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Abstract. In this paper we present first-order formulas for basic point-set topology, in an attempt to
extend the mathematical range available for exploration with automated theorem-proving programs. We
present topology definitions and sample lemmas both in first-order logic and in clausal form. We then
iltustrate some of the difficulties of these sample lemmas through a proof of a basic lemma in five parts.
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1. Introduction

This note is intended to be in the same spirit as the set theory paper by Boyer et al.
[2]. That paper presents a finite first-order formulation of full set theory based on
Godel’s axiomatization [3]. The aims of that paper were to provide the basis for an
unlimited supply of truly difficult problems and to challenge the automated
deduction community to experiment in that direction.

The focus of this paper is elementary point-set topology, a field built upon part
of set theory, and a field that has many of the obstacles to automation discussed in
the set theory paper. But, because of strict typing and the limited use of the set
theory (see Section 4), we believe that the test problems presented here may be
easier to handle than those presented in the set theory paper.

Point-set topology arose as a generalization of the study of continuous functions
on the real line. In this paper we look at basic concepts such as open and closed
sets, subspaces, bases, and limit points, but we do not get as far as continuous
functions or metrics. There is no inherent difficulty in considering the more
advanced concepts, but we believe that the basic concepts provide sufficient
challenge to current and proposed automated deduction systems. We closely follow
the development given by Munkres [7], which is similar to Kelley’s development [4].

* This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under contract W-31-109-Eng-38, and by the Division of
Educational Programs, Argonne National Laboratory.
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The paper is organized in the following way. Section 2 contains definitions of basic
topology concepts as first-order formulas in set theory notation. Axioms and
definitions of set theory concepts such as element, subset, intersection, and relative
complement are omitted. In Section 3 we give a set of lemmas, in the same notation
as the Section 2 definitions, which should be formally provable from the Section 2
definitions and the appropriate set theory axioms and definitions. Section 4 contains
the clause form of the Section 2 definitions in strict clause notation (prefix functions
and predicates). We have renamed some of the functions and predicates in order
to take advantage of object types — for example, in the clauses we use el_p(x, xa)
when x is a point and xa is a set, and we use el_s(xa, xt) when xa is a set and xt is
a collection (a set of sets of points). Section 5 contains the clause form of the
negations of the Section 3 lemmas. In Section 6 we give a five-part resolution proof
of the first lemma.

2. Definitions

We use a sorted first-order logic, and for the most basic topology concepts, we have
three disjoint types of object: points, sets of points (called sets), and sets of sets of
points (called collections). The only concept we consider (in this paper) that does
not fit into one of those sorts is function.

A departure from the set theory paper [3] is that we do not worry about sets being
‘small’ enough (the m(x) conditions in [3]) to be members of other sets. We believe
that our restricted use of set theory — in particular, the hierarchy of types point, set,
collection — protects us from paradoxes, at least for this beginning study of topology.

We include definitions of compactness and of continuous function, but they are
not mentioned elsewhere in the paper. They are included for the curious because they,
along with connectedness, are essential for any meaningful study of topology.
Compactness requires the concept of finiteness, and continuous function requires the
concepts of function and of preimage of a set, but those three additional concepts
are not included because we wish to keep the focus on point-set topology.

We omit definitions of most set theory concepts. The following is a list of symbols
that occur in the definitions and in the lemmas in Section 4, but are neither axiomized
nor defined here.

=,¢, S, 0, U, N, disjoint, - (relative complement), finite, function, preimage.

In the following definitions, we use the rule that symbols starting with
[u,v,w,x,¥,3z,...] represent points, [A,B,C, U, V,W, X, Y, Z,...] represent sets, and
[F,G,H,S,T,...] represent collections. All variables are quantified.

Sigma (union of members)

UeA A
VFY ] F 34
F u(ues:gma( ) [AEF :D
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Pi (intersection of members)

VF Vu(uepi(F)VA(AeF -ued))
Topological space

sigma(T) € X A
0eT A
VX VT | top_—space(X, T)—| XeT A
VYVZ(YeT AZeT»(YnZ)eT) A
VF(F < T - sigma(F)eT)

Open set

_space(X, T
YU VX VT<0pen(U, X, T)H[’OP space(X, T) A ])

UeT
Closed set

- X, T
YUVYX VT(closed(U, X, T)H[lop space(X, T) A ])

open(X — U, X, T)
Finer topology

top _space(X, T) A
VT VS VX[ finer (T, S, X)| top _space(X, S) A

SerT
Basis for a topology
VX VF| basis(X, F)«
sigma(F) =X A PEX A o
YEDB,
Vy VB, VB B,eF
Y VS VE B'EF’\ ~3By| BieF A
€
" B,=(BinE,)
ye(B,nB,)
Topology generated by a basis
X€Z A
VEVU| Uetop _of _basis(F)¥x| xeU —»3Z| ZeF A
ZcU

Subspace topology

top _space(X, T) A
VX VT VY VU| Uesubspace _top(X, T, Y)Y S X A
WVFVeT AU=(YNnV))
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Interior of a set

top _space(X, T) A
YYVX VT VYul ucinterio(Y, X, T)e| Y S X A
IV (weV AV Y Aopen(V, X, T))

Closure of a set

top —space(X, T) A
VY VX VT Vu| ueclosure(Y, X, T)o| Y S X A
YV(Y <V Aclosed(V,X, T) s ueV)

Neighborhood (Note that a neighborhood of y is defined here as an open set
containing y [7]. Another definition is that a neighborhood of y is any superset of
an open set containing y {4].)

top _space(X, T) A
YU Vy VX VT| neighborhood(U, y, X, T) | open(U, X, T) A
yeU

Limit point
VzVY VX VT limit _pt(z, Y, X, T)+>

top _space(X, T) A
YecXA
Y U(neighborhood(U, z, X, T) »Iw(we(UNnY) A w #2))

Boundary of a set

top _space(X, T) A
VY VX VT Vul ueboundary(Y, X, T)| ueclosure(Y, X, T) A
ueclosure(X — Y, X, T)

HausdorfT space
top _space(X, T) A
VX VT hausdorf(X, T)«> X, EX A
¥x, Vx, X, €X A |
X, # X,

neighborhood(U,, x,, X, T) A
U, 3U,| neighborhood(U,, x,, X, T) A
disjoint(U,, Uy)
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Separation in a topological space

top _space(X, T) A

A 1 9&@ A Az # @ A

AT A AeT A

(A,VA4,) =X Adisjoint(A,, A,)

VA, VA,VXVT| separation(A,, A, X, T)e

Connected topological space

VX VT(connected(X, T)«—»[t op—space(X, T) A ])

134, 34, separation(A,, A,, X, T)
Connected set
top _space(X, T) A
VA VX VT| connected _set(A, X, T)e>| A € X A
connected(A, subspace _top(X, T, A))
Open covering
top _space(X, T) A
VEVX VT| open_cover(F, X, T)| FST A
sigma(F) =X
Compact topological space

VX VT| compact(X, T)

top _space(X, T) A
finite(F,) A

VF\| open_cover(F,, X, T) - 3F,| F, S F, A
open _cover(F,, X, T)

Compact set
top _space(X, T) A
VA VX VT| compact _set(A, X, T)>| A S X A

compact(A, subspace _top(X, T, A))

Continuous function

VFVYX, VT

v, v7l"2 " cont _func(F, X,, Ty, Xs, T5)
top _space(X |, T}) A
top _space(X 5, T,) A
Sfunction(F, X,, X,) A
VV(open(V, X,, T,) -

open(preimage(F, V), X;, T}))
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3. Lemmas

The following lemmas should be formally provable from the definitions in the
preceding section and the approprniate set theory axioms and definitions. A five-part
resolution proof of Lemma 1 appears in Section 6.

1. The topology generated by a basis gives rise to a topological space.
VF VX (basis(X, F) - top —space(X, top _of —basis(F)))

2. If (X, T) is a topological space, A is a subset of X, and every point in 4 has a
neighborhood U that is a subset of A4, then A4 is open in (X, T).
top _space(X, T) A

AcX
VX VT VA " — open(A, X, T)

neighborhood(U, y, X, T) A
A-3U
vy (y &A= [U cA

3. The subspace topology gives rise to a topological space.
VX VT VY(top _space(X, T) A Y < X — top _space(Y, subspace _top(X, T, Y)))
4. If Yis open in X, and A is open in Y, then A4 is open in X.
VX VT VY VA(open(Y, X, T) A open(A, Y, subspace _top(X, T, Y)) —
open(A, X, T))
5. A finer topology induces a finer subspace topology.
VOV, VX VY (finer(T|, T,,X) A Y S X >
Siner(subspace _top(X, Ty, Y), subspace _top(X, T,, Y), X))

6. An alternative definition of top_of_basis.

vEvU[ Uetop_of _basis(F)e-3G| & S
— - «—>
P U = sigma(G)

7. Arbitrary intersections and finite unions of closed sets are closed.

VX VT|top_space(X, T) —

rclosed(9, X, T) A .
closed(X, X, T) A

closed(Y,, X, T) A
VY, VY2<[cIosed(Y2, X.T) > closed(Y\0Y,, X, T) |A
v F([szgma(F YEX A

YV(VeF > closed(V, X, T))] ~ closed(pi(F), X, T )) )
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8. The interior of A4 is a subset of A4, which is a subset of the closure of 4.

top _space(X, T) A interior(A, X, TYS A A
vA VX VT(I:A =X - A < closure(A, X, T)

9. If A4 is open, the interior of 4 is 4, and if A4 is closed, the closure of 4 is 4.

top _space(X, T) A
VA VX VT<[ dcx -

open(A, X, T)—A = interior(4, X, T) A
closed(A, X, T)—A = closure(A, X, T)

10. The interior and the boundary of a set are disjoint.

top_space(X, T
VAVY vr([:”c ;f“ce( A ]—»interior(A, X, T) nboundary(4, X, T) = (b>

11. The union of the interior and the boundary is the closure.

top _space(X, T) A
VAVXNYT (l: dcx -

interior(A, X, T) uboundary(A, X, T) = closure(A, X, T)>

12. If the boundary of A4 is empty, A is both open and closed.

top _space(X, T) A
VA VX VT([ doy -

<boundar}’(/” X 1= Q)HI:ZJZ:;ZS‘&X:YT; )A ]> >

13. If some limit points are added to a connected set, the result is connected.

VA VB YX VT connected_s.et(.A, X, T) A .
Vy(yeB —limit_pt(y, A, X, T))

connected_set(AUB, X, T ))
14. The closure of a connected set is connected. (Note that Lemma 13 = Lemma
14.)
VA YX VT (connected_set(A, X, T) — connected _set(closure(A, X, T), X, T))

4. Definitions in Clause Form

When we started to experiment with some of the test problems, we encountered the
difficulty of typed objects, because none of our theorem provers handles typed
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variables. If one ignores variable types, atoms such as element(sigma(F), A), in
which sigma(F) and A are both sets, can be derived by resolution. Such atoms not
only pollute the search space, but also raise the question of soundness — what would
it mean for such an atom to occur in a refutation? We considered several options
for solving these problems.

1. Include type literals for the types point, set, and collection. In the Section 2
definitions and the Section 3 lemmas, for each universally quantified variable of
type (for example) point one would replace YxF with Vx( point(x) - F), and for
each existentially quantified variable of type (for example) set one would
replace IXF with 3X(set(X) A F).

2. Use the trick of type functions around terms to prevent unification of terms
of different types. Each constant, function, and variable whose type is
known is enclosed in a special type function that gives the type of term. For
example, the special type functions would be point, set, and collection, and
the atom element( y, sigma(T)) would be written as element( point(y), set(sigma
(collection(X)))). This technique enables one to simulate some sorted logics in
an unsorted system. (It can also handle hierarchies of types.) See [11] for
details.

3. Use implicit typing. With this technique, the position of an argument deter-
mines its type. A type is associated with each constant and function symbol,
and a type is associated with each argument position of each predicate and
function symbol. The element relation is partitioned into two relations: one
relation, called el_p, is about points being elements of sets, and the second
relation, called el_s, is about sets being elements of collections. The relations
subset and equal, and the functions intersection and union are handled simi-
larly. If input clauses have consistent use of variables (for example, there is no
clause P(x)|Q(x), where the arguments of P and Q are of different types (then
resolution never instantiates a variable to a term of the wrong type. Paramodu-
lation, however, can cause a bad instantiation if paramodulation is from or
into a variable.

We selected the third option for our initial experiments and for presentation of
the clauses. The first option was unacceptable because the extra literals require too
many extra operations to eliminate them. In addition, the first option does not
prevent unwanted unifications, as do the other two options. The second option is
undesirable because the extra type functions are particularly inconvenient and
clumsy in this application.

The third option requires additional definitions and lemmas for the set theory
concepts — for example, separate definitions and lemmas are needed for subset_s
and subset_c. (The second option requires more than one version of some lemmas
— for example the lemma Xn@=@ would be included as set(intersect-
(set(x), set(9))) =set(d) and collection(intersect(collection(x), collection(®))) =
collection($) — but only one version of each definition is required.)
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The following replacements were made for the third option.

=N N m

= | DC

el.p(point,set), el_s(set,collection)
eq.p(point,point), eq-s(set,set), eq-c(collection,collection)
subset_s(set,set), subset_c(collection,collection)

isjoint disjoint.s(set,set), disjoint_c(collection,collection)

Union s(set,set), Union c{collection,collection)

inter_s(set,set), inter_c(collection,collection)
relative_complement._s(set,set), relative_complement.c{collection,collection)
O.s, O_c

247

In the following clauses, variables start with a symbol in [u, v, w, x, y, z] (lower
case). The symbols [f1, f2,...,¢g1, g2,...] are Skolem functions.

Sigma (union of members)

1.
2.
3.

-el_p(u,sigma(vF)) | el_p(u,f1(vF,un))
~el_p(u,sigma(vF)) | el_s(f1(vF,u),vF)
el_p(u,sigma(vF)) | -el_p(u,uul) [ -el_s(uul,vF)

Pi (intersection of members)

4.
5.
6.

~el_p(u,pi(vF)) | -el_s(vA,vF) | el_p(u,vA)
ol_p(u,pi(vF)) | el_s(£2(vF,u),vF)
el p{u,pi(vF)) | -el_p(u,f2(vF,u))

Topological space

7. -top.space(x,vT) | eq._s(sigma(vT),x)

8. -top_space(x,vT) | el_s(0_s,vT)

9. -top_space(x,vT) | el_s(x,vT)

10. -top_space(x,vT) | -el_s(y,vT) | -el_s(z,vT) | el_s(inter_s(y,z),vT)

11. -top_space(x,vT) | ~subset_c(vF,vT) | el_s(sigma(vF),vT)

12, top_space(x,vT) | -eq_s(sigma(vT),x) | -el_s(0_s,vT) | -el_s(x,vT) |
el_s(£3(x,vT),vT) | subset_c(£5(x,vT),vT)

13. top.space(x,vT) | -eq _s(sigma(vT),x) | -el_s(0_s,vT) | -el_s(x,vI) |
el_s(£3(x,vT),vT) | -el_s(sigma(£5(x,vT)),vT)

14. top_space(x,vT) | -eq_s(sigma(vT),x) | -el_s(O_s,vT) | -el_s(x,vT) |
el_s(f4(x,vT),vT) | subset_c(£5(x,vT),vT)

15. top_space(x,vT) | -eq_s(sigma(vT),x) | ~el_s(0_s,vT) | ~el_s(x,vT) |
el_s(f4(x,vT),vT) | -el_s(sigma(f6(x,vT)),vT)

16. top_space(x,vT) | -eq_s(sigma(vT),x) | -el_s(0_s,vT) | ~el_s(x,vT) |
-el_s{inter_s(£3(x,vT),f4(x,vT)),vT) | subset_c(£5(x,vT),vT)

17. top_space(x,vT) | -eq s(sigma(vT),x) | -el_s(O_s,vT) | -el_s(x,vT) |
-el_s(inter_s(£3(x,vT),£4(x,vI)),vT) | -el_s(sigma(£5(x,vT)),vT)

Open set

18. -open(u,x,vT) | top_space(x,vT)

19. -~open{u,x,vT) | el_s{(u,vT)

20. open(u,x,vT) | -top_space(x,vT) | ~el_s(u,vT)

Closed set

21. -~closed(u,x,vT) | top_space(x,vT)

22, =-closed(u,x,vT) | open(rel_comp_s(u,x),x,vT)

23. closed(u,x,vT) | -top_space(x,vT) | ~open(rel_comp_s(u,x),x,vT)

Finer topology

24.
25.
26.
27.

-finer{vT,v5,x) | top_space(x,vT)
-finer{(vT,vS,x) | top_space(x,vS)
-finer(vT,vS,x) | subset_c(vS,vT)
finer(vT,vS,x) | -top_space(x,vT) | -top_space(x,vS) | -subset_c(vS,vT)
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Basis for a topology

28. ~basis(x,vF) | eq_s(sigma(vF),x)

29. -basis(x,vF) | -el_p(y,x) | -el_s(vB1i,vF) | -el_s(vB2,vF) |
-el_p(y,inter_s(vB1,vB2)) | el_p(y,f6(x,vF,y,vB1,vB2))

30. -basis(x,vF) | -el_p(y,x) | -el_s(vB1,vF) | -el_s(vB2,vF) |
-el_p(y,inter_s(vB1,vB2)) | el_s(#6(x,vF,y,vB1,vB2),vF)

31. -basis(x,vF) | -el_p(y,x) | -el_s(vBi,vF) | -el_s{vB2,vF) |
-el_p(y,inter_s(vB1,vB2)) | subset_s(26(x,vF,y,vBi,vB2),inter_s(vB1,vB2))

32. basis(x,vF) | -eq_s(sigma(vF),x) | el_p(£7(x,vF),x)

33. basis(x,vF) | -eq_s(sigma(vF),x) | el_s(£8(x,vF),vF)

34. basis(x,vF) | -eq_s(sigma(vF),x) | el_s{£9(x,vF),vF)

356. basis(x,vF) | -eq_s(sigma(vF),x) | el_p(f7(x,vF),inter_s(£8(x,vF),19(x,vF)))

36. basis(x,vF) | -eq_s(sigma(vF),x) | -el_p(f7(x,vF),uu9) | -el_s(uug,vF) |
-subset_s(uud,inter_s(£8(x,vF),£9(x,vF)))

Topology generated by a basis

37. -el_s(u,top_of _basis(vF)) | -el_p(x,u) | el_p(x,f10(vF,un,x))

38. -el_s(u,top.of _basis(vF)) | ~el_p(x,u) | el_s(f£10(vF,u,x),vF)

39. -el_s(u,top_of_basis(vF)) | ~el_p(x,n) | subset_s(£10(vF,un,x),n)

40. el_s(u,top_of basis(vF}) | el_p(f1i(vF,u},u)

41. el_s(u,top_of_basis(vF)) | -el_p(f11(vF,u),uull) | -el_s(uuil,vF) | -subset_s(uuii,u)

Subspace topology

42. -el_s(u,subspace_top(x,vT,y)) | top_space(x,vT)

43. -el_s(u,subspace_top(x,vT,y)) | subset_s(y,x)

44, -el_s(u,subspace_top(x,vT,y)) | el_s(f12(x,vT,y,u),vT)

45. -el_s(u,subspace_top(x,vT,y)) | eq_s(u,inter_s(y,f12(x,vT,y,u)))

46. el_s(u,subspace_top(x,vT,y)) | -top_space(x,vT) | -subset_s{(y,x) |
-el_s{uu12,vT) [ -eq_s(u,inter_s{y,uut2))

Interior of a set

47. -el_p(u,interior(y,x,vT)) | top_space(x,vT)

48. -el_p(u,interior(y,x,vT)) | subset_s(y,x)

49. -el_p(u,interior(y,x,vT)) | el_p(u,?13(y,x,vT,u))

50. -el_p(u,interior(y,x,vI)) | subset _s(£13(y,x,vT,u),y)

B1. -el_p(u,interior(y,x,vT)) | open(£13(y,x,vT,n),x,vT)

82. el _p(u,interior(y,x,vT)) | -top_space(x,vT) | -subset_s(y,x) | -el_p(u,uui3) |
-subset_s(uuid,y) | -open(uui3,x,vT)

Closure of a set

63. -el_p(u,closure(y,x,vT)) | top_space(x,vT)

54. -el_p(u,closure(y,x,vT)) | subset_s(y.x)

55. -el_p(u,closure(y,x,vT)) | -subset_s(y,v) | -closed(v,x,vT) | el_p(u,v)

56. el_p(u,closure(y,x,vT)) | -top_space(x,vT) | -subset_s(y,x) | subset_s(y,f14(y,x,vT,u))
57. el_p{n,closure(y,x,vI)) | -top_space(x,vT) | -subset_s(y,x) | closed(f14(y,x,vT,n},x,vT)
58. el_p(u,closure(y,x,vT)) | -top_space(x,vT) | -subset_s(y,x) | -el_p(u,fi14(y,x,vT,u))

Neighborhood

59. -neighborhood(u,y,x,vT) | top_space(x,vT)

60. -neighborhood(u,y,x,vT) | open(u,x,vT)

61. -neighborhood(u,y,x,vT) | el_p(y,u)

62. neighborhood(u,y,x,vT) | -top_space(x,vT) | -open(u,x,vT) | -el_p(y,u)
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Limit point

63. -limat_pt(z,y,x,vT) | top_space(x,vT)

64. -limit_pt(z,y,x,vT) | subset_s(y,x)

65. -lamit_pt(z,y,x,vT) | -neighborhood(u,z,x,vT) | el_p(£15(z,y,x,vT,u),inter_s{u,y))

66. -limit_pt(z,y,x,vT) | -neighborhood(u,z,x,vT) | -eq_p(£15(z,y,x,vT,u),z)

67. limat_pt(z,y,x,vT) | -top_space(x,vT) | -subset_s(y,x) |
neighborhood (£16(z,y,x,vT),z,x,vT)

68. limit_pt(z,y,x,vT) | -top_space(x,vT) | -subset_s(y,x) |
-el_p(uul6,inter_s(£16(z,y,x,vT),y)) | eq_p(uuls,z)

Boundary of a set

69. -el_p(u,boundary(y,x,vT)) | top_space(x,vT)

70. -el_p{u,boundary(y,x,vT)) | el_p(u,closure(y,x,vT)}

71. -el_p(u,boundary(y,x,vT)) | el_p(u,closure(rel_comp_s(y,x),x,vT))

72.  el_p(u,boundary(y,x,vT)) | -top_space(x,vT) | -el_p(u,closuxe(y,x,vI)) |
~el_p(u,closure(rel_comp_s(y,x),x,vT))

Hausdorff space

73. -hausdorff(x,vT) | top_space{(x,vT)

74. -hausdorff(x,vl) | -el_p(x_1,x) | -el_p(x_2,x) | eq_p(x_1,x.2) |
neighborhood(£17(x,vT,x_1,x_2),x_1,x,vT)

75. -hausdorff(x,vT) | -el_p(x_1,x) | -el_p(x_2,x) | eq_p(x_1,x.2) |
neaghborhood(£18(x,vT,x_1,x_2),x_2,x,vT)

76. -hausdortf(x,vT) | -el_p(x_1,x) | -el_p(x_2,x) | eq_p(x_1,x_2) |
disjoint_s(f17(x,vT,x_1,x_2),118(x,vT,x_1,x_2))

77. hausdorff(x,vT) | -top_space(x,vT) | el _p(£19(x,vT),x)

78. hausdorff(x,vT) | -top_space(x,vT) | el_p(£20(x,vT),x)

79. hausdorff(x,vT) | -top_space(x,vT) | -eq_p(£19(x,vT),120(x,vT))

80. hausdorff(x,vT) | -top_space(x,vT) | -neighborhood(uu19,£19(x,vT),x,vT) |
-neighborhood(uu20,£20(x,vT),x,vT) | -disjoint_s(uul9,uu20)

Separation in a topological space

81. ~separation(vAi,vA2,x,vT)

82. -separation(vAl,vi2,x,vT)

83. -separation(viAl,va2,x,vT)

84. ~separation(vAl,vA2,x,vT)

85. -separation(vAl,vA2,x,vT)

86. -separation{vAi,va2,x,vT) | eq_s(Union_s(vAl,vA2),x)

87. -separation(vAl,vA2,x,vT) | disjoint_s(vA1,vA2)

88. separation(vAl,vA2,x,vT) | -top_space(x,vT) | eq_s(vA1,0_s) | eq_s(vA2,0_s) |
~el_s(vA1,vT) | -el_s(vA2,vT) | -eq_s(Union_s(vAl,vA2),x) | -disjoint_s(vAl,vA2)

top_space(x,vT)
~eq_s(vA1,0_s)
-eq_s{(vA2,0_s)
eal_s(val,vT)
el_s(va2,vT)

Connected topological space

89. -comnected(x,vT) | top_space(x,vT)

80. -connected(x,vT) | -separation(vAl,vA2,x,vT)

91. connected(x,vT) | -top_space(x,vT) | separation(2£21(x,vT),£22(x,vT),x,vT)
Connected set

92. ~connected_set(vA,x,vT) | top_space(x,vT)

93. -connected_set(vA,x,vT) | subset_s(vi,x)
94. -connected_set(vi,x,vT) | connected(vi,subspace_top(x,vT,vA))
95. connected_set(vA,x,vT) | -top_space(x,vT) | -subset_s(vA,x) |

~connected(vA,subspace_top(x,vT,vA))

Open covering

96. -~open_cover(vF,x,vT) | top_space(x,vT)

97. -open_cover(vF,x,vT) | subset_c(vF,vT)

98. -open_cover(vF,x,vT) | eq_s(sigma(vF),x)

99. open_cover(vF,x,vT) | -top_space(x,vT) | -subset_c(vF,vT) | -eq_s(sigma(vF),x)
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Compact topological space

100. -compact(x,vT) | top_space(x,vT)

101. -compact(x,vT) | -open_cover(vF1,x,vT) | finite(£23(x,vT,vF1i))

102. -compact(x,vT) | -open_cover(vF1,x,vT) | subset_c(£23(x,vT,vF1),vF1)

103. ~-compact(x,vT) | ~open_cover(vFi,x,vT) | open_cover(£23(x,vT,vF1),x,vT)

104. compact(x,vT) | -top_space(x,vT) | open_cover (£24(x,vT),x,vT)

105. compact(x,vT) | -top_space(x,vI) | ~finite(uu24) | -subset_c(uu24,£24(x,vT)) |
-open_cover (uu24,x,vT)

Compact set

106. -compact_set(vA,x,vT) | top_space(x,vT)

107. -compact_set(vA,x,vT) | subset_s(vA,x)

108. -compact_set(vA,x,vT) | compact(vi,subspace_top(x,vT,vA))

109. compact_set(vA,x,vT) | -top_space(x,vT) | -subset_s(vA,x) |
-compact(vA,subspace_top(x,vT,vA))

5. Denials of Lemmas in Clause Form
In the following, X, T, U, Y, A, B, . .. are Skolem constants.

1. The topology generated by a basis gives rise to a topological space. Denial:

110. basis(X,T)
111. -top_space(26,top_of_basis(T))

2. If (X, T) is a topological space, 4 is a subset of X, and every point in A4 has a
neighborhood U that is a subset of A4, then A is open in (X, T). Denial:

112. top_space(X,T)

113. subset_s(A,X)

114. -el_p(y,A) | neighborhood(£30(y),y,X,T)
115. ~el_p{y.A) | subset_s(£30(y),A)

116. -open(A,X,T)

3. The subspace topology gives rise to a topological space. Denial:

117. top_space(X,T)
118. subset_s(Y,X)
119. -top_space(Y,subspace_top(X,T,Y))

4, If Y is open in X, and A is open in Y, then A4 is open in X. Denial:

120. open(Y,X,T)
121. open(A,Y,subspace_top(X,T,Y))
122. -open(A,X,T)

5. A finer topology induces a finer subspace topology. Denial:

123. finer(T1,T2,X)
124. subset_s(A,X)
125. -finer(subspace_top(X,T1,A),subspace_top(X,T2,4),X)

6. An alternative definition of top_of_basis. Denial:

126. el_p(U,top_of_basis(F)) | subset_c(G,F)
127. el_p(U,top_of_basis(F)) | eq_s(U,sigma(G))
128. -el_p(U,top_of_basis(F)) | -subset_c(x,F) | -eq_s(U,sigma(x))
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7. Arbitrary intersections and finite unions of closed sets are closed. Denial:

129. top_space(X,T)

130. -closed(0_s,X,T)
131, ~closed(0_s,X,T)
132. -closed(0_s,X,T)
133. -~closed{0_s,X,T)
134. -closed(0_s,X,T)
135. -closed(0_s,X,T)
136. -closed{0_s,X,T)
137. -closed(0_s,X,T)
138. -closed(0_s,X,T)

-closed(X,X,T)
-closed(X,X,T)
~closed(X,X,T)
-closed(X,X,T)
-closed(X,X,T)
~closed(X,X,T)
~closed(X,X,T)
-closed(X,X,T)
-closed(X,X,T)

closed(Y1,X,T)
closed(Y1,X,T)
closed(Y1,X,T)
closed(Y2,X,T)

subset_s(sigma(F),X)

-el_s(v,F) | closed(v,X,T)
-closed(pi(F),X,T)

subset_s(sigma(F),X)

closed(Y2,X,T) | -el_s(v,F) | closed(v,X,T)
closed(Y2,X,T) | ~closed(pi(F),X,T)
-closed(Union_s(Y¥1,Y2),X,T) | subset_s(sigma(F),X)
-closed(Union_s(Y1,Y2),X,T) | -el_s(v,F) | closed(v,X,T)
-closed(Union_s(Y¥1,Y2),X,T) | -closed(p:(F),X,T)

8. The interior of A is a subset of 4, which is a subset of the closure of 4. Denial:

139. top_space(X,T)
140. subset_s(A,X)
141. -subset_s(interior(A,X,T),A) | -subset_s(A,closure(4,X,T))

9. If A is open, the interior of 4 is 4, and if A4 is closed, the closure of 4 is A.
Denial:

142. top_space(X,T)

143. subset_s(A,X)

144. open(4,X,T) | eq_s(A,interior(4,X,T)) | closed(4,X,T) | eq_s(A,closure(4,X,T))
145. open(A,X,T) | eq_s(A,interior(4,X,T)) | -closed(4,X,T) | -eq_s(4,closure(4,X,T))
146. -~open(A,X,T) [ -eg_s(A,interior(A,X,T)) | closed(A,X,T) | eq_s(4,closure(4,X,T))
147. -open(A,X,T) | -eq_s(A,interior(A,X,T)) | -closed(A,X,T) | -eq_s(4,closure(4,X,T))

10. The interior and the boundary of a set are disjoint. Denial:

148. top_space(X,T)
149. subset_s(A,X)
150. -eq_s(inter_s(interior(4,X,T),boundary(4,X,T)),0_s)

11. The union of the interior and the boundary is the closure. Denial:

151. top_space(X,T)
152. subset_s(A,X)
153. —eq_s(Union_s(interior(A,X,T),boundary(A,X.T)),closure(A,X,T))

12. If the boundary of A4 is empty, A is both open and closed. Denial:

154. top_space(X,T)

155. subset_s(A,X)

156. eq_s(boundary(A,X,T),0_s) | open(A,X,T)

157. eq_s(boundary(A,X,T),0_s) | closed(A,X,T)

158. -eq_s(boundary(A,X,T),0_s) | -open(A,X,T) | -closed(A,X,T)

13. If some limit points are added to a connected set, the result is connected.
Denial:
159. connected_set(4,X,T)
160. -el_p(y,B) | limit_pt(y,A,X,T)
161. —connected_set(Union_s(4,B),X,T)
14. The closure of a connected set is connected. Denial:

162. connected_set(4,X,T)
163. -comnected_set(closure(A,X,T),X,T)
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6. A Proof of Lemma 1 in Five Parts

This section contains resolution (with factoring) proofs of Lemma 1. The purpose
of our presentation of these proofs is not to demonstrate that our theorem prover
can find the proofs, but rather to simply show some example resolution proofs and
the types of clause and term that appear in them. The lemma asserts that the topology
generated by a basis is in fact a topological space. It has been divided into five parts:
one to prove each of the five conditions necessary for a topological space. Proof
outlines were first worked out by hand, then just the clauses required for refutations
were given to the automated theorem prover OTTER [6]. After several attempts at
each part, modifying the parameters and options, the following proofs were found
by OTTER within a few seconds. (See Section 7 for comments about this approach.)

The symbols [F, X, U, V] are Skolem constants. Clauses for the set theory axioms,
definitions, and lemmas that do not appear in Section 4 are marked with an asterisk

(*).
Proof of Lemma 1a:
VF VX (basis(X, F) — sigma(top _of _basis(F)) < X)

-basis(x,vF) | eq_s(sigma(vF),x).

-el_s(u,top_of_basis(vF)) | -el_p(x,u) | el_p(x,f10(vF,u,x)).

-el_s(u,top_of _basis(vF)) | -el_p(x,u) | el_s(£10(vF,u,x),vF).

-el_p(u,sigma(vF)) | el_p(u,f1(u,vF)).

-el _p(u,sigma(vF)) | el_s(fi(u,vF),vF).

6 el_p(u,sigma(vF)) | -el_p(u,uul) | ~el_s{uul,vF).

7% subset_s(x,x).

8% -subset_s(x,y) | ~el_p(u,x) | el_p(u,y).

9* -eq_s(x,y) | subset_s(x,y).

10* subset_s(x,y) | el_p(gi(x,y),x).

11* subset_s(x,y) | -el_p(gi(x,y),y).

12 basis(X,F).

13 -subset_s(sigma(top_of_basis(F)}),X).

14 (12,1) eq_s(sigma(F),X).

15 (14,9) subset_s(sigma(F),X).

17 (13,11) -el_p{gi(sigma(top_of_basis(F)),X),X).

18 (13,10) el_p(gl(sigma(top_ot_basis(F)),X),sigma(top_of_basis(F))).

20 (17,8) -subset_s(x,X) | -el_p(gi(sigma(top_of_basis(F)),X),x).

23 (18,5) el_s(t1(gi(sigma(top_of_basis(F)),X),top_of_basis(?)),top_of_basis(F)).

24 (18,4) el_p(gl(sigma(top_ot_baaiu(F)),X),11(51(sigma(top_of_basis(F)).X),top_ot_basis(F))).

27 (24,8) -subset_s(f1(g1(sigma(top_of_basis(F)),X),top_of_basis(F)),x) |
el _p(gi(sigma(top_of_basis(F)),X),x).

32 (23,3) -el_p(x,11(gi(s1gma(top_of_basis(?)),X),top_o!_basis(F))) |
el_s(th(F,!1(51(sigma(tophof_basis(F)),X).top_ot_basis(?)),x),F).

33 (23,2) -el_p(x,f1(g1(sigma(top_of_basis(F)),X),top_of_basis(F))) }
el_p(x,710(F,21(gi(sigmaltop_of_basis(F)),X),top_of_basis(F)),x)).

35 (20,18) -al_p(gi(sxgma(top_of_basis(?)),x),sigma(F)).

53 (35,6) -el_p(gi(sigma(top_of_basis(F)),X),x) | -el_s(x,F).

76 (32,27,7) el_s(f10(F,11(gi(sigma(top_of_basis(F)),X),top_of_basis(F)),
gl(sigma(top_of _basis(F)),X)),F).

85 (33,27,7) ol_p(gl(sigma(top_of_basis(F)),X).in(F,ti(gl(sigma(top_ot_basis(F)),X),
top_o?_basis(F)),g1{sigma(top_of_basis(F)),X))).

164 (53,85,76) .

[ I U S

Proof of Lemma 1b:
VF YX(basis(X, F) = 0etop _of _basis(F))
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2 el_s(u,top_of basis(vF)) | el_p(fi11(vF,u),u).
10* -el_p(x,0_s).

14 ~el_s(0_s,top_of_basis(F)).

17 (14,2,10) .

Proof of Lemma lc:
VF VY X(basis(X, F) - X etop _of _basis(F))

1 ~basis(x,vF) | eq_s(sigma(vF),x).

2 el_s(u,top_of_basis(vF)) | el_p(f11(vF,u),u).

3 el _s(u,top_of_basis(vF)) | -el _p(f11(vF,u),uui1) | -el_s(uuil,vF) | -subset_s(uuli,u).
4 -el_p(u,sigma(vF)) | el_p(u,f1(vF,u)).

5 ~el_p(u,sigma(vF)) | el_s(f1(vF,u),vF).

7+ ~el_s(x,y) | subset_s(x,sigma(y)).

8% -subset_s(x,y) | ~el_p(u,x) | el_p(u,y).

g% gubset_s(x,x).

10+ ~eq_s(x,y) | ~subset_s(z,x) | subset_s(z,y).
11 -eq_s(x,y) | -subset_s(x,z) | subset_s(y,z).
12 basis(X,F).

13 -el_s(X,top_of_basis(F)).

14 (12,1) eq_s(sigma(F),X).

16 (13,2) el _p(f11(F,X),X).

17 (14,11) -subset_s(sigma(F),x) | subset_s(X,x).
18 (14,10) -subset_s(x,sigma(F)) | subset_s(x,X).
24 (17,9) subset_s(X,sigma(F)).

31 (24,8) -el_p(x,X) | el _p(x,sigma(F)).

36 (18,7) subset_s(x,X) | -el_s(x,F).

47 (36,3) -el_s(x,F) | el_s(X,top_of basis(y)) | -el_p(£11(y,X),x) | -el_s(x,y).
49 (47,13) -el_s(x,F) | ~el_p(£11(F,X),x).

67 (31,16) el_p(£11(F,X),sigma(F)).

76 (67,5) el_s(#1(F,f11(F,X)),F).

77 (67,4) el _p(f11(F,X),f1(F,111(F,X})).

122 (49,76,77) .

Proof of Lemma 1d:

basis(X, F) A
VYEYXYUYV|| Uetop_of _basis(F) n |—(Un V)etop_of_basis(F)
V etop _of _basis(F)

1 -basis(x,vF) | eq_s(sigma(vF),x).

2 -basis(x,vF) | ~el_p(y,x) | -el_s(vB1,vF) | ~el_s(vB2,vF) | -el_p(y,inter_s(vBi,vB2))
el_p(y,f6(x,vF,y,vB1,vB2)),

3 -basis(x,vF) | -el_p(y,x) | -el_s(vB1,vF) | -el_s(vB2,vF) | -el_p(y,inter_s(vB1,vB2)) |
el_s(t8(x,vF,y,vB1,vB2) ,vF).

4 -basis(x,vF) | -el_p(y,x)} | -el_s(vB1,vF) | —el_s(vB2,vF) | -el_p{y,inter_s(vB1,vB2)) |
subset_s(f6(x,vF,y,vB1,vB2),inter_s(vB1,vB2)).

§ ~el_s(u,top_of_basis(vF)) | -el_p(x,u) | el_p(x,f10(vF,u,x)).

6 -el_s(u,top_of_basis(vF)) | -el_p(x,u) | el_s(£10(vF,u,x),vF).

7 ~el_s(u,top_of_basis(vF)) | -el_p(x,u) | subset_s(£10(vF,u,x),u).

8 el_s(u,top_of_basis(vF)) | el_p(f£11(vF,u),n).

9 el_s(u,top_of_basis(vF)) | ~el_p(f£11(vF,u),mi1) | -el_s(uuii,vF) | -subset_s(uuli,u).

10* -subset_s(x,y) | -subset_s(y,z) | subset_s(x,z).

11% -el_p(z,inter_s(x,y)) | el_p(z,x).

12% el _p(z,inter_s(x,y)) | el p(z,y).

13+ el_p(z,inter_s(x,y)) | -el_p(z,x) | -el_p(z,y).

14* -subset_s(x,y) | -subset_s{(u,v) | subset_s(inter_s(x,u),inter_s(y,v)).

15 -el_s(u,x) | -el_p(z,u) | el_p(z,sigma(x)).

16+ ~eq_s(x,y) | -el_p(z,x) | el _p(z,y).

17 basis(X,F).

18 el_s(U,top_of basis(F)).

19 el_s(V,top_of_basis(F)).
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20 ~el_s(inter_s(U,V),top_of_basis(F)).

22*% eq_s(inter_s(x,y),inter_s(y,x)).

29 (17,1) eq_s(sigma(F).X).

72 (20,8) el_p(f11(F,inter_s(U,V)),inter_s(U,V)).

76 (72,12) el_p(£11(F,inter_s(U,V)),V).

77 (72,11) el_p(f11(F,inter_s(U,V)),U).

105 (76,7,19) subset_s(£10(F,V,f11(F,inter_s(U,V))),V).

106 (76,6,19) el_s(f10(F,V,211(F,inter_s(U,V))),F).

107 (76,5,19) el_p(f11(F,inter_s(U,V)),f10(F,V,f11(F,inter_s(U,V)))).

121 (77,7,18) subset_s(£10(F,U,£11(F,inter_s(U,V))),u).

122 (77,6,18) el_s(£10(F,U,f11(F,inter_s(U,V))),F).

123 (77,5,18) el _p(f11(F,inter_s(U,V)),f10(F,U,211(F,inter_s(U,V)))).

155 (107,15,106) el_p(f11(F,inter_s(U,V)),sigma(F)).

163 (121,14,105,22,22) subset_s(inter_s(f10(F,U,f11(F,inter_s(U,V))),
£10(F,V,211(F,inter_s(U,V)))),inter_s(U,V)).

191 (123,13,107,22) el_p(f11(F,1nter_s(U,V)),inter_s(£10(F,U,£11(F, inter_s(U,V))),
£10(F,V,211(F,inter_s(U,V))))).

208 (155,16,298) el_p{(f11(F,inter_s(U,V)),X).

317 (191,4,17,208,122,106) subset_s(f6(X,F,f11(F,inter_s(U,V)),f10(F,U,£11(F,inter_s(U,V))),
110(F,V,f11(F,intex_s(U,V)))),inter_s(£10(F,U,f11(F,inter_s(U,V))),
£10(F,V,£11(F,inter_s(U,V))))).

318 (191,3,17,208,122,106) el_s(ts(x,F,fll(F.inter_s(U.V)),in(F,U,tii(F,1nter_s(U,V))).
£10(F,V,111(F,intex_s(U,V)))) ,F).

319 (191,2,17,208,122,106) el_p(f11(F,inter_s(U,V)),f6(X,F,£11(F,inter_s(U,V)),
£10(F,U,£11(F,inter_s(U,V))),f10(F,V,£11(F,inter_s(U,V))))).

337 (319,9,20,318) -subset_s(£6(X,F,f11(F,inter_s(U,V)),210(F,U,111(F,inter_s(U,V))),
£10(F,V,f11(F,inter_s(U,V)))),inter_s(U,V)).

487 (337,10,317,163) .

Proof of Lemma le:

basis(X, F) A . ,
G)etop _of _basis(F
VFYX VG([ G < top_of _basis( F)]—nvzgma( )etop —of _basis( ))

-el_s(u,top_of basis(vF)) | -el_p(x,u) | el_p(x,f10(vF,u,x)).

-el_s(u,top_of_basis(vF)) | -el_p(x,u) | el_s(£10(vF,u,x),vF).

-el_s(u,top_of_basis(vF)) | -el_p(x,u) | subset_s(£10(vF,u,x),u).

el_s(u,top_of_basis(vF)) | el_p(f11(vF,u),u).

el_s(u,top_of_basis(vF)) | -el_p(f11(vF,u),uu11) | -~el_s(uuli,vF) | -subset_s(uuitl,u).

6 ~el_p(u,sigma(vF)) | el_p(u,f1(vF,u)).

7 -el_p(u,sagma(vF)) | el_s(f1{(vF,u),vF).

8+ subset_s(x,y) | -el_p(u,x) | el _p{u,y).

9% -subset_s(x,y) | ~el_s(y,z) | subset_s(x,sigma(z)).

10+ -subset_c(x,y) | -el_s(u,x) | el_s(u,y).

12 subset _c(G,top_of _basis(F)).

13 -el_s(sigma(G),top_of _basis(F)).

17 (13,4) el_p(£f11(F,sigma(G)),sigma(G)).

19 (17,7) el_s(£1(G,*11(F,s1gma(G))),G).

20 (17,6) el_p(£11(F,sigma(G)),21(G,111(F,sigma(G)))).

25 (19,10) -subset_c(G,x) | el_s(£1(G,211(F,s1gma(G))),x).

33 (25,12) el_s(f£1(G,£11(F,sigma(G))),top_of _basis(F)).

43 (33,3) -el_p(x,71(G,f11(F,sigma(G)))) | subset_s(£10(F,11(G,f11(F,s1gmalG))),x),
11(6,£11(F,sigma(G)))).

44 (33,2) -el p(x,f1(G,f11(F,sigma(G)))) | el_s(£10(F,£1(G,f11(F,s1gma(G))),x),F).

45 (33,1) -el_p(x,11(G,111(F,signa(G)))) | el_p{x,f10(F,f1(G,£11(F,s1gma(G)}),x)).

57 (43,8) subset_s(£10(F,f1(G,f11(F,sigma(G))),x),11(G,£11(F,s1gma(G)))) |
subset_s(y,f1(G,f11(F,sigma(G)))) | -el_p(x,y).

61 (57) subset_s(£10(F,f1(G,211(F,sigma(G))),x),21(G,211(F,sigma(G)))) |
-el_p(x,£10(F,11(G,111(F,s1gma(G))),x)).

65 (44,20) el_s(£10(F,£1(G,f11(F,sigma(G))),111(F,s1gma(G))),F).

75 (45,20) el_p(£11(F,sigma(6)),£10(F,11(G,211(F,signa(G))),f11(F,sigma(G)))).

84 (75,5,13,65) -subset_s(£10(F,£1(G,211(F,s1gma(G))),f11(F,sigma(G))),sigma(G)).

88 (84,9) -subset_s(£10(F,f1(G,?11(F,sigma(G))),f11(F,sigma(G))),x) | -el_s(x,G).

110 (88,61,19,78) .
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7. Conclusion

The lemmas in Section 3 are not difficult for student mathematicians. Most can be
proved by using the topology definitions to open up the defined concepts in the
lemmas, then using basic set theory to complete the proofs. One of the reasons the
lemmas are combinatorially difficult for resolution-style theorem provers is that
conversion to clause form causes much replication of literals. An obvious strategy
to reduce literal replication in the denial of the conclusion is to break a problem
into independent subproblems before converting to clauses, as in the five-part proof
of Lemma 1. But even with reduction to independent subproblems, we suspect that
the basic representation and framework used by OTTER is inadequate for problems
of his kind. A variant of linked inference rules [12] or of non-clausal theorem
proving [1, 10, 8] might be effective.

We have avoided the issue of how to deal with the underlying basic set theory
because of our wish to focus on topology concepts. Typing of objects may make
these problems easier to handle than problems in other areas built on set theory; it
enables the use of naive set theory rather than the full set theory presented in [2].
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