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Abstract. Metamathematics is a source of  many interesting theorems and difficult proofs. This paper 
reports the results of  an experiment to use the Boyer-Moore theorem prover to proof-check theorems in 
metamathematics. We describe a First Order Logic due to Shoenfield and outline some of  the theorems that 
the prover was able to prove about this logic. These include the tautology theorem which states that every 
tautology has a proof Such proofs can be used to add new proof  procedures to a proof-checking program 
in a sound and efficient manner. 
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But formalized mathematics cannot in practice be written down in full . . . .  We shall therefore very quickly 
abandon formalized mathematics. N. Bourbaki [I] 

1. Introduction 

A formal system or a formal logic consists of axioms from which theorems are derived 
by repeated application of certain mechanical rules of inference. The derivations of  
theorems from the axioms are termedformalproofs. Many formal systems have been 
developed, mainly as a result of  the increased attention paid to mathematical rigor in 
the 19th century. Formal logics provide us with the clearest definition of a valid 
mathematical argument. Another advantage of formal proofs is that they can be 
mechanically checked using programs known as automatic proof-checkers. In spite of 
this few mathematicians use formal proofs in everyday mathematical reasoning. One 
major reason for this is that the basic proof-steps allowed by most formal logics do 
not include many of the steps routinely used in informal mathematical reasoning and 
therefore constructing formal proofs a long and tedious process. The question as to 
whether formal mathematical reasoning is practically possible has engendered numer- 
ous debates and one view of  this is provided by the Bourbaki remark above. To get 
around the difficulty of  writing formal proofs, considerable effort has been devoted 
to showing that many of the proof-steps used in informal mathematical reasoning are 
formalizable in some formal logic. This has led to a mathematical study of  formal 
systems, termed metamathematics or mathematical logic [7, 11]. In metamathematics, 
mathematical techniques such as induction are used to prove that a given proof-step 
is formalizable in a logic by showing that each application of  that proof-step is 
reducible to some series of applications of  the rules and axioms of that logic. A new 
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proof-step which is formalizable in the given formal logic is termed a derived inference 
rule in the logic. This approach can also be applied to automatic proof-checkers to 
extend them to check new proof-steps. Thus, one may start with a simple proof- 
checker which checks only formal proofs. Its correctness can be established by careful 
inspection. It can then be extended by adding frequently used patterns of proof as new 
proof-steps. Before we do this, we must establish that the new proof-step is a derived 
inference rule. If this is so, the extension is said to preserve soundness. The purpose 
of this paper is to demonstrate the effective use of an automatic theorem prover in 
proving the soundness of significant extensions to a formal logic. This ability to make 
sound extensions to a proof-checker has been termed metamathematical extensibility [5]. 

There have been two approaches to building extensible proof-checkers. The first 
approach involves the use of the proof-checker to prove the soundness of new 
extensions to itself. This approach has been used by Weyhrauch in FOL [12] and by 
Boyer and Moore [3]. This approach, as exemplified by the FOL system, has two 
drawbacks: 

1. Proofs of soundness of extensions are difficult and are tedious to carry out on a 
simple proof-checker. 

2. The FOL system requires the user to supply the executable code to be added to the 
proof-checker corresponding the extension that has been proved sound. Human 
error can creep in at this point. 

In the second approach to extensibility, one avoids proving the soundness of new 
extensions by expanding out the corresponding formal proof each time a new proof 
step is used. The expanded proof can be automatically generated by executing a 
program which ostensibly constructs the correct formal proof to justify the use of that 
proof-step. The expanded proof is then checked with the original proof-checker. This 
approach has been used in Edinburgh LCF [6] and by Brown [4]. The drawbacks of 
the LCF system are: 

1. Checking the formal proof each time a new proof step is used is time-consuming. 
2. The expanded proof corresponding to each application of a new proof-step is 

provided by a user-supplied program. While there are ways to ensure that a proof 
thus generated is always a correct proof, it might not be the proof that justifies the 
use of the new proof-step. This would mean that there was an error in the program 
which constructed the formal proof. Locating and fixing errors in such programs 
may not always be easy. 

The approach discussed in this paper avoids the second drawback of the LCF 
system by mechanically proving that the expanded proof constructed by the program 
is always the correct one. Once we have proved this, we need never expand out the 
proof since it is sufficient to know that such a proof exists, thus avoiding the first 
drawback of the LCF system. Our approach is therefore quite similar to the FOL 
approach. Both the drawbacks of the FOL approach are also avoided by the use of 
the Boyer-Moore theorem prover [2], a powerful prover for LISP functions. This is 
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done by representing the proof-checker as a function in the Boyer-Moore logic and 
then proving the soundness of the extensions using the Boyer-Moore theorem prover. 
This approach has the following advantages:* 

1. The Boyer-Moore theorem prover proves properties of LISP functions and makes 
powerful use of induction. This makes it easy to express theorems about formal 
systems as well as verify them. 

2. The theorem prover translates its functions into correct, efficient and executable 
LISP thus avoiding the second drawback of the FOL system [3]. This allows us to 
extract usable code from the theorems that we have proven and actually construct 
working proof-checkers. 

3. Once we have proved the soundness of a derived proof step, we need never examine 
the formal derivation for each application of the proof step, but nevertheless retain 
the ability to do so. 

A drawback of this approach is that it requires one to trust the soundness of the 
Boyer-Moore theorem prover. Since the prover has been widely used and is well- 
tested and documented, there is good reason to believe that it is in fact sound. Another 
drawback is that the person carrying out these extensions and their proofs must be 
knowledgeable about mathematics as well as the use of the theorem prover. This 
applies to the previous approaches as well. 

The main result of this report is a metatheoretic formalization of Shoenfield's First 
Order Logic [11] in the Boyer-Moore Logic and a mechanical proof of the 
Tautology Theorem for the above logic using the Boyer-Moore theorem prover. The 
Tautology Theorem is a significant result in mathematics and was first proven by Emil 
Post in this doctoral dissertation [9]. A tautology is a Boolean expression whose 
truth-table evaluation under any assignment of T or F to the atomic expressions 
always yields T, given the usual interpretation of the logical connectives. Our version 
of the Tautology Theorem states that every tautology has a proof in the above- 
mentioned logic. This theorem justifies one of the most commonly used rules of 
inference in informal mathematical arguments. It also proves the propositional 
completeness of the formal logic. 

Proofs in metamathematics involve two levels of reasoning. The proof itself is 
carried out at the meta-level using a meta-language. The systems of logic whose 
properties we wish to prove, constitute the object-level. When referring to objects at 
the object-level, we prefix the word 'formal' and to those at the meta-level, we add the 
prefix 'meta'. Thus we refer to, 'a formal variable' as opposed to a 'meta-variable'. 

* These comparisons are somewhat  unfair since the aims of  the FOL and LCF systems are slightly different 
from those of  the project described in this paper. FOL is intended as an expenment  to study the checking 
of  proofs in various formal theories where the metatheory ts itself formally expressed in First Order Logic. 
LCF ts intended as a realistic interactwe proof-checker for properties of  programs, in which it is possible 
to build theories and experiment with various proof  strategies. The project described m this paper is 
aimed at investigating the efficacy of  the Boye~Moore  theorem prover m proving difficult theorems in 
proof-theoretic metamathematics.  
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In most textbooks, metal-level reasoning is done informally and the language used is 
some natural language, e.g. English, German. In the mechanical proofs we describe 
below, the meta-level reasoning is done formally using the Boyer-Moore theorem 
prover and the metalanguage is pure LISP. To further complicate matters, we also 
need an informal meta-language, English, to informally describe the proof. We will 
adopt the convention of using italicised letters for the object language, b.ld-faee letters 
for special objects in the informal meta-language and UPPER-CASE letters for the 
formal meta-language pure-LISP. 

To familiarize the reader with the LISP notation used in the proofs, Section 2 
contains a brief overview of  the Boyer-Moore Theorem Prover and the Boyer-Moore 
Logic. Section 3 introduces the formal system, a First Order Logic due to Shoenfield 
(termed SFOL below). Section 4 is an outline of the informal proof  of  the tautology 
theorem. Section 5 is the longest section in the paper and covers the main result. In 
it we describe the proof-checker which checks proofs in SFOL and show how this 
proof-checker was extended in a significant way by outlining the mechanical proof  of 
the tautology theorem. In Section 6, we draw several conclusions the mechanical 
proofs. 

The complete sequence of events leading to the proof  of  the tautology theorem 
covers about 35 typed pages. It has therefore been omitted. This sequence of events 
can be obtained from an earlier version of  this paper [10]. 

2. The Bayer-Moore Theorem Prover 

This section contains a brief overview of the Boyer-Moore theorem prover and its 
logic. Readers familar with the theorem prover may skip this section. A thorough 
survey of  the prover can be found in Boyer and Moore's A Computational Logic [2]. 

2.1. THE LOGIC 

The language of  the Boyer-Moore theorem prover is a quantifier-free first order logic 
with equality. It employs a LISP-style prefix notation so that (FN Xl • . Xn) 
denotes the result of  applying the function FN to the values of  the arguments 
x l ,  x2 . . . . .  xn. The basic theory includes axiomatizations of literal atoms, 
natural numbers, and lists. 

Constants in the logic are functions with no arguments. The logical constants in the 
logic are (TRUE) and (FALSE), abbreviated as T and F respectively. The 3-place 
function Iv is the only primitive logical connective. (IV x v z) is axiomatized to 
return z i fx  is equal to r,  and ,t otherwise. Thus, (Iv x "r z) can be informally read 
a s : / f  x then Y, else z. Other logical connectives, such as 0R, SOT, AND and IUPLIES 
can be defined in terms of Iv. 

Equality is represented by the dyadic function EQUAL. (EQUAL X 7) is axiomatized 
to return T i fx  and Y identical, and F, otherwise. Note that functions which return only 
T or F play the role of predicates. The theory includes the axiom of  reflexivity of 
equality and an equality axiom for functions. 
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An assertion p in the logic is a theorem if and only if it can be proved that no instance 

of p is equal to F. 

The Shell Principle allows the user to add axioms about  inductively constructed 

objects. Lists are axiomatized by adding a shell with a recognizer, the one argument 
function LISTP ; a constructor, the two argument function CONS; two destructors, the 

one argument functions CArt, and the one argument function CDR; and a bot tom 
object, (NIL). This results in the creaction of  axioms for lists which are similar to 

Peano's axioms for natural numbers. 

To provide some intuition, we show the results of  evaluating the above functions. 

(CONS X Y) returns a list whose first element is x and the remainder of  the list is Y, 

e.g. (CONS "(1 2) "(a 4 5)) returns the list "((1 2) a 4 5) �9 Also, (CAR 

�9 ((1 2) a 4 s ) )  returns "(1 2 ) ,  and (CDR "((1 2) a 4 ~)) r e t u r n s ' ( a  4 s) .  
Nested sequences of  CARs and CDRs are abbreviated, e.g. (CADDR X) abbreviates (CAR 
(CDR (CDR X ) ) ) .  (LISTP " (1 2 ) )  is Tand (LISTe NIL) is V. (NLISTP X) abbreviates 
(NOT (LISTP X) ). 

The Principle of  Definition is used to admit definitions of  new functions as axioms. 
A function definition is accepted if it is recursively or non-recursively defined in 

terms of  previous defined functions and there is some well-founded ordering, i.e. a 
partial ordering in which there are no infinite decreasing chains, on some measure of  

the arguments which decreases with every recursive call. The two-argument function 

LESSP, which is the standard ordering predicate on natural numbers, is the most 
commonly used well-founded ordering. Every evaluation of  the functions admitted 

under this principle is guaranteed to terminate. This ensures that no new inconsistency 
is introduced by the addition of  the new axiom. 

The rules of  inference in the Boyer-Moore  logic consist off 

1. Propositional Calculus: All tautologies are theorems. 

2. A Principle of  Noetherian Induction: This allows the prover to formulate an 

induction that is justified by the well-founded orderings created under the principle 

of  definition. 

3. Instantiation: I f  p is a theorem, so is any instance p '  of  p that is got by replacing 

every occurrence of some variable in p by the same term. 

2.2. THE THEOREM PROVER 

The heuristics or techniques that the theorem prover employs to prove theorems 

support the use of  induction. These heuristics include: Boolean simplification, 
tautology-checking, use of  rewrite rules, a decision procedure for linear arithmetic, 

elimination of  undesirable function symbols, generalization, careful type-checking, 
elimination of  irrelevant hypotheses and induction. 

The theorem prover is fully automatic, in the sense that once a purported lemma 
has been typed in, the user may not interfere with the mechanical proof. The user can 

however " t ra in"  the prover by proving an appropriate sequence of  lemmas which can 
then be used as rewrite rules. In this manner, the theorem prover can be used as a 

high-level proof-checker. 
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The prover also has a simple hint facility by which the user can disable function 
definitions, suggest instances of  lemmas to be used, and also suggest the induction to 
be employed. A nice feature of the prover is that it generates a cogent commentary 
on the proof  being attempted. A careful examination of  this commentary makes it 
easy to locate and correct mistakes in the statement of the proposed theorem. 

The Boyer-Moore theorem prover has been used to prove theorems in number 
theory, recursive function theory and in program verification. 

This concludes the discussion of the metatheory, the Boyer-Moore logic. Other 

details will be provided along the way. 

3. The Formal Theory: Shoentield's First Order Logic 

The formal logic whose properties we wish to establish is Shoenfield's First Order 
Logic (SFOL). It has the advantage of being widely known and it is relatively simple 
and spare. In the following paragraphs, we provide a very brief description of SFOL, 
which is fully described Chapter 2 of Shoefield's Mathematical Logic [11]. 

3.1. THE LANGUAGE 

The language of  SFOL will be described by listing the symbols and the rules of  syntax 
for forming expressions. The symbols in the language include variables: xl . . . . .  
x . . . . .  ; function symbols: f~ . . . . .  f , ;  and predicate symbols: P~ . . . . .  Pro. Each 
function and predicate symbol has an arity associated with it. There is a special dyadic 
predicate symbol = ,  representing equality. The logic also contains the logical 
operators, -~ and v ,  representing logical-not and logical-or respectively, and an 

existential quantifier 3. 

Expressions are formed by combining these symbols according to certain rules. A 
term is either a variable or an wary function symbol followed by n terms. An atomic 
formula is an wary predicate symbol followed by n terms. A formula is either an 
atomic formula; of  the form -1 A, where A is a formula; of the form v AB, where A 
and B are formulas; or of  the form 3xA, where x is a variable A is a formula. 

We note certain assumptions regarding the use of meta-variables. The meta- 
variables x, y, z, range over formal variables; f, g, h, range over function symbols; p, 
q, r, range over predicate symbols; a, b, e, range over terms; and A, B, C, etc. range 
over formulas. From this point on, no specific variable, function or predicate symbols 
will appear in the text and meta-variables will be used to represent them. 

An elementary formula is either an atomic formula or a formula of  the form 3xA. 
The definitions of  free and bound occurrences of a variable in a formula are well- 
known and will be omitted. A,[al denotes the result of  replacing every free occurrences 

of x in A by a. A term a is substitutable for x in A, if and only if for each variable 
y in a, no sub-formula of  A of the form 3yB contains an occurrence of x which is free 
in A. All use of A,[a] is restricted to when a is substitutible for x in A. To increase 
readability, v AB will be replaced by A v B, and -- ab by a -- b. All operators will 
be assumed as being right-associative and parentheses will be introduced where 
needed. A -~ B is an abbreviation for -1 A v B. 
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3.2. THE AXIOMS 

An axiom is one of the following: 

1. A propositional axiom: Any formula of  the f o r r n ~ A  v A. 

2. A substitution axiom: Any formula of  the form, Ax[a ] ~ 3xA. 
3. An identity axiom: A formula of  the form, x = x. 

4. An equality axiom for functions: A formula of  the form, 

(xl = yj ~ . . .  ~ (x. = Yn ~ f x l ' ' -  Xn = f Y l ' ' ' Y n ) ' ' ' ) "  

5. An equality axiom for predicates: Any formula of  the form, 

(xl = Yl --* - . .  -" (Xn = Yn ~ p X I "  �9 " X n  --~ P Y l . . .  Y , ) . . . ) .  

413 

3.3. THE RULES OF INFERENCE 

The five rules of  inference in SFOL are: 

1. Expansion rule: Infer B v A from A. 

2. Contraction rule: Infer A from A v A. 
3. Associative rule: Infer (A v B) v C from A v (B v C). 

4. Cut rule: Infer B v C from A v B and -7A v C. 

5. J-Introduction rule: I f  x is not free in B, infer 3xA ~ B from A ~ B. 

A first order theory may contain additional non-logical axioms e.g. axioms for 
natural numbers, but the language, logical axioms and the rules of  inference remain 
as described above. This concludes the description of the formal theory SFOL. 

4. T he  Informal  P r o o f  o f  the T a u t o l o g y  T h e o r e m  

In this section, we informally discuss the proof  of  the tautology theorem for SFOL. 

For this proof, we need only pay attention to the propositional part  of  the logic. This 

would mean that we need not attach any specific interpretation to quantified formulas 

or atomic formulas. Therefore, elementary formulas will be treated as propositional 
atoms (atoms, for short). Boolean formulas are constructed by combining atoms using 
the operators -7 and v .  It  should be clear that any formula can be construed as a 

Boolean formula. 
The proof  consists of  the following parts: 
1. Definition of logical truth for Boolean formulas. 
2. Definition of  a tautology-checker. 
3. The proof  of  a useful lemma which states that if one can prove the disjunction 

of  a list of  formulas, one can prove the disjunction of  any list of  formulas which 

contains them. 

Logical truth is defined by the use of  a truth-table. Given a Boolean formula, a truth 
assignment for that formula is a mapping from the set of  propositional atoms to T, 
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F. The truth-table method for determining the truth values of a given Boolean formula 
is fairly well-known and we shall not go into its details. A tautology is defined as a 

Boolean formula whose truth value is T under all truth assignments. A tautology- 

checker  is an algorithm that checks if a given Boolean formula is a tautology or not. 
We shall define one such tautology-checker. This tautology-checker works only on 

formulae of the form, AI v . . .  v A, where each A1 is termed a disjunct. Note that 

rearranging the disjuncts does not change the truth value, and that any formula A can 

be expressed in this form by simply setting A 1 to be A and n = 1. The recursive 

definition of the tautology-checker TC(A) is, as follows: 

Base: (each Ai is either an a tom or the negation of  an atom) 

I f  some Aj is the negation of  some A i, TC(A) = T. Otherwise, TC(A) = F. 

Reeursive eases: (Some Ai is neither an a tom nor the negation of  an atom) 

{Since the disjuncts can be rearranged without affecting the truth value, we can 
assume that A t is such an A i. I f  this is the case, then A1 is either of  the form B v C, 

the form --a(B v C), or the form --a--aB} 

I f  AI is of  the form B v C: TC(A) = B v C v . . .  v A . ) a n d  

I f  A~ is of  the form --a(B v C): TC(A) = TC(--aB v . . .  v A , )  and 

T C ( - a C  v . . .  v A,). 
IfA~ is of  the form -a--aB: TC(A) = T C ( B  v . . . v A , ) .  

Two things must be noted in the above definition of a tautology-checker: 

1. The sum of the number of  logical operators in the A~ decreases with each recursive 
call and therefore the algorithm always terminates. 

2. In each recursive call, the truth value (with respect to any fixed truth assignment) 
of  the formula recursed upon is the same as the truth value of the original formula. 

To show that the above tautology-checker is correct, we need to prove that 

TC(A) = T if and only if A is a tautology. We can conclude that if TC(A) = T 
then A is a tautology, by carrying out an inductive proof  based on the recursion 

used in the tautology-checker. Showing that if A is a tautology, then TC(A) = T 

is a little more difficult. The proof  involves following the same induction to 
construct a truth assignment which makes the truth value of A equal to F, if 

TC(A) = F. 

Now, we state the main theorem. ~-A denotes 'A is a theorem in SFOL'.  

TAUTOLOGY THEOREM: / f A  is a tautology,  then ~-A. 

4.1. THE PROOF 

We now describe an informal sketch of the proof  of  the Tautology Theorem, but omit 
most of  the details. This sketch should serve as a useful guide to the mechanical p roof  
presented in the following section. 

Since A is a tautology if and only i fA v A is a tautology, and we can derive A from 
A v A by the Contraction rule, we can restrict our attention to formulas of  the form 
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A I v . . . v A., where n > 1. We now state without proof, a key lemma which is 

extremely useful in the proof. 

A Lemma on disjuncts: I f  A~ . . . . .  An are all contained among B~ . . . . .  B,, and 
/fFA1 v . . .  v A m ,  then [ - B  1 V . . .  V B~. 

We turn our attention now to the proof  of  the Tautology Theorem. The proof  is 

by an induction that is identical to the recursion displayed by the tautology-checker. 

Since we have argued that the tautology-checker defined earlier is correct, we need 
only show that if the tautology-checker accepts a formula A of the form 

A i v  . . .  v An (where n is at least 2) as being a tautology, when we can construct a 

p roof  of  it in SFOL. First, let us assume that the given formula is a tautology. Then 

the following cases arise: 

1. All A i are atoms or negations of  atoms: By the definition of the tautology-checker, 

some Aj must be the negation of  some Ai. Then, F-A i v Ai (Propositional Axiom) 

from which we get FA by applying the lemma on disjuncts. 
2. Some Ai is of  the form B v C: By rearranging the disjuncts using the Lemma on 

disjuncts, we can ensure that i = 1. We have FB v C v A2 v . . . v A. by the 
Induction hypothesis and the definition of the tautology-checker. From this we 

derive FA by an application of  the Associativity Rule. 
3. A I is of  the form -TB v C: Again, by examining the tautology-checker, we get, by 

the Induction Hypothesis: F ~ B  v A 2 V . . .  V A. and F--qC v A 2 V . . .  V A.. 

We do not prove the lemma which allows us to derive I-A from these two formulas 

in the present discussion. 
4. A~ is of  the form --q--qB: By the definition of the tautology-checker and the 

Induction Hypothesis, we have F B v As v . . . v A.. The proof  of  the lemma 

which then allows us to derive I-A is also omitted from this discussion. 

5 The  M e c h a n i c a l  Proo f s  

In this section, we cover some of the highlights of  the mechanical proof. The entire 

mechanical p roof  of  the Tautology Theorem using the Boyer-Moore  theorem prover 

consists of  approximately 200 events (definitions or lemmas). These are listed in their 

entirety in the Appendix of an earlier technical report [10]. Many of the definitions and 
lemmas in the proof  will be described in English. In some important  cases, we will dis- 

play the pure LISP version so that the careful reader can check whether these corre- 

spond exactly to the definitions and theorems in Sections 3 and 4. We remind the 
reader that a term of  the form(r'N xl  . . . xn), denotes the application of function 
FN to the n arguments, xl  to Xn. The proof  can roughly be divided into the following 

parts: 

1. The definition of a proof-checker for SFOL. 
2. The proof  of  the lemma on disjuncts. 
3. The definition of  the tautology-checker. 
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4. The proof  of  the Tautology Theorem. 
5. The proof  of  correctness of  the tautology-checker. 

N. SHANKAR 

5.1. DEFINING THE PROOF-CHECKER 

In this section we present the important  definitions in the description of  the SFOL 

proof-checker. The proof-checker corresponds closely to the formal theory described 

earlier. The basic Boyer-Moore  prover contains only heuristics and contains no facts 
about  lists or numbers [2]. The axioms for literal atoms, natural numbers and lists are 
loaded in by the event: 

i. (BOOT-STRAP) 

We describe in English, the recognizers that were defined for the various classes of  
symbols: 

(VARIABLE X): X is a variable iffit is a pair of  the symbol "x and an index number. 

(FUNCTION FN): FN is a function symbol iff it is a triple of  the symbol "F, an index 
number and an arity number. 

(PREDICATE PR): PR is a predicate symbol iffit is a triple of  the symbol 'P, an index 
number and an arity number or the equality symbol "EQUAL. 

The INDEX of  a symbol returns its subscript, and DEGREE returns the arity of  a 

function of predicate symbol. The use of  these metatheoretic definitions will be 

clarified in the descriptions that follow. The symbols --1, v ,  = and 3 are represented 

by �9 NOT, "OR, ' EQUAL and "FORS0UE respectively. 

The definition of TERUP displayed below is used to recognize EXP as either being 

a term, if FLG = T, or as being a list of  terms of length COUNT, otherwise. The use of  
the flag FLG obviates the need for two mutually recursive definitions and will be used 

in other definitions as well. Informally, the definition asserts that EXP is a term if and 

only if EXP is non-empty and is either a variable, or a function symbol followed by a 

list of  terms whose length is equal to the arity of  the function symbol. In the case when 

FLG # T (FLG is usually set to �9 in this case), F_XP is a list of  non-zero COUNT terms 

iff its first element is a term and the rest of  the elements form a list of  COUNT- i terms. 

40. Deflnl%lon. 
(TERMP EXP FLG COUNT) 

= 

(IF (EQUAL FLG T) 
(IF (NLISTP EXP) 

F 
(OR (VARIABLE EXP) 

(AND (FUNCTION (CAR EXP)) 
(TERMP (CDR EXP) 

�9 LIST 
(DEGREE (CAR EXP) ) ) ) ) ) 
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(IF (OR (NLISTP EXP) (ZEROP COUNT)) 
(AND (EQUAL F_J(P NIL) (ZEROP COUNT)) 
(AND (TERMP (CAR EXP) T O) 

(TERMP (CDR EXP) 
�9 LIST 
(SUB1 COUNT) ) ) ) ) 

The next definition displayed below captures the notion of  a formula/list of  for- 

mulas. (ATOm' {~P)indicates that ExP is an atomic formula, i.e. a predicate symbol 

followed by a list of terms, of length equal to its arity. If  FLG = T, EXP is a formula 

iff ExP is an atomic formula; or is "NOT followed by one formula; or �9 OR followed by 

two formulas; or "FORSOME followed by a variable and a formula. If  FLG ~,~ T, then 

either EXP is an empty list of  formulas and COUNT is zero, or COUNT is non-zero and 

EXP consists of  a formula followed by COUNT-1 formulas. Note that the argument 

COUNT is irrelevant in the FLG = T case and hence we adopt the convention of  setting 

it to zero. 

45. Deflnltlon. 
(FORMULA EXP FLG COUNT) 

(IF (EQUAL FLG T) 
(IF (NLISTP EXP) 

F 
(OR (ATOMP EXP) 

(AND (EQUAL (CAR EXP) "NOT) 
(FORMULA (CDR EXP) 'LIST i)) 

(AND (EQUAL (CAR EXP) 'OR) 
(FORMULA (CDR EXP) "LIST 2)) 

(AND (EQUAL (CAR EXP) 'FORSOME) 
(VARIABLE (CADR EXP) ) 
(FORMULA (CDDR EXP) "LIST 1)))) 

( IF  (OR (NLISTP EXP) (ZEROP COUNT)) 
(AND (EQUAL EXP NIL) (ZEROP COUNT)) 
(AND (FORM[K~ (CAR EXP) T O) 

(FORMULA (CDR EXP) 
"LIST 
(SUB1 COUNT) ) ) ) ) 

Some other important definitions are: 

(COLLECT-FREE EXP FLG) ' which returns a list of all and only those variables that 

have free occurrences in ExP, with FLG used as before. 

(COVERING EXP VAR FLG) " which returns a list of bound variables in EXP such that 

for each of  these variables, say y, there is some sub-expression of EXP of the form 3yA, 

such that ExP contains a free occurrence of  the variable VAR. 

(FREE-FOR EXP VAR TERM FLG) ' w h i c h  c h e c k s  i f  TERM is s u b s t i t u t i b l e  fo r  VAR in 

EXP, i.e. i f  (COVEaING EXP VAR FLG) a n d  (COLLEET-FREE TERM T ) h a v e  an  e m p t y  

i n t e r s e c t i o n  

Now we introduce abbreviations for certain operations in the formal logic: 
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30. Deflni~ion. 
(F-EQUAL X Y) 

(LIST "EQUAL X Y) 

31. Deflnl~ion. 
(F-NOT X) 

(LIST "NOT X) 

32. Deflni$1on. 
(F-OR X Y) 

(LIST "OR X Y) 

33. Definition. 
(FORSOME X Y) 

(LIST "FORSOME X Y) 

34. Deflnltlon. 
(F-AND X Y) 

(F-NOT (F-OR (F-NOT X) 

35. Deflnl~lon. 
(F-IMPLIES X Y) 

(F-OR (F-NOT X) Y) 

N. SHANKAR 

(F-NOT Y) ) ) 

Substitution of  a term TERM for a free variable VAR in an expression ~ is one of  

the most important opertions in any formal system. It  is also the easiest to get wrong. 

The recursive definition below is fairly subtle and requires careful study. The cases in 

the definition can be explained as follows: 

I f  EXP is empty, return ~ a '  itself. 

I f  FL~ = T, the following cases arise: 

1. ~ P  is a variable and (ExP = vAR): Return TERM. 

2. EXP is a variable and (~a, ~ vAR): Return F,XP. 

3. ~a" is of  the form 3xA, vAR = x: Return EXP. 

4. ExPis of  the form 3xA, vAR r x: Return 3xA', where A' is the result of  substituting 
TERM for VAR in A. 

5. ~ a '  is of  the form u . , . . ,  u., where u is either a predicate symbol, function symbol, 

or logical operator of  arity n: Return u u ; . . .  ,~, where u~ is the result of  substitut- 
ing TERM for VAR in u,. 

6. Otherwise: the expression is not well-formed and StmST returns mm itself. 

In the case when FLG ~ T EXP is a list of  expressions and we perform the 
substitution on each member  of  EXP. 
46. Oeflnl~lon. 

(SUBST EXP VAR TERM FLG) 

(IF (LISTP EXP) 
(IF (EQUAL FLG T) 

(IF (VARIABLE EXP) 



TOWARDS MECHANICAL METAMATHEMATICS 419 

(IF (EQUAL EXP VAR) TERM EXP) 
(IF (AND (QUANTIFIER (CAR EXP)) 

(LISTP (CDR EXP))) 
(IF (EQUAL (CADR EXP) VAR) 

EXP 
(coNs (cAR EXP) 

(CONS (CADR FO(P) 
(SUBST (CDDR EXP) VAR 

TERM "LIST) )) ) 
(IF (OR (FUNC-PRED (CAR EXP)) 

(EQUAL (CAR EXP) "NOT) 
(EQUAL (CAR EXP) '0R)) 

(CONS (CAR EXP) 
(SUBST (CDR EXP) VAR TERM "LIST)) 

EXP))) 
(CONS (SUBST (CAR EXP) VAR TERM T) 

(SUBST (CDR EXP) VAR TERM 'LIST))) 
EXP) 

We now describe the SFOL proof-checker. We omit the definitions of  several 
functions used to construct axioms and formal proofs corresponding to the rules and 
axioms of  SFOL. Function names with the suffix PROOF construct formal proofs and 
will be called proof-constructors. The data-structure by which we represent formal 
proofs is a 4-tuple. The first element, (cAR PF), of  this 4-tuple indicates the type of  
the final inference step; the second element is a sequence of  hints (HINT1 PF), 

(HINT2 PF), (HINTS PF) and(HINT4 PF); the third element is the conclusion of the 
proof  and the fourth element, (SUB-PROOF PF) is a sub-proof or a list of  sub-proofs 
leading to the final step. The function (CONC PF FLG) returns the conclusion/list of  
conclusions given a proof/list of  proofs PF and a flag FLG. The skeletal control 
structure of the proof-checker will be presented before presenting the code for 
individual cases. (PRF PF) checks if r'F is a correct formal proof. The comments 
within curly brackets in the skeletal code of the proof-checker indicate code to be 
presented later. Informally, if PF is empty, PRF returns F since it cannot prove 
anything. Otherwise, it checks if the first element of PF is either 'AXIOM or "RULE 
corresponding to the cases when PV is the proof  of a logical axiom, or involves an 
application of  an inference rule in the final step, respectively. If it is none of the above, 
PRF returns r.  
74. Deflnltlon. 

(PRF PF) 

(IF (NLISTP PF) 
F 
(IF (EQUAL (CAR PF) "AXIOM) 

{code for checking proofs of axioms} 
(IF (EQUAL (CAR PF) "RULE) 

{code for checking proofs in which an inference 
rule is used to derive the concluslon} 

F))) 

5.1.1. The Logical Axiom Case 

We present a similar skeletal control structure for the "AXIOM case of  the proof-- 
checker PRF. In this section of the code, PRF checks the first member of  the list of hints 
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which form the second element of PF, i.e. (HINTi v r ) ,  to see if it is one of  
"PROP-AXIOM, "SUBST-AXIOM , 'IDENT-AXIOM, 'EQUAL-AXIOM1 or "EQUAL-AXIOM2. 

These correspond to the five types of  axioms listed in Section 3. 
(IF (EQUAL (HINT1 PF) "PROP-AXIOM) 

{code for checking proofs of propositional axioms} 
(IF (EQUAL (HINT1 PF) "SUBST-AXIOM) 

{code for checking proofs of substitution axioms} 
(IF (EQUAL (HINTI PF) "IDENT-AXIOM) 

{code "for checking proofs of identity axioms} 
(IF (EQUAL (HINT1 PF) "EQUAL-AXIOM1) 

{code for checking proofs of equality 
axioms for functions} 
(IF (EQUAL (HINT1 PF) "EQUAL-AXIOM2) 

{code for checking proofs of equality 
axioms for predicates} 

F))))) 

Now we fill in the code corresponding to each type of logical axiom. The terms 

(HINT2 PF), (HINTS PF) and (HINT4 PF) will be referred to as the first, second and 

third hints, respectively. To check if PF is the proof of a proposition axiom, i.e. a 

formula of the form ~ A v A, PRF checks if the first hint A ((HINT2 PF)) is a formula 

and if PF is equal to (PROP-AXIOM-PR00F (HINT2 PF)), where PROP-AXIOM-PR00F 

constructs the required formal proof. 

(AND (FORMULA (HINT2 PF) T O) 
(EQUAL PF 

(PROP-AXIOM-PROOF (HINT2 PF)))) 

To check a given proof  of a Substitution axiom three hints, (HINT2 PF), 

(HINTS PF) and (HINT4 PF) below, are used. The code below checks if the first hint 

is a formula, the second hint is a variable, and if the third hint is a term. The fourth 
clause checks if the term is substituble for the variable in the formula using the 
function FREE-FOR. The final clause checks if PF is the appropriate formal proof  of a 

Substitution axiom given the above three hints. 

(AND (FORMULA (HINT2 PF) T O) 
(VARIABLE (HINTS PF) ) 
(TERMP (HINT4 PF) T O) 
(FREE-FOR (HINT2 PF) 

(HINTS PF) 
(HINT4 PF) 
T) 

(EQUAL PF 
(SUBST-AXIOM-PROOF (HINT2 PF) 

(HINTS PF) 
(HINT4 PF) ) ) ) 

The code for the identity axiom case checks if the first hint is a variable, say x, 
and checks if PF is the correct formal proof  for the formal x = x. 

(AND (VARIABLE (HINT2 PF)) 
(EQUAL PF 

(IDENT-AXIDM-PRDOF (HINT2 PF)))) 

The first hint in a given proof  of an Equality axiom for functions is a function 
symbol, the second and third hints are two lists of variables of equal length. The 
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function VAaL--IST checks if the first argument is a list of  variables of  length given by 
the second argument. Then PRF checks if r'F is the appropriate proof  with respect to 

the above three hints. 
(AND (FUNCTION (HINT2 PF)) 

(VAR-LIST (HINTS PF) 
(DEGREE (HINT2 PF))) 

(VAR-LIST (HINT4 PF) 
(DEGREE (HINT2 PF))) 

(EQUAL PF 
(EQUAL-AXIOMI-PROOF (HINT2 PF) 

(HINTS FF) 
(HINT4 PF) ) ) ) 

The given proof  of  an Equality axioms for predicates is checked similarly. The only 
difference is that it now checks if the first hint is a predicate symbol. 

(AND (PREDICATE (HINT2 PF)) 
(VAR-LIST (HINTS PF) 

(DEGREE (HINT2 PF))) 
(VAR-LIST (HINT4 PF) 

(DEGREE (HINT2 PF))) 
(EQUAL PF 

(E~UAL-AXIOM2-PROOF 
(HINT2 PF) 
(HINTS PF) 
(HINT4 PF) ) ) ) 

This concludes the description of the "AXIOM case of the definition of  the SFOL 
proof-checker. 

5.1.2. The Inference Rules 

The second group of  cases deals with the inference rules of SFOL viz. Expansion, 
Contraction, Associativity, Cut and 3-Introduction. The rule that is used to derive the 
conclusion is supplied as (HINT1 e r ) .  The control skeleton used to branch on this hint 
is similar to the one used to check proofs of axioms and is displayed below. 

(IF (EQUAL (HINT1 PF) "EXPAN) 
{code for checking Expansion step} 
(IF (EQUAL (HINT1 PF) "CONTRAC) 

{code for checklng Contraction step} 
(IF (EQUAL (HINT1 PF) "ASSOC) 

{code for checklng Assoclatlvlty step} 
(IF (EQUAL (HINT1 PF) "CUT) 

{code for checking Cut step} 
(IF (EQUAL (HINT1 PF) 'E-INTRO) 

{code for checking 3-Introductlon step} 
F))))) 

Now we deal with the code for each individual case. A part of the checking is done 
within the proof-constructor functions and those details will not appear in the 
description below. Since an expression appearing as a proper part of  a proven formula 
is also a formula and in such cases, we do not explicitly check if the expression is a 

formula. 
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To check an application of an Expansion step i.e. a derivation of A v B from B, A 
and B are supplied as the two hints. Then the code checks if A is a formula, if pv is 

the appropriate proof  of  A v B, and if (SUB-PR00F PF) is a proof  of  B. 

(AND (FORMULA (HINT2 PF) T O) 
(EQUAL PF 

(EXPAN-PROOF (HINT2 PF) 
(HINT3 PF) 
(SUB-PROOF PF))) 

(EQUAL (CONC (SUB-PROOF PF) T) 
(HINT3 PF) ) 

(PRF (SUB-PROOF PF))) 

In order to check an application of  a Contraction step, i.e. a derivation of A from 

A v A, the only hint supplied is A. We then check if PF is a properly constructed 

proof  and if (SUB-Prt00F PF) is a correct proof  of  A v A. 
(AND (EQUAL PF 

(CONTRAC-PROOF (HINT2 PF) 
(SUB-PROOF PF) )) 

(EQUAL (CONC (SUB-PROOF PF) T) 
(F-OR (HINT2 PF) (HINT2 PF))) 

(PRF (SUB-PROOF PF))) 

The Associativity rule is used to derive (A v B) v C from A v (B v C) and A, B, 
and C are the three hints used in checking this. The code below checks if PF is a 

properly constructed proof  using this inference step, and if(suB-PR00F PF)iS a correct 

proof  o f A  v (B v C). 

(AND (EQUAL PF 
(ASSOC-PROOF (HINT2 PF) 

(HINT3 PF) 
(HINT4 PF) 
(SUB-PROOF PF)) ) 

(EQUAL (CONC (SUB-PROOF PF) T) 
(F-OR (HINT2 PF) 

(F-OR (HINTS PF) (HINT4 PF)))) 
(PRF (SUB-PROOF PF) ) ) 

The Cut rule is employed to derive B v C from A v B and --7 A v C. The three 
hints used are A, B and C. The code checks if PF is the appropriate proof  and if (CAR 

(SUB-PR00F PF)) and (CADR (SUB-PROOF PF)) are the correct proofs of  A v B and 

~ A  v C, respectively. 
(AND (EQUAL PF 

(CUT-PROOF (HINT2 PF) 
(HINTS PF) 
(HINT4 PF) 
(CAR (SUB-PROOF PF) ) 
(CADR (SUB-PROOF PF) ) ) ) 

(EQUAL (CONC (SUB-PROOF PF) "LIST) 
(LIST (F-OR (HINT2 PF) (HINTS PF)) 

(F-OR (F-NOT (HINT2 PF)) 
(HINT4 PF) ) ) ) 

(PRF (CAR (SUB-PROOF PF) ) ) 
(PRY" (CADR (SUB-PROOF PF) ) ) ) 

The three hints used in checking the 3-Introduction step in a proof are x, A, and B. 
The code checks if x is a variable, and if PF is a correctly constructed proof  of  
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3xA ~ B, where x is not a member of the list of  variables appearing free in B and 
(SUB-PR00F PF) is a correct proof  of  A -~ B. 

(AND (VARIABLE (HINT2 P F ) )  
(EQUAL PF 

(FORSOME-INTRO-PROOF (HINT2 PF) 
(HINTS PF) 
(HINT4 PF) 
(SUB-PROOF PF)) ) 

(NOT (MEMBER (HINT2 PF) 
(COLLECT-FREE (HINT4 PF) T))) 

(EQUAL (CONC (SUB-PROOF PF) T) 
(F-IMPLIES (HINT3 PF) (HINT4 PF))) 

(PRF (SUB-PROOF PF))) 

This completes the description of  our implementation of  a proof-checker for SFOL. 
The function PRoVEs defined below is a more usable form of  the proof-checker. 
78. DeflnlSlon. 

(PROVES PF EXP) 

(AND (EQUAL (CONC PF T) EXP) 
(FOR}~LA EXP T O) 
(PRF PF) ) 

PROVES checks if PRF is a valid proof of EXP. This definition also presents a good 

example of 'cheating' in a proof. By 'cheating' we mean the avoidance of theorem 

proving in favor of computation. If we had proved that the conclusion of a valid 

formal proof  is always a formula, the FORMULA clause in the definition of PROVES would 
have been unnecessary. This turns out not to matter since the body of PRF is replaced 
by a group of  rewrite rules in which the redundant use of  FORmJLA is avoided. Thus, 
the 'cheating' here turns out to be a prudent decision. 

This concludes the description of the SFOL proof-checker as defined relative to the 

Boyer-Moore theorem prover. 

5.2. STEPS TO THE PROOF OF THE TAUTOLOGY THEOREM 

In this section, we list some of  the important lemmas involved in the proof  of the 

Tautology Theorem. We also provide a glimpse of  the approach that we have adopted 
in interacting with the prover. This is worth noting since the success of  a mechanical 
proof  effort depends quite heavily on the approach used. Immediately after defining 
the proof-checker, we replaced its definition by a series of rewrite rules. This is because 
the definition of PRF is long and this causes a great deal of  garbage generation/- 
collection during the proof. In most of the lemmas that we prove, only a small part 
of  the definition of  the proof-checker is relevant. We provide only one simple example 
of  a rewrite rule that captures one case of the definition of PRF, the one dealing with 
propositional axioms. The other cases are similar. The lemma PROP-AXIOM-PROVES 
attempts to rewrite any term in a proof  of the form (PROVES (PROP-AXIOM-PROOF 
express ion)  conclusion)  to T, if express ion is a formula and conclusion is a 
propositional axiom involving expres slon. Thus, if PROP-AXIOM-PROOF had been used 
in a proof, this lemma would be invoked in the course of checking that proof. It is 
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important to note that once we have this lemma, the actual definition of 
PROP-AXIOM-PROOF is no longer useful. The definition of  this proof-constructor is 

disabled so that the prover does not expand an occurrence of  PROP-AXIOM-PROOF into 

its definition during the proof  of  a theorem. 

81. Theorem. PROP-AXIOM-PROVES (rewrl'0e) : 
(IMPLIES (AND (FORMULA EXP T O) 

(EQUAL CONCL (F-OR (F-NOT EXP) EXP))) 
(PROVES (PROP-AXIOM-PROOF EXP) CONCL)) 

At this point in the proof, all the primitive proof-constructors such as 
PROP-AXr0~t-PROOF and the definitions of  PRF and PROVES are disabled. 

Now, we give the first example of  the proof  of  soundness of  a derived inference rule. 

This is the Commutative Rule for logical-or. This rule allows us to infer B v A from 

a proof  of  A v B. The first step in the proof  is to define a proof-constructor 
COMMUT-PROOF corresponding to this rule. 

lOa .  Def• 
(COMMUT-PROOF A B PF) 

(CUT-PROOF A B A PF 
(PROP-AXIOM-PROOF A) ) 

COIdMUT-PROOF provides the formal justification for each application of the Com- 

mutative rule and this is given by the following lemma. 

104. Theorem. COMMUT-PROOF-PROVES (rewr1"c,e): 
(IMPLIES (AND (PROVES PF (F-OR A B)) 

(FORMULA (F-OR A B) T O) 
(EQUAL CONCL (F-OR B A))) 

(PROVES (COMMUT-PROOF A B PF) CONCL)) 

Now, the definition of CO~VIUT-PROOF is disabled as was done in the case of  

PROP-AXIOM-PROOF. 

The next important  step is the proof  of  the previously mentioned lemma on disjuncts. 

The proof  of  this lemma is an extremely difficult one and the reader is urged to read 
the informal exposition from Shoenfield's Mathematical Logic [11]. The mechanical 

proof  of  this lemma proceeds at roughly the same level of  detail as the informal proof  

in Shoenfield's book. The lemma on disjuncts is an extremely derived inference 

rule. The lemma states: I f  A, . . . . .  A ,  are all contained among B , , . . . ,  B., then we 

can infer B, v . . . v B, from a proof  of  A, v . . . v A, .  The proof  is by strong 
induction on m with base cases for [m = 1] and [m = 2]. First, we list some of the 
definitions used in the proof. 

(MAKE-DINJUNCT FLINT) : Given a list of formulas FLINT, MAKE-DISJUNCT con- 

structs the formula representing their disjunction. 

(M1-PROOF EXP FLIST PF): This is the proof  constructor in the [m = 1] case. If  PF 
is a proof  of  ExP and EXP is a member  of  FLIST, then M1-PROOF constructs a proof  of  
(MAKE-DIS JUNCT FLIST). 
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(FORM-LIST FLIST):  FORM-LIST checks  i f  FLIST is a list o f  f o r m u l a s .  
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(M2-PR00F EXPI EXP2 FLIST PF):  M2-PR00F is the proof-constructor in the 
[m - 2] case and constructs a proof  of  (MAKE-DISJUNCT FLIST),  w h e r e  EXPI and 
EXP2 are members of FLIST and PF is a proof  of  (F-0R EXPI EXP2). 

(M-PR00F FLISTI  FLIST2 PF):  M-PR00F c o n s t r u c t s  a proof  of  (MAKE:- 

DISJUNCT FLIST2) ,  where the list of  formulas FLISTI  is contained in the list of  
formulas FLIST2 and PF is a proof of (MAKE-DISJUNCT FLISTI). 

The lemma MI-PR00F-PROVESI displayed below, expresses the [m = 1] the case of  
the proof. 

122. Theorem. MI-PR00F-PROVESI (rewrlte): 
(IMPLIES (AND (FORMULA (MAKE-DISJUNCT FLIST) T 0) 

(MEMBER EXP FLIST) 
(PROVES PF EXP)) 

(PROVES (MI-PR00F EXP FLIST PF) 
(MAKE-DISJUNCT FLIST))) 

Hint : Disable FORMULA 

The [m = 2] case of  the proof  is expressed by the lemma M2-PR00F-PROVES below. 
ExP1 and exP2 are the two disjuncts that appear in FLIST. 

137. Theorem. M2-PROOF-PROVES (rewrlte): 
(IMPLIES (AND (FORMULA (MAKE-DISJUNCT FLIST) T O) 

(FORMULA EXPi T o) 
(FORMULA EXP2 T 0) 
(MEMBER EXPI FLIST) 
(MEMBER EXP2 FLIST) 
(PROVES PF (F-0R EXPI EXP2))) 

(PROVES (M2-PR00F EXPI EXP2 FLIST PF) 
(MAKE-DISJUNCT FLIST) )) 

Hlnt: Disable FORMULA 

Finally, M-PR00F-PROVES expresses the lemma on disjuncts. If  FLIST1 is a list of  
disjuncts that are contained in FLIST2, and we have a proof  of  the disjunction of the 
disjuncts in FLIST1, then M-PR00F constructs a proof  of  the disjunction of the disjuncts 
in FLIST2. Note that the induction to be employed is supplied as a hint to the theorem 
prover. 

150. Theorem. M-PROOF-PROVES (rewrite): 
(IMPLIES (AND (FORM-LIST FLISTI) 

(LISTP FLISTI) 
(FORM-LIST FLIST2) 
(LISTP FLIST2) 
(SUBSET FLISTI FLIST2) 
(PROVES PF (MAKE-DISJUNCT FLISTI))) 

(PROVES (M-PR00F FLISTI FLIST2 PF) 
(MAKE-DISJUNCT FLIST2))) 

Hint: Induct as for (M-PR00F FLISTI FLIST2 PF). 

The remainder of the description of the mechanical proof  includes the definition of  
the tautology checker, the proof  of  the Tautology Theorem and the proof  of  the 
correctness of the tautology checker. 
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5.3. DEFINING THE TAUTOLOGY-CHECKER 

The tautology-checker we define below is an implementation of the one described in 

Section Four. However, for efficiency reasons the tautology-checker below does not 

flatten out the entire given formula into disjunction of  atoms or negations of  atoms. 

Instead, it maintains a list of  atoms and negations of  atoms accumulated so far, and 

if this list ever contains an a tom and its negation, we claim that the given formula is 

a tautology. A small amount  of  effort was expended in proving the admissibility of  

the tautology-checker in accordance with the Principle of  Definition. The steps in the 

proof  of  admissibility will be omitted. As before, we describe the preliminary defi- 

nitions in English and provide skeletal descriptions of  the tautology-checker before 

going into the details. First, we define predicates which serve as recognizers for the 

various classes of  formulas. 

(PROP-ATOMP EXP) checks if ~ is an a tom or the negation of  an atom. 

(m~-TvPe m~,) checks if ~xP is of  the form A v B. 

(NOR-TYPE EXP) checks if EXP is of  the form -7 (A v B). 

(DBLE-NEG-TYPE EXP)checks if ma, is of  the form--7--7 A. 

The function (LIST-COUNT FLIST) computes the measure based on which the 

tautology-checker is admitted. It  takes as input a list and returns the sum of the sizes 

of  all the elements. The size of  each element is one more than the number of  C0NSes 
appearing in it. 

(NEG-LIST EXP FLIST) checks if either m(P is the negation of some member  of  

FLIST or if some member  of  FLIST is the negation of EXP. 

Next, we examine the definition of the tautology-checker TAtrr0LOG'CPt in detail. As 

in the case of  the SFOL proof-checker, the pure-LISP definition will be annotated in 
English. The function TAUTOLOGYP1 takes two arguments, FLIST and AUXLIST. As 

mentioned earlier, if A is the formula being checked. A must be of  the form 
A~ v . . .  v A., and FLIST is the list A, . . . . .  A.. AUXLIST is an auxiliary argument 

that accumulates the atoms and negations of  atoms encountered during the recursion 

of the tautology-checker. ^UXLIST will have to be initially bound to NIL when 
invoking TAUTOLOGYPi. The control skeleton of  T^trr0LOGYP1 is displayed below. I f  the 
FLIST is empty, we return F. Otherwise we check if the first element of  FLIST is of  one 
of the types: PROP-ATOMP, 0R-TYPE, NOR-TYPE, o r  DBLE-NEG-TYPE, and branch off 

accordingly. Later on, we present a lemma which states that any formula must fall 

into one of  the above types. 
176.  D e f l n l " 6 1 o n .  

(TAUTOLOGYPI FLIST AUXLIST) 

( IF  (NLISTP FLIST) 
F 
( IF  (PROP-ATOMP (CAR FLIST) )  
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{code for case when the first element of FLIST 
Is an atom or the negation of an atom} 
(IF (OR-TYPE (CAR FLIST)) 

{code for case when the first element of FLIST is 
of OR-TYPE} 
(IF (NOR-TYPE (CAR FLIST)) 

{code for case when the first element of FLIST 
is of NOR-TYPE} 
(IF (DBLE-NEG-TYPE (CAR FLIST)) 

{code for case when the first element of 
FLIST is of DBLE-NEG-TYPE} 

F))))) 
Hint: Consider the well-founded relation LESSP 

and the measure (LIST-COUNT FLIST) 

We now turn to the individual cases of  the above definition. The function 

(ARc1 exP) returns B when given an expression EXP of the form 7 B  or of  the form 

B v C and in the latter case, (ARG2 EX~)returns C. If  the first element of  FLIST is 

either an atom or the negation of  an atom, TAUTOL0~Wl first checks if its negation 

appears in AUXLIST and return T if that is the case. Otherwise, we add the first element 

of FLIST to the AUXLIST and recurse on the rest of  the FLIST. 

(OR (NEG-LIST (CAR FLIST) AUXLIST) 
(TAUTOLOGYPI (CDR FLIST) 

(CONS (CAR FLIST) AUXLIST))) 

When the first element of  FLIST is Of 0R-TYPE i.e. of the form B v C, we add B and 

C to the rest of  the FLIST and recurse with the AtrXLIST unchanged. 

(TAUTOLOGYPI (CONS (ARG1 (CAR FLIST)) 
(CONS (ARG2 (CAR FLIST)) (CDR FLIST))) 

AUXLIST) 

If  the first element of  FLIST is of  the form -7 (B v C), then TAUTOLOGYP1 is called 

twice, once with 7 B added to the rest of  FLIST and another time with -7 C added to 

the rest of  FLIST. 
(AND (TAUTOLOGYP 1 (CONS (F-NOT (ARGI 

(ARGI (CAR FLIST)))) 
(CDR FLIST) ) 

AUXLIST) 
(TAUTOLOGYPI (CONS (F-NOT (ARG2 

(ARGI (CAR FLIST)))) 
(CDR FLIST) ) 

AUXLIST) ) 

The only remaining possibility is that the first element could be of  the form -T-7 B 

in which case B is added to the rest of  FLIST and a recursive call is made. 

(TAUTOLOGYP1 (CONS (ARG1 (ARGI (CAR FLIST))) 
(CDR FLIST) ) 

AID(LIST) 

This concludes the description of the tautology-checker for SFOL. 

5.4. THE PROOF OF THE TAUTOLOGY THEOREM 

In this section, we sketch some of  the events leading to the proof  of  the statement that 
all tautologies have formal proofs within SFOL. The major task in the proof  is to 
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define the proof-constructor function which constructs formal proofs for those 
formulas on which the tautology-checker returns T. More accurately, the proof- 
constructor constructs a proof  of  (~9Ua~-DISJtmCT (APPEND FLIST AUXLIST) ) where 

APPEND concatenates two lists, and mUa~-DISJUNCT returns the disjunction of  a list of 
formulas. The case-structure and recursion scheme employed by the proof-constructor 
TAUTOLOGYP1 are identical to those of  TAUT-PROOF1. The control skeleton of  
TAUT-PROOF1 is displayed below. 
232.  Definition. 

(TAUT-PR00F1 FLIST AUXLIST) 
= 

(IF (NLISTP FLIST) 
NIL 
(IF (PROP-ATOMP (CAR FLIST)) 

{proof-constructor for PROP-ATOMP case} 
(IF (0R-TYPE (CAR FLIST)) 

{proof-constructor for 0R-TYPE case} 
(IF (NOR-TYPE (CAR FLIST)) 

{proof-constructor for NOR-TYPE case} 
(IF (DBLE-NEG-TYPE (CAR FLIST)) 

{proof-constructor for DBLE-NEG-TYPE case} 
NIL))))) 

Hint: Consider the well-founded relation LESSP 
and the measure (LIST-COUNT FLIST) 

The body of  TAUT-PR00F1 makes calls to several other proof-constructors and we 
omit several lemmas which state that these functions construct the appropriate 
proofs. 

In the PROP-ATOMP case, two possibilities arise depending on whether (NES-L:ST 
(CAR FLIST) ALD(LIST) is T or not. I f  it is T, then PROP-ATOM-PROOFI constructs the 

appropriate proof. If it is not T, then we recurse as in TAUTOLOGYPI and 
PROP-ATOM-PR00F2 uses the proof  constructed by the recursive call to construct the 
required final proof. 

(IF (NEG-LIST (CAR FLIST) AUXLIST) 
(PROP-ATOM-PROOFI FLIST AUXLIST) 
(PROP-ATOM-PROOF2 FLIST AUXLIST 

(TAUT-PR00FI (CDR FLIST) 
(CONS (CAR FLIST) 

AUXLIST) ) ) ) 

In the 0R-TYPE case ,  OR-TYPE-PR00F constructs the proof  of  the disjunction of the 
formulas in FLIST and AUXL:ST using the proof  generated by the recursive call to 
TAUT-PROOF I. 

(0R-TYPE-PR00F 
(ARGI (CAR FLIST)) 
(ARG2 (CAR FLIST)) 
(APPEND (CDR FLIST) AUXLIST) 
(TAUT-PR00FI (CONS (ARGI (CAR FLIST)) 

(CONS (ARG2 (CAR FLIST)) 
(CDR FLIST) )) 

AUXLI ST) ) 

NOR-TYPE-PROOF constructs the proof in the NOR-TYPE case but this time there are two 
recursive calls to TAUT-PROOF1 as is also the case in TAUTOLOGYP1. 
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(NOR-TYPE-PROOF 
(ARG1 (ARG1 (CAR FLIST))) 
(ARG2 (ARGI (CAR FLIST))) 
(APPEND (CDR FLIST) AUXLIST) 
(TAUT-PROOFI (CONS (F-NOT (ARGI 

(ARGI (CAR FLIST)))) 
(CDR FLIST) ) 

AUXLIST) 
(TAUT-PROOF1 (CONS (F-NOT (ARG2 

(ARGI (CAR FLIST)))) 
(CDR FLIST) ) 

AUXLI ST) ) 

Finally, in the DBLE-NEG-TYPE case, DBLE-NEG-TYPE-PR00F is used to construct the 

required proof  from the proof  generated by the recursive call to TAUT-PR00F1. 

(DBLE-NEG-TYPE-PR00F 
(ARG1 (ARG1 (CAR FLIST))) 
(APPEND (CDR FLIST) AUXLIST) 
(TAUT-PROOFI (CONS (ARGI 

(ARGI (CAR FLIST))) 
(CDR FLIST)) 

AUXLIST) ) 

We now state the theorem which asserts that TAUT-PROOF1 constructs a correct 

proof of (MAKE-DIS JUNCT (APPEND FLIST AUXLIST) ) if 

(TAUTOLOGYPI FLIST AUXLIST) is T and both FLIST and AUXLIST are lists of formulas. 

(FORM-LIST FLIST) checks if FLIST is a (possibly empty) list of formulas. 

233. Theorem. TAUT-THMI (rewrite) : 
(IMPLIES (AND (FORM-LIST FLIST) 

(FORM-LIST AUXLIST) 
(TAUTOLOGYP1 FLIST AUXLIST)) 

(PROVES (TAUT-PROOF1 FLIST AUXLIST) 
(MAKE-DISJUNCT (APPEND FLIST AUXLIST)))) 

Hints: Disable NEG-LIST-REDUC and FORMULA 
Induct as for (TAUTOLOGYPI FLIST AUXLIST). 

The theorem TAUT-TI-IM1 captures the statement of  the Tautology Theorem when 
^UXLIST is instantiated with NIL. 

5.5. THE PROOF OF THE CORRECTNESS OF THE TAUTOLOGY-CHECKER 

The final part  of  the proof  consists in showing that tautology-checker TAUTOLOGYP1 
corresponds to the truth-table definition of a tautology. Boyer and Moore [2] have 
carried out a similar p roof  of  the correctness of  a tautology-checker for 

IF-expressions. To prove the correctness of  the above tautology-checker, we need to: 

1. Define the notion of the logical truth of  a formula by definining a function which 
evaluates the truth value of  a formula with respect to a given truth assignment. 

2. Using the above function, show that if T^UTOLOaYP1 asserts a given formula to be 

a tautology, then the truth value of that formula under any truth assignment is 
always T. 
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3. Prove that if TAUTOLOGYP1 claims that the given formula is not a tautology, a 

falsifying truth assignment exists, i.e. an assignment under which the truth value 

of  the given formula is F. 

The function EVAL below evaluates the truth value of  the formula EXP with respect to 

the truth assignment ALIST and returns T or F accordingly. (EJ_.EM-FOR.M F_3(P) checks 

if EXP is an atom. EVAL works as follows: 

If  EXP is an atom: 
Return T if EXP is a member of  ALIST and F otherwise. 

If  EXP is of  the form --7 A: 

Return the negation of  the truth value of  a on ALIST. 

If  EXP is of  the form A v B: 

Return T if at least one of A and B evaluates to T on ALIST and F otherwise. 

If  it is none of  the above, EXP is not well-formed. 
237. Deflnl~1on. 

(EVAL ~ ALIST) 

(IF (NLISTP EXP) 
F 
(IF (ELEM-FORM EXP) 

(MEMBER EXP ALIST) 
(IF (EQUAL (CAR EXP) "NOT) 

(NOT (EVAL (CADR EXP) ALIST)) 
(IF (EQUAL (CAR EXP) "OR) 

(OR (EVAL (CADR EXP) ALIST) 
(EVAL (CADDR EXP) ALIST)) 

F)))) 

Having defined EVAL, we can state and prove the other two statements in the proof  

of correctness of TAtrr0LOGYP1. The theorem TAOT-EVAL states that if (TAUr0L0~YP1 

FLIST AUXLIST) is T then EVAL on  (MAKE-DISJUNCT (APPEND FLIST AUXLIST)) r e t u r n s  

T on  any  ALIST. 
257. Theorem. TAUT-EVAL (rewrite): 

(IMPLIES (TAUTOLOGYP1 FLIST AUXLIST) 
(EVAL (MAKE-DISJUNCT (APPEND FLIST AUXLIST)) 

ALIST) ) 
Hln%s: Dls~ble EVAL, EVAL-MAKE-DISJUNCT, ELEM-FORM, 

PROP-ATOMP, OR-TYPE, NOR-TYPE, DBLE-NEG-TYPE, 
APPEND, and NEG-LIST-REDUC 

Indue% as for (TAUTOLOGYP1 FLIST AUXLIST). 

Note that it is only in the proof  of the statement that all nOn-TAUTOLOGYPIS are 

falsifiable do we need to prove that every formula is of one of  the types: PROP-ATOMP, 
0R-TYPE, NOR-TYPE o r  DBLE-NEG-TYPE. This is state below as  FORlVlULA-CASESI. 

271. Theorem. FORMULA-CASES1 : 
(IMPLIES (FORMULA EXP T O) 

(OR (PRDP-ATOMP EXP) 
(OR-TYPE EXP) 
(NOR-TYPE EXP) 
(DBLE-NEG-TYPE EXP) ) ) 

(FALSIFY-TAUT FLIST AUXLIST) constructs the truth assignment which falsifies 
(MAKE-DISJUNCT (APPEND FLISTAUXLIST)) w h e n  (TAUTOLOGYPI FLIST AUXLIST) is F 
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and its definition is similar to that of  TAUTOLOGYPi. We state this as NON-TAUT-FALSE 

below. We restrict ^UXLIST to being a list of  propositional atoms whose disjunction 

is not by itself a tautology, but since we are only interested in the instance when the 

AUXLIST is NIL, this turns out not to matter. (FALSIFY AUXLIST) returns the truth 
assignment which falsifies (IdAKE-DISJUNCT AUXLIST) when AUXLIST is a list of  

propositional atoms. 
281. Theorem. NOT-TAUT-FALSE (rewrite): 

(IMPLIES (AND (FORM-LIST FLIST) 
(PROP-ATOMP-LIST AUXLIST) 
(NOT (EVAL (MAKE-DISJUNCT AUXLIST) 

(FALSIFY AUXLIST) ) ) 
(NOT (TAUTOLOGYPI FLIST AUXLIST))) 

(NOT (EVAL (MAKE-DISJUNCT (APPEND FLIST AUXLIST)) 
(FALSIFY-TAUT FLIST AUXLIST)) )) 

Hints: Induct as for (FALSIFY-TAUT FLIST AUXLIST). 
Disable NEG-LIST, EVAL-MAKE-DISJUNCT, NEG-LIST-REDUC, 

PROP-ATOMP-REDUC, FORMULA, FALSIFY, APPEND, and 
NOR-TYPE 

Finally, we replace AUXLIST by NIL and derive more readable versions of  the above 

theorems. 
282. Deflnltlon. 

(TAUTOLOGYP FLIST) 

(TAUTOLOGYPI FLIST NIL) 

283. Definition. 
(TAUT-PR00F FLIST) 

(TAUT-PROOFI FLIST NIL) 

286. Theorem. TAUTOLOGY-THEOREM (rewrite): 
(IMPLIES (AND (FORM-LIST FLIST) 

(TAUTOLOGYP FLIST) 
(EQUAL CONCL (MAKE-DISJUNCT FLIST) ) ) 

(PROVES (TAUT-PROOF FLIST) CONCL)) 
Hint: Disable TAUT-PROOFI, TAUTOLOGYPI, FORMULA, and 

NOT-FALS IFY-TAUT 

288. Theorem. TAUTOLOGIES-ARE-TRUE (rewrite): 
(IMPLIES (AND (FORM-LIST FLIST) 

(TAUTOLOGYP FLIST) ) 
(EVAL (MAKE-DISJUNCT FLIST) ALIST)) 

Hint: Disable FORMULA, TAUTOLOGYP1, and NOT-FALSIFY-TAUT 

290. Theorem. TRUTHS-ARE-TAUTOLOGIES (rewrlte): 
(IMPLIES (AND (FORM-LIST FLIST) 

(NUT (TAUTOLOGYP FLIST))) 
(NOT (EVAL (MAKE-DISJUNCT FLIST) 

(FALSIFY-TAUT FLIST NIL)))) 
Hint: Disable TAUTOLOGYP1, NOT-FALSIFY-TAUT, and FORMULA 

5.6. A POST-SCRIPT 

The main motivation for proving the Tautology Theorem was that it could then be 
applied to simplify some of  the formal deduction steps in the metatheorems that were 
to follow. As it turned out, it was not directly usable since all our  applications involve 
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the use of meta-variables, i.e. variables in the Boyer-Moore logic, and the tautology- 
checker can only handle SFOL expressions. For instance, if we want to show that 
(F-OR (F-NOT A) A)is a tautology for any formula A, we cannot directly apply the 
tautology-checker without instantiating X. The Tautology Theorem was rendered 
useful by the contrapositive version of TRUTHS-ARE-TAUTOLOGIES displayed below as 
EVAL-TAUTOLO~Yr'. Since EVAL translates formal disjunctions and negations into dis- 
junctions and negations in the Boyer-Moore logic, we can use it to translate taut- 
ologies containing meta-variables into statements which are tautologously true in the 
Boyer-Moore Logic. Now, in order to establish (TAUTOLO~VP FLIST), the theorem 
prover tries to prove that (EWL (MAKE-DISJUNCT FLIST) (FALSIFY-TAUT FLIST 
NIL)) is tautologously true. 
318. T h e o r e m .  EVAL-TAUTOLOGYP ( r e w r i t e ) :  

( IMPLIES (AND (FORM-LIST FLIST)  
(EVAL (~MfE-DISJUNCT FLIST)  

(FALSIFY-TAUT FLIST  N I L ) ) )  
(TAUTOLOGYP FLIST)  ) 

Hints: Disable TAUTOLOGYP, FORM-LIST, ~nd FALSIFY-TAUT 

Conslder: 
TRUTHS-ARE-TAUTOLOGIES 

Enable TRUTHS-ARE-TAUTOLOGIES 

6. Conclusions 

This paper describes a project aimed at mechanizing proofs in metamathematics using 
the Boyer-Moore Theorem Prover [2, 3]. To this end, a proof-checker for Shoenfield's 
First Order Logic (SFOL) [11] was defined as a function in the Boyer-Moore logic. 
The theorem prover was then used to prove the tautology theorem for SFOL. The 
success of this proof effort leads us to believe that a significant part of proof-theoretic 
metamethematics can be mechanically proof-checked using the Boyer-Moore 
theorem prover. These mechanical proofs also demonstrate a method for making 
sound extensions to automatic proof-checkers. Such proofs make it possible to write 
correct formal proofs without laying out in tedious detail, all of the steps involved. 
This leads to a significant speed-up* in the automatic checking of proofs and at the 
same time makes it more convenient for a human to construct proofs that will be 
automatically checked. 

The proof was done by first writing up a list of events before attempting the 
mechanical proofs. This took about 4 weeks. It took about 3 or 4 weeks to complete 
a mechanical proof of the Tautology theorem. Only a few changes were made to the 
original outline of the proof. Since then, some revisions have been made to the 

* Some preliminary experiments were carried out in which the performance of  the tautology-checker on 
some small tautologies and non-tautologies was compared to the performance of  the SFOL proof-checker 
on the corresponding generated proofs. The difference in the respective timings was remarkable. On an 
example on which the tautology-checker took 0. ! sees, it took 12 minutes to generate and check the formal 
proof. A 7000-fold difference! Such experimental results should be taken with a lot of  salt since the 
proof-checker is not a very efficient one and a smaller fraction of  the time spent in garbage collection gets 
included in the smaller execution time. On simpler examples, the ratios of  the two times ranged from 1 : 100 
to 1 : 600. 
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statements of a few of the definitions and lemmas involved. The proofs were done on 
a Symbolics 3600 LISP Machine. 

Was the mechanical proof significantly more difficult than the informal proof?. Both 
of these have been described in a fair amount of detail so that the reader can 
independently judge the level of difficulty involved. For the most part, the theorem 
prover was given the same information as one would glean from a careful reading of 
Shoenfield's Mathematical Logic. The use of linguistic devices such as typed meta- 
variables, ellipses, and the use of the phrase 'of the form', lent brevity to the informal 
proof. The version of the Boyer-Moore theorem prover used in this proof had no 
corresponding devices. In this case, the task of going from an informal proof to a 
mechanical proof is comparable in difficulty to the task of going from a carefully 
stated program specification to an executable program satisfying those specifications. 
Both tasks involve capturing certain notions using only the data-structures and 
constructs provided by the theorem proving system or programming language. While 
no mistakes were found in Shoenfield's outline of the proof, a few small gaps were 
found in the exposition. The clarity and detail in Shoenfield's outline were of immense 
help in the formulation of the mechanical proof outline. 

The only other mechanical proof of a metamathematical theorem of comparable 
difficulty is Paulson's proof of the correctness of a Unification algorithm using 
Cambridge LCF [8]. Since a considerable part of that proof effort was spent making 
changes to the LCF system, a proper comparison is not possible. 
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