cylinder, by the equation

u(x,t)=_[ j d(x—y,t—f)f(“(y,f))dydf

S |yI<R

+ | Bx—y) gy, 0)dy+i(x,1)

lyI<R

(4.2)

which u satisfies over the sub-cylinder; the function ¥ (x, ¢) being defined through

l//(x9 t)=(p(xs t)+0(x, 1),
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where

0(x,0=f [ A(x-py,t—-1)f(u(y,v))dydr

5 R<lyl<L
s

+§ f.d(x—y,t—‘r)f(u(y,r))dydr+R | @G-y guy.n)dy.

Ty |y|<L <lyl<L

From the estimates (3.5), (3.9), (3.11) and (3.12) and the analyticity hypothesis
(1.5) on ¢@(x, t), it follows that
K a*

k
Iax w(xa t)lréA (R_r)k(t_s)k/Z

for 0<r<R, S<t<T and k=0,1,2,..., 4 and a being suitable constants. We
may, therefore, view Theorem 1.3 as a corollary result of the following theorem.
(For convenience, we assume that $=0 in (4.2).)

Theorem 4.1. Let u(x, t) be a bounded solution of

uw=[ | Gy 1=0 S (a0 0)dy de
@3 + § A=) g 0)dy+i(n)

in the cylinder [|x|<R]x(0, T), with o/, B, f and g having the same description
as in the statement of Theorem 1.3. Assume that

' < kk—6 ak
'ax ll’(xa t)lr=A (_R——_V‘)W
“4) L

|a.‘; lll(x’ t)l,(.“)§A (R_r)k.{..l(t.})k.'.l

or 0<r<R,0<t<T,k=0,1,2,..., with
4.5) }<d<l and O<v=1-9.

Then there exist constants M and ¢ such that

" kk—Jck
Fulx,),sM

R
kk+vck

(R_r)k+](t§-)r+l

(4.6)

[k u(x, )| <M

for 0<r<R,0<t<T, k=0,1,2,....

I. Our first step in proving Theorem 4.1 will be to develop a formula for the

spatial derivatives of » of order m+1 in terms of lower order spatial derivatives
of u.
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Assume that u(x, t), the solution of (4.3), has spatial derivatives of order <m
which are bounded in any set with compact closure in the cylinder [| x| < R] x (0, T).
Suppose further that the m™ order derivatives are Holder continuous in the space
variables with a uniform Ho6lder constant for any set with compact closure in
[|x] <R} x(0, T). Then the spatial derivatives order m+1, 67! u(x, t), exist in this
cylinder and they may be obtained in the following manner. Let

@.7 Ix{<R,<R,-,;<--<R;<Ry=R
and
(4.8) 1>Ty>Tye > > Ty > Ty=0;
set

v(x,)=f(u(x, 1)) and w(x,)=g(u(x,1).

The derivative 7' u(x, t) is then given by the following formula which is
established inductively through integration by parts.

49 FTulx, =Y (AL =J— T+ E)+ L+ L+ 37+ y(x, 1),
i=1

where
t

(4.10) I;(x,n= | } W (x—y, 1= v(y, 1) dyd

Tm~j+1 Rm-j+1<[p|<Rm-j;
@) Txn= [ At Bx-n @ w(,ndy
Rpm-j+1<|y|<Rm-j

(4.12) Jy(x,1)= f | dld(x—y,t—1)8y T o(y,0)nde(y)dt

Tm-j+1 |P|=Rm-j+1
(4.13) Jy(x, t)=” RI L B(x—y) 0, w(y, hnda(y)
YI=Rm—-j+1

Tm-j+1 . .
@14) Ex,)= | [ O s (x—y,t=1) 0" o(y,7) dy dx

Tm-j5 {¥|<Rm-y

(4.15) L(x,t)=_i' | o, (x—y,t—1)8) v(y,0)dydr

Tm |y <Rm

(4.16) L(x,0)= [ 8. B(x—y)dyw(y, ndy.
PI<Rm

In (4.12) and (4.13) n=n(y) denotes appropriate direction cosines and do(y)
signifies the element of area on the sphere |y| =R, _;.;.

II. We now enter into the proof of the existence of M and ¢ for which the
estimates (4.6) hold. We choose M so that (4.6) holds for k=0. The hypothesis
that u is bounded allows us to do this.

Suppose now that for suitable large ¢ (4.6) has been established for k<m. We
will show that (4.6) also holds for k =m 41 by estimating 7! u(x, ¢) through (4.9).
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In fact, we will prove that

™

1

m _ m m — m
IIj|r+ Z |Ij|r+ Z le|r+ Z |J1|r+ Z |Eilr
j=1 Jj=1 j=1 Jj=1

j=1

4.17) m+1-3 m
+|Ll,+ L], Sconst, DT e
(R=r)""7(1")
and
IO+ T AL+ Y1519+ 3 17,19+ 3 1E,|®
(4.18) Jj=1 i=1 Jj=1 j=1 j=1

(m+1)m+1+vcm
(R_r)m+2(f})m+2

+|LI*¥ 4+ |L|* £ const.

for ¢ sufficiently large, by establishing the corresponding estimates for each term
in the left sides. A simple argument given at the end will then yield the desired
estimates for 07+ u(x, t).

The proof of (4.17) and (4.18) requires estimates for the derivatives of the
functions v=f(u) and w=g(u). These are provided by Corollary 2.2. Since the
derivatives X u(x, t) satisfy (4.6) for k <m, by the remark made after Corollary 2.2,
it follows that

ak ,t kk—& k
4.19) o )"}év——kc—n
Iaxw(x’t)lr (R_'r) (t )
and
420 |k v(x, t)lf")}<y kY ek
(420) 1w )9 = RerF (@

for 0<r<R, O0<t<T and k=0, 1,..., m, with the constant y depending only on
M,f, g, é andv.

Now suppose that we wish to estimate |07 ' u(x, 1), and |87+ u(x, £)|¥ for
given re(0, R) and t(0, T'). We choose the R; and T;in (4.7) and (4.8), respectively,
as follows
(421) R,=R- 7’+T(R—r) and T,.=—m—1:1-t (j=0,1,...,m).

We are now prepared to carry out the estimations of the various terms oc-
courring on the left of (4.17) and (4.18). In what follows it will be convenient to
consider the largest of the several constants b appearing and Lemmas 3.1, 3.2,
and 3.3; in the sequel b will be used to denote that largest constant.

II1. We begin with Y |1 +(x, 1)|.. Applying (3.5) we have
J=1

bl i
] ( sup 1307 0(r Dk, ,)-

(4.22) |I;(x,1)|,Zconst. YET3
m—j+1"‘r) Tm-j+1<t1<t
By the induction hypothesis and (4.19)
. (m_j)m—j—écm—j
su T u(y,t =< - —
T,,,_,,,,p<¢<x| y (y )lRm J Y (R_‘Rm—j)m J(Tyj—j+1)m J
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Inserting the last estimate into (4.22), we find, in view of (4.21), that

J i _am—j-b m—j
|1;(x,t)|,<const. b'j i (m—jy" %"
= i e m—j m=j m—j+1 (m—J)/2
———(R~-71) (R——r)] — Ly
m+1 m+1 m+1
m—j

=const.

e (2 (L) 7

m+e m N\ J
< const. (m+1)+ ¢ (bT ) e,
(R_r)m e(f})m ¢
Hence
m (m+1)m+zcm ] .
4.23 [1;(x, )], Sconst. ——— j
*23) i=1 3 (R—r"*e (et ,-;1

provided that
(4.24) ¢22bT* et

Choosing the ¢ in (4.23), which is at our disposal, so that e<1—4, we thus
obtain

(m+1)m+1—-6 "
(R_r)m+l(t4})m+l

(4.25) Y 11;(x, )|, < const.
i=t

as desired, provided that (4.24) is satisfied.
Proceeding in the same way we obtain the estimates

m (m+1)m+1+vcm

(4,26) j;lllj(xa t)|£“)_—<=c°n5t- (R_r)m+2(t})m+2
m (m+1)m+1—6 "

4.27 J;(x, 1), = const.

( ) jgll _;(x )l cons (R_r)m+1(t&)m+l

and

(m+1)m+l+v Cm
(R_r)m+2(t4})m+2

(4.28) Y 1J;(x, )|® <const.
i=1

for ¢ satisfying (4.24).

In like fashion, based on Lemma 3.3 we obtain the following analogous esti-
mates for the corresponding terms of (4.17) and (4.18) which involve the potential
kernel:

(m+1)m+1—6cm
(R__r)m+l(ts})m+1 4

(m+l)m+l+vcm
(R___r)m+2(t4})m+2 4

(4.29) Y 11;(x, )|, Sconst.
j=1

(4.30) IT,(x, t)|* < const.

s
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3

(m+1)m+1—-6cm

4.31) |J:(x, £)|, < const. ,.. _
= J (R—r) +1(t<}) +1
and
m.o 1)m+1+vcm
4.32 7 (x, | < const, " F
( ) jgll J(x )lr =cons (R__r)m+2(t§)m+2

provided that
(4.33) c=2b T

IV. The estimation of the sums ) |E;(x, t)|, and Y |E;(x, t)|* is somewhat
ji=1 =1

J
different from the preceding. Accordingly, we will furnish the details.
Making use of (3.9) in Lemma 3.2 we have

i :jl2

b _
! )j/2 ( sup 185~ v(y, T)lRm_,)-

(t_Tm—j+1 Tm-j<t<Tm-j+1

(4.34) |E;(x, t)|,=const.

By the induction hypothesis and (4.19)

sup 105~ v(y, Dlr,,_, <7y - .
Tm-j<t<Tm-j+1 Y Rm=i (R‘—Rm—j) J(Tm—j)%

Inserting this into (4.34) taking (4.21) into account, we find that

bj ji/2 (m—j)'"_j_‘sc"'—j

|Ej(x,t)|,§const. F P — CEN — ey
[m+1 t] [m+1 t] [m+1 (R—r)}

m—Jj . .
=const (s " n ) T (b[R——r] )J ( m+1 )m_J
' ()" (R=7)" ¢ oy
<const (m+1)m < (bR)j PrAs)
=T TEHT R-" U c :
Hence
m (m+1)m cm o0 .
E;(x,t)]|,Sconst. ——2u— ) 2 j
4.35 ";‘l 0 (R—1)"(t%) ,;
( ' ) < (m+1)m+1—6 Cm
=COI’ISt. (R_r)m+1(t-})m+l
provided that
(4.36) cz2beR.

In exactly the same way starting from (3.10), we find that

(m+1)m+1+vcm
(R_r)m+2(t<})m+2

(4.37) Y |E;(x, 1)|* <const.
=1

provided that (4.36) holds.
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V. For the estimation of |L(x, )|, and | L(x, £)|%) we employ (3.18) of Lemma
3.4, which gives us
| L(x, t)lr}
[L(x, [
with 1€(0, 2), the constant depending on A.
Applying the induction hypothesis, (4.19), (4.20) and (4.21) we obtain

1
B T
Tm<e<T ’ v * (Rm_r)u+). Tm<tp<’1'I Y W )IR"'

| L(x, t)I,}SconSt [ mmr em . mm? e ]
| L(x, )1#) R=R"HTH'  Ru—r"*R-RY(TH"
mm+v cm
=const. ” T m (CESVP
G- ()

m" % (m+ et em

+ R—r nti m m m mj2
(m+1 ) (m+1 [R_r]) (m+1 t)
3{(m+1)
m+1)-—2— [ m™tY ™ m™ ¢ (m+ 1)t c"‘]
(R_r)m+1(t‘})m+1 (R_r)m+u+}.(ti-)m
By the hypothesis (4.5), v<1—46. If we now select 1€(0, 2) so that u+1<1,
then from the foregoing inequality it will follow that

(m+ 1)m+1—6 cm

<const. (

(438) IL(xs t)l,éCOl‘lSt. (R_r)m+1(ti-)m+1
and that

m+1+v m
(4.39) |L(x, DI < const. 7D ;

(R _ r)m+2(t<})m+2 *
A similar argument based on Lemma 3.5 yields

(m+1)m+1—6 cm

(4.40) | L(x, t)], < const. J -
(R o r) +1 (t*) +1
and
__ m+1+v m
(4.41) \L(x, | <const. LPFD ¢

(R _r)m+2(t§-)m+2 *

VI. The results of the preceding subsections establish the estimates (4.17) and
(4.18) for c= K, K denoting the largest of the constants on the right of the condi-
tions (4.24), (4.33) and (4.36). Inserting (4.17) and (4.18) into (4.9) and making
use of (4.4) we find that

m+ 1 (m+1)m+1~6
12 s, 1S e e

[const. c™+Aa™" ']

and

+1+
Fate t)l(")< (m+1)" v

< const. c"+Aa™"!
r —(R_r)m+2(t<})m+2[ a ]

for c2 K.
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Let B denote the larger of the two constants appearing on the right of the last
two inequalities. In order to complete the induction it will, therefore, be sufficient
to show that B+ Aa™t 1< Mty ie.

B/M+(Aa/M)(a/c)"<c (m=20)

for a suitable choice of c¢. This may be accomplished by first selecting c=aq, and
then taking ¢=(B/M+ Aa/M). The proof of Theorem 4.1 is thereby completed.

This work was partially supported by the National Science Foundation under Grant NSF-
GP-7475.
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