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Abstract. We consider a control problem for a nonlinear diffusion equation with boundary input 
that occurs when heating ceramic products in a kiln. We interpret this control problem as a 
constrained optimization problem, and we develop a reduced SQP method that presents for this 
problem a new and efficient approach of its numerical solution. As opposed to Newton’s method 
for the unconstrained problem, where at each iteration the state must be computed from a set 
of nonlinear equations, in the proposed algorithm only the linearized state equations need to be 
solved. Furthermore, by use of a secant update formula, the calculation of exact second derivatives 
is avoided. In this way the algorithm achieves a substantial decrease in the total cost compared to 
the implementation of Newton’s method in [2]. Our method is practicable with regard to storage 
requirements, and by choosing an appropriate representation for the null space of the Jacobian 
of the constraints we are able to exploit the spar&y pattern of the Jacobian in the course of the 
iteration. We conclude with a presentation of numerical examples that demonstrate the fast two-step 
superlinear convergence behavior of the method. 

Keywords: optimal boundary control, nonlinear heat equation, reduced successive quadratic program- 
ming (SQP), constrained optimization, BFGS-update, null space parametrization, two-step superlinear 
convergence 

1. Introduction 

In this paper we consider a nonlinear diffusion problem with boundary input that 
occurs in the heating of kilns in the ceramic industry. In a recent publication 
([2]) by Burger and Pogu, the following problem is formulated. 

Let y(z, t) denote the temperature inside the probe to be heated in a kiln 
where the time t ranges from 0 to T and the spatial domain 6’ is [O,l]. The 
point 2 = 1 is located in the inside of the probe and z = 0 is at the boundary 
of the probe. Then the boundary value problem is given by 

C(Y(T t))&, 4 - V(X(Y(2, 9)VY(Z, 9) = f(c t) on 0 x [0, T] 

XY(2, t))Vy(z, 4 = p(q t) on X2 x [0, T] (1) 
Y(C 0) = YCI(~) on f-2 

Here the functions C, X : R -+ IR denote the specific heat capacity and the 
heat conduction, respectively, which both depend on the temperature y. yo is 
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the initial temperature distribution, f is the source term, and p is the boundary 
input. Since z = 1 is located inside the probe, there is no heat flux at 1, whereas 
for 2 = 0 we impose a control law that enters linearly through the temperature 
inside the kiln: 

z-407 t> = S[Y(O, t) - 491 
P(L t) = 0 

g is a real number that we usually normalize to be 1. 
The goal is to control the heating process in such a way that the temperature 

inside the probe follows a certain desired firing curve Mt) 

Minimize J oTKY(l. t) - fw + ~~2wt 

for a given constant (Y 2 0. 
This optima1 control problem can be formulated as an infinite dimensional 

optimization problem choosing the control and state space as follows: 

u E L2(0, T), y E L2(0, T;H’(O)) 

Under proper assumptions on X and C it is shown in [2] that there exists a 
solution to (l)-(3) for QI > 0. 

In [2], the control ‘u is considered to be the independent variable, and the state 
is substituted through (1) and (2) as a variable depending on u. For a numerical 
solution, the authors in [2] introduce a discretization of the differential equation 
and the objective function. Hence, the resulting optimization problem can be 
written as 

Minimize F(y(zl), u), u E LRM 

with F : lRK+M + W, where the variable y depends on u through the solution 
of a discrete scheme for (1) and (2). In [2], the method of steepest descent, 
Newton’s method, and the conjugate gradient method are used as optimization 
routines. Newton’s method is reported to be very fast, but the calculation of the 
Hessian is rather expensive, and at each iteration a system of nonlinear equations 
must be solved. Similarly, the solution of the state equation is a drawback for 
the use of differential dynamic programming for discrete control systems [12]. 
This led us to consider a different approach to the numerical solution of the 
problem. 

We consider y and u as independent variables and interpret the boundary 
value problem as a nonlinear equality constraint in a constrained optimization 
problem: 

Minimize F(y, u) subject to h(y, TA) = 0, y E IRK, u E lRM (4) 
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with h : lRK+M -+ lRK. The discussion of the previous paragraph motivates 
to look at methods that produce infeasible iterates such as successive quadratic 
programming (SQP) methods that are among the most successful algorithms for 
solving constrained optimization problems. There are several issues that should 
be considered when solving a finite dimensional optimization problem (4), that 
comes from a discretization of a parabolic control problem. Among those are 
the following. 

l In problems of a multidimensional space variable, the state variable y is much 
larger than the control variable U. 

l The nonlinear equality constraint h and its linearization exhibit a large amount 
of structure. 

If one uses a secant SOP method, a matrix, usually the Hessian of the 
Lagrangian or augmented Lagrangian function, needs to be updated. This matrix 
could be of rather large dimension as indicated by the first item. Reduced secant 
SQP methods offer a different viewpoint. Here, the matrix to be updated is only 
of the dimension of the null space of the Jacobian of the constraints, which is 
usually relatively small. The second item indicates that the structure in h and 
the resulting sparsity in h’ should be used in the course of the iteration, and this 
can be achieved if reduced SQP is applied in an adequate way. 

In this paper we solve (l)-(3) by a reduced secant SQP method, which presents a 
new approach to an efficient solution of this nonlinear boundary control problem. 
In Section 2 we motivate reduced methods for general constrained optimization 
problems and we state a convergence result. Furthermore, for problems of the 
type (4) we exploit the splitting of the variables into y E lRK and u E lRM in order 
to develop a reduced BFGS algorithm that is appropriate for optimal control 
problems. In Section 3, we formulate this algorithm for the minimization problem 
that results from a discretization of the parabolic control problem. A central 
feature of the algorithm is that the computation of second-order information is 
avoided. Furthermore, only the linearized discrete state equation must be solved, 
as opposed to the solution of a system of nonlinear equations per iteration of 
Newton’s method. In addition, the sparsity of the Jacobian is used efficiently in 
the course of the algorithm, and we are able to retain a fast convergence rate 
and practicable storage requirements. In Section 4, we discuss implementation 
details and present numerical results. 

2. Reduced SQP methods 

In this section we motivate reduced SQP methods, and we develop a particular 
reduced BFGS algorithm for minimization problems of the type (4). First, we 
consider the following general constrained optimization problem: 
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Minimize F(z) subject to h(z) = 0, z E lRp” (5) 
with F : l?? --+ LR and h : IR” -+ lRq. 

We assume that h’(z) is surjective for all z in some neighborhood of the 
solution and let T(z) E ZRzsx(d-q) be any basis for the null space of the Jacobian 
of the constraints: 

N[h’(z)] := {p E lRi” : h’(z)p = 0) = {Z’(z)w : w E I??-“} =: R[T(z)] 

At each iteration of an SQP method, a quadratic approximation of the Lagrangian 
is minimized under linearized constraints: 

Minimize VF(Z)~~ + ;drHd subject to h’(z)d + h(z) = 0 (6) 

The new iterate is Z+ = z + d. Here H E msxa is an approximation to the 
Hessian L,,(z, 1) of the Lagrangian function L(z, Z) = F(z) - Zrh(z). 

With any right-inverse R(z) E lRsxq of h’(z), i.e., h’(z)R(z) = I E LRqxq, the 
feasible points in (6) can be represented as 

d = T(z)w - R(z)h(z), w E lZTq 

and we obtain the following closed-form expression for the SOP step (see e.g., 
PI): 

dsQp = -T(z)[T(z)~HT(z)]-‘T(z)=[VF(z) - HR(z)h(z)] - R(z)h(z) 

In the case of linear constraints, all iterates Zk generated from an SQP method 
are feasible for k > 1 so that the expression HR(z)h(z) vanishes in dsQp. Hence, 
it is reasonable to replace T(z)~HT(z) by a matrix that approximates the reduced 
Hessian T(z)rLIZ(z, 1)2(z) directly. If the idea to approximate only the reduced 
Hessian while discarding the HR(z)h(z) term is applied to the case of general 
constraints, one is led to the reduced SQP step: 

p = -T(z)B-+(z)~VF(Z) - R(z)h(z) (7) 

Here B E ~(Wb+‘?) is interpreted as an approximation to the reduced Hessian 
and usually a secant update formula is used to compute the new matrix B+. 
We formulate an iteration of a reduced secant method with a BFGS update for 
general constrained optimization problems of the type (5). 

2.1. Algorithm 1 (reduced BFGS method) 

Given z E lR” and B E D?(~‘-q)x(s-q), B nonsingular. 

1. Solve Bw = -T(z)WF(z). 
2. Set z+ = z + T(z)w - R(z)h(z). 
3. Compute v = T(z + T(z)w)~VF(Z + T(z)w) - Z’(Z)~VF(Z). 
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4. Set 

B+ = Bf&- tB~)tB4~ 
9-W wTBw 

if it is well defined, else set B+ = B. 

This method has the advantage that only a matrix of the dimension s - q needs 
to be stored and updated as opposed to a matrix in ZR”“” in an SQP method. 
Furthermore, since in general only the reduced Hessian is positive definite at 
the solution, algorithm 1 is in line with the second-order sufficiency condition, 
and, locally, the reduced BFGS update in steps 3 and 4 maintains the positive 
definiteness of the secant approximation B. 

For a general null space basis and right-inverse, the step (7) is introduced 
in [S], and modifications of the standard step are discussed in this general 
setting in [S], [9], and [lo]. Frequently, only a particular choice for R and T is 
considered, namely R(z) = /~‘(z)~[h’(z)h’(z)~]-’ is the Moore-Penrose pseudo- 
inverse of h’(z), and T(z) is an orthonormal basis of @L’(Z)]. In this case, the 
restoration step -R(z)h( z can be regarded as a minimum norm Newton step ) 
on the equation h(r) = 0. Reduced SQP methods within this setting, which is 
sometimes called the orthogonal framework and is generally implemented using 
a QR factorization, are studied in [4], [5], [6], [ll], [17], and [19]. In our 
application, however, the control space is the proper choice of parameter space; 
the orthogonal framework is not particularly suitable in this case, because it does 
not automatically preserve the sparsity structure. In addition, the control space 
parametrization allows a simple interpretation in infinite dimensions, which is 
important for fine discretizations, in contrast to the QR factorization. At the 
end of this section we will demonstrate how to take advantage of the splitting 
into control and state variables in order to define very naturally the matrices 
R and T. This leads to a fast and efficient algorithm for the solution of the 
parabolic boundary control problem presented in the introduction. 

Next we state a convergence result for general reduced SQP methods. 

ASSUMPTION 1. F and h are twice differentiable on a ball D, which contains the 
solution z* of (5). Furthermore, F”(.) and h”(a) are Lipschitz-continuous on D. 

If the choice of null space basis or right-inverse changes too much from one 
iterate to- the next, fast convergence for reduced methods can be impeded. 
Therefore, some smoothness for R and T must be required. We summarize the 
definition and the properties of the null space representation and the right-inverse 
in the following. 

ASSUMPTION 2. For each z E D, let T(z) E lR sx(a-q) be a matrix of full rank with 

Jw’(z)l = wxa)l 
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Furthermore there exists a matrix R(z) E RYxq with h’(z)R(r) = Iq. 
In addition, T(.), R(.) are differentiable and T’(.), R’(a) are Lipschitz-continuous 

on D. 

We note that Assumption 2 implies that h’( z is surjective for e E D. To prove ) 
a fast rate of convergence, a second-order sufficiency condition is required. This 
can be formulated as follows: Let L(x, 1) denote the Lagrangian, and let I* E lRq 
be the Lagrange multiplier corresponding to z*. 

ASSUMPTION 3. There exists some m > 0 such that 

CTL&*, l*)C 1 ml16112 for all C E N[h’(z*)] 
Since only reduced second-order information is approximated, one cannot in 
general expect a reduced method (7) to be q-superlinearly convergent (see the 
examples in [3] and [Ml). However, under the stated assumptions, a two-step 
q-superlinear convergence rate can be achieved: 

THEOREM 1. Let z* E IRS be a solution of (S), and let Assumptions I-3 be satisfied. 
Suppose that {zk}rCO is generated by algorithm 1 with Bo symmetric and positive 
definite. Then there exist positive constants e and 6 such that if 

llzo - z*ll < E and llBo - T(z*)%&*, l*)T(z*)ll < 6 

the sequence {zk} is well defined and converges to z* at a two-step superlinear rate 

lim ]I a+1 - Z*ll 
ki Il.&-1 --*I/ = O 

The previous theorem has been proven in [6] in the orthogonal framework. The 
second gradient evaluation in step 3 of algorithm 1 was avoided by [17] for 
the orthogonal framework while retaining the convergence result under a more 
stringent update rule. In this paper, we use the reduced SQP method in the 
form of algorithm 1 because it allows an extension of the convergence result to 
general choices of R and T and to an infinite dimensional setting [14], in which 
the optimal control problem is formulated originally. 

Next we discuss the choice for T and R, that is appropriate in applications in 
optimal control. In the formulation of the optimization problem in (4), which 
arises from the parabolic control roblem, one can see that the variables J in 
(5) are split into (yr, rF)r E lRK+ R , the state and control variable. We can use 
this splitting to parametrize the null space of h’(y, U) by the control. Obviously, 
an element ($‘, ~r)r belongs to N[h’(y, u)] if and only if 

where h& E lRKxK and h: E IRKxM denote the Jacobians of h with respect to y 
and 2~. Provided that h’, is nonsingular, the elements in the null space can be 
represented as follows: 
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0 z E N[h’(y, u)] H ; = 0 ( 
-h’,(Y, u)-%(Y, u>y 

u > 

This suggests the following natural choice, which defines what could be called 
the separability framework: 

T(Y, u) = -h&(Y, WUY, u> 
IM 

and R(y, 21) = ( h:(yLU)-l) 

where the second component in R(y, U) denotes the null matrix in lRMxK. With 
these definitions for R and T, the reduced SQP step (7) can be written in the 
following way: 

AY 
( > 

= Au T(Y, ‘1~)Au - R(Y, UMY, u) 

= 
( 

-hj(y, @MY, uW + h(y, u>l 
Au ) 

where Au is the solution of 

BAu = -T(y, u)~VF(~, u) 

Recall that for the BFGS update in algorithm 1 we have to evaluate the reduced 
gradient at the intermediate point 

+ T(y, u)Au = Y - h&(y, 4-‘NAY, u)Au 
u+Au 

If we insert these relations in algorithm 1, we are led to the following method, 
which is applicable to problems of the type (4). 

2.2. Algorithm 2 (reduced BFGS method, separability approach) 

Given u E lR”, y E IRK, and B E lRMxM, B nonsingular. 

1. Solve BAIL = --T(Y, 4=wy, u>. 
2. Solve h’,(y, u)Ay = -ht(y, u)Au-h(y, u). Set u+ = u+Au and y+ = y+Ay. 
3. Solve h’,(y, u)~ = -h:(y, u)Au. 

Compute v = T(y + 7, u+)~VF(~ + q, u+) - T(y, ~)rvF(y, u). 
4. Set 

B+ =B+x- (BAu)(BAu)~ 
u=Au Au=BAu 

if it is well defined, else set B, = B. 
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The reduced BFGS method in the separability approach is adopted in [13] 
where reduced SQP is applied to parameter identification problems, and in [16] 
for the solution of semilinear parabolic control problems. In the next section 
we will discuss the realization of algorithm 2 for a discretized version of the 
parabolic control problem presented in the introduction. 

3. Reduced BFGS method for discretized control problem 

We follow the discretization that was proposed in [2] for the optimal control 
problem (l)-(3). The variational form of the boundary value problem (l), (2) 
can be written as 

( C(YC.7 o&7 t>, ?J) - (V(J+(Y(., Q)VY(., t)), v) = (f(*, t>7 u) (8) 

vu E H’(Q) 

where (., .) denotes the inner product in L2(L’). We suppose the following for 
the specific heat capacity and the heat conduction: 

ASSUMPTION 4. C, X E C’(ZR), and there are constants Ci, Xi E IR, i = 1,2, such 
that 

0 < c, I c(t) 5 c2, 0 < A1 < x(t) I x2 vt E LR 

As a consequence of Assumption 4, the following functions 

r(s) = 
s 

8 C(7) d7, 
cl 

O(s) = pan 

are strictly monotone increasing. Integration by parts of (8) taking the boundary 
conditions into account and some calculations (see [2]) lead to 

($Y(-7 t)), v> + (VP(Y(*,t)), Vv) + (Y(*, 9, 4 = (ft.> 9, v> 

+ (4th 4 (9) 
Y(-7 t)(O) = YO(.) 

where we denote (v, w) = gv(O)ru(O) for V, w E H’(0). If we set 

cb(? t) = r(Y(? t)), 40(z) = r(Yo(z)), r(s) = Nr-‘w) 

then we can rewrite (9) as 
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&c 9, v> + (tJY($(., t)), Vv) + (W~C, t)>, 4 = UC.7 0, v) 
+ (4% 4 (10) 

4c.v MO = 4oc.j 
which is linear with respect to the time differentiation. 

Set V = H’(R) and let f E L2(0, T;L’(R)), ys E L2(L?) and Q E L2(0, T) 
be given. To discretize the control problem the space interval is divided into 
N subintervals of equidistant length h = l/N with grid points zi = (i - l)h, 
i= 1 ) . ..) N + 1. The time discretization is performed by partitioning the 
interval [0, T] into M equidistant subintervals of length r = T/M with grid 
points tj = (j - l)~, j = 1, . . . , M + 1. We introduce a finite dimensional 
subspace VN of V 

vN = span{b*, . . . , bN+l} 

where {bI, . . . . , bN+r} is the basis Of hear Sphe fUnCtiOnS SatiSfying 

bi(Zj)=6ij, iyj=ly*.*,N+l 

The state space Y = L2(0, T; V) is approximated by the subspace YMN of 
functions from (0, T] into V N that are constant on each interval (tj, d+‘]: 

YMN = {w(E, t) = &j’l(z)Xi(t);w’ E VN, j = 2, . . . , M + 1) 
j=l 

where Xj denotes the characteristic function on (tj, tj”]. The control space 
U = L2(0, T) is approximated by the subset U M of piecewise constant functions 
on (0, T]. 

To derive a discretized form for the boundary value problem we assume for 
a moment that a control ‘1~ = .EjM_r@‘Xj E UM is given. The inhomogeneous 
term f and the initial temperature yo are replaced by the elements fj E VN and 
Y0.N E VN, respectively, which satisfy 

t1+’ 
(p+‘, v) = : ; (f(., t), v)dt Vu E VN, j = 1, . . . , M 

(YO,N, v> = (Yo, v) vu E VN 

Using these approximations a discretization for (10) is given by 

(l/T)(tii_+’ - #, v) + (V#j+‘), Vu) + (r-‘(@i+‘), v) = (fj+‘, v) 
+ (d”, v)(ll) 

4’ = rr(Yo,N) 

to hold for all v E VN and some @ E VN, j = 1, . . , , M + 1, where r denotes 
the restriction mapping 
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N+l 
TV = ~V(Zi)4, v E C[O, l] 

i=l 

Since we use y and not 4 in the objective function of the control problem, we 
transform (11) back into an approximating scheme for (9). Let yj E VN be the 
elements that satisfy # = rI’(yj), j = 1, . . . , M + 1. Then the relations 

(~-Wh 4 = (Yj, 4 and 

wYwi>> Vu) = WP(Yj), Vu) = WP(Yj), Vu) 

are true for all v E VN, j = 1, . . . . M + 1, and we can rewrite (11) as 

(l/r)(rr(yj+t) - rr(yj), bi) + (Vrp(y-++‘), Vbi) + (yj+r, bi) 

= (fj+l, bi) + (d+l, bi) 
(12) 

with y’ = ya N to hold for i = 1 
We arrive at a nonlinear &stem 

N+landsomeyj~V~,j=l,..., M+l. 
of equations by defining the tridiagonal 

matrices A and D in IR(N+*)x(N+l) through 

A = (ll~)(@i, bj))isj=l,,,,,N+l and D = (WY vb)),,j=l...,,N+1 

From (15) in [2] we have for all w E VN 

(l/~)(rr(w), bi) = (AF(E))i and 

(VT+(w), Vbi) = (D/l(Tq)i i = 1, . . . ) N + 1 

where E E RN+’ denotes the coefficient vector of w and 

F(F) = (F(Wj);j = 1, a** 1 N + l)r, P(E) = (/3(Wj);j = 1, ..*) N + 1)’ 

Then (12) is equivalent to solve successively for j = 1, . . . , M the following 
nonlinear equations 

AI-(++‘) + Dp(g~+‘) + (g$+l, 0, . . . , O)T 

= aj + (gd+‘, 0, . . . , O)T + AI-($) 

where 8’ is obtained from the solution of 

(TA)$ = ((yo, bi); i = 1, . . . , N + l)T 

(13) 

(14) 

and aj E ZRN+’ denotes the vector with the components 

(15) 
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Since we consider only the discretized problem from here on, we omit the bar 
and denote the coefficient vectors simply by 

y = ((Y*)~, . . . , (Y~+‘)~)* E IR”(N+l) and u = (u*, . . . , ~~+l)~ E IRM 

We consider y and u as independent variables and write (13) as nonlinear equality 
constraints in the notation of problem (4). Let 

/,, . &4(N+lf x @f ~ &W’J+l) 

where the components hj : lRMtN+l) x lRM -P lRNi’ are defined as 

h’(y, u) = AI’ + Dp(y*) + g(y; - u*)e’ - (a’ + AI’( 

and for j = 3, . . . , M + 1 

(16) 

hj-‘(y, u) = A(r(yi) - r(yj-l)) + Dp(yi) + g(d - d)e’ - &’ (17) 

Here y1 denotes the solution of (14) aj is defined by (15) and er = (1, 0, . . . , O)T 
in lRN+‘. 

For the approximation of the objective function in (3) we replace ~(1, e), u 
and g by their discrete expressions 

M M M 

YMN(~, .) = C#::rXj, UM = CU~+‘X~, and PM = Cp”Xj 
j=l j=l j=l 

where the data @ are computed by integrating 9 on the subinterval (tj, tj+‘]: 

tj+l 

9 j+l = _ t /M+dt, j = 1, . ..) M (18) 
v 

Then we have the following objective in the discrete control problem 

M+l 
Minimize F(y, u) = ~~[(~~+r - vi)* + I*] 

j=2 
(19) 

The definitions (16) (17), and (19) completely describe the discrete optimal 
control problem in the notation of the optimization problem (4). To apply 
algorithm 2 we now focus on the Jacobian of h and on the computation of the 
reduced gradient. For j = 2, . . . , M + 1 we let Qj E IR(N+‘)xM denote the matrix 
with the elements 

(Qj)ik = -; , ,:‘,: = 1 and k = j - 1 (20) 

and for w E lRN” we define the following tridiagonal matrices in ZR(N+‘)x(N+‘) 
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G(W) = ACd(w) + D&(W) + diag(g, 0, . . . , 0) 

E(w) = -ACd(w) (21) 

with the diagonal matrices 

Cd(W) = diag(C(q), . . . ) C(WN+I)) and Ad(W) = diagOc(wl), . . . , A(wN+l>) 

KUPFERANDSACHS 

Then we can write the Jacobian of h as 

h’(Yt 7J) = (h&(Y% u), UY, u)> 

where 

h&(Y, u) = 

and 

G(y2) 0 0 

WY*) G@) 

0 

E(Y~-') G(y") 0 

0 . . . 0 E(y") G(y"+l) I E mM(N+l)xM(N+l) 

h;(y, u) = (Q;, Q;, . . . , QL+,)= E W”(N+‘)xM (22) 
Note that h’,(y, U) = h;(y) only depends on the state variables, and h:(y, U) = h: 
is a constant matrix. In the previous section we assumed that h; is nonsingular 
and we used the partial Jacobians to derive an appropriate null space basis and 
right-inverse. In connection with the discussion of Newton’s method for solving 
the discrete scheme (13) it is shown in [2] that the matrix G(W) is nonsingular 
for all w E lRN+’ if the step lengths h and T are chosen properly. From this 
result we can conclude that hk is invertible. 

LEMMA 1. Let Assumption 4 hold and assume that h and r are such that 

$<A($-$ (23) 

Then h&(y) is nonsingular for all y E lR”tN+‘). 

For the sake of completeness we state our choice for R and T in the following 
lemma. 

LEMMA 2. Let Assumption 4 be satisfied and suppose that (23) holds. Then 

T(y) := -h;(y)-‘h: 
IM 

E mM(N+Z)xM (24) 
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is a basis for the null space of h’(y, u), and 

E mM(N+2)xM(N+l) 

is a right-inverse for h’(y, u) for all y E lRMtN+‘) and u E lR”. Here 0 denotes the 
null matrix in lRMxMCN+‘). 

Proof. Since h’,(y) is nonsingular, the operators T and R are well defined on 
WMCN+‘). Furthermore, T(y) has full rank, and for all Y E lRM 

h’(y, u)T(y)v = (h&(y), h:) -hk(y;-lh’V) = 0 

If on the other hand for n E iRMCN+‘), v E lRM the relation 

0 = h’(y, u) 
0 

1 = h&(y)q + h;v 

holds, then n = -h’,(y)-‘h’ Uv, and, consequently, (nr, ~/r)r E R[T(y)]. 
Obviously, h’(y, u)R(y)v = n for all n E IRMCN+l). q 
Note that the representation (24) of the null space basis is not only needed 

for the definition of the reduced SQP step, but it can be used further for the 
calculation of the corresponding reduced gradient. We show more generally 

LEMMA 3. Assume that Assumption 4 and (23) hold, and let q E ZRMtN+‘) and 
Y E IRM be given. Then for all y E lR”(“+‘) 

TV ; 
0 

= &, 7rf, . . . . 7ry+*y + u (25) 

where A = ((T~)~, (T~)~, . . . , (T~+‘)~)~ E lRMCN+*) is the solution of the scheme 

WY 
M+l T M+l 

1 ‘IT 
= 

77 
M+l 

G(yj)‘d = rj - E(yj)T~~+l, j = M, . . . , 2 

Proof. Obviously, r is the solution of hk(y)‘7r = n. Then (20), (22), and (24) 
imply that 

= (-h:h;(y)-T, IM) ; 
0 

= -h’;x + Y = &, . . . , ++I)’ + v 

which proves the assertion. 
Lemma 3 can be applied to compute the reduced gradient T(Y)~VF(~, U: 

where the partial derivatives of the objective function in (19) are given by 
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$(y, u) = 
1 

2T(y i+’ - $) for i = N + 1 

z 0 fori = 1, . . . . N I 
forj = 2, . . . , M + 1 

and V,F(y, U) = 2~77~. Hence, all the steps in algorithm 2 can be formulated 
for the optimal control problem. We set eN+l = (0, . . . , 0, l)r E ZRN+l, and we 
note that the right-hand side in the linear equation for the state step can be 
simplified to 

/&AU + h(y, U) = h(y, ‘u. + AU) 

In detail, the reduced BFGS algorithm for the discrete optimal control problem 
(19) subject to (16) and (17) requires the following steps: 

3.1. Algorithm 3 (reduced BFGS method for DOCe separability approach) 

Given u E lR”, y E lR”cN+l), and a positive definite matrix B E lRMxM. 

Step 1 (computation of the reduced gradient T(y)*VF(y, u)): 
Compute the adjoint state T = ((T*)*, . . . , (TV+‘)*)* from 

G(Y M+l)TrM+l = qyf;; _ gM+ljeN+l 

and successively for j = M, . . . , 2 from 

G(yj)‘d = 27-(gi+i - @)eN+l - E(#)*d+’ 

Set c(y, U) = g(nf, . . . , TV+‘)* + 2~~~21. 
Step 2 (computation of the new control): 

Solve BAu = -c(y, u). 
Set U+ = ‘1~ + Au. 

Step 3 (computation of the new state and of the intermediate point): 
Determine E = ((<*)*, . . . , (J”+l)*)r and n = ((n*)*, . . . , (n”+l)*)* 
from the solution of 

G(y*)[* = -h’(y, u+), G(y*)v* = g(Au)*e’ 

and successively for j = 3, . . . , M + 1 from 

G(yj@ = -h+l(y, u+) - E(yj-l)c+l 

G(yj)+ = g(Au)je’ - E(yj-‘)4-’ 
Sety+ =y+<andv=y+n. 

Step 4 (computation of the reduced gradient T($)*VF(g, u+)): 
Compute T = ((T*)*, . . . , (7r”+l)*)* from 
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and for j = M, . . . , 2 from 

G(p)=& = 2~(g;+i - fj+~~+~ - E($)=*j+’ 

Set c(g, u+) = g(r:, . . . , ny+l)r + 2a721+. 
Step 5 (computation of B+): 

Set 2, = c(F, u+) - c(y, u). 
Set 

B+=B+&- (BAu)(BAu)~ 
Au=BAu 

if it is well defined, else set B+ = B. 

Remark 2. The computation of the step in y and of the intermediate step n (step 
3 in algorithm 3) involve the solution of the same systems of linear equations 
with different inhomogeneous terms. The adjoint equations in step 1 and step 
4 are not the same because the data in the matrices and in the right-hand sides 
differ. The computation of y+, p, and of the reduced gradients is rather cheap, 
since only tridiagonal systems need to be solved. We note further that due to the 
appropriate choice of the null space basis and of the right-inverse, the sparsity 
of the Jacobian h’ could be used efficiently in the course of algorithm 3, which 
is reflected in steps 1, 3, and 4. 
Remark 2. One advantage of algorithm 3 over a general SQP method is the 
dimension of the secant approximation. We only have to store and update the 
matrix B which is of order M in contrast to a matrix in m”(N+2)xM(N+2) in 
an SQP secant method. Since for the solution of the tridiagonal systems only 
vectors in ZRN+’ need to be stored, algorithm 3 is practicable also with regard 
to storage requirements. 
Remark 3. The complexity of algorithm 3 is dominated by the cost for the 
factorization of B and the computation of Au in step 2. More precisely, the 
total amount of work in one iteration of the algorithm is the solution of 4M 
tridiagonal systems each of dimension N + 1, plus some negligible matrix-vector 
multiplications (steps 1, 3, 4), and the solution of a positive definite system in 
step 2 after performing the update in step 5. We implemented the BFGS update 
in its factored form (see [7]), i.e., updating the Cholesky factorization of B to 
obtain the Cholesky decomposition of B+. For this implementation, the total 
cost of updating the reduced Hessian approximation and obtaining its Cholesky 
factorization and solving the linear system for Au is O(M’). Consequently, if 
M > N which is the situation in our numerical experiments, the complexity of 
one iteration of algorithm 3 is O(M2) . In comparison, the implementation 
of Newton’s method that is used in [2] requires O(M3) elementary operations 
per iteration. Recall that in [2] the optimal control problem is interpreted as 
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an unconstrained optimization problem so that the Hessian and the gradient of 
the corresponding objective function must be calculated in order to compute 
the Newton step. It is reported in [Z] that for the calculation of the Hessian 
approximately 2M2 tridiagonal systems in ZRN+l must be solved. The Newton 
step is computed by means of Gaussian limination so that the cost both for the 
calculation of the Hessian and for its factorization is 0(M3). The gradient is 
computed from the solution of the adjoint equation, which is the scheme given 
in step 1 of algorithm 3. However, since the state is considered as a variable 
depending on the control, the data y in the adjoint equation must be computed 
from the solution of the set of nonlinear equations (13). In [Z] Newton’s method 
is used for the solution of (13). Note that in algorithm 3 only a linearization of 
these equations is solved to compute the step in the state space. 

The computational results in the next section show that a fast two-step super- 
linear rate of convergence for algorithm 3 can be observed numerically. 

4. Numerical Experiments 

We implemented algorithm 3 for the discrete optimal control problem (19) subject 
to (16) and (17). The Kirchnoff and the enthalpic transformations /3 and r were 
calculated analytically and the integrals in (14), (15), and (18) were approximated 
by the Simpson rule. The BFGS update was implemented in its factored form 
as described in the previous section. LINPACK was used for linear algebra 
manipulations. The computations were done in double-precision FORTRAN on 
a SUN Sparcstation 1. 

To evaluate the performance of the algorithm we will present numerical results 
for three examples. The desired state Q comes from interpolation of an attainable 
state for the infinite-dimensional unregularized control problem. With exception 
of the last problem, the parabolic boundary value problems used in this process 
were taken from [l] with some modification in the parameter values. 

In the tables we use the following notation 

Pk = (b4.k - %,k-d: + liYMN,k - YMN,k-1it-)1’2 

Fk = F(YL, uk), and $k = Ib(Yk, ?~klb 

Here the subscript k denotes the iteration number and yMN,k, ~l~,k denote the 
functions in YMN and UM with the coefficient vectors h and F respectively. 
Recall that yk and Uk were defined in (16), (17) and (19). 

We want to document primarily the efficiency of the proposed method, and 
we want to demonstrate that the two-step superlinear convergence rate can be 
observed numerically. Under standard assumptions for linear convergence results 
it can be shown, see e.g., [15], that the iterates generated by a reduced secant 
method converge Z-step superlinearly, I = 1, 2, if and only if the corresponding 
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sequences for the steps ~k/~k-r respectively ~kl~k-2 tend to zero. We monitor 
these ratios for a discussion of the rate of convergence properties of the algorithm. 

To fully concentrate on the local convergence behavior of the method we did 
not use any globalization strategy in the first two examples. In most of the test 
cases the algorithm was successful, even when the starting values, in particular 
those for the state variables, were not chosen too close to the solution. We 
started the minimization with Ba = 71, where the constant r] > 0 was selected to 
reflect the scaling of the contro1 variables. 

4.1. Example 1 

The heat capacity and the heat conduction are given by linear functions 

C(Y) = Ql + QZY, Y ElR 

X(Y) = 7-1 + r2y, y E lR 

where Q, ql, r2, and q2 are constants such that both functions take positive values 
in the range of variation of the temperature y. 

If we choose the following data 

flit) = 2 - ePt 
f(x, t) = [p(ql + 2q2) + r2(rl + 2r2)]ePtcosrz 

2 -772~ e 2ft + (2~2~~ + pq2)e2Ptcos2w 

Ye(X) = 2 + cowrx 

with p < 0, then an optimal solution of the control problem (l)-(3) for a = 0 is 
given by 

Y*(X, t> = 2 + ePtcos7rx 

u*(t) = 2 + ePt 

In this example we set 

T = 0.5, g = 1.0, Q = 0.0 

and the parameter values are chosen as follows 

7-l = q1 = 4.0, 7.2 = -1.0, q2 = 1.0, p = -1.0 

In Table 1 we select I30 = I, and we consider a close approximation for y,(l, .) 
and for ut by choosing 

(Yo>&+ 1 = p , (ufJ)~ = uj + 0.05, j = 2, . . . ( M + 1 

The remaining state variables (yo){, i = 1, . . . , N, j = 2, . . . , M + 1 are set to 
zero. The fifth column indicates a two-step superlinear convergence rate, while 
from column four a one-step superlinear rate is not observable. 
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Table 1. Two-step superlinear convergence for example 1 with N = 18, M = 100. 

k 4k Pk Pk/Pk-1 Pk/L’k-2 Fk 

0 0.4983+03 - - - O.OOOE+OO 

1 O.l20E+03 0.282E+Ol - - 0.8733+00 

2 O.l90E+03 0.3423+01 1.21556 - O.l12E+OO 

3 0.1566+02 0.144E+Ol 0.42107 0.51184 0.8803-03 

4 0.307E+OO 0.508E+OO 0.35272 0.14852 0.5433-05 

5 0.319E-01 O.l93E+OO 0.37941 0.13383 0.283E-05 

6 O.l79E+OO 0.411E+OO 2.13226 0.80901 O.l14E-06 

7 0.8473-02 0.759E-01 0.18453 0.39346 O.l31E-08 

8 0.4943-04 0.6323-02 0.08331 0.01537 O.l77E-09 

9 0.597E-06 0.8043-03 0.12716 0.01059 0.1593-09 

10 0.396E-10 0.6523-05 0.00811 0.00103 0.1593-09 

11 0.3963-10 0.726E-07 0.01113 0.00009 0.1593-09 

For the same example we change the data in the objective function in order to 
reduce the effect of the discretization error. We use Newton’s method to solve 
the discrete state equation (13) for a given discretization level with U* as input. 
The values of the computed solution y then serve as data in the discrete control 
problem, i.e., we choose 

$$ = yff+l, j = 2, . . . . M+ 1 

We initialize the iteration process with 

and Bc is a particular positive scaling matrix that causes the first step in u to 
be in a scaled steepest descent direction. The results are documented in Table 
2, where the fifth column depicts the value of IIUM,k - u*IIu. This provides 
information on the performance of the algorithm with respect to the unknown 
control u*. It should be noted that for this example the algorithm does not only 
exhibit a two-step but also a one-step superlinear convergence rate. 
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Table 2. Two-step super-linear convergence for example 1 with N = 18, M = 100. 

k d’k Pk Pk/Pk-2 11%&k - ‘Il*IIU Frs 

0 0.3163+02 - - o.l55E+OO 0.7423+00 

1 0.1523+02 0.204E+Ol - 0.771E-01 0.2953+00 

2 O.l37E+Ol 0.6943+00 - 0.229E+OO 0.527E-03 

3 0.3833-01 0.6773-01 0.033224 0.216E+OO 0.1293-05 

4 O.l73E-01 O.l55E+OO 0.222775 0.661E-01 O.lllE-06 

5 0.313E-02 0.608E-01 0.897424 0.7603-02 O.l52E-08 

6 0.522E-04 0.7623-02 0.049249 0.7353-03 0.9783-11 

7 0.3233-06 0.6263-03 0.010290 0.777E-03 0.240E-14 

8 0.599E-10 0.858E-05 0.001126 0.7803-03 0.5773- 15 

9 0.6063-12 0.4613-07 0.000074 0.780E-03 0.5773-15 

10 0.5953-12 0.2253-10 0.000003 0.7803-03 0.5776-15 

4.2. Example 2 

The functions C and X are chosen as in example 1. For 

Glt> = i(l - e-“) 

f(x, t> = dx)e-%l + q2q(z)4t)l - 4th + T24tX 
3 
5x2 - 3x + 2)] 

Ye(X) = 0 

where we denote q(z) = $ - x + 1 and w(t) = 1 - eFt, we obtain the solution 

Y*(X, t> = (g - x + l)(l - e-“) 

u*(t) = 
1 (1 - eQ[l + -(q + rz(1 - e-“))I 
9 

We choose g = 1.0 and compute the solution until T = 0.1 with a discretization 
level of N = 10 and M = 100. 

In Table 3 we consider the unregularized problem (a = 0) and we compute 
the solution for the parameter set 

q1 = q2 = 0.5, r1 = 1.0, rz = -0.5 
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where the algorithm is started with 

BO = 0.251, y. E -0.74, and u,-, z 0.185 

The results indicate the superlinear convergence behavior as predicted by the 
theory. 

Table 3. Two-step superlinear convergence for example 2 with CY = 0. 

k tik L’k Pk/Pk-1 L’k/Pk-2 Fk 

0 O.l96E+Ol - 

1 0.617E+Ol 0.531E+OO 

2 o.l19E+ol 0.231E+OO 

3 O.lllE+00 0.613E-01 

4 0.1533-02 0.5683-02 
5 0.242E-02 0.4533-01 
6 O.l07E-03 0.938E-02 
7 O.l40E-06 0.3363-03 
8 0.3663-08 0.5633-04 
9 0.1483-13 O.l13E-06 

10 O.l49E-14 0.262E-08 

- 

- 

0.4355 

0.2653 

0.0926 

7.9760 

0.2071 

0.0358 

0.1678 

0.0020 

0.0233 

- 

- 

- 

0.11554 

0.02456 

0.73850 

1.65181 

0.00742 

0.00601 

0.00034 

0.00005 

0.5843-01 

0.920E-01 

0.5033-02 
0.386E-04 
0.658E-06 
0.4283-07 
0.337E-08 
O-3313-08 

0.331E-08 
0.3313-08 

0.331E-08 

In l%ble 4 we use the data 

q1 = ~2 = 0.2, rl = 1.0, 7-2 = -0.5, cr = 10e3 

and we start with Be = (2. 10d6)1, ~0 G 0.1, and 

(yo){ = (y*)j, i = 1, . . . , iv + 1, j = 2, . . . ( M + 1 

Note that the parameter LY is fairly large, so that the initial values ~0 cannot be 
regarded as an exact approximation to the state variables. 
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Table 4. Two-step superlinear convergence for example 2 with a = 10e3. 

k d’k Pk Pk/Pk-1 Pk/Pk-2 Fk 

0 

6 

7 

8 

9 

10 

0.5393-01 - 

0.225E-02 0.341E-01 

0.911E-03 0.241E-01 

0.5273-03 0.218E-01 

O.l91E-03 O.l34E-01 

0.1483-05 O.l09E-02 

0.1463-06 0.357E-03 

0.4863-10 0.6926-05 

O.l06E-11 O.lOlE-05 

0.641E-15 O.l61E-08 

0.6383-15 0.930E-10 

- 

- 

0.70579 

0.90390 

0.61422 

0.08171 

0.32729 

0.01937 

0.14636 

0.00159 

0.05771 

- 

- 

- 

0.63797 

0.55519 

0.05019 

0.02674 

0.00634 

0.00283 

0.00023 

0.00009 

O.lOOE-05 

0.3623-05 

0.549E-06 

0.821E-06 

0.3803-06 

0.380E-06 

0.380E-06 

0.380E-06 

0.3803-06 

0.380E-06 

0.380E-06 

The last example was designed to demonstrate that the globalization procedure 
that we use currently in our code works well in practice. We implemented the 
globalizing technique that is proposed in [B] for general reduced SQP methods. 
In [B] a second-order correction step is added to the reduced SQP step (7) under 
certain conditions. The step-length is then determined along an arc-shaped 
search path in order to decrease an exact penalty function with the help of an 
Armijo-like criterion. It is shown in [B] that with this strategy the “Maratos 
effect” is avoided, i.e., the step-size is equal to one after a finite number of 
iterations. 

4.3. Example 3 

We choose C and X again as linear functions 

C(Y) = Ql + QZY, Y E ZR 

J+(Y) = Tl + 7.2Y, Y E ZR 

With the data 

Qft) = -cos7rt 
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f(G t) = -n[ql + qp(2 - 2)cosd]z(a: - 2)sinrt 
-2[rl + ~(32 - 62 + 2)cos~t]cos7rt 

YO(Z) = rc(x - 2) 

we obtain the following solution for the unregularized control problem 

y*(z, t) = z(z - 2)cosd 

u*(t) = 
27-l -cos at 

9 

We solve the problem for N = 10, M = 100, and the following set of parameters 

rl = q1 = 4.0, r2 = -1.0, q2 = 1.0, T = 0.5, g = 0.5, a = 5. lo-’ 

The iteration is stopped, if 

(IIT(Y~*VF(Y~, 4: + Ilh(yk, ~)ll:)“~ < l@ 

With the start values 

BO = (5. lo-‘)I, y. = 0, and u. ~0 

the global method yields the solution after 9 iterations, while without globalization 
the algorithm terminates after 19 iterations. 

Table 5. Global convergence for example 3. 

k 6k L’k Pk/Pk-1 Pk/Pk-2 Fk 

0 O.l03E+02 - 

1 0.9963+01 0.7283+01 

2 0.605E+Ol 0.2433+02 

3 0.331E+Ol 0.211E+02 

4 o.l16E+oo 0.7993+01 

5 O.l29E+OO 0.5883+01 

6 0.201E-01 0.3523+01 

7 0.822E-03 O.l32E+Ol 

8 0.5063-06 O.l20E+OO 

9 0.2563-09 0.7603-02 

- 

3.33944 

0.86691 

0.37949 

0.73610 

0.59760 

0.37676 

0.09078 

0.06316 

- 

- 

2.89499 

0.32898 

0.27934 

0.43990 

0.22515 

0.03420 

0.00573 

0.250E+OO 

O.l72E+OO 

o.l81E+oo 

O.l70E-01 

0.250E-01 

0.3723-02 

0.2933-02 

0.2823-02 

0.2823-02 

0.2823-02 
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