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1. Introduction 

The metric to be considered was introduced by DAVID HILBERT [13] in 1895 
in an early paper on the foundations of geometry. Special cases of Hilbert's 
metric occur in the earlier work of Cayley, Beltrami and KLEIN [15]. HILBERT [13] 
constructs a model for  a metric hyperbolic geometry in which there are three non- 
collinear points forming a triangle with the length of one side equal to the sum 
of the lengths of the other two sides. 

The usefulness of HILBERT'S metric in algebra and analysis was made clear by 
GARRETT BIRKI-IOFF [3] in 1957. Birkhoff showed that the Perron-Frobenius theo- 
rem for non-negative matrices and Jentzch's theorem for integral operators with 
positive kernel could both be proved by an application of the Banach contraction 
mapping theorem in suitable metric spaces. BIRKHOFF'$ papers [3-6] relied heavily 
on arguments from differential projective geometry. The present paper is partly 
expository, supplying simple proofs for BIRKHOFF'S main theorems. 

Consideration of positive homogeneous mappings of degree p, 0 < p <  1, by 
these methods seems to be new, although some results were given by THOMPSON 
[19] using a different but related metric. Theorems 3.4 and 3.5 are new. The simple 
proofs of the applications in Section 5 (i), Section 6 (if) and Section 7 also appear 
to be new. 

The metric is defined in Section 2 in a cone of positive elements in a Banach 
space. Properties of positive homogeneous mappings are studied in Section 3; 
the necessary completeness criteria for the metric spaces to be considered are given 
in Section 4. Applications of the theory to non-negative matrices, positive integral 
operators, positive-definite symmetric matrices and ordinary differential equations 
are given in Sections 5-8. 

The main aim of the paper is to give an elementary introduction to a tool 
which has been somewhat neglected, perhaps because of the lack of a readily 
available account of its simple properties. 

2. Definition of the Projective Metric 

HILBERT'S original definition of the projective metric involved the logarithm 
of the cross-ratio of certain points in the interior of a convex cone in R n. We 
begin with the definition of the HILBERT metric in a general setting. 
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Let X be a real Banach space and let K be a closed solid cone in X, that is, 
a dosed subset K with the properties: (i) /~, the interior of K, is not empty, 
(if) K +  K c  K, (iii) 2 K c  K for all 2>  0 and (iv) K n  - K =  {0}. The relations < and 
< are defined in X in the usual Way by saying that x<y  and x<y  if and only if 
( y - x ) e K  and ( y - x )~K,  respectively. Since the cone is dosed, the partial or- 
dering < is Archimedean, that is, if n x ~ y  for n =  1, 2, 3, ..., then x < 0 .  The 
standard example of a bad cone which is neither dosed nor Archimedean (nor 
normal) is K={(xl ,  x2): x l > 0  or x l = 0  and X2~0)  ~ R  2, in which n(0, 1)<(1, I), 
and hence (0, 1)=<(I/n, 1/n), for n =  1, 2, 3 . . . . .  

Definition2.1. If x ,y~K +=K\{O), we define M(x/y)=inf{2: x<2y}, or 
M(x/y)= oo ff the set is empty, and m(x/y)=sup{#: lty<x). 

Lemma 2.1. l f  x, y e K  +, then 

m(x/y) y<x< M(x/y) y (2.1) 

where the right-hand inequality has meaning only (f M (x/y) is finite. 

Proof. x <= {M(x/y) + l/n) y for n = 1, 2, 3 . . . .  ; hence n { x -  M(x/y) y} <y for 
n = l ,  2, 3 . . . . .  and by the Arehimedean property x-M(x/y)y<=O. Similarly, 
m (x/y) y - x < O. 

Corollary. l f  x, y~K +, then 

O <m(x/y) ~ M (x/y) < oo. (2.2) 

Proof. Suppose that M(x/y) < m (x/y); then 

(M(x/y)-m(x/y)) y={M(x/y) y -  x) +{x-m(x/y)  y) >_0 
and 

-{M(x/y)-m(x/y))  y~O. 

Therefore, {M(x/y)-m(x/y))y=0, and hence y = 0 ,  contrary to the choice of 
y~K +. 

Definition 2.2. Hilbert's projective metric d( . ,  .) is defined in K + by 

d(x, y)=log{M(x/y)/m(x/y)). 

Theorem 2.1. {/~, d) is a pseudo-metric space and E={/~c~ U, d) is a metric 
space, where U denotes the unit sphere in X. 

Proof. It is clear from equation (2.2) that d(x, y)>O and from equation (2.1) 
that d(x, y ) = 0  if and only if x=2y for some positive 2. 

We now show that d(x, y) is finite for all x, y in /~ .  Choose 8>0 such that 
S(x; ~ ) c K  and S(y; 8)~K, where S(x; 8) is the ball centre x and radius 8. Then 
x-(8/llYll) y>O and y-(8/llxll) x>O, and hence 

0 < {8/II Y II ) < m (x/y) < M(x/y) < { II x II/8) < oo. (2.3) 

The triangle inequality follows easily from the inequalities 

x< g(x/y)  y<=M(x/y) M(y/z) z, 
23* 
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Fig. 1 

which gives M(x/z)<M(x/y)M(y/z), and from the companion inequality 
m (x/z) > m (x/y) m (y/z). 

The notation used in defining the functions M and m is explained by the 
following example. 

Example. Let X=R" and K={(x 1, x 2 . . . .  , x~): xi>O (1 <i<n)}. Then 

M(x/y)=Max (xi/y~} and m(x/y)=min {xi/Yi} 
i i 

and hence 
d(x, y) = log Max {xi yj/y~ x j}. 

i , j  

It is worth remarking that when X =  R 2, 

d(x, y) = 2 x {Shaded area in sketch} 
and 

d(x, y) =log I cross-ratio (x~, yy)I- 

Lemma 2.2. I f  x, ye_f(, then d(2x, #y)=d(x, y) for all 2, #>0 .  

The proof of this fundamental property is obvious. 

Lemma 2.3. f i x ,  ye I (  and ~, fl>=O, then 
O) M(~x+fly/y)=ocM(x/y)+fl, 

(ii) m(~xx + fly/y)=~xm(x/y)+ fl, 
(iii) n(x/y)  m (y/x)= 1. 

Proof. See BAUER [1, 2] for details of the elementary proof. 

3. Positive Mappings 

In this section we consider properties of mappings in K. 

Definition 3.1. If A: K ~ K w e  say thatA is non-negative, and if A : / ~ / ~  we 
say that A is positive. 

Definition 3.2. If A is positive and if A(Ax)=2PA(x) for all x~/~ and 2>0,  

we say that A is positive homogeneous of degree p in ~ .  



Hilbert's Metric 333 

Definition 3.3. If ,4 is positive, the projective diameter A (.4) of `4 is defined by 

A (A) = sup {d(A x, a y): x, y e K}. 

Definition 3.4. If A is positive, the contraction ratio k(A) of .4 is defined by 

k(A)=inf{2:  d(Ax, A y)<Ad(x,  y) Vx, ye[~}. 

Definition 3.5. If x, ye/~,  the oscillation of x and y is defined by 

osc (x]y) = M (x/y) - m (x/y) 

and if A is positive, the oscillation ratio N(A) of ,4 is defined by 

N(A) = inf (2: osc (A x/A y) < 2 osc (x/y) Vx, y ~ [~}. 

Definition 3.6. If ,4: X ~  X, ,4 is said to be monotone increasing if x~_y implies 
Ax<,4y .  

Theorem 3.1. Let A be a monotone increasing positive mapping which is positive 
homogeneous of  degree p in I~. Then the contraction ratio k(,4) does not exceed p. 

Corollary. Let A be a positive linear mapping; then k(A)< 1. 

Proof. It follows from 
m(x/y) y< x< M(x/y) y, 

that 
[m (x/y) ]PA y <= 4̀ x < [M (x]y) ]PA y, 

and hence 
[m (x/y)]" < m (.4 x/`4 y) <= M(A x/A y) <= [M(x[y)]'. (3.1) 

If `4 is a positive linear mapping in X, its contraction ratio is related to its 
projective diameter. 

Theorem 3.2 [BIRKHOFF, 1957]. 13".4 is a positive linear mapping in X, then 

k (`4) = tanh �88 A (`4). 

Proof [BuSHELL, 1973]. We begin with a result of independent interest; 
namely, 

k(A)=N(A) .  (3.2) 

OSTROWSKI [17] used a simple limiting argument based on Lemma 2.3, (i) and 
(ii), to show that N(A)<k(`4).  Using Lemma 2.3, (i), (ii) and (iii), BUSHELL [10] 
reversed the argument to show that k (A)_-__ N O ) . '  

Finally, BAUER [I] showed that N(A)=tanh �88  A(A), using nothing more 
complicated than the arithmetic-geometric mean inequality. 

Most  of our subsequent applications of the theory stem from the next theorem. 

Theorem 3.3. Let A be either 
(a) a monotone increasing positive mapping which is positive homogeneous of  

degree p ( 0 < p <  l) in I~, or 
(b) a positive linear mapping with finite projective diameter. I f  the metric space 

E = { a ~ n  U, d} is complete, then in case (a) there exists a unique xEl~ such that 
A x=x ,  and in case (b) there exists a unique positive eigenvector of  A in E. 
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Proof. Let F(x)= A x/[]A xl[; then F is a map from E into E and is the composi- 
tion of a strict contraction (from Theorems 3.1 and 3.2) and a normalising iso- 
metry (from Lemma 2.2). By the Banach contraction mapping theorem there 
exists a unique z in E such that F(z)= z, and if we set x =  [[ A x[I l/(1-p) z, the result 
follows at once. 

Figure 1 suggests the existence of many other projective metrics in -~. In view 
of the importance of the contraction ratio, the next theorem is of some interest. 
It  asserts that among a wide class of possible projective metrics, HILBERT'S gives 
the best contraction ratio. 

Theorem 3.4. Let F be a differentiable real valued function in [0, oo) such that 

(i) F(t)>=O for 0__<t<oo and F(O)=O, 

(ii) F'(t)>=O for 0=<t<oo and F'(O)>O, and 

(iii) F(s + t) <= F(s) + F(t ). 
Then dF(x,y)=F(log[M(x/y)/m(x/y)]) is a pseudo-metric in I~, and if  k r is the 
associated contraction ratio, then k F ( A) >= k ( A). 

Proof. It  is easy to check that de is a pseudo-metric in ~ .  Moreover, if x, ye /~  
and e > 0, then 

kr(A)=>F (log [.~M(AxlAy)+17~~])/F (log [~~]_.j/.~M(x/y)+I ]~ 
Letting e~O and using l'Hospital's rule to evaluate the limit, we obtain 

kv (A) __> [osc (,4 x/A y)/osc (x/y)]. 

Therefore, kF (A) > N(A) = k (A). 

Example. If XeRZ, K is the first quadrant, and A= (~ bd) with a, b, c, d>O 
and ad-bc4=O, then 

I V a--d- i,/ b~ 
k(A) = I 

If F(t )= tanh �89 t, then elementary calculations show that 

= a d - b c  
kF(A) a d + b c  " 

We remark also that HILBERT'S pseudo-metric always puts the boundary of 
the cone at an infinite distance from any interior point, but in this example, if 
x e ~  and beaK, then d(x, b)=  1. 

Theorem 3.5. Let { X, < } be such that i f  O < x < y then ii xll < [I yll .  I f  G is a positive 
mapping from E into E and i f  F(x) = G (x) + Zo, where Zo e 1~, then k (F) < k (G). 

Proof. If x, y e E  then 
m (x/y) < 1 <__ M(x/y).  (3.3) 

For, if M(x/y)  < 1, then x ~ M(x/y)  y implies 1 = Ilxll < M(x/y)[I YI[ < 1, which is 
absurd; similarly m (x/y) > 1. 
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Since G(x), G(y )~E  for all x, y~E,  we have 

e (x) < M (G (x)/G (y)) F (y) + { 1 - M (G (x)/G (y))} z o <= M (G (x)/G (y)) F (y) 

and similarly 
F(x) >= m (a (x)/C (y)) F(y). 

Therefore, for all x, yeE ,  

d(F(x), F(y))  < d(G (x), G (y)) < k (G) d(x, y), 

and hence k ( F ) < k ( G ) .  

4. Completeness Criteria 
Next we consider criteria for the completeness of the metric space E. Following 

our policy of giving elementary arguments when possible, we first consider three 
important special cases. 

Theorem 4.1. I f  X = R  ~ and tf  K={(xj ,  x2 . . . . .  x,): xi>O, l < i<n} ,  thenE is 
complete. 

Proof. First we show that for x, y E E  

IIx--Yll < exp{d(x, y ) } -  1. (4.1) 

For, if x, y~E,  it is plain that 

m(x/y) <= 1 < M(x/y)  (4.2) 
and hence that 

( n ~1 1/2 ( n ~ 1/2 

<= EM I 
< { M ( x / y ) -  m(x/y))  < [exp {d(x, y)} - 1] m(xly) .  

Moreover, 

M (x/y) =max{1 + [x~- y ~]/y ~ : 1 < i < n} < 1 + []x- Yll/m(y]u) 

where u=(1,  1 . . . .  ,1). Similarily, if IIx-yll <m(y/u), then 

m(x/y )> 1 - I l x -y l l /m(y /u ) .  

It follows that if IIx-yll <m(y/u) ,  then 

IIx-Yll >-m (y/u) tanh {Jr d(x, y)}. (4.3) 

The completeness of E follows easily from inequalities (4.1) and (4.3). 

Theorem 4.2. I f  X = C [ 0 ,  1] and K = { x ( . ) e X :  x ( t )>O in 0 < t <  1}, then E is 
complete. 

Proof. If u ( t )=  1 for 0 < t < 1, then inequalities (4.1)-(4.3) are established easily 
for elements in E and the result follows. 

Theorem4.3. I f  X=B[R~], the space o f  real n x n  matrices with norm 
IIAll =sup{A x : llxll ~.1!, and i f  K is the cone o f  real positive semi-definite symmetric 
matrices in X, then 1~, ,~ the cone of  real positive definite symmetric matrices in X 
and E is complete. 
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Proof. The analogues of inequalities (4.1)-(4.3) are proved in BUSHELL [11]. 

We state now a general criterion due to BIRKHOFF [1] which covers the examples 
of Theorems 4.1 and 4.2 but not that of Theorem 4.3. (See also Theorem 5 of 
BIRKHOFF [4].) 

Theorem 4.4. If{X, <) is a Banach lattice, then E is complete. 

5. Applications to Non-Negative Matrices 

(i) Let  A=(ai,j) be an n x n  matrix with non-negative entries and suppose 
that A is indecomposable, that is, there does not exist a permutation matrix P such 

t h a t P A P ' = (  B O), where B and D are square submatrices. It  follows that, for 

some m>__l, Am=B=(bi,j) has positive entries. Following BIRKHOFF [3], we 
observe that A m is a positive linear mapping in the interior of the positive orthant 
in R n and that 

A (A m) = max{log [bijbpq/bi~bpj]: 1 < i, j, p, q< n} < oo. 

Therefore, from Theorem 3.2 and 4.1 and the well-known extension of the Banach 
contraction mapping theorem, it follows that A has a unique positive eigenvector 
(with an associated positive eigenvalue) (cf. SAMtmLSON [18]). 

For  the remainder of the Perron-Frobenius theorem proved by these methods, 
see BIRKHOFF [4]. 

(ii) Let ,4 = (ai,j) be an n x n matrix with non-negative entries and at least one 
positive element in each row. Then if 0 <p  < 1, there exists a unique positive so- 
lution (xl, x2, ..., x.) of the equations 

X i --~ ~ aij X~ (1 < i < n). 
j = l  

Proof. L e t F ( x ) =  aijx and use Theorems 3.3(a) and 4.1. 
\ j =  1 / 

Such systems of equations occur in the non-linear Leontief model of a closed 
exchange economy. The existence of a unique positive solution corresponds to 
the existence of a unique state of equilibrium in the economy (KARLIN [14] Chap- 
ter 8.7). 

6. Applications to Positive Integral Operators 
1 

(i) Let Ax(t )= S K(t, s)x(s)ds, where K(- ,  .) is positive and continuous in 
0 

the unit square 0 < t, s < 1. Then 

O<ct<K(t,s)<fl<~ (0<t ,  s < l )  
and hence 

1 1 

~ S x(s) ds< Ax< fl ~ x(s) ds (6.1) 
0 0 
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for every positive x( . )  continuous in [0, 1]. If u ( t )=  1 in O < t <  1, it follows from 
(6.1) that 

d(A x, u) <= log (filet) 

and hence that A (A) < 2 log(fl/e) < oo. Therefore, from Theorems 3.3 (b) and 4.2, 
A has a unique positive continuous eigenfunction (with associated positive eigen- 
value). 

Inequalities such as (6.1) were used independently by BIRKHOFF in his theory 
of uniformly semi-primitive operators and by KRASNOS~I.SKn in his theory of 
uo-positive operators. 

For the remainder of Jentzch's theorem proved by these methods see BmKHO~ 
[41 or KI~SNOSELSKII [161. 

1 

(ii) Let A x ( t ) =  S K(t, s){x(s)}Pds, where K( . ,  .) is non-negative and contin- 
o 

uous in the unit square 0__< t, s__< 1. Suppose that 0 < p  < 1 and that for each fixed 
t in [0, 1], K(t, s) is positive on a set of positive measure in 0_<s_< 1. Then, there 
exists a unique positive solution continuous in [0, 1] of the equation A x =  x. 

Proof. Use Theorems 3.3 (a) and 4.2. 

Corollary 1. Under the same hypothesis on K ( . ,  .) and for  q> 1, there exists 
a unique positive continuous solution of  

1 

{x = I x:(t ,  s) x (s) d s. 
0 

Corollary 2. Let A be a positive mapping in the cone o f  non-negative functions 
in C[0, 1]. Then the positive spectrum o f  A, that is, the set o f  eigenvalues with positive 
eigenvectors, is the interval (0, ~ ) .  To each 2 in the positive spectrum there is a 
unique positive eigenfunction x ( . ,  2) a n d / f  21 < 22 then x ( . ,  21) > x(- ,  22). 

Proof. Let x(t,  2)={x(t)/2*/(t-P)}, where x ( . )  is the unique fixed point of 
A in/~.  

Corollary 2 can be derived from KRASNOSELSKII'S theory of Uo-Concave opera- 
tors (see [16] Chapter 7). 

7. Application to Positive Definite Symmetric Matrices 

Let X be the space of real n • n matrices and K the cone of positive semi- 
definite matrices in X. Then/~  is the set of positive definite matrices in X. 

If .o~: ~ / ~  is linear and q > l ,  then there exist a unique A e ~  such that 
.W (A)= A q. 

Proof. Apply Theorems 3.3 (a) and 4.3 to F(A) = {.W (A)} 1/4. 

Corollary. I f  T is a real non-singular n x n matrix, there exists a unique A e I~ 
such that T * A T = A  2. (See BUSHELL [11].) 
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8. Applications to Systems of Ordinary Differential Equations 

The interested reader is referred to BIRKHOFF and  KOTIN [6-8] and to BUSI~ELL 
[9, 12]. 

The author's work was supported in part by the United Kingdom Science Research Council 
Grant No. B/RG/28436. 
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