
Journal o[Automated Reasoning 9: 147-167, 1992. 147
@ 1992 Kluwer Academic Publishers. Printed m the Netherlands

Experiments with Discrimination-Tree Indexing
and Path Indexing for Term Retrieval*

W I L L I A M M c C U N E
Mathematws and Computer Science Divtsion, Argonne National Laboratory, Argonne,
llhnois 60439-4801, U.S.A.

(Accepted: November 6, 1990)

Abstract. This article addresses the problem of indexing and retrieving first-order predicate calculus terms
in the context of automated deduction programs. The four retrieval operations of concern are to find
variants, generalizations, instances, and terms that unify with a given tenn. Discrimination-tree indexing
is reviewed, and several variations are presented. The path-indexing method is also reviewed. Experiments
were conducted on large sets of terms to determine how the properties of the terms affect the performance
of the two indexing methods. Results of the experiments are presented.

Key words. Indexing, automated deduction, discrimination net, path indexing, FPA indexing.

1. Introduction

As automated deduction systems begin to emerge as useful vehicles for studying
questions in mathematics and logic, the speed of those systems is becoming more and
more important. Given the combinatorial explosion of typical searches, a large
speedup in itself will usually not enable programs to find direct proofs of much more
difficult theorems. However, reduced response time allows researchers to interact
more easily with the program by evaluating failures and trying additional searches
with different strategies or axiom sets. Improvement of speed by a factor of ten, five,
or even two can easily cause a success.

Careful attention to term indexing in our automated deduction program OTTER
[16] has caused substantial speedups. Two different indexing methods are used in
OTTER: discrimination-tree indexing and path indexing. Initial implementations and
experiments showed that some of the indexing operations are usually better per-
formed by discrimination-tree indexing and others by path indexing. In addition,
some types of term are much better handled by one or the other of the indexing
methods. Thus, no clear winner existed between the two methods. More extensive
experiments were then conducted on sets of terms from several application areas. This
article contains results of those more extensive experiments.

The problem of term indexing is to maintain a large set of first-order predicate
calculus terms and at the same time provide fast access to members of that set. Four

*This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

148 WILLIAM McCUNE

retrieval operations are of interest -- to find unifiable terms, generalizations,
instances, and alphabetic variants of a query term. In the context of clause-based
automated deduction, one wishes to find unifiable terms when applying resolution or
paramodulation inference rules or when searching for unit conflict, one wishes to find
generalizations when determining whether a new clause is subsumed by an existing
clause or when applying rewrite rules, and one wishes to find instances when determin-
ing whether a new clause subsumes any existing clauses or when searching for
applications of a new rewrite rule. Retrieval of variants can be useful when applying
restricted forms of the preceding deduction operations.

Term indexing was used in the early days of automated deduction [17, 10], but it
was undocumented or not emphasized in the literature, and the methods are not well
known. As a result, it appears that several of the methods were 'reinvented'. In par-
ticular, the origins of the two indexing methods compared in this article remain uncer-
tain. The roots of discrimination-tree indexing appear to lie directly in formula mani-
pulation systems, and the roots of path indexing appear to lie in database technology.

Discrimination-tree indexing (also called discrimination-net indexing) and some of
its variations have appeared in [13, 3, 8, 14, 15, 20, 2, 5, 6]. It is used to find
demodulators in [13], it is presented from a Lisp point of view in [3], it is used with
very large sets of terms in [15], it is compared to path indexing in [20], it is used in the
context of very high-performance K n u t h - Bendix completion in [5, 6], and it forms
the basis for a high-performance deduction toolkit in [2].

The predecessors of the path-indexing method [20] are coordinate indexing [10] and
FPA indexing [17, 12, 11]. Path indexing is a simple but substantial refinement of FPA
indexing and coordinate indexing. A hybrid method similar to FPA indexing is
presented in [1].

A third class of indexing methods is based on encoding terms into bit strings and
using bit operations to aid retrieval [9, 22, 18]. A disadvantage of these methods is that
although the bit operations are very fast, in most cases a linear search is required.
These methods are not discussed here.

The remainder of the article is divided into preliminaries, including a more precise
statement of the indexing problem (Section 2), presentations of discrimination-tree
indexing and path indexing (Sections 3 and 4), experiments with the two methods
(Section 5), and conclusions.

This article is based on a presentation I gave at the American Association for
Artificial Intelligence Spring Series Symposium on High-Performance Theorem Prov-
ing at Stanford University in March 1989.

2. Preliminaries

A term is a variable, a constant, or a complex term. A complex term is a fixed-
arity function symbol applied to a sequence of terms. The methods in this article
apply as well to atoms (an atom is a relation symbol applied to a sequence of
terms). Constants and function symbols are collectively called rigid symbols.

DISCRIMINATION-TREE AND PATH INDEXING

Table 1. Types of unification failure

Direct clash Indirect clash Occurs-check

f(a, b) J(x, x) f(x, x)
f(a, c) f(a, c) f (y, g(y))

149

Variables are distinguished from constants by starting with a lower-case letter

from u to z.
Two terms are unifiable if they have a common instance, in particular, if there exists

a substitution of terms for variables that makes the two terms identical. Term t~ is an

instance of term t2 (and t2 is a generalization of tt) if there exists a substitution of terms

for variables in t2 that makes it identical to tl. Two terms are alphabetic variants if
each can be renamed to the other by substituting variables for variables. For all of the

unification and matching problems, I assume that the two terms do not share any

variables.
When two terms fail to unify or match, I sometimes refer to the reason for the

failure. Clashes occur when two rigid symbols cannot be unified or matched. A direct

clash can be detected without considering any partial substitution. Indirect clashes

and occurs-check failures are detected by considering a partial substitution. Examples

of the three types of failure are given in Table I.
The problem is to maintain a set of terms and, given a query term that does not

share variables with any terms in the set, support the following four retrieval

operations:

1. Find all terms that unify with the query term, and construct a most general

unifying substitution for each.

2. Find all generalizations of the query term, and construct a matching substitution

for each.

3. Find all instances of the query term, and construct a matching substitution for
each.

4. Find all variants of the query term, and construct a matching substitution for each.

3. Discrimination-Tree Indexing

A discrimination-tree index is a tree that represents the structure of all the terms in

the index. The terms in the index are stored in the leaves of the tree. The retrieval

operation traverses and backtracks through the query term and the discrimination

tree, finding the appropriate leaves. Basic discrimination-tree indexing and several
variations are presented in this section.

Basic discrimination-tree indexing serves as a pre-filter to unification or matching.
The values of variables in the indexed terms and in the query term are ignored during
the retrieval operation; in particular, variables are not bound during retrieval. There

are no direct clashes between the retrieved terms and the query term, but there can

| 50 WILLIAM McCUNE

root

1. f (x , x) f g

3. f (x , b)

4. f (g (a) , x) , .
5. f (g (a) , b) g a b
6. f (a , y) ~ I {7,8} {9}

7. 9(x) * b a *

8. g(z) {1,2} { 3 1 A {6}
9. g(b) / \

�9 b

{4} {5}

Fig. 1. A set of terms and its discrimination tree.

be indirect clashes and occurs-check failures. The typical use of basic discrimination

indexing is to retrieve terms from the index, then call a unify or match procedure to

verify that each retrieved term unifies or matches with the query term and to bind

variables and construct a substitution.
Let T be the set of terms indexed in a discrimination tree D, and let T* be the set

derived from T by replacing all variables with the special symbol , . Each node of D,

except the root is labeled with a function or constant symbol or the special symbol

�9 . Each path from the root to a leaf corresponds to exactly one member of T , . In

particular, for each path, the labels of the nodes is the preorder traversal of exactly

one member of T , . In addition, the children of each node are unique, Each leaf of
D contains the members of T that map to the member of T , for that leaf. Figure i

contains an example set of terms and its discrimination tree.
I present informal descriptions of backtracking algorithms for retrieving terms

from a discrimination tree. Stickel's paper [20] contain formal recursive definitions of

the various retrieval operations.
The operation of retrieving variants from a discrimination tree is the simplest. One

starts at the root of the discrimination tree and walks through the query term in
preorder. At each step of the walk, one branches to the child node in the dis-
crimination tree that matches the current symbol in the query term, or fails if no
matching child exists. A variable in the query term, regardless of its name, matches
a , -node in the discrimination tree. I f one reaches the end of a query term, one is
always at a leaf of the tree, because symbol arities are fixed. No backtracking is
required, because a variable cannot match with a nonvariable term; in particular, a
symbol in the query term matches at most one child in the discrimination tree.

During retrieval of generalizations, subterms of the query term can match , -nodes
in the discrimination tree as well a nonvariable nodes. Therefore, either a recursive

DISCRIMINATION-TREE AND PATH INDEXING

If S is the current position in the query term, let next_symbol(S)
be the next position in the preorder of the query term, and let
skip_term(S) be the position following the subterm headed by S.

If N is the current node in the discrimination tree, let *child(N)
be the ,-node child of N (if any), and let matching_child(N,S) be
the child of N (if any) that matches symbol S.

A stack of states <S,N> is maintained for backtracking.

S = start of query term;
N = root of discrimination tree;
while (S != NULL)

if (a restore_state has not just occurred and *child(N) exists)
save_state(<S,N>);
N = ,child(N);
S = skip_term(S);

else if (matching_child(N,S) exists)
N = matching_child(N,S);
S = next_symbol(S);

else

return(N);

Fig. 2.

<S,N> = restore_state();
if (<S,N> == NULL)

return(failure);

Retrieving generahzations from a discrimination tree.

151

set-oriented algorithm or a backtracking algorithim is required, because both
branches must be explored. Figure 2 outlines a backtracking algorithm with the
simplifying assumption that no variables exist in the query term.

For retrieval of instances, we can make the simplifying assumption that all terms
in the discrimination tree are ground - in particular, that no ,-nodes occur in the
discrimination tree. During retrieval of instances, a variable in the query term can
match all children of a node in the discrimination tree. As in generalization retrieval,
skipping must occur when a variable is matched; but in this case, the skipping is in
the discrimination tree. When the current symbol in the query term is a variable, one
must skip to all the descendant nodes in the discrimation tree that corresponds to the
ends of the terms that match the variable. Figure 3 outlines the procedure.

The standard way to skip to the end of the corresponding term and to save the
position for backtracking is to access the arities of the symbols to identify the end of
the term, then save the individual nodes in a stack for backtracking. See Variation 1,
Section 3.1, for an optimization.

The operation to retrieve terms that unify with a query term has elements of both
the generalization and the instance-retrieval operations. The procedure to find

152 WILLIAM McCUNE

Assume that S is the current symbol in the query term and that S is
a variable. Let N be the current node in the discrimination tree.

On the left-most branch of N not yet considered, skip to the
descendant node that corresponds to the end of the term in the
discrimination tree. Save S, N, and the current branch of N
for backtracking.

Fig. 3. Retrieving instances from a discrimination tree.

unifiable terms backtracks as in generalization retrieval when a , -node occurs in the
discrimination tree, and it backtracks as in instance retrieval when a variable occurs
in the query term.

3.1. VARIATION 1: JUMP LISTS

For instance and unifiable-term retrievals, the operation of skipping to the descendant
nodes in the discrimination tree can be optimized by storing in each node an explicit
list of pointers to the descendant nodes corresponding to the ends of the terms that
start with the node. For example, the list for each child of the root points to all of the
leaves for that subtree. These jump lists are updated whenever a term is inserted into
or deleted from the discrimination tree Retrieval time is saved, because the ends of the
terms need not be computed and because backtracking is simplifed. Jump lists need
not include nodes for variables or constants, which would simply cause a jump to the
current node of the discrimination tree.

The extra memory required for jump lists can be substantial. Let g3 (a) abbreviate
g(g(g(a))). Consider the discrimination tree for the three terms g"(a), g"(b), and g~(c).
The basic discrimination tree (excluding the root) has n + 3 nodes, and the jump lists
(excluding nodes for constants) total 3n nodes.

For Variations 2 and 3 which follow, it is useful to have an additional field in each
member of a jump list. The additional field contains a pointer to the term being

jumped.

3.2. VARIATION 2: AVOIDING REMATCHING STRUCTURE

The typical use of discrimination indexing is to call a unify or match procedure with
each retrieved term. This is somewhat wasteful, because the structure of the retrieved
terms is already known to match in part the structure of the query term. The
optimization is to record, while indexing, the variable/term pairs that must be bound.
Then a special-purpose match or unify procedure can simply process the set of pairs.
Our implementation of this variation requires jump lists (Variation 1) for instance and
unifiable-term retrieval.

To apply the optimization to generalization retrievals, once can store, along with
each indexed term, the list of variables in the term. During retrieval, a stack of terms

DISCRIMINATION-TREE AND PATH INDEXING 153

is maintained. When a ,-node is encountered, the corresponding subterm of the query

term is pushed onto the stack; a term is popped from the stack when backtracking
occurs. When a term is retrieved, its list of variables is matched (possibly failing) with

the terms in the stack.
The optimization is more complex for instance retrievals, because one must collect

a stack of subterms of the indexed terms to be matched with variables in the query
term. Such terms do not exist in the proper form, because they are indexed with
,-nodes instead of the correct variable. Our solution is to use a discrimination tree
without ,-nodes, in which variables have their true names, and to use jump lists with
the additional term pointers. In such a case, a stack of variable/term pairs can be
maintained while backtracking. When a term is retrieved, the pairs in the stack are
matched (possibly failing).

As one might expect, the optimization for retrieving unifiable terms is a com-
bination of the generalization and instance cases. With the optimization, the
unification-retrieval operation returns two sets of pairs. One set contains pairs (query-
variable, tree subterm), and the other contains pairs (tree-variable, query-subterm).
Each pair in the two sets must be unified (possibly involving secondary unifications
and possibly failing). A further optimization is that some of the occurs-checks can be
omitted. Arbitrarily choose one of the sets; the first occurrence of each variable in that
set can be bound without an occurs-check.

3.3. VARIATION 3: BINDING VARIABLES DURING INDEXING

The third variation is to bind variables and construct the substitution while traversing
the discrimination tree. One advantage of this technique is that binding a variable in

the discrimination tree can correspond to binding many variables in the indexed
terms, thus saving binding operations (including occurs-checks). A second advantage
is that conflicting bindings resulting from indirect clash and occurs-check failure can

be discovered during indexing. A disadvantage is that this variation is not compatible
with the use of*-nodes in the discrimination tree - terms must be indexed with respect
to their correct variable names, a method that requires more memory for the dis-
crimination tree. Variation 3 is incompatible with Variation 2.

Variation 3 applied to generalization retrieval is straightforward. A substitution
environment (initially empty) is maintained during indexing. Assume that we are
indexing, that the current subterm of the query term is T, and that the current node
in the tree represents variable V. If V is not already bound, save the current state for
backtracking, bind V to T, and continue. If V is bound to a term identical to T, save
the current state for backtracking, and continue. Otherwise backtrack.

Our implementation of Variation 3 for instance retrieval requires the use of jump
lists with the additional term pointers. Assume that we are indexing, that the current
subterm of the query term is a variable V, and that the current node in the tree is N
with jump list J. If V is unbound, alternatively (by backtracking) process each
member of J by binding V to the term and jumping to the descendant node. If V is

154 WILLIAM McCUNE

bound to a term T, one must find a term, starting at N, that is identical to T. One

method is simply to search the jump list for such a term; if one is found, jump over
it and continue. A second method is to treat T as if it is the current query term and

traverse the tree with T using a slightly different method that searches for exact

matches rather than allowing the binding of variables; if T is successfully matched, the

indexing reverts to its normal behavior.

Variation 3 applied to unification retrieval is a combination of its application to

generalization and instance retrieval, with the following modifications. First, if one

encounters a bound-variable node in the tree, the term to which it is bound is unified

with the current subterm of the query term. Second, if the current query term is a bound

variable, let the term to which it is bound become the query term. The following

example shows an advantage of Variation 3 for unification retrieval. Consider query

t e rmf(x , x). When the first occurrence o f x is processed, it is bound to a term T. When

the second occurrence of x is processed, T in effect replaces x for indexing purposes;
discrimination occurs for T as if it is a subterm of the original query term.

3.4. VARIATION 4: LIMITING DISCRIMINATION-TREE DEPTH

Variation 4 is to limit the depth of the discrimination tree to a fixed amount, say n.
In the limited tree, each path from the root to a leaf is the first n symbols of one of
the indexed terms. The leaves of the limited tree contain all terms with the correspond-

ing initial substring. The effect of such a limit is to support indexing on at most the
first n symbols of the indexed terms.

The motivation for this variation is simply to save memory. It is compatible with

the use of jump lists, but it is not directly compatible with Variation 2 (avoiding
rematching) or with Variation 3 binding variables (during indexing).

3.5. IMPLEMENTATIONS OF DISCRIMINATION-TREE INDEXING

We have several implementations of discrimination-tree indexing which are
summarized in Table II. All are written in C and use backtracking algorithms as
outlined in the preceding paragraphs.

Table II. Summary of discrimination-tree implementations.

Identifier Type Variations Comments

DG-3 generalization 3 OTTER code
DI-1-3 instance 1, 3
DU-I-3 unify 1, 3
DG-F generalization none flatterms
DG-2-F generalization 2 flanerms
DG-3-F generahzation 3 flatterms
DI-1-2-F instance 1, 2 flatterms
DU-I-2-F unify 1, 2 flatterms

DISCRIMINATION-TREE AND PATH INDEXING

g(f(f(a,g(b)),e))

155

g ~ ~ f ~ : - - f - ~ ~ a-~ ~ g-~ ~ b ~ ~ e

Fig. 4. A term and its flatterm representation.

The program OTTER uses discrimination trees for generalization retrieval when
finding left sides of rewrite rules during demodulation and when finding literals in
potentially subsuming clauses (forward subsumption). Variation 3, binding variables
during indexing, is used in the OTTER code.

Flatterms. Several of our other implementations use the flatterm representation
introduced by Christian [5, 4] for the query term. In theflatterm form, a term is not
stored as a tree; instead, it is stored as a doubly-linked list - one node per symbol -
in which the nodes for the function symbols also have pointers to the ends of the
corresponding terms (analogous to the jump pointers in a discrimination tree). See
Figure 4.

The use of ftatterms as query terms simplifies and speeds the backtracking algo-
rithms, because the maintenance of a position in a flatterm requires just one of its
nodes, rather than the stack of nodes required for the tree form of a term. Our
implementations use flatterms only for the query terms, not for the indexed terms or
for constructing substitutions. (Christian uses flatterns exclusively, and he shows that
their use speeds other term operations such as copying and symbol counting.)

Finding the Correct Child. One of the key operations in discrimination-tree indexing
is to find the child node that matches the current (nonvariable) symbol in the query
term. In all of our implementations, the children are stored as an ordered linked list,
with *-nodes or variable nodes first. The lookup operation is a simple linear search
of the list. The children of a node in Christian's discrimination trees are stored as an
array, indexed by the symbol identifier, so that access is immediate. The use of arrays
is certainly faster, but we have retained the use of linked lists. First, we must conserve

memory, because we index very large sets of terms. Second, our applications usually
have small numbers of distinct symbols, so that nodes have short lists of children.
Finally, we must be able to efficiently handle applications with large numbers of
distinct symbols.

4. Path Indexing

This section contains an informal presentation of Stickel's path-indexing method, a
refinement of FPA indexing. See [20] for a more formal presentation. As in basic

156 W I L L I A M M c C U N E

h

[h , l , a]
a g f [h, 2, g] I [h,2,g,l,g] [h,2,g,l,g,l,,]

1 1 [h, 3, f]

g b y [h,3, f , l , b]

11 [h, 3, f , 2,*]

X
Fig. 5. A term and its path.

discrimination-tree indexing, the path-indexing method is a pre-filter to unification or
matching: in addition to all appropriate terms, it may also retrieve terms that fail to
unify or match because of indirect symbol clash or the occurs-check. In particular,
path indexing retrieves exactly the same set of terms as basic discrimination tree
indexing. As in basic discrimination-tree indexing, a unify or match procedure is
called after indexing to verify unification or matching and to construct the
substitution.

Every term has associated with it a set of paths - one path for each symbol
(predicate, function, constant, or variable) in the term. In the standard tree form of
a term, the paths are simply from the root to each node in the tree. All variables are
replaced with the special symbol .. A path is written as an alternating sequence of
symbols from the term and integers, starting and ending with symbols from the term.
The integers give the positions of the children of each node. Figure 5 shows the paths
for term h(a, g(g(x)), f(b, y)).

A path list is a list of pointers to terms that have a common path. To index a term
so that it can later be found by one of the retrieval functions, one computes its paths
and inserts a pointer to the term into the corresponding path lists. For example, to
index the term f(a, x), a pointer to the term is inserted into the path lists [f],
[f, 1, a] and [f, 2, .].

Path-indexing retrievals are performed by computing unions and intersections of
path lists. Consider the query termf(a , g(b), x). Every instance of the query term has
paths [f, 1, a] and [f, 2, g, 1, b], so the retrieval operation to find instances of the query
term is simply the intersection of those two path lists:

[f, 1, a] n [f, 2, g, 1, b].

The operation to find variants off (a , g(b), x) is similar to the instance retrieval, except
that the third argument o f f must be a variable:

If, 1, a] n [f, 2, g, 1, b] c~ [f, 3, *].

D I S C R I M I N A T I O N - T R E E A N D PATH INDE XING 157

To find terms that unify with f(a, g(b), x), one must allow variables to occupy the
positions corresponding to f , a, g, and b. The retrieval operation must include unions
with paths ending with variables:

If, 1. a] u [f, 1, ,] \

[*] w ~) .

[f, 2, g, 1, b] w [f, 2, g, 1, *] u [f, 2, *]

Finally, the operation to find generalizations of f (a , g(b), x) is similar to the unify
retrieval, except that if the retrieved term is not a variable, it must have a variable as
the third argument o f f :

[f, 1, a] w [f, 1, *]

N

[*]w [f, 2, g, l , b] u [f , 2, g, 1 , ,] u [f , 2 , ,]

[f, 3, ,]

All appropriate terms are returned by the retrieval operations, but terms that fail
to unify or match can be returned as well. The typical use of path indexing is to
retrieve the set of terms, then call a match or unify routine with each member of the
set to verify that it does unify or match and to construct the substitution.

4 1. A VARIATION ON PATH I N D E X I N G

Path indexing normally considers all paths in a term, which gives indexing at all
depths of the query term. A variation is to limit the lengths of paths, which imposes
a limit on the indexing depth. If the indexing depth is n, then the longest path that will
be considered has length 2n + 1. For example, to find terms that unify with
f (a , g(b), x) using indexing depth 0, one retrieves [,] w [f]; with indexing depth 1, one

[*] w

retrieves

[f, 1, a] w [.s 1, ,])

('~

If, 2, g]

If the indexing depth is limited, more terms that fail to unify or match are retrieved,
but the size of the index is smaller.

4.2. IMPLEMENTATION OF PATH INDEXING

The path-indexing code in OTTER (written in C) was used for the experiments. The
process of inserting a term into an index is straightforward. For each path (up to the

158 WILLIAM McCUNE

indexing depth if applicable) in the term, one inserts a pointer to the term into the path
list for the path (creating a new path list if necessary). The path lists are accessed by
hashing, in which the path is the key. Each term has a unqiue integer identifier ID,
and the path lists are kept ordered on the ID of the term so that the unions and
intersections can be computed efficiently.

Given a query term, the retrieval operation consists of two steps. The first step is
to construct a binary tree that specifies the unions and intersections to be performed.
Each internal node is either a w-node or a (~-node, and each leaf corresponds to a
path and contains a pointer to the head of the path list. The second step, which is
outlined in Figure 6, is a recursive procedure (due to Ross Overbeek) that performs
the unions and intersections.

Note that each path list in a leaf is traversed at most once. The following opti-
mization is applied in our implementation. When case intersection_node has a term
from one child and it calls up a term from the other child, it can pass as an argu-
ment the term it already has as the minimum acceptable value. The procedure

procedure retrieve_next_term(node) returns a term;

/* The boundary conditions have been omitted; in particular, */
/* the action to be taken when a recursive call returns NULL, */
/* and startup of the union_nodes. */

case leaf._node:
/* The position in the path list is saved in the node. */
return the next term in the path list;

case intersection-_node:
t l = retrieve_next_term(aode--*left_child);
t2 = retrieve_aext_term(node--*right_child);
while (t l ~ t2)

if (t l < t2)
t l = retrieve_next_term(node~left_child);

else
t2 = retrieve_next_term(node~right_child);

return t l ;

case union_node:
/* The current left_term and right_term were stored in */
/* the node during the previous call with this node. */
if (node~left_term _< node--*right_term)

node~left_term = retrieve_next_term(node--*left_child);
if (node--*left_term >__ node~right_term)

node--*right_term = retrieve_next_term(node--,right_child);
return minimum(node~left_term, node--~right_term);

Fig. 6. Computing unions and intersections in a path index.

DISCRIMINATION-TREE AND PATH INDEXING 159

retrieve next term also receives rain term. The case leaf node returns the next

term ~> rain_term; The case union_node simply passes rain_term through to subcalls.
Stickel's method [20] for computing the unions and intersections, which also

traverses each path list at most once, does not require the lists to be ordered and does
not use an explicit binary tree, but it requires an extra field in each member of the path
lists. For example, to intersect three lists, each member of the first list is marked with
a 1, then each member of the second list with mark 1 marked with a 2, and finally the
members of the third list, that are marked with a 2 are retrieved. Although our method
is probably somewhat slower because of all of the recursive calls, we retain it because
our shared-memory parallel implementations [19] would require a separate tag field
for each processor.

5. Experiments

By analysis of the indexing algorithms, one can draw some general conclusions about
their relative performances.

1. As the number of distinct symbols in the indexed terms increases, path indexing can
be expected to improve, because although there are more path lists, the sizes of the
path lists are smaller, and the number of unions and intersections is the same.

2. As the number of distinct symbols in the indexed terms decreases, discrimination
indexing can be expected to improve, because the discrimination tree is smaller (more
sharing of the initial substrings); in particular, there are fewer nodes to traverse.

3. Path indexing for instance retrieval can be expected to perform well, because the
operations on the path lists are particularly simple: no unions are required.

4. Discrimination indexing for generalization retrieval can be expected to perform
well, because there are at most two alternatives at each node of the tree: the ,-child
(if any) or the correct nonvariable child (if it exists).

5, Path indexing can be expected to perform well if there are many variables in the
query terms, because those variables represent 'dont care' conditions and do not
contribute union operations.

6, Discrimination indexing for instance and unification retrieval may be expected to
perform poorly when the query term contains many variables, because a variable in
the query term matches all children of the current node in the discrimination tree.

7. Memory requirements for path indexing are more predictable than for discrimi-
nation indexing. The sum of the lengths of the path lists is the number of symbol
occurrences in the indexed terms. The size of a discrimination tree depends on the
sharing of the initial substrings of the indexed terms; it can be very sensitive to
order of the arguments and subterms of the indexed terms.

However, worst-case analyses of the indexing algorithms are not particularly
useful, and average-case analyses are difficult because of the wide variation in the type
and structure of formulas that appear in real applications.

160 WILLIAM McCUNE

5.1. TERM SETS

The term sets for experimentation were taken from typical OTTER applications.
Experiments with the first two sets, Luka-5 and Robbins, are intended to simulate
generalization retrieval during term rewriting (demodulation). The remaining six sets
are paired: a set of positive literals and a set of negative literals in each pair.
Generalization retrieval and instance retrieval in which the indexed set is the same as

the query set simulate literal retrieval during forward and backward subsumption.
Unification retrieval in which the indexed set is opposite in sign from the query

set simulates unit conflict tests and, to a lesser extent, resolution inference rules.
Unification-retrieval experiments were also performed in which the indexed set is the
same as the query set.

Variables start with u - z.

Luka-5. The set Luka-5 is derived from the equality formulation of the fifth
Lukasiewicz conjecture [7], a theorem in multivalued sentential calculaus. A proof
was found with OTTER by using Knuth-Bendix completion techniques. Luka-5 is the
set of left sides of the first 2000 rewrite rules (demodulators) that were derived during
the search. Most of those 2000 rewrite rules were still present (had not been simplified)
at the time the proof was found. The indexed set is Luka-5, and the query set is the
multiset of the 13 862 nonvariable subterms of the terms in Luka-5. A representative

member of Luka-5 is

i(n(i(x, y)), i(n(i(i(z, y), n(z))), u)).

Robbins. The Robbins set is derived from a theorem on the relationship between
Robbins and Boolean algebras: that the property 3x3y (x + y = y) makes a Robbins
algebra Boolean [21]. The set Robbins is the left sides of the first 2000 rewrite rules
derived in a Knuth-Bendix search with OTTER. (The operator + is associative and
commutative, which we handle with axioms and rewrite rules rather than with
AC-unification. No computer has yet proved the theorem.) The indexed set is Rob-
bins, and the query set is the multiset of the 45 534 nonvariable subterms of the terms
in Robbins. A representative member of Robbins is

n(+(n(+(y , D)), n(+(D, + (n(n(+(D, + (n(+(x, y)), n(+(y, n(x))))))),

n (+ (y, O))))))).

CL-pos, CL-neg. The sets CL-pos and CL-neg are derived from a theorem in
combinatory logic (CL), that the fragment {B, N}, with B x y 2 = x (y 2) and m x y 2 =

xzyz, contains fixed point combinators. The members of the sets are the first 1000
positive and negative literals, respectively, from a bidirectional paramodulation
search (unsuccessful) with OTTER. Representative members of CL-pos and CL-neg

are

(a(x, a(a(a(a(a(a(B, y), z), u), a(a(a(B, y), z), u)), v), a(a(a(B, y), z), u)))

= a(a(a(a(a(B, B), a(B, a(a(a(B, a(a, x)), a(N, m)), v))), y), z), u))

DISCRIMINATION-TREE AND PATH INDEXING 161

(a(f(a(a(N, a(N, B)), a(B, a(a(N, x), y)))), a(a(a(a(N, B), f(a(a(N, a(N, B)),

a(B, a(a(N, x), y))))), a(B, a(a(N, x), y))), f(a(a(N, a(N, B)),

a(B, a(a(N, x), y))))))

va a(a(a(x, a(af(a(a(N, a(N, B)), a(B, a(a(N, x), y)))),

a(B, a(a(N, x), y))), f(a(a(N, a(N, B)), a(B, a(a(N, x), y)))))), y),

a(a(f(a(a(N, a(N, B)), a(B. a(a(N, x), y)))), a(B, a(a(N, x), y))),

f(a(a(N, a(N, B)), a(B, a(a(N, x), y)))))).

EC-lmS, EC-neg. The sets EC-pos and EC-neg are derived from a theorem in
equivalential calculus (EC), that the formula XGK = e(x, e(e(y, e(z, x)), e(z, y)))
implies the formula PYO = e(e(e(x, e(y, z)), z), e(y, x)) by condensed detachment.
The members of the sets are the first 500 positive and negative literals, respectively,
from a UR-resolution (unit-resulting resolution) search with OTTER. The literals all
have the property that each variable has exactly two occurrences; the positive literals
have the additional property that they are composed entirely of variables and the
function symbol e. Representative members of EC-pos and EC-neg are

P(e(e(e(e(x, e(y, y)), e(x, z)), z), e(u, e(u, e(v, v)))))

P(e(e(x, e(e(y, e(z, x)), e(z, y))), e(e(u, e(e(v, e(w, u)), e(w, v))),

e(e(e(e(e(e(v6, e(e(v7, e(v8, v6)), e(v8, v7))), e(e(e(a, e(b, c)), c), e(b, a))),

e(e(v9, e(e(vlO, e(vl 1, v9)), e(vl 1, vl0))), vl2)), v12),

e(e(vl3, e(e(vl4, e(vl5, v13)), e(vl5, v14))), vl6)), vl6)))).

Bool-pos, Booi-neg. The sets Bool-pos and Bool-neg are derived from a theorem in
the relational formulation of Boolean algebra. The theorem is that associativity of +
is a consequence of an axiomatization that does not include that fact. The members
of the sets are the first 6000 positive and negative literals, respectively, from a
UR-resolution search with OTTER. These sets differ from the preceding sets in that
they contain more distinct symbols and the literals are less deeply nested. Repre-
sentative members of Bool-pos and Bool-neg are

SUM(p(s(c3, a) x), p(s(c3, a), n(x)), c4)

~SUM(s(p(c2, n(x)), p(c2, x)), s(p(c2, n(x)), p(c2, x)), c4).

5.2. RESULTS OF EXPERIMENTS

The experimental results for term retrieval are summarized in Tables III to V. All of
the experiments were run on a Sun Microsystems SPARCstation 1 + computer (about
12 million instructions/second). All of the times (given in seconds) include unification/
matching as well as retrieval from the index, because Variation 3 unifies/matches
during indexing. The times also include (where applicable) transforming the query

162

Table III. Generalization retrieval.

WILLIAM McCUNE

Indexed set Query set Path Path-6 Path-3 DG-3 DG-F DG-2-F DG-3-F Notes

Luka-5 13862 63.7 64.5 69.6 1.4 2.8 1.5 [~
Robbins 45534 27.0 35.4 93.9 [- ~ 4.7 3.7 3.8
CL-pos CL-pos 16.1 16.3 39.0 1.2 1.2 ~ [-6~]
CL-neg CL-neg 22.3 17.6 26.4 [- ~ 2.0 [~
EC-pos EC-pos 5.0 5.0 6.5 [' ~ 0.6 ~
EC-neg EC-neg 10-1 26.0 32.7 0.5 0.6 [~
Bool-pos Bool-pos 28.7 28,7 28.7 1.2 1.7 1.2 [- ~
Bool-neg Bool-neg 14.5 14.5 14.2 [- ~ 0.9 0.7 0 7

A
A,B

Table IV. Instance retrieval.

Indexed set Query set Path Path-6 Path-3 DI-I-3 DI-I-2-F Notes

CL-pos CL-pos 2.3 2.8 26.4 3.9 [~
CL-neg CL-neg 5.7 4.9 19.9 [- ~ 2.6
EC-pos EC-pos ~ 1.1 4.3 1.2 1.2
EC-neg EC-neg ~ 16.6 30.4 6 1 3.1
Bool-pos Bool-pos 7.0 7.1 7.1 3.8
Bool-neg Bool-neg 8.8 8.8 9.2 ~ 0.8

D

E
E,D

Table V. Unifiable term retrieval.

Indexed set Query set Path Path-6 Path-3 DU-I-3 DI-1-2-F Notes

CL-pos CL-pos 30.2 40.2 127.8 27.2 ~ F
CL-pos CL-neg 42.3 42.5 94.2 39.5 ~ F
CL-neg CL-neg 26.3 24.2 41.7 6.2
CL-neg CL-pos 49.1 49.0 104.3 99.3 ~ F, G
EC-pos EC-pos 45.8 45.6 42.7 ~ 26.5 H
EC-pos EC-neg 61.0 60.5 52.1 [- ~ 35.8 H
EC-neg EC-neg 223.3 220.5 220.1 ~ 164.1 H
EC-neg EC-pos 57.1 56.8 55.5 [~ 35.0 H, G
Bool-pos Bool-pos 33.1 33.1 33.1 8.8
Bool-pos Bool-neg 26.9 26.9 26.7 ~
Bool-neg Bool-neg 14.6 14.5 14.3 ~
Bool-neg Bool-pos 6,0 6.0 5.9 12,1 [5~] F, G

terms into the f lat term representa t ion . The t imes do not include cons t ruc t ion o f the

indices. The best time(s) for each compar i son is (are) enclosed in a box. There are no

results for retr ieval o f a lphabe t ic var iants , because none o f our cur rent app l ica t ions

uses that opera t ion .

The des ignat ion 'Pa th -n ' indicates pa th indexing to dep th n. The des ignat ions

' D G - ' , ' D I - ' and ' D U - ' a re f rom Tab le II and indicate which var ia t ions were in use

DISCRIMINATION-TREE AND PATH INDEXING 163

and whether query terms were flattened. Recall that Variation i is the use of jump
lists, Variation 2 is to avoid rematching some of the structure of the terms, and

Variation 3 is the binding of variables during retrieval.
Notes on the experiments appear below the Tables III-V. Each refers to one or more

lines in Table III-V.

Key to Notes in Table I I I -V

A. In the Luka-5 and Robbins experiments, the query set is the multiset of non-
variable subterms of the indexed set. The size of the multiset is given in the column

'Query set'.
B. There is a substantial bonus for Variation 3 for generalization retrieval with the

Luka-5 terms.
C. In generalization retrieval on CL-neg with path indexing, limiting the indexing

depth to 6 is substantially better than no limit. Indexing beyond depth 6 is
apparently wasteful in this case. Note that the CL-neg terms are very deep.

D. The depth of path indexing makes a large difference in the CL-pos and EC-neg
instance-retrieval comparisons. In general, the penalty for limiting the depth of
path indexing seems to be greater for instance retrieval than for the other
operations.

E. Path indexing wins in the two EC instance-retrieval cases, and only in those cases.
F. There is a penalty for Variation 3 (binding while indexing) in the CL unifiable-

term retrievals. Also see note H.
G. Path indexing performs relatively well in these three unification comparisons. The

reason may be that the query terms have many variables and the indexed terms
have fewer variables, making the behavior similar to instance retrieval on which
path indexing performs well.

H. There is a bonus for Variation 3 (binding while indexing) in the EC unifiable-

term retrievals. When compared with note F, the reason for the behavior of
Variation 3 is not clear, given the similarity in structure between the CL terms and
the EC terms.

5.3. MEMORY REQUIREMENTS

Memory requirements for the indices were calculated for the sets of terms used in the
retrieval experiments. Tables VI and VII give data in nodes rather than in bytes so that
they can apply to implementation other than our own.

For discrimination-tree indexing, the column ,-tree indicates the number of nodes
in the basic discrimination tree, and column var-tree is the size of the tree in which
variable nodes are labeled with the variable name rather than *. The triple
(complex + const + var) gives the number jump-list members for complex terms,
constants, and variables, respectively, for the var-tree. They are given separately
because some implementations require members for constants and variables, while

164

Table VI. Discrimination-tree memory (in nodes).

WILLIAM McCUNE

Set Terms ,-tree var-tree jump (comp&x + const + var) Notes

Luka-5 2000 5462 8113 (9858 + 85 + 5780) a
Robbins 2000 17054 19083 (28274 + 5622 + 2835)
CL-pos 1000 17669 18884 (13154 + 3464 + 8553)
CL-neg 1000 65767 65767 (37771 + 17964 + 15511)
EC-pos 500 1722 3263 (3563 + 0 + 2273) a, b
EC-neg 500 16721 16721 (12596 + 3000 + 7349)
Bool-pos 6000 19441 19915 (16538 + 13536 + 2713)
Bool-neg 6000 28437 28437 (24183 + 17813 + 1360)

Table VII. Path index memory (in nodes).

Set Terms Path Path-6 Path-3 Notes

(nodes on lists, lists, path total)

Luka 5 2000 (25763, 911, 10971) (25217, 653, 7009) (17011, 91,541) c
Robbins 2 0 0 0 (51145, 4242, 104518) (25899, 177, 1829) (11492, 36, 188)
CL-pos 1000 (36844, 1049, 18507) (28410, 207, 2325) (12234, 20, 116)
CL-neg 1000 (89181, 5416, 110630) (47775, 568, 6590) (13087, 33,203)
EC-pos 500 (9256, 291, 4131) (8340, 120, 1330) (3738, 14, 80) d
EC-neg 500 (34212, 6111, 184007) (12980, 123, 1383) (3750, 11, 61) d
Bool-pos 6 0 0 0 (55968, 633, 3661) (55968, 633, 3661) (55968, 633, 3661) e
Bool-neg 6 0 0 0 (79668, 3437, 31205) (79668, 3437, 31205) (66371, 895, 5727)

others do not. Our implementat ion consumes 12 bytes for each node of a dis-

crimination tree, and 12 bytes for each member o f a j ump list. In addition, each leaf

has a list o f pointers to terms for that leaf: each member o f that list uses 8 bytes.

The memory required for a Path index is given as a triple (nodes on lists, lists, path
total). The third, path total, is the sum of the lengths o f the paths. (I assume that a

copy of the path is stored at the head of each path list.) Our implementat ion uses 8

bytes for each member o f a path list, 16 bytes for the head of each path list, 1 byte

for each symbol in a path, and 2000 bytes for the hash table.

Notes on memory requirements appear below. Each refers to one or more lines in

Tables VI and VII.

Key to Notes in Tables VI and VII

a. For the Luka-5 and EC-pos discrimination indexes, the var-trees are much larger

than the .-trees. For each of the other sets, there is little or no difference.

b. There are no jump-list members for constants, because EC-pos has no constants.

c. In the Luka-5 path indices, Path has 911 path lists, and Path-6 has 91, but the time

for generalization retrieval (Table I II) is similar.

d. In the EC path indices, there is great variat ion in the number o f path lists, but the
time for unification retrieval (Table V) is similar.

e. All terms in the set Bool-pos have depth 3 or less, so the counts for Path, Path-6,

and Path-3 are identical.

DISCRIMINATION-TREE AND PATH INDEXING

Table VIII. Memory usage for our implementations (kBytes)

165

Set Path Path-6 Path 3 ,-tree var-tree var-tree-jump

Luka-5 234 221 140 82 113 232
Robbins 584 214 95 221 245 584
CL-pos 332 235 100 220 235 392
CL-neg 913 400 107 797 797 1250
EC-pos 85 72 32 25 43 86
EC-neg 557 109 32 205 205 356
Bool-pos 464 464 464 281 287 485
Bool-neg 726 726 553 389 389 679

Table VIII shows the approximate memory usage in kilobytes for our implemen-
tations. The column var-tree-jump is the total memory for the var-tree with jump
nodes for complex terms only.

6. Conclusion

Our codes for the two indexing methods are written in straightforward, portable C.
They have not been highly tuned or optimized. Some important optimizations might
have been missed in the code or algorithms, so the timing results in Table III-V should
be used simply as guidelines.

The strongest conclusion from the experiments (Table III) is that discrimination
indexing is a clear winner over path indexing for generalization retrieval on the types
of term with which I experimented. This results fits very well with the needs of our
theorem prover OTTER, because, in many applications, the most time-consuming
operation is generalization retrieval for forward subsumption and for demodulation
(term rewriting). For retrieval of instances, Table IV does not show a clear winner
with respect to time. We use path indexing with an optional depth limit for instance
retrieval in OTTER, because it usually requires less memory. Table V indicates that,
for unifiable-term retrieval, discrimination indexing is somewhat faster; however,
OTTER retains path indexing (with an optional depth limit) for unifiable-term
retrieval, because the operation is usually not a bottleneck, and it usually requires less
memory.

I have not addressed the important issue of indexing with respect to special
unification algorithms - in particular, commutative, permutative, and associative -
commutative unification. Others have addressed this issue in part. It appears that path
indexing can be extended to effectively handle commutative functions by simply
deleting the appropriate argument positions from the paths [20]. Christian's discrimi-
nation indexing [5] handles permutative terms by making multiple indexing calls with
permuted variations of the query term.

Ross Overbeek and Ralph Butler have designed and constructed Formula Data
Base (FDB) [2], a package of C subroutines for building high-performance automated
deduction systems. At the heart of FDB is basic discrimination-tree indexing for

166 WILLIAM McCUNE

retrieval of unifiable terms, instances, and generalizations. Christian's flatterm repre-
sentation [5] is used throughout FDB. When FDB finds a leaf of a discrimination tree
(a set of candidates for unification or matching) it uses novel techniques based on
structure sharing and permutations for constructing the unifying substitutions. The
performance of FDB's discrimination indexing is usually slightly better than mine,
but factors of up to 2 in both directions have been observed. For information on the
status and availability of FDB, contact Ross Overbeek, MCS-221, Argonne National
Laboratory, Argonne, IL, 60439-4844, e-mail overbeek@mcs.anl.gov.

OTTER [16] is a resolution/paramodulation deduction system for first-order logic
with equality. OTTER is available free of charge by anonymous FTP and is also
available through several other sources; for information write to me or send e-mail to
mccune@mcs.anl.gov. If there is any demand for the term sets used for the experi-
ments, I shall make those available by anonymous FTP as well.

Acknowledgments

Ross Overbeek has been truly creative in his many approaches to term indexing; I
have had valuable discussions on the topic with him. Work on applications of auto-
mated deduction with Larry Wos and other members of the Argonne group led to the
term sets I used for the experiments. Mark Stickel read an early draft of this article
and provided many useful comments.

References

1. R. Butler, E. Lusk, W. McCune, and R. Overbeek, 'Paths to high-performance automated theorem
proving', in J. Siekmann (Editor), Proceedings of the 8th Conference on Automated Deduction, lecture
Notes in Computer Science, Vol. 230, pp. 588-597, New York, 1986. Springer-Verlag. An early version
appears as Argonne National Laboratory Tech. Memo ANL/MCS-TM-71.

2. R. Butler and R. Overbeek, 'A tutorial on the construction of high-performance resolution/
paramodulation systems', Tech. report ANL-90/30, Argonne National Laboratory, Argonne, IL, 1990.

3, E. Charniak, C. Reisbeck, and D. McDermott, Artificial Intelligence Programming, Lawrence
Earlbaum Assoc., Hillside, N J, 1980.

4. J. Christian, 'Fast Knuth-Bendix completion: A summary', In N. Dershowtiz (Editor), Proceedings of
the 3rd International Conference on Rewriting Techniques and Applications, Lecture Notes in Computer
Science, Vol. 355, pp. 551-555, New York, 1989. Springer Verlag.

5. J. Christian, High-Performance Permutattve Completion. PhD thesis, The University of Texas at
Austin, 1989.

6. J. Christian, "Flatterms, discrimination nets, and fast term rewriting'. Preprint, 1990
7. J. M. Font, A. J. Rodriguez, and A. Torrens, 'Wajsberg algebras', Stochastica, 8(1): 5-31, 1984.
8. S. Greenbaum, Input Transformations and Resolution Implementation Techniques for Theorem Proving

m First-Order Logic. PhD thesis, University of Illinois at Urbana-Champaign, 1986.
9. L. Henschen and S. Naqvi, 'An improved filter for literal indexing in resolution systems', In Pro-

ceedings of the Sixth International Joint Conference on Artificial Intelligence, pp. 528-530, 1981.
10. C. Hewitt, Description and Theoretical Analysis (Using Schemata) of Planner: A Language for Proving

Theorems and Mampulating Models in a Robot. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, January 1971.

11. E. Lusk, W. McCune, and R. Overbeek, 'Logic Machine Architecture: Kernel functions'. In
D. Loveland (Editor), Proceedings of the 6th Conference on Automated Deduction, Lecture Notes in
Computer Science, Vol. 138, pp. 70-84, New York, 1982. Springer-Verlag.

DISCRIMINATION-TREE AND PATH INDEXING 167

12. E. Lusk and R. Overbeek, 'Data structures and control architecture for the implementation of
theorem-proving programs', in R. Kowalski and W. Blbel (Editors), Proceedings o f the 5th Conference
on Automated Deductzon, lecture Notes m Computer Science, Vol. 87, pp. 232-249, New York, 1980.
Sprmger-Verlag

13. J. McCharen, R. Overbeek, and L. Wos, "Complexity and related enhancements for automated
theorem-proving programs' Computers and Mathematws with Applications. 2: 1-16, 1976.

14. W. McCune, 'An indexing method for finding more general formulas', Association for Automated
Reasoning Newsletter, 1(9): 7-8, January 1988.

15. W. McCune, "Discrimination tree indexing for large sets of formulas: Experiments and the structure
of terms'. Notes on a talk given at the AAI symposium on High-performance theorem proving,
Stanford, CA, March 1989.

16. W. McCune, "OTTER 2.0 Users Guide'. Tech. Report ANL-90/9, Argonne National Laboratory,
Argonne, IL, March 1990.

17 R. Overbeek A New Class of Automated Theorem-Provmg Algorithms. PhD thesis, Pennsylvania State
Umversity, 1971.

18. K. Ramamohanarao and J. Shepard, 'A superimposed codeword indexing scheme for very large Prolog
databases'. In Third International Conference on Logic Programming, Lecture Notes in Computer
Science, Vol. 225, pp. 569-576, New York, 1986. Sprlnger-Verlag.

19. J. Slaney and E. Lusk, "Parallelizing the closure computation m automated deduction', in M. Stlckel
(Editor), Proceedings of the lOth International Conference on Automated Deductton, Lecture Notes m
Artificial Intelligence, Vol 449, pp. 28-39, New York, July 1990 Sprmger-Verlag. Extended abstract.

20. M. Stickel, 'The path-indexing method for indexing terms', Technical Note 473, Artificial Intelligence
Center, SRI International, Menlo Park, CA, October 1989.

21. S. Winkler, 'Absorption and idempotency criteria for a problem in near-boolean algebras'. Preprmt
MCS-P177-0990, Argonne National Laboratory, Argonne, IL, August 1990

22. M Wise and D. Powers, qndexmg Prolog clauses via superimposed codewords and field encoded
words'. In 1EEE Conference on Logtc Programming, pp 203-210, Atlantic City, 1984

