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Abstract 

The paper considers one-parameter  families of periodic solutions of real 
analytic Hamil tonian systems with two degrees of freedom, the parameter  being 
the energy h. Conditions are given which guarantee that this family will undergo 
infinitely many changes in stability status as h tends to some finite value h o. 
First considered is the case of a critical point (with eigenvalues ___ e, +_ifl, ~ and 
fl > 0) of the Hamil tonian at energy h o with the property that the family limits to 
a homoclinic orbit asymptotic  to this point. Some generalizations of this case 
are given, and applications are made to examples such as the H6non-Heiles 
Hamiltonian.  We obtain an infinite sequence of distinct energy intervals con- 
verging to h o on which the periodic orbits are elliptic. Requirements for the 
elliptic stability of the orbits are then given. The additional conditions for an 
infinite sequence of distinct energy intervals converging to ho, on which the 
orbits are hyperbolic, involve the "coexistence problem" for an associated Hill's 
equation that appears when the relevant Poincar6 maps along the orbits are 
computed in coordinates. The results are compared to the case where the critical 
point has eigenvalues (___~+_ifl), ~ and f l>0,  investigated by HENRARD and 
DEVANEY. 
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1. Introduction 

This paper considers one-parameter families of periodic solutions of real 
analytic Hamiltonian systems with two degrees of freedom, the parameter being 
the energy h. We seek conditions which guarantee that this family will undergo 
infinitely many changes in stability status as h tends to some finite value h 0. We 
first consider the case where there is a critical point (with eigenvalues +c~, +ifl,  
c~ and f l>0) of the Hamiltonian at energy h0, and the family limits to a 
homoclinic orbit asymptotic to this point. Some generalizations are given to the 
case where the family limits to several heteroclinic orbits connecting cor- 
responding critical points. The eigenvalue condition on the critical points 
allows us to use MOSER coordinates [27] locally to analyze the flow. Provided 
the periodic orbits are "'properly alligned," one can show that there are infinitely 
many distinct energy intervals converging to h o on which the corresponding 
orbit is elliptic (Theorem 2.1). Moreover, conditions for elliptic stability within 
these intervals are presented using the Moser-Rtissmann criterion. An example 
is given to show that this result is the best possible without further assumptions 
(Section 6, Example D). 

To obtain corresponding energy intervals of hyperbolicity for the family of 
periodic orbits, assumptions are made which allow a reduction of the relevant 
Poincar6 mappings to a family of HilFs equations (Theorem 3.1). Roughly, the 
energy intervals of hyperbolicity for the periodic orbits will correspond to the 
instability intervals of the associated Hill's equation (Theorem 3.3), thus bringing 
in the "coexistence problem" for such equations. Computable conditions are 
given in Section 4 for a special class of Hill's equations, appearing in the 
examples of Section 6, which show that there are infinitely many distinct energy 
intervals converging to h o on which the corresponding periodic orbit is hyper- 
bolic. 

We also consider contexts in which the limit of the family of periodic orbits 
is exactly one critical point, i.e., one can consider the family as bifurcating from 
this critical point. Theorem 5.1 presents conditions on whether the periodic 
orbits "start out" elliptic or hyperbolic as they arise from this critical point as 
the energy is changed. These results use a theorem of E. HOEHN [20] on how 
stability boundaries of a 2-parameter Hill's equation meet the axes and involve 
detailed calculations based on an explicit solution for the periodic orbits. 

The theory is applied to a variety of examples in Section 6, including the 
HI~NON-HEILES Hamiltonian [18]. Appendix A contains a technical argument 
necessary for the results in Section 2. Also, at the end of Section 3 these results 
for stability oscillation are compared with the results of HENRARD [19] and 
DEVANEY [12, 13, 14]. They consider the case where the critical point has 
eigenvalues (+~+i/~),  c~ and fl>0,  and has a non-degenerate homoclinic orbit 
asymptotic to it. 

In Appendix B we relate Theorem 3.2 to classical Sturmian oscillation theory 
and sketch an alternative derivation of the results in Section 2. 

For  a short overview of the contents of this paper, we refer the reader to 
Section 6 of our survey [6], which also relates our results to other phenomena in 
the HI~NON-HEILES Hamiltonian and gives many references to related work. 
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2. Energy Intervals of Ellipticity 

The purpose of this section is to prove Theorem 2.1 below; extensions and 
applications will be discussed following the proof. For terminology and general 
background we refer the reader to [31]. 

Points of R 4 will be written as pairs (x, y), where x = ( x l ,  x2), Y=(Yl,  Ye) ~R2. 

Theorem2.1. Let U c R *  be an open neighborhood of the origin, and let 
H: U ~ R be a real analytic Hamiltonian of the form 

H(x, y) = c~x~ y~ + (///2)(x2 z +y2) + 03 (x, y), (2.1) 

where ~>0, fl>0, and O3(x,y ) denotes terms of order 3 and higher in the 
variables Xx, x2, Yl, Y2. Note that 0 is a nondegenerate equilibrium solution, with 
eigenvalues +_~, +_i fl, of the associated differential equations 

2 = H,, 29 = - Hx. (2.2) 

Assume: 
(a) There is a solution I1 o of (2.2) homoclinic (i.e. doubly asymptotic) to 0; 

and 
(b) H 0U{0} is the limit (as a point set) as hT0 of a continuous family of 

periodic solutions H a of (2.2), with energies h<0,  Ihl small, all of which 
project into the xt-axis under the mapping (x, y)--*x. 

Then there is an e>0, and four sequences {hi}, {ks} , {h~.}, {k~}c(-e ,  0) 
converging to O, with h j<kjNk}<h}<hj+l ,  j = 1 , 2  . . . .  , such that 17 h is elliptic 
when h6(hj, ks)w(k}, hs) , parabolic with double eigenvalue - 1  when h=kj  or k}, 
and parabolic with double eigenvatue + 1 when h = hj or h s. Moreover, the periodic 
orbits H a are elliptic stable for almost all h6(hj, k~)~ (k}, h}). 

Following the proof of Theorem 2.1, conditions for the hyperbolicity o f / 7  a 
over suitable subintervals of (kj, k)) and/or (h}, hi+l) will be indicated. These 
conditions, however, turn out to be impractical for computations, and in later 
sections of the paper we will develop an alternate approach to proving the 
existence of such intervals of hyperbolicity. 

The proof of Theorem 2.1 depends heavily on a coordinate transformation 
due to MOSER [27], which in our context is best described by CONLEY [8]. We 
first review CONLEY's interpretation; for more details see [8]. 

For a real analytic Hamiltonian of the form (2.1), MOSER'S theorem guaran- 
tees the existence of a (possibly non-canonical) analytic coordinate transfor- 
mation 

(u, v, w 1, w2)--+(x 1, x 2, Yl, Y2), (2.3) 

defined near 0, under which solutions of (2.2) assume the following simple form: 

u (t) = u o exp(t c~*), 

v(t) = v o e x p ( -  t ~*), 
w (t) = w o exp(t fl*), (2.4) 

~7(t) = ,7 o exp( - t fl*), 
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where 

(a) w = w  I +iW2, Wo=W(O); 
(b) the constants Uo, Vo, w o are determined by the initial conditions; and 
(c) c~* and/?* are convergent power series, with real and purely imaginary 

coefficients respectively, in the "variables" 

Z = u v ,  p=lw] 2. (2.5) 

In fact, 

a* =~ +O1(;~, p), 
(2.6) 

/3,= - i~+o,(x ,  p). 

MOSER's transformation is given in terms of convergent power series expan- 
sions 

x 1 =u+O2(u,  v, w, frO, 

Yl =U'~-O2(u' 1), W, W), 

Z = x 2  + i Y 2 = w + O 2 ( u  , V, W, W) 

(2.7) 

with Jacobian 1 at the origin. The transformed Hamiltonian, which may not 
govern the differential equations satisfied by (2.4), will take the form 

H(x,  y ) =  K(u, v, w, ffO=c~ X +(fl/2) p + O2(z, p). (2.8) 

Notice that )~ and p, which from (2.5) and (2.7) are given in terms of the 
original variables by 

)~ =U U = X 1 Yl  "~ 03(X,  Y), 
p=lwl 2 __x 2 +y2 + O3(x, y), (2.9) 

are local integrals of the flow (2.4). As a consequence, we see from (2.6) that c~* 
and/3" must also be local integrals of the flow. 

Following CONLEY [8], we choose a ball B about the origin of (u, v, wl, w2)- 
space in which all series given by MOSER's theorem converge, and in which all 
these series, together with their first partial derivatives, are dominated by their 
lowest order terms. All subsequent discussion in (u, v, wl, w2)-coordinates will 
take place in B. 

We first examine the surface { K = h } ~ B  topologically, and to this end we 
note from (2.8) that, for h fixed, the implicit function theorem gives p as a 
function of Z on K = h with 

p = p(g) _~ (2//3) (h - ~ Z). 

Since p=lW]2~0 and fl>0, we see that P()0 is defined for 

(2.1o) 

h 
Z<Z * ~ - .  (2.11) 
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Moreover, %*=)~*(h) is a simple zero of P(X), and is given by the implicit 
function theorem applied to K = h  in (2.8). Note that )~*(h)~0 as h$0. 

Now )~ = constant defines a hyperbola in (u, v)-space, and from (2.11) we then 
conclude that the surfaces K = h  project into the (u, v)-plane as the shaded 
regions in Figure 1. 

/ / / / / /  

llil~S . . . . . . .  .... I ..... 

(h?~n ;;~ssss'; x:x  : ; ; ~ "  - * - ....b- X- X ~h, '~ / , ,  Sd$..--- 
Idll U l..l.ll/l 

(b) (c~<[~;6" 

Fig. 1 

Using Figure 1 we can give a description of { K = h } ~ B  itself. Indeed, if 
(u0, Vo) is in one of these shaded regions, then by (2.10) we have p=lwlZ>O,  
hence a circle of choices for w when Z <)~*, and a single choice, namely w = 0, 
when Z=%*. {K=h} c~B is therefore the topological product of the correspond- 
ing shaded region with a circle, except that over X* each such circle is identified 
to a point. Moreover, since )~ is constant along the solutions (2.4), all orbits 
move along cylinders p = I wl2= constant lying above the hyperbolas Z < %*. Since 
e>0 ,  the projected orbits move in the directions shown for various h in 
Figure 2. When Z=)~* and h + 0  these cylinders reduce to two orbit segments, 
one over each branch of uv =X*, and when h =0  these cylinders reduce to the 
one-dimensional stable and unstable manifolds of the equilibrium point at the 
origin. 

Fig. 2 

For s > 0  and IhI near 0 let L(h, s) denote the collection of points in K =h  
with lu-vl<=s. These sets project into the (u, v)-plane as the shaded regions 
shown in Figure 3. Letting Zh(s ) and s denote, respectively, the subsets of 
L(h,s)  for which u - v = s  and u - v = - s ,  we use the following temma from 
CONLEY [8, pp. t41-2]: 



318 R.C. CHURCHILL, G. PECELLI & D. L. ROD 

J 
(a) 

v u vu 
f 
U-V=S 
h<O (b) 

Fig. 3 

Lemma 2.2. For both s > 0  and [hi sufficiently small, L(h, s) ties in the interior of 
B. I f  we f ix  S~So>0 in this range, Sh=Zh(So) and Z'~,=Z'~,(So) are 2-spheres 
forming the boundary of L(h, So) in the energy surface K=h.  I f  h<0,  then L(h, So) 
has two components, each a closed 3-cell, and if h > O, then L(h, So) is topologically 
the product of a 2-sphere with a closed interval. 

For h < 0  and s0>0 as in Lemma 2.2, we view each component of L(h, So) as 
the 3-cell shown in Figure 4, where the cylinders with p = [w[ 2 =constant  project 
into the (u,v)-plane as the hyperbolas Z-cons tan t<z* ,  and the center line, 
where p = 0, projects into the boundary hyperbola given by X = Z*. 

W" 
Fig. 4 

We shall indicate projections of sets and orbits in phase space into the (u, v)- 
plane by bars. For example L(h, So), h<0,  consists of the two shaded regions in 
Figure 3(a). Also, --rh and 2~, are the line segments in the boundary of L(h, So) 
along which u - v =  +s o and u - v =  - s  o, respectively (see Fig. 3(a)). We now fix 
s o > 0 and h < 0 so that Lemma 2.2 applies. 

Assumption (b) of Theorem2.1 guarantees that x z = y 2 = 0  along //~. A 
consequence of this assumption, proved in Appendix A, is that in Moser's 
coordinates p=]w[ 2 =0  along the intersection of / /h  with L(h, So). Assuming H h 
projects into the fourth quadrant of Figure 3(a), we can then view 17 h n L(h, so) 
as the vertical axis of the 3-cell of Figure4. It will be important to note, 
however, that the results of Lemma 2.3 below hold verbatim when 17 h projects 
into the second quadrant of Figure 3(a). 
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The line u + v = 0  intersects 2~ h at a point which is the projection of an 
equator on 2;h that separates 2;h into two hemispheres. Let Z ]  be the "upper"  
hemisphere, where u + v < 0 ,  and 2;~- the "lower" hemisphere, where u + v > 0 .  
Note from (2.4) that the flow is transverse to these two hemispheres. 

From K = h in (2.8) we obtain the equation for 2;h as 

(e/4)(u+v)Z +(fl/2)lwlZ +Oz(L p)=h+(c~/4)(u-v)2=h+(c~/4)sg, (2.12) 

where u>0 ,  v<0,  U=So+V , 7=uv=(So+V)V, and h < 0  has been chosen small 
enough in modulus so that h + (e/4) sg > 0. Recall that the ball B in (u, v, wl, w2)- 
space was chosen small enough so that all series mentioned in Moser's theorem, 
together with their first partial derivatives, converged in B and were dominated 
there by their lowest order terms. Since s o + 2 v = u + v + 0 on Z[ ,  on setting 

M(v, wl, w2)=(e/4)(So + 2V)2 +(fl/2)lw[2 +O20~, p), (2.13) 

we see from (2.12), with Z=u  v=(So+V ) v, that 

g •  (v, wl, w2)#O on 2;[. (2.14) 

Thus U=So+V and v can be expressed as analytic functions of w 1 and w 2 on 2;h ~, 
and therefore w 1 and w 2 serve as analytic coordinates on 2;[ for all sufficiently 
small energy values, including h = 0. 

We can now introduce "polar coordinates" on Z~, representing each point 
other than w I = %  = 0  by the pair p =  Jwl 2, arg(w), where w=w~ + iw2, of course 
respecting the multi-valued nature of arg(w). Notice that the points w = 0  on 2;~ 
are precisely the intersections o f / / h  with E l .  The coordinates p and arg(w) are 
clearly analytic in w 1 and w z on their domain of definition. 

Using (2.4) we define an analytic diffeomorphism q~h: 2;+ --* I;y by following 
points in 2;~ in forward time until they first intersect 2;~-; q5 h is depicted in 
Figure 4. Since wl and w 2 serve as coordinates on both surfaces, we can regard 
~b h as an analytic mapping of the (wl, Wz)-plane into itself which fixes the origin. 

The following lemma is a version of [8, Lemma 3.1, p. 144] : 

Lemma2.3.  (1) The flow mapping c ~ h : Z ~ Z  ~ is given in p--lw[ 2, arg(w) 
coordinates by p-~p and arg(w)=O-,O+ AO, where AO is the change in arg(w). 

(2) A O and its derivatives can be continuously extended in (%, w2)-coordinates 
to p=0 .  

(3) In (wl, w2)-coordinates , the Jacobian matrix of Oh at Hh~2; [ (where 
p = O) is given by 

D 0h = [cos(A 0) sin(A 0) 0 ' 
\ - s in (A0)  cos(A ))p=o 

and (A O)p= o$ - Go as h~O. 

Proof. (1) This follows from the fact that, by (2.4), p=lwl  2 is a local integral of 
the flow. 

(2) Recall that fl* in (2.6) is purely imaginary and is a local integral of the 
flow. But (2.6) and (2.4) then imply that along any orbit (with p ~ 0 )  we have 
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(d/dt)arg(w)=dO/dt= - i /3" .  If z is the time for some orbit segment (with p + 0 )  
to reach Z ;  from Z~-, then for this orbit segment we have A O = - i / 3 * z .  The 
transversality of the flow with the surfaces Z; ~ and 22~- yields the smoothness of 
in (wl, w2)-coordinates , even at w 1 = w 2 =0. That/3* is smooth follows from (2.6), 
and thus (2) is proven since/3* and z, together with their derivatives, can all be 
continuously extended to the origin w I = w 2 = O. 

(3) We first prove that the time z h which /7 h consumes in going from Z~ to 
Z ;  increases to + oo as hi'0. Let (uo(h),vo(h)) be the point on z*(h)=uv  where 
Hh intersects 2~h +. Using (2.6) at p = 0, we define 

e~(h) = c~ + O 1 (Z* (h), 0), 
(2.15) 

/3~(h) = - i/3 + O 1 ()~*(h), 0). 

By (2.4) the orbit F/h satisfies the following constraints at t=0 ,  t=Zh: 

(a) uo(h ) - vo (h )=s  o on Z~-, 

(b) uo(h ) exp(e](h)Zh)--vo(h)exp(-:r o on IT h. 

Recall that z*(h)--,0 as hT0. From (a) and (b) we determine 

[sinh (c~ (h) Zh/2)] 2 
z*(h)=-So J 

Since so>0  is constant and % > 0  for all h, we must have 

lim inf(zh)>0. 
htO 

If liminf(zh)=0 , then an application of L'Hospital's rule yields z*(h)--, 
- ( sg /4 ) +0  as hi'0, a contradiction. If lim inf(zh)< oO, then there exists a T > 0  
and a sequence {h,}, h,T0 as n~Go, such that "rh--e,Z as rt---*~3. But then 
Z* (h.)-~0; again a contradiction. Thus lim inf(zh)= + oe. 

h~0 
By the proof of (2) we have AO= -i f l '~z  h on Hh, and coupled with (2.15) this 

yields the last statement in (3). The first part of (3) follows by observing that in 
(w 1 , w2)-coordinates 

( c o s ( A 0 )  sin(A0)] (w,] 
4) h(Wl W2)~ 

' \ - s in(A0)  cos(A0)] \ 2 ' 

and that AO is differentiable with respect to w~ and w2, even at the origin, by 
(2). Q.E.D. 

We now proceed to complete the proof of Theorem 2.1. Let Oh be the flow 
mapping obtained by following points in a suitably small neighborhood U h of 
p =0  in Z'~- forward in time until their first intersection with S~-. Since Z~- is 
transverse to the flow (2.4), the map CI'h=4)hO Oh: Uh~Z~ is a Poincar6 mapping 
along H h. From Assumption (a) of Theorem2.1 we see that Oh is defined when h 
=0,  although q5 h is not. As a consequence, Oh and 00 differ only slightly when Ih[ 
is sufficiently small. 

For  h__<0 let TZ~ denote the tangent planes to Z'~ at the poles, where p =0  
(corresponding to the intersections of H h with 2;~). Choose any v e T Z o ,  and let 
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q=D~o(v)eTZ~.  Using w 1 and w 2 as coordinates on Z[,  we can identify T2~ 
with the (wl,wz)-plane , and thus measure angles in these tangent spaces. 
Moreover, there are natural identifications for Euclidean space between all the 
TS h for those h < 0 of interest, and so we can regard the fixed vector v as being 
in TZ;  for all such h. 

D~ h 

Fig. 5 

For h < 0  as above, let rlh=DOh(V)SS, +, and choose 6 > 0  such that larg(r/) 
-arg(qh)l<n/4 when - 6 < h < O .  By Lemma2.3, D4~(r/t,) can be considered a 
rotation of r/h through an angle A O(h) which tends to - m  as hT0. It follows that 
the rotation of v under D~h=Dd~hoDOh tends to - ~  as h~'0. In particular, 
D~h(V) must lie in the subspace of TZy generated by v for infinitely many hl"0, 
i.e. there must be sequences lj~'0 and 2 j > 0  such that D~l~(v)=(-1)J2iv , j 
= 1,2,. . . .  But ~b h is symplectic; hence D~ h admits either real reciprocal eigen- 
values or else complex conjugate eigenvalues of unit modulus. In particular, as 
h progresses from lj to tj+x, the eigenvalues of ~h must move around the unit 
circle from +1 to - 1  if j is even, and from - 1  to +1 if j is odd. This 
immediately implies the existence of the intervals given in the statement of 
Theorem 2.1. 

In Section3 (Remark (2) following Theorem3.1) we shall see that the 
eigenvalues #l(h), #z(h) of D~ h are analytic functions of h < 0  whenever H h is 
elliptic, and thus they cannot be constant over any corresponding energy 

interval. This implies that 7(h) in #1 (h)=/tz(h)= exp(2n iT(h)) is badly approxi- 
mated by rationals for almost all values of h for which II h is elliptic. For  h in this 
set the mapping Cbh:Uh~S, h can be transformed by a formal power series C h 
= Ch(wl, w2) into Birkhoff normal form [-31, Section 23]. If this resultant normal 
form is linear, then C h is a convergent power series by a result of ROSSMANN 
[30]; hence the Poincar6 mapping is conjugate to a rotation, from which 
stability is immediate. Alternatively, if the normal form is not linear, then 
elliptic stability of/-/h is a consequence of the first nonvanishing exponent in the 
normal form [28, Theorem 2.13, p. 56]. In either case the set of invariant tori in 
H =h  encasing H h will have nonzero measure. The proof of Theorem 2.1 is now 
complete. 

Concerning the comments immediately following the statement of Theo- 
rem2.1, assume that the mapping Dq/0 of Figure 5 is hyperbolic, where both q5 h 
and Oh are regarded as mappings of the (wl, w2)-plane into itself. Then DO~ must 
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be hyperbolic for all small - h .  Since Df~h is a pure rotation, D~h=DC~hOD~lh 
must then be hyperbolic for all h for which D~gh= +_id. Under these circum- 
stances we could obtain the hyperbolicity of 11h over suitable subintervals of the 
(kj,kj) and (hi, hi+l). Unfortunately, the "hyperbolicity" of D~o would depend 
on the "'size" of the 3-cell in Figure4, and thus verification of this property 
would require a precise knowledge of the domains of convergence involved in 
Moser's coordinate transformation, or else some geometrical peculiarity of the 
problem being considered. 

On the other hand, the hyperbolicity of the mapping D~h is not a necessary 
condition for the hyperbolicity of D49 h, and hence of 11h. Indeed, consider the 
one-parameter family of symplectic mappings of R 2 into R 2 given by 

icos 0  -sin 0   COSl 0/ ), 
04~~ \sin(0) cos(0)/ (10 (2.16) 

and note that each mapping is the composition of a parabolic symplectic 
mapping and a pure rotation. The eigenvalues of D~ o are given by 

2 =(1/2)(b ___1/~- 4), 

where the 2re-periodic function b(O)=2cos(O)+sin(O).cos2(O/2) is shown in the 
graph of Figure 6. When b > 2  we see that D~ o is hyperbolic, while for Ibl <2  the 
mapping is elliptic. Notice that D~ o is never hyperbolic with negative real 
reciprocal eigenvalues. We shall see a concrete example of this phenomenon in 
Example C of Section 6. Note how Dcl) o "locks in" to being hyperbolic over non- 
trivial 0-intervals despite the continuing presence of the rotation matrix. This 
helps explain the nature of the examples in Section 6. 

The following formulation of Theorem 2.1 will be useful. 

m _  

+ 2  

Fig. 6 

Theorem 2.4. Consider an analytic Hamiltonian H : R 4 ~ R  of the form 

H(x, y)=�89 + W(x). (2.17) 

Let p be a saddle point of the potential I4/.'R 2 ~ R  with eigenvalues - cd ,  ~2, where 
c~ and/ />0,  let ho= W (p), and assume: 

(a) 7here is a solution 110 of the differential equations (2.2) homoclinic to 
(p, 0); and 
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(b) H ova {(p, 0)} is the limit of a continuous family of periodic solutions H h of  
(2.2) with energies h < ho, h 0 - h  small, all of which project into some f ixed 
line in the plane under the mapping (x,y)--+x. 

Then the conclusions of Theorem2.1 hold, except that (-e ,O) is replaced by (h o 
-~ ,  ho), and the four sequences now converge to h o. 

Proof. By translations and rotations in the x-plane, which induce canonical 
transformations preserving the form of (2.17), we can assume (on dropping 
constants) that p is at the origin, ho=0  , and all the IIh project into the xl-axis. 
Assumption (b) then forces the potential to have the form 

W(x) = - (~2/2)x~2 + (/32/2)x~ + O3(x). 

The canonical transformation 

xl = ( 1 / 1 / ~ ) ( ~ 1 - 9 0 ,  x2 =(1/1/~)~2, 
yl = V~75(~1 +) , ) ,  y~ = 1 / ~ 2 ,  (2.18) 

then brings (2.17) into the form (2.1), and all H h now project into the Ycl-axis. 
The assertions of the theorem now follow from Theorem 2.1. Q.E.D. 

Theorem 2.4 can be modified to cover the case in which the periodic orbits 
/-/h converge as h'fh o to the union of two critical points together with two orbits 
heteroclinic to (i.e. connecting) these two points. 

Theorem 2.5. Consider an analytic Hamihonian H :Rg-+R of the form 

H(x, y)=~lyl 2 + W(x), 

and let Pl, P2 be saddle points of the potential W:R2-+R with respective 
eigenvalues -o~ 2, fl~, where ~ and f l j>O,j= 1,2, and ho= W(pl)=  W(p2). Assume: 

(a) There are two solutions 1-11, 112 of the associated system of differential 
equations (2.2) that are heteroclinic to (p l,0) and (P2,0); and 

(b) I/1 to//2 to {(Pl, 0), (P2,0)} is the limit of  a continuous family of  periodic 
solutions H h of (2.2), with energies h < ho, h o - h small, all of which project 
into the line segment in the x-plane connecting p~ and P2. 

Then the conclusions of Theorem2.1 hold, except that ( -e ,O) is replaced by (h o 
- e, ho), and the four sequences now converge to h o. 

Proof. As in the proof of Theorem 2.4, we can assume that h 0 = 0, and that p, 
and P2 lie on the xl-axis. After Pi has been translated along the xl-axis to the 
origin, (b) then forces W(x) to take the form 

W(x) = - (~2/2)x2 t + (fl}/2)x 2 + O3(x), j = 1, 2. 

The transformation (2.18) then brings H into the form (2.1), and the previous 
analysis of the flow can be applied to each one of these critical points in turn. 

In that analysis we used w 1 and w 2 as coordinates on the hemispheres Nh ~, 
and for the Jacobian matrix of the mapping ~b h obtained a pure rotation R h 
through an angle AO with limit - oo as h]'0. But now observe from (2.7) that we 
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can also use x 2 and Y2 as analytic coordinates on these hemispheres since u and 
v are analytic functions of w 1 and w 2 on S~ by (2.14). (Note that this 
construction may require a further shrinking of the ball B in order to have the 
series expressing x 2 and Y2 in terms of w 1 and w 2 on S~, and also the first 
partials of these series, dominated by lowest order terms. For the present this 
means picking So, v and U=So+V sufficiently small; see Lemma2.2.) In these 
(x 2, yz)-Coordinates the Jacobian matrix of D~b h must then take the form 

Th = Ph -1 ~ Rh ~ Ph, (2.19) 

where the matrix Ph is a slight perturbation of the identity (as can be observed 
from (2.7) and the smallness conditions mentioned above). Though T h is no 
longer a pure rotation, it is clear that the total change in the argument of any 
vector in the (x2, yz)-plane after an application of T h must still approach - oc as 
hT0, just as in the proof  of Theorem 2.1. 

Observe that the same (x2,yz)-Coordinates can be used on the spheres 
relating to both critical points. This is immediate from the fact that translation 
of the critical points along the xl-axis to the origin does not affect these two 
coordinates. 

Now consider the Poincar6 mapping ~h: Uh-~Xh(1) along /-/h, where U h is a 
suitably small compact  neighborhood in 2h(1 ) of HhC~Sh(1), with obvious 
meaning for the notation given by Figure 7. 

:E~(1) 

I~, (1) 

~h (2) 

_ j  ,,+121 

Fig. 7 

By analogy with Figure5 this can be expressed as the composition of four 
mappings _ 1 (~h - -  ~ h  o ~,t 1 o "r r/~2 o "fh"/'2 each of which can be considered as a mapping of 
the (x2,y2)-plane into itself which fixes the origin. Notice that 0~ and 0~ are 
small perturbations of ~ and Og, the analogues at h = 0  of the mapping ~o in 
the proof  of Theorem2.1, while both d~ and 4~ 2 can be viewed in (x2,Y2)- 
coordinates as distorted clockwise rotations which decrease in argument to - oo 
as hT0. (Here we have used the fact that the computations in Lemma2.3 are 
independent of IlhC~L(h, so) projecting to the second or fourth quadrants in 
Figure 3(a), since by (24). we have dO./dt-j - - i f l * - - j -  flj.+O..(~,.o), with B.>0,  
j =  1,2, for both quadrants. Otherwise qb~ and q~2 might conceivably rotate in 
opposite directions.) In (Xz,y2)-coordinates D~ h therefore rotates vectors 
ve T,Y,; (1) clockwise (with possible scaling) through angles A 0--, - oo as hT0. The 
conclusion now follows just as in the proof  of Theorem 2.1. Q.E.D. 
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Analogues of Theorems2.1, 2.4 and 2.5 also hold for families of periodic 
orbits H n with h above the energy of the critical point(s). The proofs are easy 
modifications of those already given by means of computations found in I-8, 
pp. 141-5], where the case h > 0  is explicitly treated. We state these results for 
future reference. 

Theorem2.6. Suppose assumptions (a) and (b) of Theorem2.1 are modified as 
follows: 

(a) There are two distinct solutions 17o and 171 of (2.2) each homoctinic to O; 
and 

(b) Hou171u{0 } is the limit as h~O of a continuous family 11 h of periodic 
solutions of (2.2) with energies h>O,h small, all of which project into the 
xl-axis under the mapping (x ,y )~x .  

Then the conclusions of Theorem 2.1. hold as h~O, except that ( - e ,  O) is replaced 
by (0, e), and all inequalities and endpoints for the energy intervals are reversed. 

Theorem2,7. In Theorem 2.4 replace assumptions (a) al~d (b) by the corresponding 
assumptions in Theorem2.6, where in (b) we require only that the H h all project 
into some fixed line segment. Then the conclusions of Theorem2.6 hold as h~h o 
= W(p). 

An example of a potential W satisfying the hypotheses of Theorem 2.7 would 
be a "double bowl" potential; the critical point p sits in the "pass," which at 
energies h > h o connects the two bowls. 

Theorem 2.8. Consider an analytic Hamiltonian H : R4---,R of the form 

H(x,y)=�89 2 + W(x), 

let pi be saddle points of W: R 2 ~ R  with eigenvalues - ~ ,  fl~., where ~j and flj>0, 
j = 1 . . . .  , n, and suppose W(pj) = h o for all j. Also, assume 

(a) There are 2n solutions I"11, H~, H2n of the associated system (2.2), 
j = 2 . . . . .  n, with H 1 and H 2 ~ homoclinic to (Pl, O) and (p~, O) respectively, and 
for j = 2  . . . .  ,n, 17;- is heteroclinic from (p j_1,0) to (pi, O), while H;- is 
heteroclinic from (pi, O) to (p j_ 1,0); and 

(b) HauH2n w u (pj,O) is the limit as hJ, h o = W ( p ~ ) , j = l , . . . , n  , 
J J 

of a continuous family of periodic solutions 17h of (2.2) with energies 
h > ho, h -  h o small, all of which project into a f ixed line segment in the x- 
plane (which must therefore contain all the p j, j = 1 . . . .  , n). 

Then all conclusions of Theorem2.6 hold as h~h o. 

Figure 8 depicts a typical graph for a potential which satisfies the hypotheses 
of Theorem 2.8, with the critical points all lying on the xl-axis. Note the many 
possibilities for applying the previous theorems as hTho, and also at critical 
energies other than h = ho. 
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W(xvO) 

Pl ~ ~ P2 "J~ %"I 

I 
Fig. 8 

3. Energy Intervals of Hyperbolicity and Hill's Equations 

In this section we give conditions for the existence of energy intervals over 
which the families of periodic orbits H h considered in the theorems of Section 2 
are hyperbolic. This will involve the study of a Hill's equation associated with 
the Poincar6 map along the periodic orbit. Henceforth we assume the reader's 
elementary acquaintance with the theory of Hill's equation [16,23], and in 
particular the definition and properties of the Hill discriminant. 

Let H: R 4 ~ R  be a C2-Hamiltonian whose associated differential equations 
(2.2) admit a non-trivial periodic solution II(t). Denote the linearized equations 
along II(t) by 

Z=JH**(H( t ) )Z ,  / ( 0 ) = I  4, Z=(zij), (3.1) 

where H** denotes the Hessian matrix of second partials of H, and for 0 <  T 
= minimal period of II(t), set 

d = z 22 (T) + z44 (T). (3.2) 

Theorem 3.1. Let the Hamihonian H be C 2 smooth. Assume II(t) is a nontrivial 
periodic solution of (2.2), with minimal period T > 0 ,  that projects to the xl-axis 
under the mapping (x, y)-~ x. Then we have: 

(a) II(t) is hyperbolic when Idl>2, parabolic when Idl=2, and elliptic when 
Idl<2. 

(b) Assume in addition that Hx~. ~=0 and H y ~ y - 1  along H(t). Then the 
Poincar~ map along II(t) of the (x2, y2)-plane (based at H(O)) into itself 
will have Jacobian matrix 

pIT)= (z22 z24 t IT), 133t 
\Z22 Z24/ 

and d = trace P(T), where the Zz2(t ) and Z24(t ) of (3.1) are the "normalized" 
solutions (z22(0)= 1 =~24(0), ~22(0)=0=z24(0)) of the single Hill's equa- 
tion 

+ H . . . .  (H(t)) z = 0. (3.4) 

Proof. (a) The assumption that H(t) projects to the xl-axis implies H . . . .  =H~,, x2 
=H~,y2=H~,,y2=0 along II(t). This forces the Z(t) of (3.1), with Z(0)=I4 ,  to 
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have the form 

(0 0 z,3 0 )  
z22 0 z24 

Z(t)= 
~;31 0 Z33 0 

z,2 0 z , 4 /  

Setting E=/)(0)=(Hs.~, 0 , - H ~ , , 0 )  and 
gives 

(t). (3.5) 

N = grad H(H(O)) = (H,,, O, Hy,, O) 

Z(T) E=E, (3.6) 
Z* (T) N = N, 

where the * denotes transpose. It follows from (3.6) that +1 is a double 
eigenvalue of Z(T). The Hamiltonian character of the flow implies d e t Z ( T ) =  
+ 1, so that the remaining two eigenvalues fll and/~2 satisfy #1 �9 #2 = + 1. Letting 
D=trace  Z(T) and comparing det(Z(T)-214)=24-D23+.. ,  with (2-1)2(2 
- # 1 ) ( 2 - / ~ 2 ) = 2 4 - ( 2 + # 1  +/~1)23 + ... ,  we find that 

1 D #1, #2 = (~) [( - 2) _+ (D(D- 4))~]. (3.7) 

When written out in coordinates, the relations (3.6) imply z 1 ~(T)+ z33 (T)= + 2, 
so that D = d + 2  and (3.7) reduces to 

#1, #~ = (�89 [d + (d 2 - 4)~]. (3.8) 

Since #1 and #2 are the eigenvalues of the planar Poincar6 maps of Section 2, 
part (a) follows. 

(b) This follows directly from the stated hypotheses and the initial conditions 
Z(0)=I4,  since using the form (3.5) in (3,1) gives 

2j =/L2,2 (n(t)) z 2; + u,2, (n(t)) (3.9) 

for j =  1,2, 3,4. One can check that the eigenvalues of P(T) are those given by 
(3.8). Q.E.D. 

Remarks. (1) The hypotheses on the second partials of H in part (b) of 
Theorem 3.1 are automatically satisfied when H(x, y)=~ ly[2+ W(x). 

(2) If H is analytic then the component functions and periods of the/-/h are 
analytic in h for hs(hj, k~)to(k), h}); this follows by Poincar6 continuation [31; 
w (3.8) then implies that /~1 =~1(h) and #2=#2(h) depend analytically on h 
for such h. Recall that this was the only unfinished item in the proof of 
Theorem 2.1. 

Under the hypotheses of Theorem 3.1(b), if Q(t)= H~2~(FI(t) ) has the same 
minimal period T as H(t), then d equals the Hill discriminant A of (3.4). If Q(t) is 
even in t, then standard identities in [23, Chapter 1] imply: 

(C1) If Q(t) has minimal period T, then d=A =2z22(T) and H is hyperbolic 
when Iz22(r)[ > 1, and elliptic when [z22(T)[ < 1. 
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(C 2) If Q (t) has minimal period T/2, then d = A 2 _ 2 and A = 2 z 2 2 (T/2) .  Then 
H is elliptic if and only if 0<[A[<2.  Moreover, H can never be 
hyperbolic with negative eigenvalues since d > - 2 .  (This case occurs in 
Example C of Section 6.) 

Theorem3.2. Let H:R4-~R be real analytic and satisfy the hypotheses of 
Theorems 2.1 and 3.1(b), where Hh(t ) of period T h is substituted for H(t) in (3.4). 
Then any nontrivial solution z(t; h) of (3.4) has a number of zeros in the interval 
O<-t<-T h that tend to + ~  as hT0. (The same conclusions hold for the other 
variants of Theorem 2.1 in Section 2 as h~ho .  ) 

Proof. Recall from Section 2 that the argument of v h =D ~h(V) tends to -- ~ as 
hT0 for any vector v in the (Wl, w2)-plane. Since all planar Poincar6 maps along 
Hh(t ) are conjugate, for any vector e # 0  in the (x2,Y2)-plane the argument of 

(z(t; h)) 
Ph(Th) e must also tend to - ~  as hl"0. This implies that the curve \~(t; h) 

=Ph(t) e wraps clockwise around the origin in the (x2, y2)-plane adding (at least) 
two zeros of z(t; h) in the interval 0 < t < T  h for each lessening by -2 r e  in the 
argument of Ph(Th)e as hT0. Q.E.D. 

Consider the family of Hill's equations parametrized by h, 

2 +(2 +Q(t; h)) z=0 ,  (3.10) 

where Q(t;h) is C o smooth. The "Oscillation Theorem" [23, Theorem2.1]  
applies at each fixed value of h to imply that (3.10) has a real periodic solution 
of the same minimal period as Q, or twice this period, if and only if 2 is on a 
stability boundary at which the Hill discriminant A =A(2, h) of (3.10) satisfies A 
= +_2. By a result of HAUPT [23, Theorem 2.14] the number of zeros such 
periodic solutions may have in one period is fixed on each stability boundary, 
with the "higher order" stability boundaries allowing more zeros. 

Theorem3.3. Let H : R 4 ~ R  be real analytic and satisfy the hypotheses of 
Theorems 2.1 and 3.1(b). Assume (3.4), with Hh(t ) substituted for H(t), is of the 
form (3.10), with 2=2(h)  and Q(t; h) both C 1 smooth and Q even in t. Assume that 
for all energies h sufficiently near 0 the Hill's equation (3.10) has Jbr each h all 
intervals of instability above a certain f ixed level (independent of h) not 
collapsing. Then under conditions (C1) or (C2) above, as hT0, the periodic orbits 
H h will have an infinite number of transitions to hyperbolicity over distinct 
nontrivial energy intervals converging to O. When (C1) holds these transitions 
occur at both the eigenvalues #a = 1 =#2 and/~1 = -  1 =#2;  when (C2) holds they 
occur only at /~1 = 1 =kl2. (The same conclusions hold for the other variants of 
Theorem 2.1 in Section 2 as h-~ho. ) 

Proof. The hypotheses imply that A(2, h) is C 1 smooth in 2 and h, and hence the 
stability boundaries in the (2, h)-plane where A = _+2 are graphs of functions 
continuous in h (Lemma 4.2 gives an analytic analogue of this fact). The 
parameter arc 7(h)= (2(h), h) is also continuous in h. Theorem 2.1 implies that the 
eigenvalues/~1 and ~2 repeatedly take the values _+1 as hi"0. Since d=/~ 1 q-fl2, 
the relation between d and A given in conditions (C1) and (C2) implies that 
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(AoT)(h) repeatedly takes the values + 2  and/or - 2  as hT0. At these values of A 
the Oscillation Theorem implies that (3.10) has periodic solutions to which 
Theorem 3.2 and Haupt's Theorem (discussed above) apply, showing that 7(h) 
intersects all stability boundaries above some level as hT0. The hypothesis 
that the regions of instability above a certain level do not collapse and another 
application of the Oscillation Theorem imply that (A ~ 7) (h) will repeatedly take 
on values outside of [ - 2 ,  2] as hT0. The remainder of the proof then follows 
from the relation between d and A in conditions (C1) and (C2) and the formula 
(3.8) for the eigenvalues #l(h) and #2(h) of the Poincar6 map along /]h" Q.E.D. 

We conclude this section with some remarks on Theorem 3.3 and a general 
observation about Hill's equations. 

(A) The hypothesis in Theorem 3.3 on the failure of intervals of instability to 
collapse cannot be eliminated. Example D of Section 6 shows that the 
twisting in Moser coordinates, although sufficient to give the energy in- 
tervals of ellipticity, is not sufficient for the transitions to hyperbolicity. 

Variations of Theorem 3.3 can be easily formulated for the case when 
only an infinite number of fixed (not necessarily successive) intervals of 
instability do not collapse. It is an open question whether such a case can 
occur under condition (C1) with, for example, transitions to hyperbolicity 
only at #1 = 1 =#z.  

(B) DEVANEY [12, 13, 14] and HENRARD [19] consider a real analytic Hamil- 
tonian flow. with two degrees of freedom near a critical point P of energy 0 
with eigenvalues (_+a +ifl), a and fl positive. If the flow admits a nonde- 
generate homoclinic orbit asymptotic to P as time t--+ +o% then using 
Moser coordinates about P they prove the existence of a one-parameter 
family of periodic orbits H h which goes through an infinite sequence of 
oscillations between ellipticity and hyperbolicity as h-+0. Furthermore, the 
eigenvalues become unbounded in the positive and negative directions as 
h-+0 (see [13, Theorem B] or [14, Theorem El). In our case this latter result 
is not generally attainable, as Example D of Section 6 illustrates for the 
"double twist" case of Theorem 2.5. 

We note that under both the Devaney-Henrard eigenvalue condition on 
P and the one we assume, results of MEYER [25, 26] can be applied. These 
state that generically one or two additional families of periodic orbits 
branch off from II h at those values of h for which the eigenvalues of the 
Poincar6 mapping are  n th roots of unity. 

k~ gh(t) d x  1 
(C) For Ql(xl)=i=2 ~ ai~ assume that the relation t =  ! ] / /2(h_Ql(x0 ) gives 

a well-defined periodic Abelian function gh(t). Given another polynomial 
k2 

Q2(x0= ~ 2ai2(x0 i, define a potential 
i = 0  

W(xl,  x2) = ~ alj(xi)i(x2) j, (3.11) 
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where the double sum is over those indices O < i < k  1 and O < j < k  z satisfying 
j 4 : l  and i + j > 2 .  The coefficients aio and ai2 in (3.11) are specified by the 
polynomials Q~ and Q2, and the other alj are arbitrary. Then gh(t) is the periodic 
solution of 2 = - W  x along the x~-axis with energy h satisfying the initial 

conditions gh(0)=0, g h ( 0 ) = l ~ .  Moreover, the Hill's equation (3.4) associated 
with the Poincar6 map along gh(t) takes the form 

+ Q2 (gh(t)) z = 0. (3.12) 

Thus any Hill's equation of the form (3.12) can be "embedded" into the 
Poincar6 map along a periodic orbit in a Hamiltonian system where H(x,  y) 
=�89 W(x)  for a suitable potential given by (3.11). The previous results on 
the status of stability of the periodic orbit gh can then be applied at critical 
points (p, 0) on the x~-axis of W for which 

W(p, o) = 01(p) = ho, 

(OW/OXl)(p, O)=(~9_,/~Xl)(p)=O, 
( ~  W/Ox 2) (p, o) = ( ~  9_,/Ox~) (p) = - ~ ,  

(•2 W/Ox 2) (p, 0) = Q 2 (P) = f12,  

(3.13) 

with ~ and fl > 0. 

4. A Special Class of Hill's Equations 

In order to apply the results of the previous sections to the examples of 
Section 6, we need to present some general properties of the Hill's equation 

~ + (a + b k 2 . s nZ(t ; k2)) z=0 ,  (4.1) 

where a and b are real parameters and k is the modulus of the Jacobi elliptic 
function sn. Note that we write sn(t; k 2) rather than sn(t; k), using the fact that 
the Taylor series for sn(t;  k) contains only even powers of k. The remaining 
notation will be standard and we refer to [4, Chapters 1 and 2] and [23] 
respectively for definitions and notations relating to elliptic functions and Hill's 
equations. 

Lemma 4.1. For b > 0 and 0 < c = k 2 < 1 both f ixed ,  the Hill discriminant A = A(a) 
o f  (4.1) has only simple roots, and no interval o f  instability collapses. 

Proof. The transformation on pp. 103-4 of [23] will bring (4.1) into the form of 
Ince's equation, with the relevant polynomials Q(#) and Q*(#), used in applying 
[23, Theorem 7.1], being 

C 
Q ( p ) -  - -  (4p z + 2 p + b ) ,  

2 (2 - c) 

C 

Q* (P) = 2(2 - c) (4/./2 _ _  2 # + b). 
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For  b > 0 these cannot  have integral roots, and thus the result follows (see the 
discussion on pp. 90-93 [23]). Q.E.D. 

The result in Lemma4 .1  contrasts with the case of the classical Lam6 
equat ion where b = - n ( n +  1) in (4.1) (and n is a positive integer) and all but  n 
+ 1 intervals of instability collapse [23, Theorem 7.8]. 

To  write (4.1) in a more  convenient  form let C=k 2, and [4, p. 10 (19) and 
p. 17 (11), (12)] 

1 

K(c) = ~ (1 - xZ) - ~(1 - cx2) - �89 (4.2 a) 
0 

1 

E(c) = ~ (1 - x 2 )  - ~(1 - cx2)�89 (4.2b) 
0 

1 

K'(c) = ~ (1 - x2) - 12(1 - (1 - c)x:)- ~dx, (4.2 c) 
0 

for 0 < c <  1. In fact K is real analytic at each 0 < c <  1 [11, p.409],  and is the real 
quar ter-per iod of sn(t;c). We refer the re.ader to [-4, p. 10] for the appropr ia te  
asymptot ic  propert ies as c$0 and c T 1. 

We shall make use of the function 

q(c) = e x p [ -  rc(K'(c)/K(c))], 

which is real analytic at each ce[0 ,  1) [10, p. 413] with 

q(c)--*O + as c~0, q(c)--*l as cT1. 

(4.3) 

(4.4) 

Using the identi ty c.snZ(t;c)=l-dn2(t;c) and the Four ier  expansion of 
dnZ(t;c) [10; p .419]  we have 

where 

c.sn2(t;c)= 1-(E/K)+q a, cos(nrct/K c), 
1 

(4.5) 

[ - 2 n Z n q  "-a  ] 
a,(c) = [ ~ ~ j  (c). (4.6) 

The series (4.5) is convergent  for all real t and 0 < c < 1, and it can be Shown that  
KZ(1-qZ")=KZ[1-exp(-2nr~K'/K)]~+oe as cT1 for all n > l .  (To see this 
write out  the series expansion for exp and look at the leading terms, using 
K(c)~ + oo and K'(e)--.rc/2 as cT1.) Hence  

a,(c)--*O as c T l , n > l ,  

a l (c ) - -* -8  as c$0, (4.7) 

a,(c)--*O as c+O,n>2. 

Using (4.6) we can now rewrite (4.1) as 

~'+(A+BQ(t;c))z=O, (4.8) 
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where 
A = a + b [1 - ELK], (4.9 a) 

B =bq, (4.9b) 
oo 

Q (t; c) = ~ a,(c) cos(n ~ t/K), (4.9 c) 
1 

and the functions E, K, q are evaluated at c. Observe that Q(t;c) is even and 
periodic in t, with minimal period 2K(c) and mean value 0 over one period. 

Lemma4.2. Let A, B, and c be independent parameters in (4.8), with Q(t;c) 
specified by (4.9c). For r~R consider the set S r of points (A,B,c) where the Hill 
discriminant satisfies 

A (A, B, c) = r. (4.10) 

Then B and c may be used as real analytic coordinates on S, near each (A, B, c)~S r 
satisfying 0 < c <  1 provided [r I <2. Moreover, if [r I =2, then B and c may be used 
as real analytic coordinates on S, near each (A,B,c)eS, satisfying 0 < c < l  
provided B > 0  (recall that if B=B(c) is given by (4.9b), then B(c)~O as c~O by 
(4.4)). 

Proof. Since K(c) and q(c) are real analytic at each 0<  c < 1, the function Q(t; c) 
is analytic for all t and 0 < c <  1. Thus (4.8) is an analytic differential equation 
whose solutions are analytic at these (t, c) and at all values of the parameters A 
and B [-15, p. 299]. Setting t=2K(c)  implies that the Hill discriminant A is a 
real analytic function of A, B, and c. If (A,B, c) satisfies (4.10), and if Ir] <2, then 
OA/OA#O by [16, p. 27(b)]. Also, if (A,B,c) satisfies (4.10) and Ir[=2, then 
Lemma4.1 shows that for fixed (B, c) the equation (4.10) has a simple root in A 
provided B > 0 ;  thus again OA/?A~O. The analytic implicit function theorem 
[15, p. 272] now implies the result. Q.E.D. 

To cover the case [rl=2 and B = 0  not considered in Lemma4.2, we now 
state a 1-parameter version of a result of E. HOEHN [20], using the notation of 
LOUD [21, Theorem 1]. 

Theorem 4.3 (HOEHN). In (4.8) let Q(t; c) be even and 2K(c)-periodic in t, of mean 

value zero, differentiable, and have convergent Fourier series ~ b, cos(nrct/K(c)) 
(3[3 

i 

for all ce[0, 1). Then for each fixed ce[0, 1) (hence fixed period 2K(c)), the 
following results hold in the plane determined by c=constant in (A,B,c)-space 
(hereafter called the (A, B, c)-plane): 

(a) The stability boundary A=Ao(B) of the zeroth instability region U o is 
tangent to the line A = 0 at (0, O, c)= Mo(c ). 

(b) For n>__ 1 and b,=0,  the two stability boundaries of the n th instability 
region U, are both tangent to the line A=(nTz/2K(c)) 2 at ([nTz/2K(c)]2,0, c) 
=M,(c). 

(c) For n> l and b, 4=0, the two stability boundaries of U, are respectively 
tangent to the lines 2(A-[n~/2K(c)]2)+_Bb,=O at m,(c). 

(In our applications the b, will equal the a,(c) of (4.6).) 
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Proof. Allowing for the period 2K(c) instead of rt, the proof !s exactly as in [21, 
pp. 229-230], although that proof contains additional information on the stabil- 
ity boundaries, not needed here. Q.E.D. 

We conclude this section with some information about the stability boun- 
daries of (4.8), (4.9c) in (A,B, c)-space. 

Theorem4.4. The stability boundaries IA(A,B,c)I=2 for (4.8), (4.9c), with B>O 
and 0 < c <  1, intersect the A-axis at {(n2,0,0), n=0,  1, ...}, and at these points 
their tangent planes are spanned by the vectors 

(-n2/2,0, i),(0, 1,0) for n=~ 1, and 

(-1/2,0,1),(___4,1,0) for n = l .  

Thus only the two boundaries for the first region of instability meet non- 
tangentially on the A-axis (at (1, 0, 0)). 

Proof. For fixed c~[0, 1), the stability boundaries for the n th region of instability 
U, in the (A,B,c)-plane, n>O, issue from M,(c) where, for K(c) as in (4.2a), one 
can show 

{o A.(c)= [nrc/2g(c)]2~ as 
as cT1. 

From (4.2a) we have (dK/dc)(O)= re/8, thus giving 

(dA,/dc) (0) = - n 2/2. 

Hence the stability curves M,(c), n>O, appear in the B = 0  plane as in 
Figure 9, with tangents 

(dM,/dc)(O) = M',(0) = ( -  n2/2, O, 1). (4.11) 

A 
J 

9 M3M~ ~ 
4 M2 

M o 1 
Fig. 9 

= C 

After the definition of ao(C)=0, Theorem 4.3 states, for fixed c and with K(c) 
as in 4.2(a), that the stability boundaries intersect the A-axis in the (A, B, c)-plane 
at A,(c) with slopes which, by (4.7), have the following limiting behavior as c$0: 

(dA/dB)~=~ for n 4 : 1 , f o r  n = l .  
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Thus in the c = 0  plane the stability curves, obtained from A=A(B,O) at [AI =2 
in Theorem 4.3 by using the differentiable analogue of Lemma 4.2, intersect the 
A-axis perpendicularly at (n 2, 0, 0) at all levels except n = 1, their tangent vectors 
being 

E,=(0,  1,0) for n4=l, 
E~=(_+4,1,0) for n = l .  Q.E.D. (4.12) 

5. A Criterion of Stability for Low Energies 

Here we consider a C 3 smooth Hamiltonian H : R a ~ R ,  admitting 0 as a 
critical point, whose associated differential equations (2.2) admit a one-parame- 
ter family of periodic solutions //h, O<=h<hl, hl small. We assume that the //h 
all project into the xl-axis under the mapping (x,y)--,x, with//0=(0,0,0,0).  We 
further assume that for h > 0  the linearized Poincar6 map along IIh can be 
reduced as in Theorem3.1(b) to the single Hill's equation (3.4) in the specific 
form (4.1), with the coefficients a and b functionally dependent on c = k  2 with c 
= c(h). Finally, we assume that 

(i) b(c(h)) and c(h) are positive for h > 0  small; 
(ii) c(h)---,O + as h+0; 

(iii) The derivatives da/dc, db/dc, dc/dh exist for c>0,  h>0,  and possess 
limits as c+0, h+0; and 

(iv) The limits lim a(c)=a(0) and lim b(c)=b(0)>0 both exist. 
c~O c~0 

Theorem5.1. Under the above hypotheses, set F(c)=(A(c),B(c),c) (see (4.9)), and 
define F'(O)=lim(dF/dc). We then have: 

c~O 

(1) Under condition (C1) of Section 3, if a(0)=>0 and a(O):~n 2 for  any integer 
n, then there is a 6 > 0  such that II h is elliptic for 0 < h < 3 .  The same 
conclusion holds under condition (C2) provided a(O)> 0 and a(O):~n 2 or (n 
+�89 for any integer n. (Under either condition (C1) or (C2), /f a(0)<0, 
then there is a ~ > 0 such that / /h is hyperbolic for 0 < h < 3.) 

(2) Under condition (C1) or (C2), if a(0)=n 2 for some integer n>2,  then there 
is a b > 0  such that H h is elliptic for 0 < h < f i  provided (F'(O),E n 
x M',(0))4:0, where M',(O) and E, are given by (4.11) and (4.12). The same 

conclusion holds for n =0  provided (F'(0), E 0 x M~(0)) >0. 
(3) Under condition (C 1) or (C2), if a(0)= 1, then there exists a 6 >0  such that 

H h is elliptic for 0 < h < b  provided either (F'(O),E+xM'I(O))>O or 
(F'(0), Ei- x M'~(O)) <0. 

Moreover, if the Hamiltonian H is real analytic, then //h is elliptic stable at 
values of h in a set of full measure in the interval (0, 3) for cases (2) and (3) above. 
A corresponding result holds in case (1) provided //h is known to become hyperbolic 
as h increases (as in Theorem 3.3). 

Remark. Geometrically, the conditions in (2) for ellipticity simply state that F(c) 
"approaches" a(0)= n2= A in the (A, B, 0)-plane as in Figure 10. Analogous con- 
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f / / / / / / / / / j  

~ u  3 

i~u1 B 

~/ / /  / / /  

Fig. 10 

ditions obviously exist in (3) to guarantee hyperbolicity on some energy interval 
(0, 6) when F(0)=(1,  0, 0). 

Proof. (1) From general results on Hill's equation I-2, p. 129], the point (a(0), 0, 0) 
is in the interior of a stability region in the (A, B, 0)-plane. Since c(h)~O § as h+0, 
and A (c) ~ a(O), B(c) = b(c) q(c) ~ 0 § as c+0, the parameter arc F(c(h)) remains 
interior to the stability region for small h. The requirement that a(O)+-(n+�89 2 
when condition (C2) holds comes from the need to exclude the surfaces A = 0  
and the observation 1-2, p. 129] that the curves /1 (A, B, 0 )=0  intersect the A-axis 
at A=(n+�89  z. 

(For a(0)< 0 the result follows since all the regions of stability and their 
boundaries intersect the non-negative A-axis.) 

(2) From Theorem4.4 and its proof we see that for n > 2  the two stability 
boundaries of the n th region of instability U, meet at (n z, 0, 0) with common 
tangent plane having normal E,  x M',(0). The hypotheses guarantee that the 
parameter arc F(c) enters, for small positive c, one or the other of the two 
regions of stability adjacent to U,, since the boundaries are C ~ surfaces for B > 0, 
by the differentiable analogue of Lemma 4.2, and C t at B = 0 by hypothesis. The 
case n = 0 is clear. 

(3) This follows by the same type of reasoning as in (2). 
The last statements of the theorem follow by observing that, under the 

hypotheses that imply ellipticity, the function (A o F)(c) is not constant over any 
non-trivial c-interval (h-interval) in case (1), and in cases (2) and (3) strictly 
monotone in c for c > 0  small by Lemma 4.2. Thus the Moser-Riissmann criterion, 
as presented in the proof of Theorem 2.1, implies the conclusion via the rela- 
tion between the eigenvalues of the Poincar6 map and A given by (3.8) and 
conditions (C1) and (C2). (See Remark (2) following Theorem 3.1.) Q.E.D. 

Remark. This theorem reflects the need to obtain a criterion of stability for 
specific orbits in specific Hamiltonians. The examples in Section 6 show that its 
application, although limited by reliance on "first order" approximations, can 
provide useful information. 
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6. The Examples 

Details concerning the applicability of the theorems in Sections 2-5 will only 
be sketched for the examples; any gaps can easily be filled. 

(A) The H~non-Heiles Hamiltonian. We consider the Hamiltonian 

with potential 

H(x,y)=�89 2 +�89 2 +~x 3 - x t  x~, (6.1) 

W(x)=�89 z +ex~ - x , x ~ ,  (6.2) 

and parameter e > 0. When e = ~ the Hamiltonian H is equivalent to the HI~NON- 
HEILES Hamiltonian [18] via the canonical transformation (q~,q2,p~,pz)-~ 
- ( X z , X l , y z , y t )  , and the potential W is invariant under rotation through an 
angle +(2n/3). A sketch of the level curves of W, when e --~ is given in 
Figure 11. 

~ x~'~~W -'h < 1/6 

~ ~ , o ~ t  -~ ~ ~ 

Fig. 11 

The potential (6.2) admits a critical point p=( - (3e ) -1 ,0 )  on the xl-axis at 
energy h o ~. W(p) = (54e2) - 1, with eigenvalues - 1 and 1 + 2/(3e). Moreover, the 
symmetry in the xl-axis for the potential easily implies that Hypotheses (a) and 
(b) of Theorem 2.4 hold, and thus that result can be applied. The periodic orbits 
//h, which project to the x~-axis with endpoints on the level curve W=h,  exist 
for all 0 < h < h  o. They collapse to the origin, which is also a critical point of 
(6.1), as h+0. This suggests that Theorem 5.1 might also be applicable, but we 
shall find that this is not the case. 

In order to study the Hill's equation (3.4) governing the linearized Poincar6 
mapping we need to compute IIh explicitly. But along this solution (6.1) becomes 

1 " 2 2 3 ~-[(x 0 + x l ] + e x l = h ,  (6.3) 

leading to the second-order equation 

5~l+xt +3ex2=0 .  (6.4) 

We choose as trial solution 

xl  (t) = 6 + ~. sn2(~t; c) (6.5) 
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satisfying the initial condit ions x 1 ( 0 ) =  (~ > 0, X 1 ( 0 ) =  0, corresponding to the point  
on the positive xl-axis where Xx(Hh) intersects the level curve W=h.  (Recall 
from Section 4 that  we are using c = k z where k is the modulus.) We first observe 
that  (6.3) implies that  6 =~(~, h) is the unique positive solution to �89 +e63 =h. 
Since 0 < h < ( 5 4 e 2 )  - 1, we have 0<3(e ,  h )<  1/(6~), where for fixed e the quant i ty  
6(e, h)$0 if and only if h+0. Substi tut ing (6.5) into (6.4) gives the algebraic system 

2fl2C+eC~=0, (6.6a) 

4fl2(1 + c)-- (1 + 6e6) = 0, (6.6b) 

2C~fl 2 q- ~ d- 3 e6 2 = 0. (6.6c) 

The requirements  that  l i m ~ = 0  and that  l im~ be bounded  give the unique 
solution hS 0 ~+ o 

= - (4~)- 1 [1 + 6~6 - a], (6.7 a) 

f12 = [2e6(1 + 3 e6)] [(1 + 6 e 6 ) -  a ] -  1, (6.7b) 

c = [(1 + 6e6 ) -  (7] 2 [16e6(1 + 3e6) ] -  1, (6.7 c) 

where a = [ 1 - 4 e 3 - 1 2 ( e 6 ) 2 ]  ~. The following observations concerning these 
solutions will prove useful: 

(i) For  a fixed e > 0 ,  c+0 if and only if h$0; 
(ii) since 0 < e f t <  1/6, a is real and negative; 

(iii) lim f12 = 1/4 = lim f12 ; 
e~$0 efi~" 1/6 

(iv) lira c = 1 ;  
e61" 1/6 

(v) for a fixed ~>0,  6=6(c) is a Cl-invert ible function of c from (6.7c), and 
c=c(6(h)) is a Cl- funct ion of h. 

Now fix e > 0. The  Hill 's equat ion (3.4) then becomes 

e +  (1 - 2xl(t))z = e +  (1 - 2 6 -  2ct. sn2(flt; c))z = 0, (6.8) 

which, after making the change of variable fit = # and using (6.6), can be writ ten 
in the form (4.1) as 

where ' = d/d# and 

z" + [a(c )  + b(c) .  c .  s n2 (~;  c)]  z = 0, (6.9) 

a(c) = (1 - 26 (c))(4 c + 4)(1 + 6eft(c))- 1, (6.10a) 

b(c)=4/e. (6.10b) 

Fur thermore ,  (6.9) can be seen to be in the form (4.8), (4.9), with 

A(c) = a(c) + b(c) [ 1 - E(c)/ K (c)], (6.11) 

B(c) = b(c) q(c) = (4/~) q(c), 

where q(c) is defined in (4.3), and Q(t; c) is given by (4.9c) and (4.6). 
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We note that the period of IIh(t ) is the same as that of sn2(flt;c), and thus 
condition (C1) of Section3 is satisfied. By use of Lemma4.1,  the hypotheses of 
Theorem 3.3 can easily be seen to hold, and as Theorem 2.4 has already been 
applied, we conclude that there are two increasing sequences of energy intervals, 
converging to ho, on which H h is respectively elliptic and hyperbolic. On the 
elliptic energy intervals the Moser-Riissmann criterion applies, and the tran- 
sition to hyperbolicity takes place at both + 1 and - 1 eigenvalues. 

On the other hand, we now show that Theorem5.1 does not apply; we 
present the calculations so as to motivate the limit hypotheses of Theorem 5.1. 
From [10, p. 413] we have 

[2K(c)/~] ~ = 1 + 2q(c) + 04(q(c)). (6.12) 

Since q(c)~O + as c$0, and (dK/dc)(O)=rc/8 with K(0)=~z/2, we have from (6.12) 

lim (dq/dc) = ~ .  (6.13) 
c;0 

It is easy to check that (dE/dc)(O)= -re/8, and hence 

(d/dc)(- E(c)/K(c))(O) =�89 (6.14) 

For  the parameter  arc F(c)=(A(c),B(c),c) of Theorem5.1, where A(c) and B(c) 
are given by (6.11), the fact that [1 -E(c)/K(c)]~O as c+0 implies 

F(0) = l im F(c) = (4, 0, 0), (6.15) 
cl0 

independent of the parameter  e > 0  in (6.1). 
The motivation for performing all differentiations with respect to the vari- 

able c rather than h can be seen from the relation �89  which implies 
lim(dfi/dh)= + oo. To avoid such singularities we use L'Hospital 's  Rule and 
h,t0 
formulate the hypotheses on the coefficients in Theorem 5.1 in terms of limits. 
For  any C 1 function f(c) we now use the notation f'(O)=lim(df/dc). Using 

c.~0 
implicit differentiation in (6.6) and fl2~1/4 and c~--,0 as c~,0, one can calculate 
6'(0)= 1/(4e). Since a ' ( 0 )=4(1 -26 ' (0 ) -6~6 ' (0 ) )  from (6.10a), on using r as 
cl0,  we have 

A'(0) = a'(0) + 2/e = - 2. (6.16) 

Since B'(0)= 1/4e by (6.13), we have, in the notation of Theorem 5.1, 

F'(0) = ( -  2, 1/(4e), 1), 

M;(0) = ( -  2, 0, 1), (6.17) 

E 2 = (0 ,  1,0), 

and thus 
( r ' (o) ,  E 2 x Mi(0))  =0,  (6.18) 

independent of the parameter  e > 0  in (6.1). That is, the parameter  arcF(c) is 
tangent to the stability boundaries at F(0)=(4,0,0) as c+0 (equivalently, h+0), 
and Theorem 5.1 cannot be applied. 



Periodic Orbits in Hamiltonian Systems 339 

We have already remarked that when e=�89 the potential (6.2) is invariant  
under rotation through an angle +(2z~/3). Thus the results above actually apply 
in this case to three symmetrically placed families of periodic orbits which exist 
for each 0 < h < l  and link one another within the associated energy manifold. 
Even though Theorem 5.1 cannot be invoked, preliminary numerical work does 
indicate that the three families of periodic orbits are elliptic for 0 < h < h ' ~  0.13, 
at which point they appear to become hyperbolic through the eigenvalues #1 = 
- 1 = # 2 .  Note that this happens above the energy h~0.11 at which the 
transition to large scale, observable stochastic behavior of the flow is reported 
to take place [18, p.77]. The relation of these stability transitions to other 
phenomena reported by HI, NON & HEILES [18] is explored in the survey [6], 
which contains references to other work. The existence of invariant tori at a 
number of energies in the interval 0 < h  < 1/6 confirms in part some conjectures 
of LUNSFORD & FORD [-22]. 

(B) We consider the Hamiltonian 

H(x,  y) =�89 2 +�89 2 - x, x22, (6.19) 

and in Figure 12 we sketch the level curves of the potential W=�89 2 - x l x  ~. W 

admits two critical points p• :(�89 +~/2) at energy ho= 1/8, each with eigen- 
values -1 ,2 ,  and Hypotheses (a) and (b) of Theorem 2.4 hold for both p+, the 
relevant lines in Hypothesis (b) being x 2 = •  1. 

/ p- 

i \ = v2 

Fig. 12 

To apply the results of Sections 3-5, one first rotates the line x z =l /~xa  into 
the xl-axis and then reflects through the x2-axis to obtain 

W * (x) = �89 2 + (1/~/3) [(2/3) x 3 _ x l x 2 _ (1/~/3) x ~ 1. (6.20) 

The rescaling x=~o2, y = c @  in the resulting Hamiltonian, for appropriate 
choice of ~o, then achieves an equivalent Hamiltonian 

H ( X , ,  1, 12 _~ 1 X.2 ..1_ (2)X3 2 ~ ' ~ )  y~=g y ~ - x l x 2 -  x 3. (6.21) 
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The single second order differential equation for Xl(Ilh) is the same as (6.4) with 
e=  2, leading to the Hill's equation (6.8). Thus Theorem3.4 applies with con- 
dition (C1). By analyticity the Moser-Riissmann criterion also applies on the 
energy intervals of ellipticity, but Theorem5.1 is still not applicable. Note by 
symmetry that the two families of periodic orbits that respectively project to the 

lines x 2 = + ] / ~ x  1 of Figure 12 must undergo identical stability transitions as h 
changes. 

There is a third family of periodic orbits that exist for all h > 0 and project to 
the xl-axis in Figure 12. By a direct calculation of the Poincar6 map along these 
orbits, one can show that they will be hyperbolic for 0 < h < h 1 ~ 8, and thereafter 
alternate between being elliptic and hyperbolic infinitely often as h~ + ~ .  At a 
fixed h all three of the families of periodic orbits discussed above link one 
another in the energy manifold H = h. 

For  some numerical work on variants of (6.19), with various parameters, we 
refer to [3] and [9]. 

(C) The Hamiltonian 

H(x,y) 1 2 1 2 1 . 2 . 2  =xlyl +~lxl -~x1~2  (6.22) 

was considered by HI'NON & HEILES [-18], and special properties of solutions 
were shown in [7]. For  a comparison of this Hamiltonian with that of 
Example (A), see [6]. 

The level lines of the potential _1 2 1 2 2 W-~lxl -~x lx2  are sketched in Figure 13. 
Note that W is invariant under rotation through an angle re/2 and admits the 
four symmetrically placed critical points ( 1 ,  ___1) at energy 1, each with 
eigenvalues - 2 ,  2. It is a simple matter to see that Theorem 2.5 can be applied if 
we choose critical points in opposite corners of the square of Figure 13, with the 
relevant line segment in (b) of that theorem being the connecting diagonal 
through the origin. 

To apply the results of Sections 3-5, we rotate the potential clockwise by re/4 
radians, obtaining 

W,(x)=(1/2)lx12(1/S)(x~_ 2x;x 2~ 2 +x2) .4 

\ \  / /  

//W=h<I/2 \,,, 

Fig. 13 

xl= - I " ~  
X2 = I~" "X~ ,1) 

= 

,-1) 
/ /  

/ 
/ 

/ 

/ X ;  = 1 

/ 
/ 

(1, V 
/..---w-- r �89 

r 

:1 , - , ,  . x 2  = _ 1 

I/2 

(6.23) 
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The differential equation for the periodic orbit, which now lies along the xl-axis, 
is seen to be 

1 3_ (6.24) xa + x l - ~ x a - 0 ,  

subject to the constraint 

(�89 _~_X 2 - -  ].Xll 4 =h. (6 .25)  

It is then a simple matter to check that (6.24) is satisfied by 

xl(t) = 6. sn(flt; c), (6.26) 

where 6 > 0, / /> 0, and 0 < c < 1 are defined in terms of the parameter 0 < a = 
(1 -2h)  ~ (where 0<h<�89  by 

(a) 62 = 2 ( l - a ) ,  

(b) //2 =(3)(1 + a), (6.27) 

(c) c=(1-o') /(1 +a). 

Notice that 

(a) 2cflZ=fiz/2, 
(b) (1 +c)fl 2 = 1, (6.28) 

(c) 62f12=2h. 

Here the Hill's equation (3.4) is 

~+ (1 +�89 c))z = 0. (6.29) 

Setting f i t=It  and writing (d/dIt)=', in (6.29) we transform it into 

z" + E(1//~ z) + (62/(2 ~2)) s n2(#; c)] z = 0, 

which, by using the identities (6.28), reduces to 

z" + [-a(e) + b(c). c. s n 2(It; c)] z = 0, 
(6.30) 

where 
a(c)= 1 + c, b(c) =2. (6.31) 

For the parameter arc F(c)=(A(c),  B(c), c), with A(c) and B(c) given by (4.9), 
we have 

(a) r(0)=(1,0,  0), 
(6.32) (b) r '(0)=(2, l/S, 1). 

Also, from Theorems4.4 and 5.1 the relevant tangent vectors to the stability 
surface at (1, 0, 0) are 

(a) M~(0)=(-�89 1), 
(6.33) 

(b) E~ = ( •  1,0). 
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Thus N-+ = E  i-+ x Mi(0) =(1, T- 4,�89 with 

(a) <F'(0),N+> =2, 

(b) (F'(0), N -  ) = 3. 

Theorem 5.1(3) therefore applies, proving that the two families of periodic orbits 
projecting into the diagonals Xl=  _+x 2 of Figure l3 must be elliptic for h > 0  
small, and elliptic stable for almost all such h by the Moser-Rtissmann 
criterion. For  each fixed h these two families are linked in the energy manifold 
H=h.  

Moreover, Theorem 3.3 also applies, as hq "1, but now condition (C2) obtains. 
Therefore the transitions to hyperbolicity can only take place at p~ = p 2 =  + 1, 
just as for the mapping (2.16). This result could, of course, have been anticipated 
from the symmetry of the problem. 

We note that the two periodic orbits that project to the axes in Figure 13 
were shown in [-7] to be elliptic for energies 0 < h < h  I ~ 1.15, and hyperbolic for 
all h>h~. In H = h  they link one another and also link the previous periodic 
orbits that project to the diagonals in Figure 13. 

(D) The differential equations associated with the Hamiltonian 

H(x, y) =�89 2 - (cos(x 1) -t- COS(X2) ) (6.34) 

form a completely integrable system. At energies - 2 < h < 0  there are two 
families of periodic orbits that project to the two axes, and which satisfy the 
hypotheses of Theorem 2.5 as hT0. (The relevant critical points of the potential 
are p ~ = ( + r t ,  0) and p~=(0 ,  +n)  and have eigenvalues +1.) Here the asso- 
ciated Hill's equation (3.4) is simply 

~' + z = 0, (6.35) 

for which all intervals of instability collapse. The periodic orbits are therefore 
repeatedly elliptic and parabolic as hT0 , but never hyperbolic. This can be seen 
directly from the geometry of the completely integrable system and shows the 
necessity of the hypothesis of non-collapsing regions of instability for the Hill's 
equation as given in Theorem 3.3. All other periodic solutions of this system at 
energies - 2  < h < 0 are known to be parabolic [29, Corollary 2.8]. 

Appendix A 

In this appendix we show that Hypothesis (b) of Theorem2.1 implies that 
every monomial in the series represented by the term 02 in the transformation 
x2+iyg=w+O2(u ,v ,w ,~)  of (2.7) contains a factor of w or uT. For  w = w  1 +iw 2 
this will imply that w~ = 0 = w  2 if and only if x 2 = 0 = y  2. 

First observe that if we write z = x 2 + i y  2 as in (2.7), then the differential 
equations associated with the Hamiltonian (2.1) will take the form 
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21 = ~ x  1 +02 ,  

3)1 = - -~yl  +02 ,  

~= -- i f lz  +02,  
~=iM+o~. 

(A.1) 

Moreover,  by virtue of Hypothesis (b) of Theorem 2.1, each monomial  in the 02 
terms for ~ and z must contain a factor of z or Z If we let el =e ,  e2 = - i f l ,  and 
relabel z and f by x 2 and Y2 (these are not the x 2 and Y2 above), then (A.1) can 
be written in the more convenient form 

2i = c~ix~ + f i (x ,  y), 
= 1, 2, ( a . 2 )  

.Vi = -- aiYl + gi(x, Y), 

where each monomia l  in f2 and g2 now contains a factor of x 2 or Y2. The series 
f~ and gi begin with terms of order two or more. 

For  a series f we denote by fu the homogeneous polynomial of all terms of 
degree N in f Also, we change notation so that (u, v, w, ~) of (2.7) is now denoted 
by (u~, Vl, u 2, v2). As described in [27], the transformation (2.7) will convert (A.2) 
into the form 

where 

lii = ai(1.l l))tli , 
i =  1, 2, (A.3) 

{)i=-bi(uv)vi, 

ai(uv)=~i-4- ~ ai, N(UV), 
N = I  

bi(uv)= -cq  + ~ bi, N(uv), 
N = I  

(A.4) 

are convergent power series in ulvi, i= 1,2, with a/ ,N=bi,N=0 for N odd (ai, N is a 
homogeneous polynomial  of degree N, etc.). Moreover,  the actual form of (2.7), 
in the present notation, is for i = 1, 2 

2 

Xi=(Oi(U,,U2,Vl,V2) = ~ 61jUj+ ~ 4'i,N(Ul,U2,Vl,V2) , 
j = l  N = 2  

2 

Yi ~-@i(~ll~122'vI'v2)~ 2 ~)ijVj -~- ~ ~/i,N ( t z l ' u 2 ' ~ l ' / ) 2 ) '  
j = l  N = 2  

(A.5) 

Thus we need to show that if each monomial  in f2 and g2 of (A.2) contains a 
factor of x2 or Y2, then each monomial  in q~2 and 02 of (A.5) must contain a 
factor of u 2 or v 2. To prove this we use induction on N. 

Since 4~2,1=u2 and ~b2.~=v 2 in (A.5), the result is true for N = I .  We 
therefore assume the result holds for all monomials  in the series for q~2 and ~'2 of 
degree < ( M -  1). 

We need two remarks. First, the Hamil tonian character of the equations 
(A.2) implies that b i = - a l  in (A.4) [27, p. 262]. Also, the series (A.5) are n o t  
uniquely determined, but uniqueness can be achieved provided all terms of the 
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CiUi(U 1 t)l) al (U 2 V2) az, 
(A.6) 

c~ v~(u~ v~) ~' (u2 v 9 %  

in the respective series for q5 i and ~ ,  are normalized in a certain way [-27, 
p. 266], with the specific normal izat ion being unimpor tan t  for our purposes. 

Define the differential operators  Os=uj(O/Ous)-vj(c3/Ov~), j =  1, 2, and note 
that D s either annihilates a monomiaI ,  or  else preserves its degree and the 

2 

proper ty  of  its admit t ing a u s or  a vj. Next  let u p : denote ~ u p J : J ,  define D 
= a l D I + a 2 D 2 ,  and note that for any constant  c we have j=l  

2 

D(cIAP va)= (SE= l O~j(pj--ff j)) CUP Va. (A.7) 

Substituting (A.5) into (A.2) and recalling that a i = - b i ,  we obtain 

2 

D~i+ Z ~ aj, NDjr162 
j = l  N = I  

2 

DOi+ E ~ as, NDstPi =-aitpi+g`((~, t~). 
j = l  N = I  

(A.8) 

Compar ing  terms of  order M then gives 

2 

(D--~Zi)~i,M+ ~ 61Sujaj, M 1 
j=l 

2 M - 2  

= -  Z Z aj.NDjc~i,M-u+(fi(d?, O))M, 
j = l  N = I  

2 

(D+ai)~bi, M+ ~ (~ i j v ja j ,  M - 1  
j = l  

2 M - 2  

= - Z Z as, unsOi, M-u+(gi((9, tP))M" 
j = l  N = I  

(A.9) 

The induct ion hypothesis  assures that  each monomia l  in (/)2, N and r for 
1 <N<M contains a factor of  u 2 or v 2. Also, since the expressions (f/(~b, ~))M 
and (gi(~b, ~b)) M involve only terms of the form qSj, N and Cs, N, 1 <N<M, we see 
that  the r ight-hand side of (A.9) for i = 2 must  have each monomia l  containing a 
factor of  either u 2 or v2. Finally, since the summands  on the left-hand side of 
(A.9) reduce when i = 2  to terms always involving u 2 or v 2, we see that if (D--~2) 
does not  annihilate a term of 4)2,M, then that term must contain u 2 or  v2, with a 
similar s ta tement  holding for ~z, u .  However,  from (A.7) it is a simple matter  to 
see that the only terms annihilated by (D+~2) are those of  the form (A.6) with 
i = 2 .  Thus  each monomia l  of  ~2.M and r must  contain a u 2 or v2, and by 
induct ion the same is true for the series ~b 2 and ~2 in (A.5). 
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Appendix B 

Here we indicate the relation of Theorem 3.2 to classical Sturmian oscil- 
lation theory and sketch a proof of that result under the additional assumptions 
of Theorem2.4 (i.e., the Hamiltonian has the form H(x, _1  2 y ) - ~ l y l  + W ( x )  and 
p ~ R  2 is a saddle point of the potential W with eigenvalues -~2 ,  flz, where c~ and 
fl > 0). As hT0 = h0 equation (3.4) attains the limit 

+ Hx2 x2 (no  (t)) z = 0, (B. 1) 

where 11o( 0 is an orbit homoclinic to the critical point (p, 0)ER r But IIo(t ) is 
near (p, 0) for "mos t"  t, and thus H . . . .  (IIo(t)) must be well-approximated for 
such t by Wx2x~(p)=]~ 2 (see formulas (3.13), in which p is denoted by (p, O)ERZ). 
It follows that (B.1) must be well-approximated over long periods of time by the 
equation 

~ + ~z z=O. (B.2) 

Since solutions of (B.2) have infinitely many zeros in [0, oo), the Sturm compari- 
son and separation theorems (see [17, pp. 333-337]) show that (B.1) must be 
oscillatory at + oo. This gives the content of Theorem 3.2 without the use of 
Moser coordinates (and perhaps, therefore, with less geometrical insight). 

Such techniques can also be applied to give an alternative proof of Theo- 
rem 2.4. Moreover, in the case of "multiple twisting" past several critical points 
(Theorems 2.5-2.8), these approximation procedures can be employed at each of 
the critical points in each of the relevant directions taken by the orbit Flh(t ) in 
passing near each critical point. Of course one must verify that the zeros from 
the respective systems do not cancel, i.e. that the rotations discussed in the proof 
of Theorem 2.5 are in the same direction. With our techniques this was easily 
seen from the Moser coordinates (2.4) about each critical point as shown in the 
proof of Theorem 2.5; any other approach must also account for the "addi- 
tivity" of the twistings to obtain Theorems 2.5-2.8. 

For  more general systems of the form (3.9), with Hamiltonians of the form 
(2.1), the standard Sturmian oscillation theory would have to be replaced by 
matrix oscillation theory (as in [32, pp. 328-336]) if one wished to achieve 
analogous alternative proofs of results such as Theorem 2.1. 
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