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Abstract. Recent advances in the field of hardware verification have raised some fresh (and some familiar) 
issues concerning the scope and limitations of formal proof. In this article, we discuss in detail some of these 
issues. We focus particularly on which aspects of hardware and software one can verify, in contrast to the 
claims that are sometimes made in that regard. Since we consider verification to be one of the more 
important and promising applications of automated theorem proving - our research has been concerned 
with this application for a number of years - a precise understanding of verification must be addressed. 
Although the context for our discussion is the Viper verification project, our remarks apply generally. Viper 
is a microprocessor designed by W. J. Cullyer, C. Pygott, and J. Kershaw of the Royal Signals and Radar 
Establishment of the UK. Ministry of Defence, for use in safety-critical applications. Much to their credit, 
the designers intended from the start that Viper be formally verified; they presented Viper's more abstract 
specifications in a language suitable for formal reasoning, and they placed the design in the public domain. 
Since Viper microprocessors are currently being marketed as verified chips, the need exists to identify 
precisely to what extent verification is possible. The formal proof aspects of the verification work have been 
carried out at the Computer Laboratory of the University of Cambridge. To date, some important 
propemes of a register-transfer level model of Viper, relative to a more abstract functional specification, 
have been proved (by the author) using the HOL proof generating system. 'Verified' systems such as Viper 
seem likely to become commonplace in the near future. While proofs about the abstract models of 
such systems are obviously a vital contribution to our trust in them, it is also important (not least in 
safety-critical applications) that the limitations of the approach be understood. 
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1. Introduction 

The verification of  hardware systems has recently become an attractive appl icat ion 

area for theorem provers for several reasons. First, hardware verification is in m a n y  

ways a more tractable problem than  software (program) verification - it is often easier 

to write a clear specification that  captures the funct ional i ty  of  a system of  hardware 

than  of  software - and  hardware proofs tend to have a certain uni formi ty  of  structure 

which is well suited to mechanical  t reatment .  Second, compell ing economic reasons 

exist for t rying to get hardware correct early on; correcting errors in a chip can involve 

expensive refabricat ion,  not  merely the exiting of  text. Finally,  it is becoming 

increasingly impor tan t  to invest time and  effort in the verification of  hardware that  

is in tended for safety-critical applications.  

Several issues per ta ining to the scope and  l imitat ions of  verification have recently 

been raised by the project to formally verify aspects of  the Viper microprocessor  at 

the Universi ty  of  Cambridge.  In this article, some of  the issues are discussed; a l though 

this discussion is presented in the context  of  Viper, the remarks are more general. The 

in ten t ion  is to encourage intell igent unders tand ing  of  the sense in which a piece of  
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hardware can be called 'verified', and not to undermine research in verification or to 
discredit this vital work. As devices begin to appear on the market purporting to be 
'verified' or 'mathematically proved' - possibly with the implication that they cannot 
therefore fail - a sharp watch must be kept for unqualified claims and also for failures 
to convey the sense, extent, and nature of the verification effort. This observation applies 
particularly to very hazardous applications such as nuclear power plant control. 

Various computing systems in recent years have been claimed to do verification or 
proof, or something akin, when in fact they were doing something distinct from (if no 
less valuable than) formal proof in an explicit and well-understood logic. That is, they 
have done simulation, or reasoning in ad hoc logical systems, or informal reasoning, 
etc. For present purposes, 'verification' is taken to mean formal proof in the usual 
mathematical sense of a sequence of valid inference steps. 

2. The Viper Microprocessor 

Viper [8, 9, 10, 11, 20, 24] is a microprocessor designed by W. J. Cullyer, C. Pygott, 
and J. Kershaw at the Royal Signals and Radar Establishment of the U.K. Ministry 
of Defence (henceforth RSRE) for use in safety-critical applications such as civil 
aviation and nuclear power plant control. Viper chips are now commercially avail- 
able. They are currently finding uses in military areas such as the deployment of 
weapons from tactical aircraft [12] and in civilian areas such as railway signalling 
systems. To support safety-critical applications, Viper has a particularly simple 
design; for example, interrupts in the usual sense are not permitted; the instruction set 
is kept to a minimum; and the machine is designed to stop if it detects itself in an error 
or illegal configuration. (The stopping feature is intended to support the running of 
several Vipers simultaneously for increased reliability.) The simplicity of the design 
makes it amenable to formal analysis using current techniques. 

Aspects of the formal, mechanical verification of Viper were subcontracted to the 
Hardware Verification Group at the University of Cambridge from early 1986 to late 
1987. The results of this project are reported in [6] and [7]. A pilot study for the main 
proof is reported in [5]. 

3. The HOL Verification System 

The verification of Viper has been approached within the HOL (Higher-Order Logic) 
system [2, 14, 15], a theorem-proving system derived from R. Milner's LCF (Logic for 
Computable Functions) system [13, 23] and based on the version of higher-order logic 
formulated by A. Church [3]. HOL was implemented by M. Gordon at the University 
of Cambridge and is currently in use by the Hardware Verification Group at 
Cambridge and at several sites throughout the world. 'Verification' was understood 
by Viper's designers at RSRE (as by the LCF and HOL communities) to mean 
complete, formal proof in an explicit and well-understood logic. Proofs in HOL are 
normally constructed interactively, combining machine assistance with user guidance, 
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and not fully automatically (although the extent to which this is so is a function of 
user-designed proof strategies). 

4. The Models  of  Viper 

The designers of Viper, who deserve a great deal of credit for the promotion of formal 
methods, intended from the start that Viper be formally verified. Their approach was 
to specify Viper in a hierarchy of decreasingly abstract levels, each of which con- 
centrated on some specific aspects of the design. That is, each level was to be a 
specification of the more abstract level above it (if any) and an implementation of the 
one below (if any). The verification effort would then be simplified by being structured 
according to the abstraction levels. These levels of description were characterized by 
the design team at RSRE. The first two levels, and part of the third, were written by 
them in a logical language amenable to reasoning and proof (a predecessor of HOL's 
higher-order logic). (The systematic study of abstraction hierarchies and mechanisms 
in the modeling of hardware is discussed by T. Melham [21, 22].) 

The highest level specification of Viper is a simple state-transition function describ- 
ing the way in which an abstract state (representing Viper's memory and its visible 
registers) changes as Viper executes each of its possible instruction types (see [8] and 
[6] for details). The specification is thus an operational semantics of the instruction set. 
It characterizes no more than the fetch-decode-execute cycle of Viper; it does not 
specify all of the possible behaviors of the actual microprocessor. In particular, the 
capacity of Viper to be reset externally by an operator (i.e., to have its registers cleared 
from the outside) is not covered, nor is its capacity for 'timing out' after some fixed 
number of clock cycles because of memory failure. As will be discussed, any verifi- 
cation of a more concrete model relative to this top-level specification must con- 
sequently be limited to the behavior manifest at the top level. That is, no such proof 
can establish that Viper resets or times-out in an acceptable way. 

The next (more concrete) level is called the major-state level. At this level, an 
instruction is processed via a sequence of events rather than in a single step. An event 
may affect the visible registers or the memory of the top-level specification, or any of 
several internal registers (which constitute the internal state). These internal registers 
are still part of an abstract view of Viper and do not necessarily correspond to parts 
of the actual Viper chip. The 'next' event in a sequence is determined according to the 
current event, the visible state, and the internal state; some events are recognizably 
terminal and some initial, in the sequences. From all of this, a new state-transition 
function can be extracted and its properties established by proof. In particular, the 
cumulative result of the sequence of events that processes each of the instruction types 
can be inferred, and then compared to the result of the corresponding high-level 
state-transformation function. 

The 'block model' is the most concrete level considered in the formal verification 
project (although the RSRE design continues down to the gate-level circuit design, 
which could in principle also be formally verified). The block model was presented by 
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the designers in a form that was partly pictorial and partly textual (expressed in 
a functional style). The model consists of 'blocks', that is, computational units such 
as Viper's instruction decoder, its arithmetic-logic unit (ALU), and its memory. 
Information passes between blocks, and to/from the outside world at fixed clock 
cycles. The textual specifications describe only the internal combinational logic of the 
various blocks. Neither their behavior over time (e.g., the delay units - registers - 
which give them memory) nor the connections between separate blocks are covered 
by the textual specifications: the pictorial specification fills in the rest of that infor- 
mation. The block definitions and the pictorial information were supplied by the 
designers at RSRE; a fully formal specification had to be constructed from these 
sources - a complicated process - and the block machine's behavior had to be 
logically inferred from that specification. 

The block model isolates the computational behavior of Viper; to relate it to either 
of the more abstract specifications (the top-level specification or the major-state model), 
computational behaviors such as additions, shifts, negations, and comparisons had to 
be considered in detail. The block model also specifies more of the actual behaviors 
of Viper (e.g., the behavior of resets and time-outs) than appear in the top-level formal 
specification. At the block level, one begins to approach the functional units and 
connectivity of the actual circuit, though still in a rather abstract way. 

5. The Viper Verification Project 

The correctness proof of the major-state level of Viper relative to its top-level 
specification was straightforward (if lengthy) in HOL, since the possible execution 
sequences of the model were explicitly given. That is, the conditions under which one 
event followed another were explicitly defined. The proof consisted, therefore, of a 
number of cases (one for each instruction type) in which the cumulative effects of the 
sequence of events processing that instruction type were inferred from the definition 
of the model. In each case, the effects were then proved equivalent to the effects 
specified at the top level for components appearing at both levels. It also had to be 
proved that every possible execution sequence had been considered, to justify the case 
analysis. 

The correctness of the block model is more difficult to establish. The first task in 
the verification effort was to derive a mathematical function representing the behavior 
of the block over a single cycle. This had to be expressed in a formal logic suitable for 
reasoning and proof, since it is not obvious how to reason formally about a schematic 
diagram indicating the transfer of information to and from its subunits simultaneously. 

The second task (analogous to, but more complex than that in the major-state level 
proof) was to infer, using the mathematical function for each instruction type, the 
accumulated effects on the registers of the block model after all of the steps that 
process that instruction had been performed. This involved extracting from the 
formal representation (i) the conditions under which one step led to another, and 
(ii) any assumptions that had to be made about initial states and 'normal' behavior 
in order to resolve the state transitions. (These were implicitly determined by 
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the mathematical representation of  the block model; at the major-state level, the 
conditions were given explicitly, and no assumptions were required.) Normal behav- 

ior means behavior that is within the scope of  the high-level specification. For  
example, as mentioned, it had to be assumed in the verification of  the Viper block 
model that the machine was not reset at any time during the course of  processing an 
instruction, and that the block machine's time-out facility was never invoked. The 
initial conditions, for example, had to include the assumptions that at the start of 
processing each instruction (i) the time-out counter was not set at its maximum value, 
and (ii) no errors were being signalled. It also had to be shown, as before, that the 
state-transition conditions covered all logical possibilities, to ensure that no possible 
instruction types had been omitted from the analysis. 

The third task would be to verify the results of  the block model relative to the 
results of the top-level transformation function at each instruction type. The first and 
second tasks of the block model verification have been completed to date, giving a 
provably correct and complete description of the behavior of the formal represen- 
tation of  the block model (under the assumptions mentioned above); but for practical 
reasons, the third task has not been completed. All three tasks are discussed in [7]. 

6. Limitations of Proof in Hardware Verification 

The notion of  formal proof  began to receive serious attention in its own right just 
before the age of  computing. Since computers have been used to assist with formal 
proofs, there has been renewed discussion of what proof  is and what it actually 
ensures. This may be in part because there is no prior reason to insist that machines 
construct proofs in the way that mathematicians do; nor is there yet any well- 
agreed 'standard of  evidence' that a proof  has been successfully completed by a 
machine, of  the sort that mathematicians are required to supply. In this section, 
attention is drawn to some of  the fresh concerns that have been raised by the Viper 
verification project. 

6.1. CHIPS AND INTENTIONS CANNOT BE VERIFIED 

Ideally, one would like to prove that a chip such as Viper correctly implemented its 

intended behavior in all circumstances; we could then claim that the chip's behavior 
was predictable and correct. In reality, neither an actual device nor an intention is an 
object to which logical reasoning can be applied. The intended behavior rests in the 
minds of  the architects and is not itself accessible. It can, of  course, be reported in a 
formal language - but not with checkable accuracy. Similarly, a material device can 
only be observed and measured; it cannot be verified. Again, a device can be described 
in a formal way, and the description verified; but as with intentions, there is no way 
to assure the accuracy of  the description. Indeed, any description is bound to be 
inaccurate in some respects, since it cannot be hoped to mirror an entire physical 
situation even at an instant, much less as it evolves through time; a model of  a device 
is neccessarily an abstraction (a simplification). In short, verification involves a pair 
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of  models  that bear an uncheckable and possibly imperfect relation to the intended 
design and to the actual device. 

Although these points seem obvious, they are not merely philosophical quibbles. 
Errors were found both in the top-level specification of  Viper and in its major-state 
model, none of  which was either intended by the designers or evident in the manu- 
factured Viper chips. (These errors are discussed in [6].) The errors were fairly minor 
and quickly repaired, but their presence highlights the rather limited sense in which 
a formal specification can be said to have been verified against the architects' intended 
design or against the actual chip; there remains the danger that - secure as the proof  
may be - the models themselves may be wrong. 

There is no complete solution to this problem, but there are avenues of approach 
to be explored. In particular, as we produce clearer and more consise and readable 
abstract specifications, their intuitive plausibility should be increased. At the other 
extreme, as we devise more realistic and detailed models, their correspondence with 
actual devices should become more convincing. Attention has been drawn to these 

points by T. Melham [21]. 

6.2. LINKS BETWEEN DESIGNER, VERIFIER, AND MANUFACTURER 

That the actual Viper chips appear not to suffer from the errors found in the models 
also illustrates the still quite abstract nature of  the research described in [6] and [7]. 
The chips were already in the process of  being built by the time the subcontracted 
verification work began on the major-state model at Cambridge; and they had been 
built and were being advertised by the time the work on the block model was 
undertaken. While it is possible in theory that an error in an abstract specification had 
been reflected in the circuit design given by RSRE to the manufacturers - the abstract 

specifications were no doubt in the architects' minds while they designed the circuit 
- it seems more likely, because of the indirect links between the designers' abstract 
specifications, the circuit design process, the manufacturers, and the verifiers, that 
problems in the specification would not  propagate down to chip problems. In fact, it 
would seem to be the case that the manufacturers worked from different 'design texts' 
than the verifiers. Until common models in a common language are adopted, we are 
only studying models that bear an informal connection to the devices they are 

modelling. In this respect too, there is good reason to hope that a common language 
will be agreed on and an integrated approach taken in the future. 

6.3. THE LACK OF A FULLY FORMAL DESCRIPTION 

At more concrete levels of  description, the situation may be further complicated by 
not beginning with fully formal descriptions. For example, Viper's top-level specifi- 
cation and its major-state level were both supplied in a logical language; but its 
block-level model was given partly formally and partly pictorially (as was natural). 
Combining these two parts required both ingenuity and some guesswork. The guesses 
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were based on the coincidence of line names, on the names of bound variables in 
function definitions, and on annotations in the text of the definitions. None of these 
notational devices can be regarded as a formal specification. Before verification can 
be meaningfully applied in such cases, a fully formal description must be produced. 
Once again, however, accuracy cannot be checked; the new formal description may 
be a flawed translation of the pictorial specification, or a flawed combination of 
picture and text, but this cannot be rigorously tested. One may therefore end up 
proving properties of a formal description bearing an imperfect relation to the 
intended design - and possibly never know it. 

In fact, this w a s  a problem in the block-level representation of Viper; in the author's 
first attempt at a formal representation of the Viper block diagram, there was a pair 
of interchanged line names. This flawed description was subsequently used to deduce 
plausible-looking block results. The error in the representation was discovered rather 
late in the proof and only by an unsystematic inspection. The problem of the 
accuracy of a representation could appear at the gate level, the transistor level, or any 
other level at which a linguistic description has to be constructed creatively from a 
pictorial one, i.e., at which diagrams are the usual and natural model of specification. 
This situation further limits the sense in which a system can be called verified. 

This problem is at least partly addressed by the preceding section; if the designers, 
for example, are in a position to read and scrutinize the formal description derived 
from the informal specification, they may well be able to spot mistakes, particularly 
those that require a deep understanding of the design. For example, a typographical 
error in the formal representation caused some results to be deduced that the designers 
at RSRE queried. They were then able to locate the author's error. 

6.4. THE LEVEL AND COMPLETENESS OF THE MODEL 

As verification relates a less abstract implementation to a more abstract specification, 
it is important to be explicit about the level of abstraction and the degree of complete- 
ness of the models in question. We say that a device has been verified 'at the 
major-state level' or 'at the register-transfer level', and so on - it is not enough to say 
simply 'verified'. For example, Viper's major-state machine has been fully verified 
with respect to its top-level specification; but the proof establishing the equivalence 
of these two sets of results depends only on the flow of control in the two models, and 
does not depend on any of the computational behaviors of Viper. (That is, the same 
formal expression represents the arithmetic-logic unit at both levels, so that expression 
is never evaluated.) Therefore, the fact that Viper has been verified 'at the major-state 
level' does not actually ensure very much; the essence of the microprocessor (the 
behavior of its ALU) has not, at that stage, been treated. Viper certainly could not, 
on that basis alone, be usefully called 'verified'. 

The block model of Viper does concern itself with Viper's arithmetic and logical 
operations and with the transfer of information between registers and memory. Thus, 
verifying Viper to the block level would be a significant step towards a 'verified' 
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microprocessor. (In any case, the proof has not been fully completed at this level.) 
However, the block model does not concern itself with gate layout, transistors, 
electrical effects, timing problems, or many similar areas in which unsuspected errors 
would seem particularly likely to appear. (In those areas, enormous amounts of 
research remain to be done on finding useful, tractable models, even before we begin 
to verify them.) Thus, again, the term 'verified' cannot properly be used without an 
indication of the levels of the models involved. At every level of abstraction, some 
properties are included and some ignored. 

In addition, the models involved may be incompletely specified. For example, 
Viper's highest level specification is complete only for the processing of instructions, 
and does not cover such features as the resetting or timing out of the machine, or other 
possible behaviors specified at the block level. This factor, from the outset, restricts 
any analysis to the high-level behavior alone, again missing the more subtle and 
perplexing issues. 

6.5. NORMALITY ASSUMPTIONS 

In discussing what was proved in the Viper verification project, it was indicated that 
certain assumptions had to be made (about initial and normal behaviors) in order to 
infer the cumulative effects of  processing instructions. These assumptions are perfectly 
natural, and reflect the fact that devices are intended to operate only under certain 
conditions. The only cause for concern here arises if these assumptions are ignored 
when claims are made about what was proved. In the formal correctness statement, 
of course, any persistent assumptions will appear explicitly as the antecendents of an 
implication. It is in informal summaries (marketing material and so on) that the 
assumptions can easily be overlooked. 

In the end, for example, the effect of each of Viper's instructions on the registers 
of its block model was deduced. This was done by assuming that the machine was 
initialized in a reasonable way, and assuming that it was run under certain ideal 
conditions. The effect was not deduced, say, of assuming that a reset operation could 
occur - it could have been, but to no useful end, since that effect is not specified at 
the top level. Thus, even a fully verified block design could remain incorrect in its 
resetting behavior, and the error could propagate, despite the proof, down to the chip 
itself. This illustrates the importance of knowing the conditions under which the block 
model has been analyzed. 

6.6. PUTTING FORMAL PROOF IN CONTEXT 

Finally, the correctness of an abstract representation of a system must be placed in 
context when we talk about its reliability in safety-critical applications. The author 
claims no expertise in the field of reliability, but this much is obvious: that an abstract 
and limited sense of correctness (for example, for Viper, the equivalence of a register- 
transfer level specification to a functional specification of the fetch-decode-execute 
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cycle) is only one of many issues that have to be considered collectively. Aside from 
possible problems at more concrete levels of description, which have already been 
discussed, safety will also depend on factors as yet outside the world of formal 
description: these range from issues of social administration and communication, as 
well as staff training and group behavior, at one end, to the performance of mech- 
anical and chemical parts, and so on, at the other. One has only to contemplate the 
mass catastrophes of the last ten years or so to perceive the predominant role played 
by these extra-logical factors. 

It is the author's guess (although, again, not an expert opinion) that the sort of 
abstract design correctness discussed here, though of undoubted importance, is still 
a relatively minor contribution to the overall reliability of real systems. This seems so 
at least at the present state of research into representation and proof, and with the 
present weak links between designer, verifier, and manufacturer. That is, using a 
hardware design verified only at a fairly abstract level - and only under idealized 
operating conditions - as part of the control system in hazardous applications (say, 
in which large populations are at risk) does not yet  seem significantly safer than using 
any other design. If  only because of the number of extra-logical factors involved, the 
use of the word 'verified' must under no circumstances be allowed to confer a false 
sense of security. 

7. Conclusions 

Various of the limitations on the use of the word 'verified' are obscured in claims such 
as the following (both taken from promotional material): 

Viper is the first commercially available microprocessor with . . . a formal specification and a proof  that 
the chip conforms to it. [26, 27] 

One unique feature of  Viper is that the instruction set is specified mathemat ica l ly . . ,  and the gate-level 
logic design has been proven to conform to this specification. [16] 

As discussed, a chip as such cannot be verified - but this is perhaps just an imprecise 
use of words. The second example, depending on one's interpretation of 'proven', 
could be called a false claim; no formal proofs of Viper (to the author's knowledge) 
have thus far been obtained at or near the gate level. The gate-level design of Viper 
has been checked by C. Pygott using an innovative simulation method called intel- 
ligent exhaustion [25], but it has not yet been formally verified. Such assertions as 
those quoted, taken as assurance of the impossibility of design failure in safety-critical 
applications, could have catastrophic results. To summarize: 

�9 Neither an intended behavior nor a physical chip is an object to which the word 
'proof' meaning fully applies. Both an intention and a chip may themselves be 
inadequately represented in formal language, and this is not itself verifiable. 

�9 Because of the present weak links between designer, verifier, and manufacturer, it 
is not at all obvious that errors deduced in very abstract specifications are likely to 
manifest themselves in actual products, or vice versa. We must then ask how much 
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extra security verification currently affords. (This is an argument for continued 
research, not an argument against verification!) 

�9 Any verification effort is necessarily limited to those behaviors specified at the most 
abstract level. It should be clearly stated when a system is called 'verified' which 
actual features are not covered. 

�9 It should also be clearly stated to what level of concreteness the specifications 
extend. It seems fair to expect that the more concrete the models, the greater is the 
likelihood of finding errors in the design, particularly errors that would propagate 
through to the actual product. Since any model is an abstraction of a material 
device, it is n e v e r  correct to call a system 'verified' without reference to the level of 
the models used. 

�9 Any working assumptions about initial states or normal behaviors should also 
appear in verification claims. Particularly in informal descriptions, the assumptions 
may not always be evident. 

�9 A proof that one specification implements another - despite being completely 
rigorous, expressed in an explicit and well-understood logic, and even checked by 
another system - should still be viewed in context of the many other extra-logical 
factors that affect the correct functioning of hardware systems. In addition to the 
abstract design, everything from the system operators to the mechanical parts must 
function correctly - and correctly together - to avoid catastrophe. 

For a long time, automated theorem proving was sufficiently difficult that research- 
ers frequently drew upon simple (or occasionally less simple) mathematical problems 
on which to exercise their automated proof systems. Advances in theory as well as in 
technology have now made proof efforts feasible that once appeared impossibly large, 
uneconomic, or labor intensive. Sophisticated theorem-proving environments, 
together with modern workstations, operating systems, and editors, have supported 
this progress. The proofs, for example, of the basic theorems of arithmetic [1] or 
of the correctness of schematic compiling algorithms [4] - to choose two examples 
- were challenging problems in their time, yet current verification efforts are focusing 
on properties of realistic (and sometimes commercial) hardware designs. Besides 
the Viper microprocessor, examples include the verification by W. Hunt in the 
Boyer-Moore system of the FM8501 [18], a computer designed (by Hunt) for the 
purpose of verification; the verification in HOL by J. Joyce [19] of Tamarack, a 
computer designed by M. Gordon, also for the purpose of verification; the verification 
in HOL by J. Herbert of the ECL chip [17], a network interface designed by A. 
Hopper as part of the Cambridge Fast Ring; and the verification in HOL by T. 
Melham of the T-Ring [22], a very simple ring network designed by D. Gaubatz and 
M. Burrows. 

It would seem, in conclusion, that we are now beginning to be able to verify 
real hardware designs to useful levels of detail. None of the remarks in this article 
should be taken as pessimistic - jus t  cautious. As 'verified' hardware begins to be 
used in life-critical applications (which could include fly-by-wire aircraft, bomb 
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deployment systems, nuclear power stations, medical equipment, automotive braking 
systems, railway signalling systems, and so on), it will become increasingly important 
to insist that the word 'verified' and its synonyms are modified, qualified, and 
explained so that we know exactly what claims are being made, and can assess them 
intelligently. 

8. Future Work 

At the beginning of Section 6, the problem was mentioned of establishing a standard 
of evidence for having achieved a proof in an automated theorem prover. In this 
capacity, neither the long chains or primitive inferences that proofs comprise nor the 
particular procedures that have constructed these proofs, have so far found much 
favor. The Viper block model proofs consist of several million primitive inference 
steps, for example; and the procedures that generate them comprise dozens of pages 
of code in the functional programming language ML. The question of proof evidence 
is typical of a variety of fundamental issues that have not been broached in this article, 
but that at some point must also be addressed. For example, the consistency of any 
abstruse or special-purpose logic has to be established; this is a standard problem but 
not always easy. Worse, it could be asked on what basis we place our confidence in 
the implementation of a theorem-proving methodology (and the operating system on 
which it runs, the hardware of which the host machine is built, and so on). 

One pragmatic answer (which is a topic of planned research at Cambridge) is to try 
to reduce the number of systems in which we must trust by agreeing on a standard 
for 'proof deliverables'. That is, we could agree on a proof output format such that 
the proofs produced at one site could be independently (and mechanically) checked 
at another. This idea, in the context of hardware verification, is due to K. Hanna 
Part of its attraction is that proof checking is generally much less difficult than proof 
construction. 

Another research goal is to find a uniform representation language for everyone 
involved in producing a hardware device: designers, verifiers, fabricators, etc. This 
would help to integrate the various communities, and thus reduce the danger, for 
example, that the models that are verified differ from the plans used by the manu- 
facturers. It also would increase the chances that the errors turned up by verification 
were actual errors in the physical devices. Higher-order logic has been proposed for 
this purpose, but any standard logic could be a candidate. 

A very large step toward reliable systems would be a verification effort extending 
all the way from the software level down to the gate level. Research is currently being 
planned in this area (i) jointly at the University of Cambridge, SRI International, and 
INMOS, and (ii) at Computational Logic Inc. in Texas. 

Finally, research is continuing at various places into models for more realistic levels 
of representation of hardware, in the hope of expressing and locating the more subtle 
and worrisome errors that beset digital systems. Once the models are found, there 
appears to be no shortage of theorem-proving tools with which to verify them. 
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