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Abstraet. In this article, we tell a story of  good fortune. The good fortune concerns the discovery of a 
systematic approach to compress 50 years of  excellent research m logic into a single day's  use of  
an automated reasoning program. The discovery resulted from a colleague's experiment wtth a new 
representation and a new use of the weighting strategy. The experiment focused on an at tempt - which 1 
knew would fail - to prove one of the benchmark theorems that had eluded us for years. Fortunately, I 
was wrong: my colleague's at tempt was successful, and a proof  was found. The proof led to proving m one 
day 13 theorems, theorems that resulted from 50 years of  excellent research in logic. We present these 
theorems as intriguing problems to test the power of a reasoning program or to evaluate the effectiveness 
of  a new idea. In addition to the challenge problems, we discuss a possible approach to finding short proofs 
and the results achieved with it 
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1. Set t ing  the Stage 

In the early 1920s, the eminent logician Lukasiewicz began a study of equivalence in 
which Tarski also took an interest. By the end of that decade, other logicians had 
joined the investigation, with the aim of finding axioms for the field that grew out of 
that study, a field of logic (discussed in some detail almost immediately) known as 
equivalential calculus. By 1933, they had succeeded; they had found nine formulas, 
each of which is sufficiently powerful that it alone provides a complete axiomatization. 
Of the nine, eight consist of 15 symbols, and one (found by Lukasiewicz in 1933) 
consists of 11. Lukasiewicz also proved that no shorter formula can serve as a single 
axiom for this area of logic [2]. 

E Q U I V A L E N T I A L  C A L C U L U S ,  AN INTUITIVE DESCRIPTION 

Before telling the rest of the story (in Section 2) and before presenting the theorems 
we offer (in Section 5) as challenges for automated reasoning programs and for tests 
o f  new ideas, let us discuss equivalential calculus in an intuitive manner. Indeed, let 
us provide essentially all that is needed for one to feel at home in this area of  logic, 
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The elements to be studied are formulas that one can produce with the two-place 
function e (for equivalent) and the variables x, y, z . . . . .  Among such formulas, we 

have 

(1) e(x, x), 
(2) e(e(x, y), e(y, x)), 

and 

(3) e(e(x, y), e(e(y, z), e(x, z))). 

It is no coincidence that we selected these three formulas; they were chosen because 
they will remind one, respectively, of  reflexivity, symmetry, and transitivity, properties 

naturally associated with 'equivalence'. In fact, these three formulas taken together 
provide a complete axiomatization for equivalential calculus, for which in Section 3 
we supply proofs obtained with our newest program OTTER [4]. If one prefers a 
smaller axiom set, although hardly intuitive, one discovers that there exist 13 formulas 
(given in this article) each of which is sufficiently powerful by itself to provide a 
complete axiomatization for the calculus; each of the 13 consists of 11 symbols, 
excluding commas and parentheses, and no shorter formula by itself axiomatizes the 
calculus. As it turns out - although not obviously, but easily proved - the first of  the 
three given formulas (reflexivity) can be proved from the other two; we shall give that 
proof  in Theorem 1 of Section 3. (We were unprepared for the fact that reflexivity is 
a dependent axiom, for such a fact is for us counterintuitive. Indeed, for equality, 
reflexivity cannot be proved from symmetry and transitivity. As my colleague 
R. Veroff observes, the formula thought of as transitivity in equivalential calculus is 
far more powerful than is its counterpart in equality, for the former acts like an if and 
only if statement, in contrast to the latter which has the form of a one-way impli- 
cation.) Conversely, these three formulas can each be proved as a theorem of the 
calculus - not to be confused with a theorem about the calculus, which is the main 
study in this article - if one starts with any of the 13 shortest single axioms. For this 
study, theorems (of the calculus) are those formulas in which variables occur exactly 
twice. An immediate question to ask focuses on what means of proof  is available for 

making deductions in equivalential calculus. 
Indeed, one way in which areas of logic often differ from areas of mathematics 

concerns the use of a specific inference rule. Equivalential calculus is no exception, for 
it can be studied with the inference rule called condensed detachment. Condensed 
detachment considers two formulas, e(A, B) and C, and, if C unifies with A, yields the 
formula D, where D is obtained by applying to B the unifier of C and A. For example, 
if we apply condensed detachment to 

e(x, e(x, e(y,  y))) and e(z, z) 

with the second formula playing the role of C, we obtain 

e(e(z, z), e( y, y)). 
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If  we reverse the roles of  the two formulas and apply condensed detachment, we 

obtain a copy of the first formula. To gain a fuller appreciation of the intricacy of 
using condensed detachment, one might by hand attempt to produce the conclusion 

obtainable from applying the inference rule to two copies of  

(4) e(e(e(e(x, e(y ,  z)), e(z, u)), u). 

I f  one succeeds in the suggested attempt, one finds that the conclusion is simply the 

appropriate instance of the second occurrence of the variable u. One can easily see 
why this is so by considering the clause 

-7 P(e(x, y)) I -7 P(x) I P(Y)  

which one can use to enable a reasoning program to apply condensed detachment. In 
particular, the unification of the clause equivalent of  (4) with the first literal of  the 
given three-literal clause causes the second occurrence of  u to become the argument 

of  the positive literal. To obtain the actual conclusion, one completes a hyper- 
resolution step by unifying (a second copy of) the clause equivalent of  (4) with the 

instantiated second literal of  the three-literal clause to obtain e(x, x). Obviously, 

unification is not a radically new idea to the logicians who have studied equivalential 
calculus. 

The property just witnessed - that of  deducing a short formula from two rather 

longer ones - and the propensity for deducing a formula longer than either of  its two 
parents clearly plays havoc with an attempt to design an approach for showing that 

some given set of  formulas can serve as a complete axiomatization of  equivalential 
calculus. Nevertheless, as we shall discuss in Section 2, it can be done - at least 

for each of  the 13 formulas presented in Section 5. In Theorem 2 of Section 3, we 

shall select one of those formulas and give a proof  obtained with our newest 
program O T T E R  that the selected formula can serve as a complete axiomatization. 
In Theorem 1 of Section 3, as promised, we shall prove that reflexivity can be deduced 
from the set consisting of  symmetry and transitivity. However, before turning to those 

proofs and to others given later, let us complete the stage setting by telling the rest 
of  the story leading to the challenge presented here. 

2. A Story of Good Fortune 

By the late 1970s, Meredith [5], Kalman [I], Peterson [6, 7], and other logicians 
succeeded in finding (in addition to the formula found by Lukasiewicz in 1933 [2]) 10 
additional formulas of  length 11, each of which can serve as a single axiom. At that 

point, seven formulas remained - of  the 630 possible candidates - of  length 11 that 
had resisted classification. (From here on, because the theorems we do not consider 
are obtainable by substituting terms for variables, it is sufficient to be concerned only 

with formulas in which variables that occur in them occur exactly twice.) A most 
believable conjecture existed that all of  the shortest single axioms had indeed been 
found. In other words, tile conjecture asserted that each of the seven unclassified 
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formulas was too weak to serve by itself as a complete axiomatization of equivalential 

calculus. 
At Kalman 's  suggestion - no doubt motivated by his success with his own theorem- 

proving program - Wos and Winker took an interest in the study. Using the automated 
reasoning program A U R A  [8] designed and implemented by researchers at Argonne 

National Laboratory,  Wos and Winker devised a method to study the seven remain- 
ing unclassified formulas, each consisting of  I l symbols. The method [10] relies on the 
use of  schemata to at tempt to obtain a complete characterization of  all deducible 

theorems. (For this study, the theorems of  the calculus are precisely those formulas 
in which variables occur twice. Rather than these theorems, the focus here is on 
theorems about the calculus, for example, the assertion that the formula X H K  which 

is given shortly is a shortest single axiom.) With the method relying on the use of  
schemata, Wos and Winker showed that five of  the seven formulas are indeed each 

too weak to serve as a single axiom, a fact that is consistent with the conjecture made 

by the various logicians. However, rather than showing that the other two formulas 
(known as X H K  and XHN,  given shortly) are each inadequate for serving as a single 

axiom, Winker [personal communication] - with many weeks of study and many runs 

with A U R A  - refuted the conjecture by discovering that each is in fact a shortest 

single axiom for the calculus. 
The Argonne study led to the establishment of  two benchmark problems for the 

field of  automated reasoning. The object of  the benchmark problems is to have an 

automated reasoning program prove, in single and separate runs, that each of X H K  
and X H N  provides a complete axiomatization for equivalential calculus. 

(XHK) e(x, e(e(y, z), e(e(x, z), )9)), 
(XHN) e(x, e(e(y, z), e(e(z, x), y))). 

The emphasis on single runs is in contrast to the many runs coupled with the excellent 
guidance provided by Winker when he succeeded in the autumn of 1980. 

As an indication of the difficulty offered by the two benchmark theorems, Winker's 

83-step proof  for X H K  relies on the use of  a formula of length 71, and his 159-step 
proof  for X H N  relies on the use of  a formula of  length 103. Since there exist more 
than 100 000 000 000 expressions consisting of 27 symbols - expressions that are called 
theorems, where each variable in an expression occurs exactly twice - one immediately 
sees why it might be extremely difficult for a program to prove, unaided and in a single 

run, either of  the theorems that focus on the axioms X H K  and XHN.  
Indeed, for more than eight years, all attempts to obtain a proof  of  either theorem 

in a single run with one of the Argonne programs failed, and failed under a variety 
of  attacks with different strategies and diverse procedures. From the viewpoint of  
automated reasoning, it appeared that, without something like Winker's insight and 
study of the results of  many computer runs, the two theorems were simply too tough 
for an unaided reasoning program to prove. 

At least, that was our view in the autumn of 1980 when Winker - with great 
assistance from A U R A  - produced the two proofs, and that was still our view in 



MEETING THE CHALLENGE OF FIFTY YEARS OF LOGIC 217 

February of 1989. In fact, were it not for one fortuitous occurrence, we would still 

hold that view; we would still predict that to obtain - with an automated reasoning 

program - a p roof  that X H K  or that X H N  is a single axiom for equivalential calculus 

would require substantial intervention, guidance, and assistance from some bright 
and insightful researcher. 

The fortuitous occurrence concerns the conjunction of three forces, namely, (a) the 

study of a particular approach to applying the weighting strategy [3, 9, 11], (b) the use 
of  a new representation (which turned out to be irrelevant to obtaining the results), 

and (c) access to the recently completed automated reasoning program OTTER [4]. 
(The full story will be presented in a future paper, 'A measure of  success for automated 
reasoning', featuring the history of the successful study of X H K  and XHN.)  The use 

of  weighting turned out to be the key to obtaining the results. 

The weighting strategy provides a means for assigning priorities to clauses to enable 
a program to choose where next to focus its attention, and also provides a means for 

deciding that a conclusion is too complex to be of  interest. At the simplest end of the 

spectrum, the priorities (weights) can be computed solely in terms of the number of  
symbols present. In contrast, one can use weights that emphasize certain chosen 

subexpressions to be the sole basis of priority assignment. For example, one can have 

a program prefer expressions in which the function e occurs three times in succession, 
or prefer some specific formula, or base its preference on a chosen argument of  a 

formula. The conclusions that are kept are placed on a list from which our program 
O T T E R  chooses for the focus of  attention, choosing the clause with the smallest 
weight. One can also use weighting to cause a program to discard a specific formula 

if ever encountered or discard formulas whose weight exceeds some given input value. 

McCune decided to have O T T E R  prefer to focus on formulas with a short tail, 
where the tail of a formula is the second argument of  the leftmost occurrence of the 

function e. For  example, in the formulas 

and 

(PYM) e(e(e(x, e(y, z)), y), e(z, x)) 

(XGK) e(x, e(e( y, e(z, x)), e(z, y))), 

the first formula has as its tail e(z, x), and the second has all but the leading x as a 
tail. McCune's  reason for emphasizing the role of the tail of a formula rests with the 
fact that - as we learned in Section 1 when we focused on the inference rule condensed 

detachment that can be used in equivalential calculus - the conclusions yielded by 
applying that inference rule to a pair of  formulas are obtained from the appropriate 
instantiation of the tail of  one of the formulas. 

OTTER,  using the new approach to weighting and the new representation, won the 
first round. In a single run of  approximately 8 CPU minutes on a Sun 3/60 work- 
station, O T T E R  found a proof  that X H K  is a single axiom for equivalential calculus. 
In contrast to the 83-step proof  found by Winker with A U R A  (where the input 
clauses do not contribute to the count), OTTER' s  proof  consists of  40 steps. Where 
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the Winker proof  requires the use of  formulas containing as many as 71 symbols, the 

OTTER proof  requires formulas containing no more than 47. 

Correctly recognizing the importance of  his success, McCune next asked OTTER 
to again use his approach in an at tempt to prove that X H N  is also a single axiom. 

Unfortunately - if we keep in mind the precise nature of the objective - in the strictest 
sense, O T T E R  did not succeed. Rather than finding a proof  in a single run, OTTER 

required two runs, the first designed to accumulate some long formulas that could be 
used by the second under the condition that the second would not keep any additional 

long formulas it found. 
Even though McCune was forced to slightly broaden the rules to permit two 

runs - because O T T E R  does not yet offer dynamic weighting adjustment - we still 

give the second round to OTTER.  After all, the program did find a proof  for X H N  
in just over 90 CPU minutes on an Encore Multimax using an NS32332 processor, 

and a proof  quite unlike Winker's. (The switch to the Encore was caused by the need 
for additional memory.) The OTTER proof  consists of  84 steps; the Winker /AURA 
proof  consists of  159 steps. The O T T E R  proof  requires formulas no longer than 47 

symbols in length; the Winker /AURA proof  relies on the use of  a formula of  length 

103. 
One of the two brenchmark problems had fallen - the other almost had - and fallen 

much sooner than we would have predicted. In addition, O T T E R  had found shorter 

and simpler proofs. The fact that a program finds proofs that are both shorter and 
simpler than those found earlier does not imply that the CPU time to obtain the newer 
proofs must have been less than that for the longer and more complex ones, as one 

can see from the examples we give in Section 4. Indeed, were one to predict a sharp 

increase in effectiveness - finding the proofs in 8 and 90 CPU minutes, respectively - 
merely because the new proofs are shorter and simpler, then one might find the results 

of  various experiments rather startling. Where the level of  an input clause is 0, the level 
of  a clause is one greater than the levels of  the immediate parents of  that clause, and 
the level of  a proof  is the maximum of the levels of  all of  the clauses in the proof, the 
explanation rests with the fact that the number of  steps in a proof  and the complexity 

of those steps do not tell the full story, for the level of  a proof  also materially affects 
the CPU time that may be required to obtain it. A study of  the interplay of  these three 
aspects of  proof  should prove most intriguing and challenging. 

Finding proofs far shorter and far simpler than Winker's does not detract from his 
achievement in any way. After all, we had the advantage of knowing that each of 
X H K  and X H N  is an axiom; in contrast, Winker was faced with the prospect that the 
conjecture of  the logicians was probably correct and, therefore, that each of the 
formulas X H K  and X H N  was too weak to be proved an axiom. Of  substantial 
importance, in no way did McCune use either of  the Winker /AURA proofs. On the 
other hand, from a broader perspective, his success is another example of  what the 
group theorist Reinhold Baer once said: " I t  is far easier to prove a theorem when one 
knows that a proof  exists than when one is uncertain." The full story of  how Winker 
succeeded must wait for the promised long paper. 
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By chance - in the sense that I considered McCune's  experiment with X H K  mainly 

to be a test of ideas, fully expecting it to fail - I found that an automated reasoning 

program could obtain unaided proofs of  the corresponding two benchmark theorems. 

I had expected failure because all of  the attempts made over the preceding eight years 
had been unsuccessful. Nevertheless, McCune's  decision to have OTTER seek a proof  
was an excellent one, for - among other reasons - one occasionally makes a useful 
discovery even when the immediate goal is not reached. Since, in this case, the goal 

was reached, we were ready to at tempt to meet the challenge of fifty years of  excellent 
research in logic. 

THE CHALLENGE 

The challenge for us - and the one we offer in Section 5 for those researchers who 
enjoy challenges and who wish to test their own programs and their own ideas for 

adding to the power of  automated reasoning programs - is to prove the 13 theorems 

accumulated over more than 50 years, beginning with the contributions made in the 
early 1930s. These theorems respectively establish that each of 13 formulas is so 

powerful that it can serve by itself as a complete axiomatization for equivalential 

calculus. (In Section 1, we provided an intuitive understanding of that calculus, and 
in Section 5 we give the thirteen theorems to be proved.) 

By accepting the challenge, we decided that we must answer the following specific 
questions. 

(1) How many of  the 13 theorems could OTTER prove without substantial 
guidance of a researcher? 

(2) How long in CPU time and real time would it take? 
(3) How much memory would be required? 

(4) How many runs must we make? 

(5) Perhaps most important,  how much must we modify the approach we used to 
prove that each of X H K  and X H N  is a single axiom? 

Here is what occurred. 

In a single day, OTTER succeeded in finding proofs of  all 13 theorems that 

establish that each of the appropriate 13 formulas of  length 11 is a (shortest) single 
axiom. Further, the method of attack - although it is a broadening of the approach 
McCune used for X H K  and X H N  - is systematic and general, not tuned to each of 
the corresponding 13 theorems. Specifically, the approach consists of  using McCune's 

weighting of formulas to prefer those with shorter tails, and then, if not successful in 
15 CPU minutes on a Sun 3/60 workstation, using a weighting strategy based on 

symbol count, and finally, if that also fails in 15 CPU minutes, then using weighting 
to prefer formulas with short tails or short heads. In other words, except for the use 
of  a general weighting strategy, the 13 proofs were obtained by OTTER without 
substantial intervention, guidance, and assistance from a researcher. 

To produce the 13 proofs required approximately 320 CPU minutes of  the com- 
puter 's time - mostly on a Sun 3/60 workstation, but partly on an Encore Multimax 
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using an NS32332 processor - spread over 12 hours of  our time. The number of  steps 
in the 13 proofs is 403. The required memory varies from 0.1 to 20 megabytes. Almost 

5 000 000 clauses were generated during the successful searches, and we were forced 

to abandon as useless nine of the 22 runs we made with OTTER.  
I f  we quickly revisit the results of  our recent study of equivalential calculus, we 

cannot help but sense a sharp increase in the value of  using an automated reasoning 

program. Indeed, in just over eight years after Winker and A U R A ' s  impressive 
completion of the search for shortest single axioms - a search that began in the late 

1920s - we showed that an automated reasoning program could start and finish the 
search for the corresponding 13 proofs, and in a single day. In no way did our effort 

rely on knowledge of the structure of  the existing proofs. In fact, we had seen only 

two such proofs, Winker 's  proofs for X H K  and XHN.  

On the other hand, we did have the advantage over Winker and over the logicians 

who had studied equivalential calculus - and clearly an important  advantage - of  

knowing which 13 formulas, from among the 630 to be considered, have the property 
of  being so powerful that each provides a complete axiomatization of equivalential 
calculus. Unfortunately, one cannot simply try to prove that a randomly selected 

formula - from among the 630 that are too weak - is a single axiom, for such an action 
will result in the deduction of an ever-growing set of  conclusions with virtually no clue 

that failure awaits one. 
Incidentally, during the writing of  this article, we succeeded in obtaining a proof  in 

a single run of the X H N  theorem, but we did intervene substantially by choosing a 

somewhat complex weighting strategy strongly influenced by McCune's  84-step proof  

just mentioned. However - rather than reproducing the 84-step proof, as one might 
predict - we instead found a 65-step proof; more details are given when we discuss in 

Section 4 methods for obtaining shorter proofs. In addition, rather than requiring the 
use of  a formula of length 47, the new proof  relies on formulas no longer than 39 
symbols in length. Without access to McCune's  success in studying both X H K  and 

XHN,  we would not have known where to begin. 
As further evidence of the depth of this study of shortest single axioms, we note that 

Lukasiewicz appeared to believe in the late 1940s that only one such axiom existed, 

rather than the thirteen that do. We say this because he referred to ' the shortest single 
axiom' [2]. In addition, Meredith [5] in 1963 incorrectly claimed that the formula XGJ  

can serve as a complete axiomatization for equivalential calculus. 

(XGJ) e(x, e(e(y, e(z, x)), e(y, z))) 

Therefore, if one has less success than desired when one tackles the theorems we 
present in Section 5, one might keep in mind the difficulties experienced by eminent 
logicians during the comparable study. 

3. Four Theorems Proved by OTTER 

T H E O R E M  !. In equivalential calculus, the axiom of  reflexivity is dependent on the 
axioms of  symmetry and transitivity. 
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Proof. Let us assume by way of contradiction that reflexivity cannot be deduced 
from symmetry and transitivity. We therefore have four input clauses - the clause to 
capture condensed detachment, the clause to deny the conclusion of the theorem, and 
the clauses for symmetry and transitivity. Using hyperresolution as the inference rule, 
we obtain the following proof from OTTER in which the number of a clause reflects 
the order in which it was input or deduced. In the proofs below, the input clauses occur 
above the horizontal line; derived clauses below. The only clauses used are those that 
appear in the proof. The clause numbers give some indication of the density of the 
proof within the set of clauses that are derived and not subsumed. The triple of 
numbers in brackets gives in order the clause driving the inference, the nucleus of the 
step, and the other clause used to complete the deduction. 

1 --7 P(e(x, y)) ] --1P(x) ] P(3"). 
2 -7 P(e(a, a)). 
3 P(e(e(x, y), e(y, x))). 
4 P(e(e(x, y), e(e(y, z), e(x, z)))). 

5 [hyper, 4, 1, 3]P(e(e(e(x, y), e(z, y)), e(z, x))). 
9 [hyper, 5, 1, 3]P(e(x, x)). 

Clause (9) contradicts clause (2), and the proof is complete. 

THEOREM 2. The formula YQL 

(YQL) e(e(x, y), e(e(z, y), e(x, z))) 

can serve as a complete axiomatization for equivalential calculus. 
Proof We assume by way of contradiction that YQL is not a single axiom for the 

calculus. This assumption asserts that none of the known single axioms for equivalen- 
tial calculus is implied by YQL; indeed, if any formula that is a single axiom for the 
calculus were implied by YQL, then YQL would itself be a single axiom also. 
Therefore, we assume that none of the following eight formulas, proved by various 
logicians to be single axioms, is implied by YQL. 

e(e(e(x, e(y, z)), e(e(z, u), u)), e(x, y)) 
e(e(e(e(x, y), z), u), e(u, e(x, e( y, z!))) 
e(e(x, e( y, z)), e(e( y, e(u, z)), e(u, x))) 
e(e(x, e( y, z)), e(e( y, e(z, u)), e(u, x))) 
e(e(u, e(x, e(y, z))), e(e(x, y), e(z, u))) 
e(e(x, e( y, z)), e(e(x, e(z, u)), e(u, 3'))) 
e(e(x, e( y, z)), e(e(x, e(u, z)), e(u, y))) 
e(e(x, e( y, z)), e(e(x, e(z, u)), e( y, u))) 
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The following proof that YQL implies the last of  the eight given single axioms was 
found by OTTER. 

1 -7 e (e (x ,  y))  [ -7 e ( x )  [ P ( y ) .  
2 -Te(e(e(a, e(b, c)), e(e(a, e(c, d)), e(b, d)))). 
3 P(e(e(x, y), e(e(z, y), e(x, z)))). 

4 [hyper, 3, 1, 3]P(e(e(x, e(e(y, z), e(u, y))), e(e(u, z), x))). 
6 [hyper, 4, 1, 3]P(e(e(x, y), e(x, y))). 
7 [hyper, 6, 1, 3]P(e(e(x, e(y, z)), e(e(y, z), x))). 

12 [hyper, 7, I, 3]P(e(e(e(x, y), e(z, x)), e(z, y))). 
28 [hyper, 12, 1, 3]e(e(e(x, e(y, z)), e(e(e(u, z), e(y, u)), x))). 
22336 [hyper, 28, 1, 4]P(e(e(x, e(y, z)), e(e(x, e(z, u)), e(y, u)))). 

Clause (22336) contradicts clause (2), and the proof  is complete. 
For our third example of  OTTER's  usefulness and power, let us prove that the set 

of formulas consisting of symmetry and transitivity provides a complete axiomatization 
for equivalential calculus. Our method of  proof is similar to that for Theorem 2; 
namely, we prove that the use of the clauses for symmetry and transitivity leads to a 
deduction of a formula that itself is a complete axiomatization. We give two proofs 
obtained with OTTER, a short one and a long one. They were found by using 
OTTER's  capacity to find more than one proof in a single run. We included among 
the input clauses the negations of the thirteen shortest single axioms and the negations 
of the eight axioms of length 15 given earlier. 

THEOREM 3. The axioms of  symmetry and transitivity provide a complete axio- 
matization for equivalential calculus. 

Proof. We proceed as in Theorem 2 by assuming by way of  contradiction that the 
theorem is false. The first proof shows that the single axiom YQL is deducible, and 
the second that the single axom YRO is deducible. 

1 -7 P(e(x, y)) I -7 P(x) ] P().). 
2 ~ e(e(e(a, b), e(e(c, b), e(a, c)))). 

23 P(e(e(x, 39, e()', x))). 
24 P(e(e(x, y), e(e(y, z), e(x, z)))). 

25 [hyper, 24, 1, 24]P(e(e(e(e(x, y), e(:, y)), u), e(e(z, x), u))). 
27 [hyper, 24, 1, 23]P(e(e(e(x, y), z), e(e(y, x), 7~))). 
9792 [hyper, 25, 1, 27]P(e(e(x, y), e(e(z, y), e(x, z)))). 

Clause (9792) contradicts clause (2), and the first proof is complete. 

1 --7 P(e(x, y ) ) I - 1  e(x)  l P(y).  
9 -7 P(e(e(a, b), e(c, e(e(c, b), a)))). 

23 P(e(e(x, y), e(y, x))). 
24 P(e(e(x, y), e(e( y, z), e(x, z)))). 
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25 [hyper, 24, 1, 24]P(e(e(e(e(x, y), e(z, y)), u), e(e(z, x), u))). 
26 [hyper, 24, 1, 23]P(e(e(e(x, )9, e(z, y)), e(z, x))). 
27 [hyper, 24, 1, 23]P(e(e(e(x, y), z), e(e(y, x), z))). 
28 [hyper, 26, 1, 26]P(e(x, e(e(x, y), y))). 
30 [hyper, 26, 1, 24]P(e(e(e(x, y), y), x)). 
33 [hyper, 28, 1, 24]P(e(e(e(e(x, y), y), z), e(x, z))). 
39 [hyper, 30, 1, 24]P(e(e(x, )% e(e(e(x, z), z), y))). 
58 [hyper, 27, 1, 27]P(e(e(x, e(y, z)), e(e(z, y), x))). 

124 [hyper, 33, 1, 27]P(e(x, e(e(y, x), y))). 
133 [hyper, 124, 1, 24]P(e(e(e(e(x, .v), x), z), e(y, z))). 
215 [hyper, 39, 1, 27]P(e(e(x, y), e(e(e(y, z), z), x))). 
377 [hyper, 58, 1, 58]P(e(e(x, e(y, z)), e(x, e(z, y)))). 
1342 [hyper, 133, 1, 27]P(e(e(x, e(e(y, z), y)), e(z, x))). 
2278 [hyper, 215, 1, 58]P(e(e(x, e(e(y, z), z)), e(x, y))). 
3059 [hyper, 377, 1, 133]P(e(e(e(e(x, )9, x), z), e(z, y))). 
9725 [hyper, 25, 1, 3059]P(e(e(e(x, y), e(y, z)), e(x, z))). 
9767 [hyper, 25, 1, 1342]P(e(e(e(x, y), z), e(y, e(z, x)))). 
9812 [hyper, 9725, 1, 2278]P(e(e(e(e(x, y), z), e(z, y)), x)). 
15190 [hyper, 9812, 1, 9767]P(e(e(x, y), e(z, e(e(z, y), x)))). 

Clause (15190) contradicts clause (9), and the second proof is complete. 
We close this section by turning our attention to one of the earliest axiomatizations 

of equivalential calculus. In 1929, Lesniewski [2] presented an axiomatization of  
equivalential calculus consisting of  the formulas 

e(e(e(x, y), e(z, x)), e( y, z)) 

and 

e(e(x, eO', z)), e(e(x, y), z)), 

the first of  the two being a form of transitivity and the second the commuted form of 
associativi~y. The proof that this set axiomatizes the calculus rests with an appeal to 
natural language. In 1932, Wajsberg and Lesniewski [2] presented four simpler sets of 
axioms, one of which consists of symmetry and associativity. 

e(e(x, y), e( y, x)), 

e(e(e(x, y), z), e(x, e( y, z))) 

Let us immediately give a proof, obtained with OTTER, that one can derive one of 
the shortest single axioms, YQL, from symmetry and associativity, and give in Section 
4 a proof  that this pair of formulas implies the initial set of axioms given by 
Lesniewski. Let us also give OTTER's proofs of YRM and transitivity, using symmetry 
and associativity, respectively. 

Regarding the three proofs we are about to give, a comparison of the first two with 
their correspondents given earlier - where the axioms are symmetry and transitivity - 
suggests that establishing that symmetry and transitivity axiomatize equivalential 
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calculus is somewhat easier than establishing that symmetry and associativity do. We 
find that evaluation rather pleasing, if accurate, for the set of formulas consisting of 
reflexivity, symmetry, and transitivity should - in some sense of naturalness - be a 
good choice for that area of logic focusing on equivalence. Of course, as we proved 
earlier, the axiom of reflexivity is derivable from symmetry and transitivity. As for the 
third proof we shall give, its appeal rests with the fact that symmetry and transitivity 
- with reflexivity - are the most obvious choices for an axiomatization of this calculus. 
Therefore, one might indeed prefer to establish that symmetry and associativity 
provide a complete axiomatization by deriving transitivity, rather than deriving some 
shortest single axiom. 

If one examines all three proofs together, one finds that all derived steps consist of 
exactly 11 symbols - a fact that, although we cannot explain our reaction, we find 
intriguing. In contrast, if one replaces associativity with transitivity and then prevents 
OTTER from keeping any formula of length greater than 11 - but allows it to use 
formulas of length less than or equal to 11 - one cannot derive any of the 13 shortest 
single axioms from symmetry and transitivity alone. OTTER derives e(x, x), 14 of the 
15 formulas of length seven - skipping only e(e(x, y), e(x, y)) - and 432 of the 630 
formulas of length 11 (in which each variable occurs exactly twice). At that point, the 
set of support becomes empty, which in effect asserts that nothing more is accessible 
and all 13 shortest single axioms are out of reach when one prevents the use of all 
formulas of length greater than 11. Here are the three promised proofs. 

THEOREM 4. The axioms of symmetry and associativity provide a complete axio- 
matization for equivalential calculus. 

Proof We proceed as in Theorem 3 by assuming that the theorem is false. We 
therefore add to the input, in addition to clauses for symmetry and associativity, 
clauses that correspond to the negation of the thirteen shortest single axioms and the 
negation of transitivity. The clause for the negation of transitivity permits OTTER to 
seek to obtain the three promised proofs in a single run. We also include clauses 
corresponding to the negation of eight single axioms, each of length 15, because that 
is our standard approach in these studies. We extract the following three proofs of 
YQL, YRM, and transitivity, respectively. 

l ~ P(e(x, y)) [ ~ P(x) I P(Y). 
2 ~ P(e(e(a, b), e(e(c, b), e(a, c)))). 

24 P(e(e(x, y), e(y, x))). 
25 P(e(e(e(x, y), z), e(x, e(y, z)))). 

26 [hyper, 25, l, 25]P(e(e(x, y), e(z, e(x, e( y, z))))). 
27 [hyper, 25, 1, 24]P(e(e(x, e( y, z)), e(e(x, y), z))). 
28 [hyper, 26, l, 25]P(e(x, e(y, e(z, e(x, e(y, z)))))). 
29 [hyper, 26, l, 24]P(e(e(x, e(y, e(z, x))), e(y, z))). 
30 [hyper, 26, 1, 24]P(e(x, e(e( y, z), e(e(z, y), x)))). 
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34 [hyper, 28, 1, 24]P(e(e(x, e(y, e(z, e(x, y)))), z)). 
39 [hyper, 30, l, 27]P(e(e(x, e(y, z)), e(e(z, y), x))). 
48 [hyper, 34, l, 25]P(e(x, e(e(y, e(z, e(x, y))), z))). 
63 [hyper, 39, t, 39]P(e(e(x, e(y, z)), e(x, e(z, y)))). 
75 [hyper, 39, l, 25]P(e(e(e(x, y), z), e(e(z, x), y))). 
155 [hyper, 48, 1, 29]P(e(e(x, e(e(y, z), e(z, x))), y)). 
455 [hyper, 155, 1, 75]P(e(e(x, y), e(e(x, z), e(z, y)))). 
650 [hyper, 455, 1, 63]P(e(e(x, y), e(e(z, y), e(x, z)))). 

Clause (650) contradicts clause (2), and the proof of YQL is complete. 

1 -7 P(e(x, y)) [ 7 P(x) I e(y) .  
9 -7 P(e(e(a, b), e(c, e(e(c, b), a)))). 

24 P(e(e(x, y), e(y, x))). 
25 P(e(e(e(x, y), z), e(x, e(y, z)))). 

26 [hyper, 25, 1, 25]P(e(e(x, y), e(z, e(x, e(y, z))))). 
27 [hyper, 25, 1, 24]P(e(e(x, e( y, ,z)), e(e(x, y), z))). 
30 [hyper, 26, 1, 24]P(e(x, e(e( y, z), e(e(z, y), x)))). 
33 [hyper, 27,1, 25]P(e(e(e(e(x, y), z), x), e(y, z))). 
39 [hyper, 30, I, 27]P(e(e(x, e( y, z)), e(e(z, y), x))). 
63 [hyper, 39, 1, 39]P(e(e(x, e(y, z)), e(x, e(z, y)))). 
68 [hyper, 39, 1, 33]P(e(e(x, y), e(e(e(z, y), x), z))). 
220 [hyper, 68, 1, 63]P(e(e(x, y), e(z, e(e(z, y), x)))). 

Clause (220) contradicts clause (9), and the proof of YRM is complete. 

1 7P(e(x ,  y)) [ -TP(x) I P(Y). 
23 -7 P(e(e(a, b), e(e(b, c), e(a, c)))). 
24 P(e(e(x, y), e(y, x))). 
25 P(e(e(e(x, y), z), e(x, e(y, z)))). 

26 [hyper, 25, 1, 25]P(e(e(x, y), e(z, e(x, e(y, z))))). 
27 [hyper, 25, 1, 24]P(e(e(x, e(y, z)), e(e(x, y), z))). 
28 [hyper, 26, 1, 25]P(e(x, e(y, e(z, e(x, e(y, z)))))). 
30 [hyper, 26, 1, 24]P(e(x, e(e(y, z), e(e(z, y), x)))). 
33 [hyper, 27, 1, 25]P(e(e(e(e(x, y), z), x), e(y, z))). 
34 [hyper, 28, 1, 24]P(e(e(x, e(y, e(z, e(x, y)))), z)). 
39 [hyper, 30, 1, 27]P(e(e(x, e(y, z)), e(e(z, y), x))). 
47 [hyper, 34, 1, 33]P(e(x, e(y, e(z, e(e(z, x), y))))). 
74 [hyper, 39, 1, 26]P(e(e(e(x, e(y, z)), z), e(x, y))). 
75 [hyper, 39, 1, 25]P(e(e(e(x, y), z), e(e(z., x), y))). 
150 [hyper, 47, I, 39]P(e(e(e(x, e(e(x, y), z)), z), y)). 
453 [hyper, 150, 1, 74]P(e(e(x, e(e(x, y), e(z, y))), z)). 
641 [hyper, 453, 1, 75]P(e(e(-x, y), de(y ,  z), e(x, z)))). 

Clause (641) contradicts clause (23), and the proof of transitivity is corap~te, 
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4. Seeking Shorter Proofs 

LARRY WOS 

In this section, we focus on one of the questions occasionally asked by math- 
ematicians and logicians, that of  finding a shorter proof  than has been found so far. 

The frequency of such a question being posed appears to increase sharply when one 
is presented with a proof  obtained with an automated reasoning program. No doubt 

the questioner, recognizing the arduousness of  conducting the corresponding search 

by hand but encouraged by the success of  a computer program, conjectures that some 
way must exist to effectively assign the task to a computer. 

In principle the conjecture is correct, for such a way does exist. One can simply have 
one's reasoning program conduct a level-saturation run through level k, where k is the 

length of the shortest known proof. We recall that the level of  a clause is one greater 
than the levels of  the immediate parents of  that clause, and the level of a proof  is the 
maximum of the levels of  all of  the clauses in the proof. Unfortunately, for most 
studies, a level-saturation run is virtually untenable, for the size (the number of  
clauses) of  succeeding levels grows very rapidly. Nevertheless, consideration of  using 

an automated reasoning program in the at tempt to find shorter proofs should not 

simply be rejected. 
In fact, our entrance into the field of  equivalential calculus was mostly prompted 

by a suggestion from the logician Kalman that we seek a proof  that the formula X G K  

implies the formula PYO - each of which is a shortest single axiom - but at tempt to 

find a proof  shorter than the one he found [1]. As we reported in an earlier paper [10], 
we did succeed - actually, Brian Smith deserves full credit for this success. Smith, 
using the automated reasoning program AURA,  found a 23-step proof  [10]: Kalman's  

proof  consists of 43 steps. (We very recently found a 10-step proof  with OTTER 
using an approach based on level saturation; the result duplicates a proof  first 

obtained by Marien using one of Stickel's programs.) 
Despite this success - until now - we have had little to contribute when asked about 

how one might systematically use an automated reasoning program for seeking 

shorter proofs. In fact, although we provide some hints in this section about how one 
might proceed, we must point out that we have gained little understanding of the 

precise nature of the mechanisms we discuss, and we consider our discoveries to be 
mostly good fortune. 

The change that has occurred, during the writing of this article, resulted simply 
from curiosity. We examined McCune's p roof  that X H N  is a single axiom, noting 
that - after the deduction of e(x ,  x) - almost all of  the steps in the proof  have a short 
tail or a short head. Obviously, his emphasis of  short tails was an excellent choice, 
leading to the superior proofs for X H K  and XHN.  Therefore, we decided to go even 

further in that direction. In particular, with weighting, we instructed OTTER to 
emphasize the use of  formulas whose head or tail was no longer than three symbols, 
Our goal was to obtain McCune's  proof  for XHN,  but obtain it in a single run. 

After 4 CPU hours on an Encore, the attempt was judged a failure and terminated. 
However, an examination of the output revealed a most unexpected find - a far 
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shorter proof of e(x, .,c). Where the McCune/OTTER proof  takes 29 derived steps, the 

new proof  takes 13; where the McCune/OTTER proof  relies on a formula of 47 
symbols, the new proof  requires formulas containing no more than 39 symbols. The 
immediate question we asked focuses on using some weighting strategy that would 
produce in a single run a (new) proof  of XHN, where the proof would begin by 
producing the 13-step deduction of e(x, x). We had already changed the rules; we were 
still in pursuit of  a single-run proof  of XHN, but we were also after a proof  shorter 
than that found by McCune. 

The attempt failed, failed because OTTER used unwanted steps on its way 
to deducing e(.r, .,c), which made that proof  longer than we intended. However, 
because weighting permits one to assign a weight to a clause - whose pattern of  e's 
is unwanted - in such a way that clauses of the unwanted type are discarded, we were 
able to add to the weighting templates and avoid the unwanted clauses. Our attempt 
succeeded in reaching both goals. OTTER found a proof  that XHN is a single axiom, 
and the proof  is 65 steps in length as compared with McCune's proof  of 84 steps. In 
addition, the shorter proof  is less complex - the lorigest formula used in it consists of  
39 symbols, compared to the use of  formulas consisting of 47 symbols for the longer 
proof. 

Other experiments" that led to finding shorter proofs rest on instructing OTTER to 
block the use of formulas with weight greater than some chosen bound, and also block 
the use of formulas with weight less than another chosen bound. Since the latter is not 
directly available in OTTER, to achieve the desired restriction, we were forced to 
employ an indirect means - to add templates that purge certain types of  formulas. We 
also succeeded in finding shorter proofs with an entirely different approach, that of 
interchanging the order of  the two negative literals in the nucleus for condensed 
detachment. This approach was discovered purely by chance, for we were simply 
trying for a uniform set of proofs, each placing the role of the e(x, y) literal first. The 
result was the discovery by OTTER of  a proof  for XHN consisting of  63 steps instead 
of 65. Other experiments are planned. 

Summarizing, we have discovered by chance the beginning of an approach for 
systematically seeking shorter proofs with the assistance of  an automated reasoning 
program. One aspect of the approach rests on choosing some type or types of 
formulas to be avoided, and then using weighting to purge unwanted clauses. The 
clauses to be avoided are typically present in a known proof, and the object is to 
prevent the program from finding that proof. The other aspect of the approach 
focuses on the use of various orderings of the literals in the nucleus or nuclei from 
which conclusions are drawn - drawn by using hyperresolution, UR-resolution, or 
some other inference rule. The object of this aspect is to perturb the search space 
enough to cause the program to concentrate .on conclusions in sharply different 
sequences. Again, as in the results reported in earlier sections, we are indebted to 
McCune for providing the needed beginning. 

We close this section with some'promised observations and two proofs relevant to 
the relation between finding shorter proofs and the corresponding CPU time that is 
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required. The experiments and proofs focus on proving that the combination of  
symmetry and associativity axiomatize equivalential calculus, where the proof  
depends on deducing the commuted form of associativity and an odd form of 
transitivity. In particular, we prove that the axioms first given by Lesniewski in 1929 
are derivable from a second set given in 1932 [2]. Since the commuted form of 
associativity is easily derivable from symmetry and associativity, all that remains is 
the two proofs of Theorem 5 - two are needed to illustrate that shorter proofs can 
indeed take far longer to find. 

THEOREM 5. The axioms of  symmetry and associativity completely axiomatize 
equivalential calculus; in particular, their use leads to the deduction of 

e(e(e(x, y), e(z, x)), e( y, z)), 

which, with symmetry, forms a complete axiomatization of the calculus. 
Proof. As usual, we assume by way of  contradiction that the theorem is false, which 

explains the presence of  the negative unit clause in the following two proofs. 

1 --1 e(e(x, y))[--q P(x) lP(y) .  
3 ~P(e(e(e(a, b), e(c, a)), e(b, c))). 
4 P(e(e(x, y), e(y, x))). 
5 e(e(e(e(x, y), z), e(x, e(y, z)))). 

6 [hyper, 
7 [hyper, 
9 [hyper, 

lO [hyper, 
11 [hyper, 
12 [hyper, 
14 [hyper, 10, 1, 
18 [hyper, 10, l, 
28 [hyper, 12, 1, 
38 [hyper, 28, 1, 
41 [hyper, 38, 1, 
59 [hyper, 41, 1, 
67 [hyper, 41, 1, 
69 [hyper, 41, 1, 
405 [hyper, 6, l, 
431 [hyper, 405, 
433 [hyper, 405, 
440 [hyper, 405, 
617 [hyper, 440, 
619 [hyper, 440, 
777 [hyper, 617, 
784 [hyper, 619, 

5, 1, 4]P(e(e(x, e( y, z)), e(e(x, y), z))). 
5, 1, 4]P(e(x, e(y, e(y, x)))). 
7, l, 4]P(e(e(x, e(x, y)), y)). 
9, 1, 5]P(e(x, e(e(x, y), y))). 
9, 1, 7]P(e(x, x)). 
l l, l, 7]P(e(x, e(x, e(y, y)))). 

l O]P(e(e(e(x, e(e(x, y), y)), z), z)). 
7]P(e(e(e(x, e( y, e( y, x))), z), z)). 
4]P(e(e(x, e( y, y)), x)). 
5]P(e(e(e(x, y), x), y)). 
4]P(e(x, e(e( y, x), y))). 
41]P(e(e(x, e(y, e(e(z, y), z))), x)). 
18]P(e(e(x, e(y, e(z, e(z, y)))), x)). 
14]P(e(e(x, e( y, e(e( y, z), z))), x)). 
5]P(e(e(e(e(x, y), z), x), e( y, z))). 
l, 69]P(e(e(e(x, y), e(e( y, z), z)), x)). 
1, 67]P(e(e(e(x, y), e(z, e(z, y))), x)). 
1, 59]P(e(e(e(x, y), e(e(z, y), z)), x)). 
1,433]P(e(e(e(x, e(y, e(y, z))), x), z)). 
l, 431]P(e(e(e(x, e(e(y, z), z)), x), y)). 
1, 5]P(e(e(x, e(y, e(y, z))), e(x, z))). 
1, 5]P(e(e(x, e(e(y, z), z)), e(x, y))). 
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1472 [hyper, 
1536 [hyper, 
1637 [hyper, 784, 1 
1707 [hyper, 1637, 
2229 [hyper, 1536, 
2248 [hyper, 2229, 
2498 [hyper, 1707, 
2569 [hyper, 2498, 
2727 [hyper, 2569, 
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777, 1,405]P(e(e(e(e(x, y), e( y, z)), x), z)). 
1472, 1, 5]P(e(e(e(x, 39, e( y, z)), e(x, z))). 

, 405]P(e(e(e(e(x, e(y, z)), z), x), y)). 
1, 5]P(e(e(e(x, e( y, z)), z), e(x, y))), 
I, 784]P(e(e(e(e(x, .1'), z), e(z, .1')), x)). 
1, 1536]P(e(e(e(e(e(x, y), z), y), x), z)). 
1, 2248]P(e(e(e(e(e(x, y), z), y), z), x)). 
1, 1707]P(e(e(e(e(x, y), e(z, x)), y), z)). 
I, 5]P(e(e(e(x, y), e(z, x)), e(y, z))). 

229 

Clause (2727) contradicts clause (3), and the first proof is complete. 

1 -7 P(e(x, y)) I -7 P(x) L P(Y). 
3 -7 P(e(e(e(a, b), e(c, a)), e(h, c))). 
4 P(e(e(x, y), e(y, x))). 
5 P(e(e(e(x, y), z), e(x, e( y, z)))). 

6 [hyper, 5, 1, 5]P(e(e(x, yT, e(z, e(x, e(y, z))))). 
7 [hyper, 5, 1, 4]P(e(e(x, e( .1', z)), e(e(x, y), z))). 
8 [hyper, 5, 1, 4]P(e(x, e(y, e(y, x)))), 

12 [hyper, 8, 1, 4]P(e(e(x, e(x, y)), y)). 
16 [hyper, 12, 1, 5]P(e(x, e(e(x, y), y))). 
127 [hyper, 6, 1, 4]P(e(e(x, e( y, e(z, x))), e(y, z))). 
138 [hyper, 6, 1~ 16]P(e(x, e(y, e(e(e(y, z), z), x)))). 
142 [hyper, 6, 1, 4]P(e(x, e(e(y, z), e(e(z, y), x)))). 
159 [hyper, 7, 1, 5]P(e(e(e(e(x, y), z), x), e(y, z))). 
1421 [hyper, 138, 1, 7]P(e(e(x, y), e(e(e(y, z), :), x))). 
1493 [hyper, 142, 1, 7]P(e(e(x, e(y, :)), e(e(z, y), x))). 
1704 [hyper, 159, !, 127]P(e(x, e(y, e(z, e(e(y, z), x))))). 
3118 [hyper, 1421, 1~ 4]P(e(e(e(e(x, y), y), z), e(z, x))). 
3604 [hyper, 1493, 1, 127]P(e(e(x, y), e(z, e( y, e(x, z))))). 
4589 [hyper, 1704, 1, 7]P(e(e(x, y), e(z, e(e(y, z), x)))). 
9613 [hyper, 3604, 1, 7]P(e(e(e(x, y), z), e(y, e(x, z)))). 
10395 [hyper, 4589, 1, 3118]P(e(e(x, e(e(y, x), e(:, 3'7)), z)). 
17286 [hyper, 10395, 1, 9613]P(e(e(e(x, y), e(z, x)), e(y, z))). 

Clause (17286) contradicts clause (3), and the second proof is complete. 
To obtain the second and shorter proof required approximately seven times as 

much CPU time as was required to obtain the first. Both proofs were obtained on a 
Sun 3/60 workstation. 

5. Challenge Problems 

The object of the challenge problems we offer is to prove with an automated reasoning 
program that each of the following 13 formulas is by itself a complete axiomatization 
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of equivalential calculus. 

(YQL) e(e(x, y), e(e(z, y), e(x, z))) 
(YQF) e(e(x, y), e(e(x, z), e(z, y))) 
(YQJ) e(e(x, y), e(e(z, x), e(y, z))) 
(UM) e(e(e(x, y), z), e(y, e(z, x))) 
(XGF) e(x, e(e(y, e(x, z)), e(z, y))) 
(WN) e(e(x, e(y, z)), e(z, e(x, y))) 
(YRM) e(e(x, y), e(z, e(e(y, z), x))) 
(YRO) e(e(x, y), e(z, e(e(z, y), x))) 
(PYO) e(e(e(x, e(y, z)), z), e(y, x)) 
(PYM) e(e(e(x, e(y, z)), y), e(z, x)) 
(XGK) e(x, e(e(y, e(z, x)), e(z, y))) 
(XHK) e(x, e(e(y, z), e(e(x, z), y))) 
(XHN) e(x, e(e(y, z), e(e(z, x), y))) 

For the clauses that are ordinarily needed to produce an unsatisfiable set, one might 
begin with the negations of the eight axioms of length 15 given in Section 3. In the 
promised long paper mentioned in Section 2, we shall include proofs - each obtained 
with OTTER - that each of the 13 formulas that are the object of the challenge 
problems is indeed a single axiom for equivalential calculus. In that paper, to produce 
a sound argument and avoid the circularity of  simply proving that, A implies B 
implies C implies A, we present a tree of implications rooted in the first set of two 
axioms in turn proved (in 1929 by Lesniewski [2]) to axiomatize equivalential calculus, 
where Lesniewski's argument rests on the already-mentioned appeal to natural 
language. 

For additional test problems, one might seek a proof with an automated reasoning 
program of any or all of the theorems proved in this article - perhaps a different proof 
from that given here. For the final test problem, one might try to obtain a proof with 
an automated reasoning program that symmetry and transitivity 

e(e(x, y), e(y, x)) 

e(e(x, y), e(e(y, z), e(x, z))) 

together imply associativity 

e(e(e(x, y), z), e(x, e(y, z))). 

This theorem provides the missing piece in the discussion of reflexivity, symmetry, 
transitivity, and associativity. 

6. Conclusions 

We have discovered - in part by chance, as so often occurs in science - a systematic 
approach that an automated reasoning program can use for proving that each of  
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thirteen formulas is by itself a single axiom for all of  equivalential calculus. The 13 

proofs are of  particular interest since no other formula from among the 630 of  length 
11 has sufficient power to axiomatize, by itself, this area of  logic. The approach for 

obtaining these proofs and others like them relies heavily on the use of  the weighting 
strategy, a strategy that permits the user to assign priorities to formulas and sub- 
formulas: those priorities are used to direct a reasoning program in its choice of  where 

next to focus attention, and are also used by the program to discard unwanted 
conclusions. 

To put into perspective the research reported here, we first note that proofs of  the 
corresponding thirteen theorems were originally obtained with approximately 50 
years of  excellent research by logicians and other scientists in a period beginning in 
the late 1920s and ending in 1980. In contrast, OTTER was able to prove the 13 

theorems in a single day of use, which - rather than in any way suggesting that all of  

the theorems are easy to prove - may mark a significant advance for automated 

reasoning. Although we did have the distinct advantage of knowing which 13 - of  the 
possible 630 formulas - to study, in no way did our effort rely on or benefit from 
knowledge about  the specific existing proofs. In fact, when we began the study, we 

had seen only two such proofs, the two impressive results Winker had found for the 

formulas known as X H K  and XHN;  neither proof  was used in any way during the 

investigation. On the other hand, when we began our search for shorter proofs than 
those found by McCune in his use of  OTTER,  we did gain important insight about 
what to try from reading his proofs. 

In addition to discovering a general approach to proving the 13 tightly coupled 

theorems, the proofs we found by using O T T E R  exhibit unexpected improvements. 
Specifically, although McCune's proofs - establishing that X H K  and X H N  are each 

a single axiom for equivalential calculus - are, respectively, far shorter and far less 
complex than those found by Winker in 1980, the proofs we then found exhibit a 
further reduction in length and complexity. Our success suggests that we may have 
discovered some mechanisms for finding shorter proofs. In particular, to seek a new 
proof, one can select a step of a known proof  and assign such a high weight to the 
corresponding clause that the reasoning program is prevented from ever focusing on 
that clause: if, in addition, the assigned weight does not exceed the maximum weight 

permitted for retained conclusions, then all instances of  the chosen clause will be 
purged with subsumption, preventing the program from using them in a proof. In 

contrast to this action which blocks the exploration of  a given proof, one can 

encourage the exploration of a path that appears promising by taking one or more 
steps on that path and assigning such low weights to the corresponding clauses that 

the program will choose them as the foc.us of  attention before any other retained 
conclusion. 

As well as providing evidence of the progress occurring in automated reasoning and 
of the power of  our newest program OTTER,  the material presented in this article 
contains a number of  challenge problems. These problems offer a wide spectrum of 
difficulty and can be used to test new programs and new approaches. 
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