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Abstract. This article addresses the problem of indexing and retrieving first-order predicate calculus terms 
in the context of automated deduction programs. The four retrieval operations of concern are to find 
variants, generalizations, instances, and terms that unify with a given tenn. Discrimination-tree indexing 
is reviewed, and several variations are presented. The path-indexing method is also reviewed. Experiments 
were conducted on large sets of terms to determine how the properties of the terms affect the performance 
of the two indexing methods. Results of the experiments are presented. 
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1. Introduction 

As automated deduction systems begin to emerge as useful vehicles for studying 
questions in mathematics and logic, the speed of  those systems is becoming more and 
more important. Given the combinatorial explosion of typical searches, a large 
speedup in itself will usually not enable programs to find direct proofs of much more 
difficult theorems. However, reduced response time allows researchers to interact 
more easily with the program by evaluating failures and trying additional searches 
with different strategies or axiom sets. Improvement of speed by a factor of  ten, five, 
or even two can easily cause a success. 

Careful attention to term indexing in our automated deduction program OTTER 
[16] has caused substantial speedups. Two different indexing methods are used in 
OTTER: discrimination-tree indexing and path indexing. Initial implementations and 
experiments showed that some of the indexing operations are usually better per- 
formed by discrimination-tree indexing and others by path indexing. In addition, 
some types of term are much better handled by one or the other of  the indexing 
methods. Thus, no clear winner existed between the two methods. More extensive 
experiments were then conducted on sets of terms from several application areas. This 
article contains results of those more extensive experiments. 

The problem of  term indexing is to maintain a large set of first-order predicate 
calculus terms and at the same time provide fast access to members of that set. Four 
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retrieval operations are of interest -- to find unifiable terms, generalizations, 
instances, and alphabetic variants of a query term. In the context of clause-based 
automated deduction, one wishes to find unifiable terms when applying resolution or 
paramodulation inference rules or when searching for unit conflict, one wishes to find 
generalizations when determining whether a new clause is subsumed by an existing 
clause or when applying rewrite rules, and one wishes to find instances when determin- 
ing whether a new clause subsumes any existing clauses or when searching for 
applications of a new rewrite rule. Retrieval of variants can be useful when applying 
restricted forms of the preceding deduction operations. 

Term indexing was used in the early days of automated deduction [17, 10], but it 
was undocumented or not emphasized in the literature, and the methods are not well 
known. As a result, it appears that several of the methods were 'reinvented'. In par- 
ticular, the origins of the two indexing methods compared in this article remain uncer- 
tain. The roots of discrimination-tree indexing appear to lie directly in formula mani- 
pulation systems, and the roots of path indexing appear to lie in database technology. 

Discrimination-tree indexing (also called discrimination-net indexing) and some of 
its variations have appeared in [13, 3, 8, 14, 15, 20, 2, 5, 6]. It is used to find 
demodulators in [13], it is presented from a Lisp point of view in [3], it is used with 
very large sets of terms in [15], it is compared to path indexing in [20], it is used in the 
context of very high-performance K n u t h -  Bendix completion in [5, 6], and it forms 
the basis for a high-performance deduction toolkit in [2]. 

The predecessors of the path-indexing method [20] are coordinate indexing [10] and 
FPA indexing [17, 12, 11 ]. Path indexing is a simple but substantial refinement of FPA 
indexing and coordinate indexing. A hybrid method similar to FPA indexing is 
presented in [1]. 

A third class of indexing methods is based on encoding terms into bit strings and 
using bit operations to aid retrieval [9, 22, 18]. A disadvantage of these methods is that 
although the bit operations are very fast, in most cases a linear search is required. 
These methods are not discussed here. 

The remainder of the article is divided into preliminaries, including a more precise 
statement of the indexing problem (Section 2), presentations of discrimination-tree 
indexing and path indexing (Sections 3 and 4), experiments with the two methods 
(Section 5), and conclusions. 

This article is based on a presentation I gave at the American Association for 
Artificial Intelligence Spring Series Symposium on High-Performance Theorem Prov- 
ing at Stanford University in March 1989. 

2. Preliminaries 

A term is a variable, a constant, or a complex term. A complex term is a fixed- 
arity function symbol applied to a sequence of terms. The methods in this article 
apply as well to atoms (an atom is a relation symbol applied to a sequence of 
terms). Constants and function symbols are collectively called rigid symbols. 
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Table 1. Types of unification failure 

Direct clash Indirect clash Occurs-check 

f(a, b) J(x, x) f(x, x) 
f(a, c) f(a, c) f (  y, g( y)) 
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Variables are distinguished from constants by starting with a lower-case letter 

from u to z. 
Two terms are unifiable if they have a common instance, in particular, if there exists 

a substitution of terms for variables that makes the two terms identical. Term t~ is an 

instance of term t2 (and t2 is a generalization of tt ) if there exists a substitution of terms 

for variables in t2 that makes it identical to tl. Two terms are alphabetic variants if 
each can be renamed to the other by substituting variables for variables. For all of  the 

unification and matching problems, I assume that the two terms do not share any 

variables. 
When two terms fail to unify or match, I sometimes refer to the reason for the 

failure. Clashes occur when two rigid symbols cannot be unified or matched. A direct 

clash can be detected without considering any partial substitution. Indirect clashes 

and occurs-check failures are detected by considering a partial substitution. Examples 

of  the three types of  failure are given in Table I. 
The problem is to maintain a set of  terms and, given a query term that does not 

share variables with any terms in the set, support the following four retrieval 

operations: 

1. Find all terms that unify with the query term, and construct a most general 

unifying substitution for each. 

2. Find all generalizations of  the query term, and construct a matching substitution 

for each. 

3. Find all instances of  the query term, and construct a matching substitution for 
each. 

4. Find all variants of  the query term, and construct a matching substitution for each. 

3. Discrimination-Tree Indexing 

A discrimination-tree index is a tree that represents the structure of  all the terms in 

the index. The terms in the index are stored in the leaves of  the tree. The retrieval 

operation traverses and backtracks through the query term and the discrimination 

tree, finding the appropriate leaves. Basic discrimination-tree indexing and several 
variations are presented in this section. 

Basic discrimination-tree indexing serves as a pre-filter to unification or matching. 
The values of  variables in the indexed terms and in the query term are ignored during 
the retrieval operation; in particular, variables are not bound during retrieval. There 

are no direct clashes between the retrieved terms and the query term, but there can 
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root 

1. f ( x , x )  f g 

3. f ( x , b )  

4. f ( g ( a ) , x )  , . 
5. f ( g ( a ) , b )  g a b 
6. f ( a , y )  ~ I {7,8} {9} 

7. 9(x)  * b a * 

8. g(z) {1,2} { 3 1 A  {6} 
9. g(b) / \  

�9 b 

{4} {5} 

Fig. 1. A set of terms and its discrimination tree. 

be indirect clashes and occurs-check failures. The typical use of  basic discrimination 

indexing is to retrieve terms from the index, then call a unify or match procedure to 

verify that each retrieved term unifies or matches with the query term and to bind 

variables and construct a substitution. 
Let T be the set of  terms indexed in a discrimination tree D, and let T* be the set 

derived from T by replacing all variables with the special symbol , .  Each node of D, 

except the root is labeled with a function or constant symbol or the special symbol 

�9 . Each path from the root to a leaf corresponds to exactly one member of  T , .  In 

particular, for each path, the labels of  the nodes is the preorder traversal of  exactly 

one member  of  T , .  In addition, the children of  each node are unique, Each leaf of  
D contains the members of  T that map to the member of  T ,  for that leaf. Figure i 

contains an example set of  terms and its discrimination tree. 
I present informal descriptions of  backtracking algorithms for retrieving terms 

from a discrimination tree. Stickel's paper [20] contain formal recursive definitions of  

the various retrieval operations. 
The operation of retrieving variants from a discrimination tree is the simplest. One 

starts at the root of  the discrimination tree and walks through the query term in 
preorder. At each step of the walk, one branches to the child node in the dis- 
crimination tree that matches the current symbol in the query term, or fails if no 
matching child exists. A variable in the query term, regardless of  its name, matches 
a , -node in the discrimination tree. I f  one reaches the end of a query term, one is 
always at a leaf of  the tree, because symbol arities are fixed. No backtracking is 
required, because a variable cannot match with a nonvariable term; in particular, a 
symbol in the query term matches at most  one child in the discrimination tree. 

During retrieval of  generalizations, subterms of the query term can match , -nodes 
in the discrimination tree as well a nonvariable nodes. Therefore, either a recursive 
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If S is the current position in the query term, let next_symbol(S) 
be the next position in the preorder of the query term, and let 
skip_term(S) be the position following the subterm headed by S. 

If N is the current node in the discrimination tree, let *child(N) 
be the ,-node child of N (if any), and let matching_child(N,S) be 
the child of N (if any) that matches symbol S. 

A stack of states <S,N> is maintained for backtracking. 

S = start of query term; 
N = root of discrimination tree; 
while (S != NULL) 

if (a restore_state has not just occurred and *child(N) exists) 
save_state(<S,N>); 
N = ,child(N); 
S = skip_term(S); 

else if (matching_child(N,S) exists) 
N = matching_child(N,S); 
S = next_symbol(S); 

else 

return(N); 

Fig. 2. 

<S,N> = restore_state(); 
if (<S,N> ==  NULL) 

return(failure); 

Retrieving generahzations from a discrimination tree. 
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set-oriented algorithm or a backtracking algorithim is required, because both 
branches must be explored. Figure 2 outlines a backtracking algorithm with the 
simplifying assumption that no variables exist in the query term. 

For retrieval of  instances, we can make the simplifying assumption that all terms 
in the discrimination tree are ground - in particular, that no ,-nodes occur in the 
discrimination tree. During retrieval of  instances, a variable in the query term can 
match all children of  a node in the discrimination tree. As in generalization retrieval, 
skipping must occur when a variable is matched; but in this case, the skipping is in 
the discrimination tree. When the current symbol in the query term is a variable, one 
must skip to all the descendant nodes in the discrimation tree that corresponds to the 
ends of the terms that match the variable. Figure 3 outlines the procedure. 

The standard way to skip to the end of  the corresponding term and to save the 
position for backtracking is to access the arities of the symbols to identify the end of 
the term, then save the individual nodes in a stack for backtracking. See Variation 1, 
Section 3.1, for an optimization. 

The operation to retrieve terms that unify with a query term has elements of both 
the generalization and the instance-retrieval operations. The procedure to find 
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Assume that  S is the current symbol in the query term and that S is 
a variable. Let N be the current node in the discrimination tree. 

On the left-most branch of N not yet considered, skip to the 
descendant node that  corresponds to the end of the term in the 
discrimination tree. Save S, N, and the current branch of N 
for backtracking. 

Fig. 3. Retrieving instances from a discrimination tree. 

unifiable terms backtracks as in generalization retrieval when a , -node occurs in the 
discrimination tree, and it backtracks as in instance retrieval when a variable occurs 
in the query term. 

3.1. VARIATION 1: JUMP LISTS 

For instance and unifiable-term retrievals, the operation of skipping to the descendant 
nodes in the discrimination tree can be optimized by storing in each node an explicit 
list of  pointers to the descendant nodes corresponding to the ends of the terms that 
start with the node. For  example, the list for each child of the root points to all of  the 
leaves for that subtree. These jump lists are updated whenever a term is inserted into 
or deleted from the discrimination tree Retrieval time is saved, because the ends of the 
terms need not be computed and because backtracking is simplifed. Jump lists need 
not include nodes for variables or constants, which would simply cause a jump to the 
current node of the discrimination tree. 

The extra memory required for jump lists can be substantial. Let g3 (a) abbreviate 
g(g(g(a))). Consider the discrimination tree for the three terms g"(a), g"(b), and g~(c). 
The basic discrimination tree (excluding the root) has n + 3 nodes, and the jump lists 
(excluding nodes for constants) total 3n nodes. 

For Variations 2 and 3 which follow, it is useful to have an additional field in each 
member of a jump list. The additional field contains a pointer to the term being 

jumped. 

3.2. VARIATION 2: AVOIDING REMATCHING STRUCTURE 

The typical use of  discrimination indexing is to call a unify or match procedure with 
each retrieved term. This is somewhat wasteful, because the structure of  the retrieved 
terms is already known to match in part the structure of the query term. The 
optimization is to record, while indexing, the variable/term pairs that must be bound. 
Then a special-purpose match or unify procedure can simply process the set of pairs. 
Our implementation of this variation requires jump lists (Variation 1) for instance and 
unifiable-term retrieval. 

To apply the optimization to generalization retrievals, once can store, along with 
each indexed term, the list of variables in the term. During retrieval, a stack of  terms 
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is maintained. When a ,-node is encountered, the corresponding subterm of  the query 

term is pushed onto the stack; a term is popped from the stack when backtracking 
occurs. When a term is retrieved, its list of  variables is matched (possibly failing) with 

the terms in the stack. 
The optimization is more complex for instance retrievals, because one must collect 

a stack of subterms of  the indexed terms to be matched with variables in the query 
term. Such terms do not exist in the proper form, because they are indexed with 
,-nodes instead of  the correct variable. Our solution is to use a discrimination tree 
without ,-nodes, in which variables have their true names, and to use jump lists with 
the additional term pointers. In such a case, a stack of variable/term pairs can be 
maintained while backtracking. When a term is retrieved, the pairs in the stack are 
matched (possibly failing). 

As one might expect, the optimization for retrieving unifiable terms is a com- 
bination of  the generalization and instance cases. With the optimization, the 
unification-retrieval operation returns two sets of pairs. One set contains pairs (query- 
variable, tree subterm), and the other contains pairs (tree-variable, query-subterm). 
Each pair in the two sets must be unified (possibly involving secondary unifications 
and possibly failing). A further optimization is that some of the occurs-checks can be 
omitted. Arbitrarily choose one of the sets; the first occurrence of each variable in that 
set can be bound without an occurs-check. 

3.3. VARIATION 3: BINDING VARIABLES DURING INDEXING 

The third variation is to bind variables and construct the substitution while traversing 
the discrimination tree. One advantage of  this technique is that binding a variable in 

the discrimination tree can correspond to binding many variables in the indexed 
terms, thus saving binding operations (including occurs-checks). A second advantage 
is that conflicting bindings resulting from indirect clash and occurs-check failure can 

be discovered during indexing. A disadvantage is that this variation is not compatible 
with the use of*-nodes in the discrimination tree - terms must be indexed with respect 
to their correct variable names, a method that requires more memory for the dis- 
crimination tree. Variation 3 is incompatible with Variation 2. 

Variation 3 applied to generalization retrieval is straightforward. A substitution 
environment (initially empty) is maintained during indexing. Assume that we are 
indexing, that the current subterm of  the query term is T, and that the current node 
in the tree represents variable V. If V is not already bound, save the current state for 
backtracking, bind V to T, and continue. If V is bound to a term identical to T, save 
the current state for backtracking, and continue. Otherwise backtrack. 

Our implementation of  Variation 3 for instance retrieval requires the use of jump 
lists with the additional term pointers. Assume that we are indexing, that the current 
subterm of  the query term is a variable V, and that the current node in the tree is N 
with jump list J. If V is unbound, alternatively (by backtracking) process each 
member of J by binding V to the term and jumping to the descendant node. If V is 
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bound to a term T, one must find a term, starting at N, that is identical to T. One 

method is simply to search the jump list for such a term; if one is found, jump over 
it and continue. A second method is to treat T as if it is the current query term and 

traverse the tree with T using a slightly different method that searches for exact 

matches rather than allowing the binding of variables; if T is successfully matched, the 

indexing reverts to its normal behavior. 

Variation 3 applied to unification retrieval is a combination of  its application to 

generalization and instance retrieval, with the following modifications. First, if one 

encounters a bound-variable node in the tree, the term to which it is bound is unified 

with the current subterm of the query term. Second, if the current query term is a bound 

variable, let the term to which it is bound become the query term. The following 

example shows an advantage of Variation 3 for unification retrieval. Consider query 

t e rmf(x ,  x). When the first occurrence o f x  is processed, it is bound to a term T. When 

the second occurrence of x is processed, T in effect replaces x for indexing purposes; 
discrimination occurs for T as if it is a subterm of the original query term. 

3.4. VARIATION 4: LIMITING DISCRIMINATION-TREE DEPTH 

Variation 4 is to limit the depth of the discrimination tree to a fixed amount,  say n. 
In the limited tree, each path from the root to a leaf is the first n symbols of  one of 
the indexed terms. The leaves of  the limited tree contain all terms with the correspond- 

ing initial substring. The effect of  such a limit is to support  indexing on at most the 
first n symbols of  the indexed terms. 

The motivation for this variation is simply to save memory.  It is compatible with 

the use of  jump lists, but it is not directly compatible with Variation 2 (avoiding 
rematching) or with Variation 3 binding variables (during indexing). 

3.5. IMPLEMENTATIONS OF DISCRIMINATION-TREE INDEXING 

We have several implementations of  discrimination-tree indexing which are 
summarized in Table II. All are written in C and use backtracking algorithms as 
outlined in the preceding paragraphs. 

Table II. Summary of discrimination-tree implementations. 

Identifier Type Variations Comments 

DG-3 generalization 3 OTTER code 
DI-1-3 instance 1, 3 
DU-I-3 unify 1, 3 
DG-F generalization none flatterms 
DG-2-F generalization 2 flanerms 
DG-3-F generahzation 3 flatterms 
DI-1-2-F instance 1, 2 flatterms 
DU-I-2-F unify 1, 2 flatterms 



DISCRIMINATION-TREE AND PATH INDEXING 

g(f(f(a,g(b)),e)) 
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g ~  ~ f ~  : - - f - ~  ~ a-~ ~ g-~ ~ b ~  ~ e 

Fig. 4. A term and its flatterm representation. 

The program OTTER uses discrimination trees for generalization retrieval when 
finding left sides of  rewrite rules during demodulation and when finding literals in 
potentially subsuming clauses (forward subsumption). Variation 3, binding variables 
during indexing, is used in the OTTER code. 

Flatterms. Several of  our other implementations use the flatterm representation 
introduced by Christian [5, 4] for the query term. In theflatterm form, a term is not 
stored as a tree; instead, it is stored as a doubly-linked list - one node per symbol - 
in which the nodes for the function symbols also have pointers to the ends of  the 
corresponding terms (analogous to the jump pointers in a discrimination tree). See 
Figure 4. 

The use of  ftatterms as query terms simplifies and speeds the backtracking algo- 
rithms, because the maintenance of a position in a flatterm requires just one of its 
nodes, rather than the stack of  nodes required for the tree form of  a term. Our 
implementations use flatterms only for the query terms, not for the indexed terms or 
for constructing substitutions. (Christian uses flatterns exclusively, and he shows that 
their use speeds other term operations such as copying and symbol counting.) 

Finding the Correct Child. One of  the key operations in discrimination-tree indexing 
is to find the child node that matches the current (nonvariable) symbol in the query 
term. In all of  our implementations, the children are stored as an ordered linked list, 
with *-nodes or variable nodes first. The lookup operation is a simple linear search 
of  the list. The children of  a node in Christian's discrimination trees are stored as an 
array, indexed by the symbol identifier, so that access is immediate. The use of arrays 
is certainly faster, but we have retained the use of  linked lists. First, we must conserve 

memory, because we index very large sets of  terms. Second, our applications usually 
have small numbers of distinct symbols, so that nodes have short lists of  children. 
Finally, we must be able to efficiently handle applications with large numbers of  
distinct symbols. 

4. Path Indexing 

This section contains an informal presentation of  Stickel's path-indexing method, a 
refinement of  FPA indexing. See [20] for a more formal presentation. As in basic 
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h 

[h , l , a ]  
a g f [h, 2, g] I [h,2,g,l,g] [h,2,g,l,g,l,,] 

1 1 [h, 3, f]  

g b y [h,3, f , l , b]  

11 [h, 3, f ,  2,*] 

X 
Fig. 5. A term and its path. 

discrimination-tree indexing, the path-indexing method is a pre-filter to unification or 
matching: in addition to all appropriate terms, it may also retrieve terms that fail to 
unify or match because of indirect symbol clash or the occurs-check. In particular, 
path indexing retrieves exactly the same set of  terms as basic discrimination tree 
indexing. As in basic discrimination-tree indexing, a unify or match procedure is 
called after indexing to verify unification or matching and to construct the 
substitution. 

Every term has associated with it a set of paths - one path for each symbol 
(predicate, function, constant, or variable) in the term. In the standard tree form of 
a term, the paths are simply from the root to each node in the tree. All variables are 
replaced with the special symbol ..  A path is written as an alternating sequence of 
symbols from the term and integers, starting and ending with symbols from the term. 
The integers give the positions of the children of each node. Figure 5 shows the paths 
for term h(a, g(g(x)), f(b,  y)). 

A path list is a list of pointers to terms that have a common path. To index a term 
so that it can later be found by one of the retrieval functions, one computes its paths 
and inserts a pointer to the term into the corresponding path lists. For example, to 
index the term f(a,  x), a pointer to the term is inserted into the path lists [f],  
[f, 1, a] and [f, 2, .]. 

Path-indexing retrievals are performed by computing unions and intersections of 
path lists. Consider the query termf(a ,  g(b), x). Every instance of the query term has 
paths [f, 1, a] and [f, 2, g, 1, b], so the retrieval operation to find instances of the query 
term is simply the intersection of those two path lists: 

[f, 1, a] n [f, 2, g, 1, b]. 

The operation to find variants off (a ,  g(b), x) is similar to the instance retrieval, except 
that the third argument o f f  must be a variable: 

If, 1, a] n [f, 2, g, 1, b] c~ [f, 3, *]. 
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To find terms that unify with f(a,  g(b), x), one must allow variables to occupy the 
positions corresponding to f ,  a, g, and b. The retrieval operation must include unions 
with paths ending with variables: 

If, 1. a] u [f, 1, ,] \ 

[*] w ~ ) . 

[f, 2, g, 1, b] w [f, 2, g, 1, *] u [f, 2, *] 

Finally, the operation to find generalizations of f (a ,  g(b), x) is similar to the unify 
retrieval, except that if the retrieved term is not a variable, it must have a variable as 
the third argument o f f :  

[f, 1, a] w [f, 1, *] 

N 

[*]w [f, 2, g, l , b ] u [ f ,  2, g, 1 , , ] u [ f ,  2 , , ]  

[f, 3, ,] 

All appropriate terms are returned by the retrieval operations, but terms that fail 
to unify or match can be returned as well. The typical use of path indexing is to 
retrieve the set of terms, then call a match or unify routine with each member of  the 
set to verify that it does unify or match and to construct the substitution. 

4 1. A VARIATION ON PATH I N D E X I N G  

Path indexing normally considers all paths in a term, which gives indexing at all 
depths of the query term. A variation is to limit the lengths of paths, which imposes 
a limit on the indexing depth. If the indexing depth is n, then the longest path that will 
be considered has length 2n + 1. For example, to find terms that unify with 
f (a ,  g(b), x) using indexing depth 0, one retrieves [,] w [f]; with indexing depth 1, one 

[*] w 

retrieves 

[f, 1, a] w [.s 1, , ] )  

('~ 

If, 2, g] 

If the indexing depth is limited, more terms that fail to unify or match are retrieved, 
but the size of the index is smaller. 

4.2. IMPLEMENTATION OF PATH INDEXING 

The path-indexing code in OTTER (written in C) was used for the experiments. The 
process of inserting a term into an index is straightforward. For each path (up to the 
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indexing depth if applicable) in the term, one inserts a pointer to the term into the path 
list for the path (creating a new path list if necessary). The path lists are accessed by 
hashing, in which the path is the key. Each term has a unqiue integer identifier ID, 
and the path lists are kept ordered on the ID of the term so that the unions and 
intersections can be computed efficiently. 

Given a query term, the retrieval operation consists of two steps. The first step is 
to construct a binary tree that specifies the unions and intersections to be performed. 
Each internal node is either a w-node or a (~-node, and each leaf corresponds to a 
path and contains a pointer to the head of the path list. The second step, which is 
outlined in Figure 6, is a recursive procedure (due to Ross Overbeek) that performs 
the unions and intersections. 

Note that each path list in a leaf is traversed at most once. The following opti- 
mization is applied in our implementation. When case intersection_node has a term 
from one child and it calls up a term from the other child, it can pass as an argu- 
ment the term it already has as the minimum acceptable value. The procedure 

procedure retrieve_next_term(node) returns a term; 

/* The boundary conditions have been omitted; in particular, */ 
/* the action to be taken when a recursive call returns NULL, */ 
/* and startup of the union_nodes. */ 

case leaf._node: 
/* The position in the path list is saved in the node. */ 
return the next term in the path list; 

case intersection-_node: 
t l  = retrieve_next_term(aode--*left_child); 
t2 = retrieve_aext_term(node--*right_child); 
while ( t l  ~ t2) 

if ( t l  < t2) 
t l  = retrieve_next_term(node~left_child); 

else 
t2 = retrieve_next_term(node~right_child); 

return t l ;  

case union_node: 
/* The current left_term and right_term were stored in */ 
/* the node during the previous call with this node. */ 
if (node~left_term _< node--*right_term) 

node~left_term = retrieve_next_term(node--*left_child); 
if (node--*left_term >__ node~right_term) 

node--*right_term = retrieve_next_term(node--,right_child); 
return minimum(node~left_term, node--~right_term); 

Fig. 6. Computing unions and intersections in a path index. 
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retrieve next term also receives rain term. The case leaf node returns the next 

term ~> rain_term; The case union_node simply passes rain_term through to subcalls. 
Stickel's method [20] for computing the unions and intersections, which also 

traverses each path list at most once, does not require the lists to be ordered and does 
not use an explicit binary tree, but it requires an extra field in each member of  the path 
lists. For example, to intersect three lists, each member of  the first list is marked with 
a 1, then each member of the second list with mark 1 marked with a 2, and finally the 
members of the third list, that are marked with a 2 are retrieved. Although our method 
is probably somewhat slower because of all of  the recursive calls, we retain it because 
our shared-memory parallel implementations [19] would require a separate tag field 
for each processor. 

5. Experiments 

By analysis of  the indexing algorithms, one can draw some general conclusions about 
their relative performances. 

1. As the number of distinct symbols in the indexed terms increases, path indexing can 
be expected to improve, because although there are more path lists, the sizes of  the 
path lists are smaller, and the number of unions and intersections is the same. 

2. As the number of distinct symbols in the indexed terms decreases, discrimination 
indexing can be expected to improve, because the discrimination tree is smaller (more 
sharing of  the initial substrings); in particular, there are fewer nodes to traverse. 

3. Path indexing for instance retrieval can be expected to perform well, because the 
operations on the path lists are particularly simple: no unions are required. 

4. Discrimination indexing for generalization retrieval can be expected to perform 
well, because there are at most two alternatives at each node of  the tree: the ,-child 
(if any) or the correct nonvariable child (if it exists). 

5, Path indexing can be expected to perform well if there are many variables in the 
query terms, because those variables represent 'dont care' conditions and do not 
contribute union operations. 

6, Discrimination indexing for instance and unification retrieval may be expected to 
perform poorly when the query term contains many variables, because a variable in 
the query term matches all children of the current node in the discrimination tree. 

7. Memory requirements for path indexing are more predictable than for discrimi- 
nation indexing. The sum of  the lengths of the path lists is the number of symbol 
occurrences in the indexed terms. The size of  a discrimination tree depends on the 
sharing of the initial substrings of  the indexed terms; it can be very sensitive to 
order of the arguments and subterms of the indexed terms. 

However, worst-case analyses of  the indexing algorithms are not particularly 
useful, and average-case analyses are difficult because of  the wide variation in the type 
and structure of  formulas that appear in real applications. 
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5.1. TERM SETS 

The term sets for experimentation were taken from typical OTTER applications. 
Experiments with the first two sets, Luka-5 and Robbins, are intended to simulate 
generalization retrieval during term rewriting (demodulation). The remaining six sets 
are paired: a set of positive literals and a set of negative literals in each pair. 
Generalization retrieval and instance retrieval in which the indexed set is the same as 

the query set simulate literal retrieval during forward and backward subsumption. 
Unification retrieval in which the indexed set is opposite in sign from the query 

set simulates unit conflict tests and, to a lesser extent, resolution inference rules. 
Unification-retrieval experiments were also performed in which the indexed set is the 
same as the query set. 

Variables start with u - z. 

Luka-5. The set Luka-5 is derived from the equality formulation of the fifth 
Lukasiewicz conjecture [7], a theorem in multivalued sentential calculaus. A proof  
was found with OTTER by using Knuth-Bendix completion techniques. Luka-5 is the 
set of left sides of the first 2000 rewrite rules (demodulators) that were derived during 
the search. Most of those 2000 rewrite rules were still present (had not been simplified) 
at the time the proof  was found. The indexed set is Luka-5, and the query set is the 
multiset of  the 13 862 nonvariable subterms of the terms in Luka-5. A representative 

member of Luka-5 is 

i(n(i(x, y)), i(n(i(i(z, y), n(z))), u)). 

Robbins. The Robbins set is derived from a theorem on the relationship between 
Robbins and Boolean algebras: that the property 3x3y (x + y = y) makes a Robbins 
algebra Boolean [21]. The set Robbins is the left sides of the first 2000 rewrite rules 
derived in a Knuth-Bendix search with OTTER. (The operator + is associative and 
commutative, which we handle with axioms and rewrite rules rather than with 
AC-unification. No computer has yet proved the theorem.) The indexed set is Rob- 
bins, and the query set is the multiset of  the 45 534 nonvariable subterms of the terms 
in Robbins. A representative member of Robbins is 

n(+(n(+(y ,  D)), n(+(D, + (n(n(+(D, + (n(+(x, y)), n(+(y,  n(x))))))), 

n (+  ( y, O))))))). 

CL-pos, CL-neg. The sets CL-pos and CL-neg are derived from a theorem in 
combinatory logic (CL), that the fragment {B, N}, with B x y 2  = x ( y 2 )  and m x y 2  = 

xzyz, contains fixed point combinators. The members of the sets are the first 1000 
positive and negative literals, respectively, from a bidirectional paramodulation 
search (unsuccessful) with OTTER. Representative members of CL-pos and CL-neg 

are 

(a(x, a(a(a(a(a(a(B, y), z), u), a(a(a(B, y), z), u)), v), a(a(a(B, y), z), u))) 

= a(a(a(a(a(B, B), a(B, a(a(a(B, a(a, x)), a(N, m)), v))), y), z), u)) 
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(a(f(a(a(N, a(N, B)), a(B, a(a(N, x), y)))), a(a(a(a(N, B), f(a(a(N, a(N, B)), 

a(B, a(a(N, x), y))))), a(B, a(a(N, x), y))), f(a(a(N, a(N, B)), 

a(B, a(a(N, x), y)))))) 

va a(a(a(x, a(af(a(a(N, a(N, B)), a(B, a(a(N, x), y)))), 

a(B, a(a(N, x), y))), f(a(a(N, a(N, B)), a(B, a(a(N, x), y)))))), y), 

a(a(f(a(a(N, a(N, B)), a(B. a(a(N, x), y)))), a(B, a(a(N, x), y))), 

f(a(a(N, a(N, B)), a(B, a(a(N, x), y)))))). 

EC-lmS, EC-neg. The sets EC-pos and EC-neg are derived from a theorem in 
equivalential calculus (EC), that the formula XGK = e(x, e(e(y, e(z, x)), e(z, y))) 
implies the formula PYO = e(e(e(x, e(y, z)), z), e(y, x)) by condensed detachment. 
The members of the sets are the first 500 positive and negative literals, respectively, 
from a UR-resolution (unit-resulting resolution) search with OTTER. The literals all 
have the property that each variable has exactly two occurrences; the positive literals 
have the additional property that they are composed entirely of variables and the 
function symbol e. Representative members of EC-pos and EC-neg are 

P(e(e(e(e(x, e( y, y)), e(x, z)), z), e(u, e(u, e(v, v))))) 

P(e(e(x, e(e(y, e(z, x)), e(z, y))), e(e(u, e(e(v, e(w, u)), e(w, v))), 

e(e(e(e(e(e(v6, e(e(v7, e(v8, v6)), e(v8, v7))), e(e(e(a, e(b, c)), c), e(b, a))), 

e(e(v9, e(e(vlO, e(vl 1, v9)), e(vl 1, vl0))), vl2)), v12), 

e(e(vl3, e(e(vl4, e(vl5, v13)), e(vl5, v14))), vl6)), vl6)))). 

Bool-pos, Booi-neg. The sets Bool-pos and Bool-neg are derived from a theorem in 
the relational formulation of Boolean algebra. The theorem is that associativity of + 
is a consequence of an axiomatization that does not include that fact. The members 
of the sets are the first 6000 positive and negative literals, respectively, from a 
UR-resolution search with OTTER. These sets differ from the preceding sets in that 
they contain more distinct symbols and the literals are less deeply nested. Repre- 
sentative members of Bool-pos and Bool-neg are 

SUM(p(s(c3, a) x), p(s(c3, a), n(x)), c4) 

~SUM(s(p(c2, n(x)), p(c2, x)), s(p(c2, n(x)), p(c2, x)), c4). 

5.2. RESULTS OF EXPERIMENTS 

The experimental results for term retrieval are summarized in Tables III to V. All of 
the experiments were run on a Sun Microsystems SPARCstation 1 + computer (about 
12 million instructions/second). All of the times (given in seconds) include unification/ 
matching as well as retrieval from the index, because Variation 3 unifies/matches 
during indexing. The times also include (where applicable) transforming the query 
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Table III. Generalization retrieval. 
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Indexed set Query set Path Path-6 Path-3 DG-3 DG-F DG-2-F DG-3-F Notes 

Luka-5 13862 63.7 64.5 69.6 1.4 2.8 1.5 [ ~  
Robbins 45534 27.0 35.4 93.9 [ - ~  4.7 3.7 3.8 
CL-pos CL-pos 16.1 16.3 39.0 1.2 1.2 ~ [-6~] 
CL-neg CL-neg 22.3 17.6 26.4 [ - ~  2.0 [ ~  
EC-pos EC-pos 5.0 5.0 6.5 [ ' ~  0.6 ~ 
EC-neg EC-neg 10-1 26.0 32.7 0.5 0.6 [ ~  
Bool-pos Bool-pos 28.7 28,7 28.7 1.2 1.7 1.2 [ - ~  
Bool-neg Bool-neg 14.5 14.5 14.2 [ - ~  0.9 0.7 0 7 

A 
A,B 

Table IV. Instance retrieval. 

Indexed set Query set Path Path-6 Path-3 DI-I-3 DI-I-2-F Notes 

CL-pos CL-pos 2.3 2.8 26.4 3.9 [ ~  
CL-neg CL-neg 5.7 4.9 19.9 [ - ~  2.6 
EC-pos EC-pos ~ 1.1 4.3 1.2 1.2 
EC-neg EC-neg ~ 16.6 30.4 6 1 3.1 
Bool-pos Bool-pos 7.0 7.1 7.1 3.8 
Bool-neg Bool-neg 8.8 8.8 9.2 ~ 0.8 

D 

E 
E,D 

Table V. Unifiable term retrieval. 

Indexed set Query set Path Path-6 Path-3 DU-I-3 DI-1-2-F Notes 

CL-pos CL-pos 30.2 40.2 127.8 27.2 ~ F 
CL-pos CL-neg 42.3 42.5 94.2 39.5 ~ F 
CL-neg CL-neg 26.3 24.2 41.7 6.2 
CL-neg CL-pos 49.1 49.0 104.3 99.3 ~ F, G 
EC-pos EC-pos 45.8 45.6 42.7 ~ 26.5 H 
EC-pos EC-neg 61.0 60.5 52.1 [ - ~  35.8 H 
EC-neg EC-neg 223.3 220.5 220.1 ~ 164.1 H 
EC-neg EC-pos 57.1 56.8 55.5 [ ~  35.0 H, G 
Bool-pos Bool-pos 33.1 33.1 33.1 8.8 
Bool-pos Bool-neg 26.9 26.9 26.7 ~ 
Bool-neg Bool-neg 14.6 14.5 14.3 ~ 
Bool-neg Bool-pos 6,0 6.0 5.9 12,1 [5~] F, G 

terms into the f lat term representa t ion .  The t imes do  not  include cons t ruc t ion  o f  the 

indices. The  best  time(s) for  each compar i son  is (are) enclosed in a box.  There  are  no 

results for retr ieval  o f  a lphabe t ic  var iants ,  because  none  o f  our  cur rent  app l ica t ions  

uses that  opera t ion .  

The  des ignat ion  'Pa th -n '  indicates pa th  indexing to dep th  n. The des ignat ions  

' D G - ' ,  ' D I - '  and  ' D U - '  a re  f rom Tab le  II  and  indicate  which var ia t ions  were in use 
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and whether query terms were flattened. Recall that Variation i is the use of jump 
lists, Variation 2 is to avoid rematching some of  the structure of  the terms, and 

Variation 3 is the binding of  variables during retrieval. 
Notes on the experiments appear below the Tables III-V. Each refers to one or more 

lines in Table III-V. 

Key to Notes in Table I I I -V 

A. In the Luka-5 and Robbins experiments, the query set is the multiset of non- 
variable subterms of the indexed set. The size of  the multiset is given in the column 

'Query set'. 
B. There is a substantial bonus for Variation 3 for generalization retrieval with the 

Luka-5 terms. 
C. In generalization retrieval on CL-neg with path indexing, limiting the indexing 

depth to 6 is substantially better than no limit. Indexing beyond depth 6 is 
apparently wasteful in this case. Note that the CL-neg terms are very deep. 

D. The depth of  path indexing makes a large difference in the CL-pos and EC-neg 
instance-retrieval comparisons. In general, the penalty for limiting the depth of 
path indexing seems to be greater for instance retrieval than for the other 
operations. 

E. Path indexing wins in the two EC instance-retrieval cases, and only in those cases. 
F. There is a penalty for Variation 3 (binding while indexing) in the CL unifiable- 

term retrievals. Also see note H. 
G. Path indexing performs relatively well in these three unification comparisons. The 

reason may be that the query terms have many variables and the indexed terms 
have fewer variables, making the behavior similar to instance retrieval on which 
path indexing performs well. 

H. There is a bonus for Variation 3 (binding while indexing) in the EC unifiable- 

term retrievals. When compared with note F, the reason for the behavior of 
Variation 3 is not clear, given the similarity in structure between the CL terms and 
the EC terms. 

5.3. MEMORY REQUIREMENTS 

Memory requirements for the indices were calculated for the sets of  terms used in the 
retrieval experiments. Tables VI and VII give data in nodes rather than in bytes so that 
they can apply to implementation other than our own. 

For discrimination-tree indexing, the column ,-tree indicates the number of  nodes 
in the basic discrimination tree, and column var-tree is the size of the tree in which 
variable nodes are labeled with the variable name rather than *. The triple 
(complex + const + var) gives the number jump-list members for complex terms, 
constants, and variables, respectively, for the var-tree. They are given separately 
because some implementations require members for constants and variables, while 
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Table VI. Discrimination-tree memory (in nodes). 
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Set Terms ,-tree var-tree jump (comp&x + const + var) Notes 

Luka-5 2000 5462 8113 (9858 + 85 + 5780) a 
Robbins 2000 17054 19083 (28274 + 5622 + 2835) 
CL-pos 1000 17669 18884 (13154 + 3464 + 8553) 
CL-neg 1000 65767 65767 (37771 + 17964 + 15511) 
EC-pos 500 1722 3263 (3563 + 0 + 2273) a, b 
EC-neg 500 16721 16721 (12596 + 3000 + 7349) 
Bool-pos 6000 19441 19915 (16538 + 13536 + 2713) 
Bool-neg 6000 28437 28437 (24183 + 17813 + 1360) 

Table VII. Path index memory (in nodes). 

Set Terms Path Path-6 Path-3 Notes 

(nodes on lists, lists, path total) 

Luka 5 2000 (25763, 911, 10971) (25217, 653, 7009) (17011, 91,541) c 
Robbins 2 0 0 0  (51145, 4242, 104518) (25899, 177, 1829) (11492, 36, 188) 
CL-pos 1000 (36844, 1049, 18507) (28410, 207, 2325) (12234, 20, 116) 
CL-neg 1000 (89181, 5416, 110630) (47775, 568, 6590) (13087, 33,203) 
EC-pos 500 (9256, 291, 4131) (8340, 120, 1330) (3738, 14, 80) d 
EC-neg 500 (34212, 6111, 184007) (12980, 123, 1383) (3750, 11, 61) d 
Bool-pos 6 0 0 0  (55968, 633, 3661) (55968, 633, 3661) (55968, 633, 3661) e 
Bool-neg 6 0 0 0  (79668, 3437, 31205) (79668, 3437, 31205) (66371, 895, 5727) 

others do not.  Our  implementat ion consumes 12 bytes for each node of  a dis- 

crimination tree, and 12 bytes for each member  o f  a j ump  list. In addition, each leaf 

has a list o f  pointers to terms for that  leaf: each member  o f  that  list uses 8 bytes. 

The memory  required for a Path index is given as a triple (nodes on lists, lists, path 
total). The third, path total, is the sum of  the lengths o f  the paths. (I assume that  a 

copy of  the path  is stored at the head of  each path list.) Our  implementat ion uses 8 

bytes for each member  o f  a path list, 16 bytes for the head of  each path list, 1 byte 

for each symbol in a path,  and 2000 bytes for the hash table. 

Notes  on memory  requirements appear  below. Each refers to one or  more  lines in 

Tables VI and VII.  

Key to Notes in Tables VI  and VII  

a. For  the Luka-5 and EC-pos  discrimination indexes, the var-trees are much larger 

than the .-trees. For  each of  the other  sets, there is little or  no difference. 

b. There are no jump-list  members  for constants,  because EC-pos  has no constants.  

c. In the Luka-5 path  indices, Path  has 911 path  lists, and Path-6 has 91, but the time 

for generalization retrieval (Table I II)  is similar. 

d. In the EC path indices, there is great variat ion in the number  o f  path lists, but  the 
time for unification retrieval (Table V) is similar. 

e. All terms in the set Bool-pos have depth 3 or  less, so the counts  for Path, Path-6, 

and Path-3 are identical. 
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Table VIII. Memory usage for our implementations (kBytes) 
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Set Path Path-6 Path 3 ,-tree var-tree var-tree-jump 

Luka-5 234 221 140 82 113 232 
Robbins 584 214 95 221 245 584 
CL-pos 332 235 100 220 235 392 
CL-neg 913 400 107 797 797 1250 
EC-pos 85 72 32 25 43 86 
EC-neg 557 109 32 205 205 356 
Bool-pos 464 464 464 281 287 485 
Bool-neg 726 726 553 389 389 679 

Table VIII shows the approximate memory usage in kilobytes for our implemen- 
tations. The column var-tree-jump is the total memory for the var-tree with jump 
nodes for complex terms only. 

6. Conclusion 

Our codes for the two indexing methods are written in straightforward, portable C. 
They have not been highly tuned or optimized. Some important optimizations might 
have been missed in the code or algorithms, so the timing results in Table III-V should 
be used simply as guidelines. 

The strongest conclusion from the experiments (Table III) is that discrimination 
indexing is a clear winner over path indexing for generalization retrieval on the types 
of term with which I experimented. This results fits very well with the needs of our 
theorem prover OTTER, because, in many applications, the most time-consuming 
operation is generalization retrieval for forward subsumption and for demodulation 
(term rewriting). For retrieval of instances, Table IV does not show a clear winner 
with respect to time. We use path indexing with an optional depth limit for instance 
retrieval in OTTER, because it usually requires less memory. Table V indicates that, 
for unifiable-term retrieval, discrimination indexing is somewhat faster; however, 
OTTER retains path indexing (with an optional depth limit) for unifiable-term 
retrieval, because the operation is usually not a bottleneck, and it usually requires less 
memory. 

I have not addressed the important issue of indexing with respect to special 
unification algorithms - in particular, commutative, permutative, and associative - 
commutative unification. Others have addressed this issue in part. It appears that path 
indexing can be extended to effectively handle commutative functions by simply 
deleting the appropriate argument positions from the paths [20]. Christian's discrimi- 
nation indexing [5] handles permutative terms by making multiple indexing calls with 
permuted variations of the query term. 

Ross Overbeek and Ralph Butler have designed and constructed Formula Data 
Base (FDB) [2], a package of C subroutines for building high-performance automated 
deduction systems. At the heart of FDB is basic discrimination-tree indexing for 
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retrieval of unifiable terms, instances, and generalizations. Christian's flatterm repre- 
sentation [5] is used throughout FDB. When FDB finds a leaf of a discrimination tree 
(a set of candidates for unification or matching) it uses novel techniques based on 
structure sharing and permutations for constructing the unifying substitutions. The 
performance of FDB's discrimination indexing is usually slightly better than mine, 
but factors of up to 2 in both directions have been observed. For information on the 
status and availability of FDB, contact Ross Overbeek, MCS-221, Argonne National 
Laboratory, Argonne, IL, 60439-4844, e-mail overbeek@mcs.anl.gov. 

OTTER [16] is a resolution/paramodulation deduction system for first-order logic 
with equality. OTTER is available free of charge by anonymous FTP and is also 
available through several other sources; for information write to me or send e-mail to 
mccune@mcs.anl.gov. If there is any demand for the term sets used for the experi- 
ments, I shall make those available by anonymous FTP as well. 
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