
Journal of Automated Reasoning 5: 127-139, 1989. 127
�9 1989 Kluwer Academic Publishers. Printed in the Netherlands.

The Notion of Proof in Hardware Verification

AVRA COHN
Computer Laboratory, University of Cambridge, Cambridge CB2 2QG, England

(Received: 9 December 1988)

Abstract. Recent advances in the field of hardware verification have raised some fresh (and some familiar)
issues concerning the scope and limitations of formal proof. In this article, we discuss in detail some of these
issues. We focus particularly on which aspects of hardware and software one can verify, in contrast to the
claims that are sometimes made in that regard. Since we consider verification to be one of the more
important and promising applications of automated theorem proving - our research has been concerned
with this application for a number of years - a precise understanding of verification must be addressed.
Although the context for our discussion is the Viper verification project, our remarks apply generally. Viper
is a microprocessor designed by W. J. Cullyer, C. Pygott, and J. Kershaw of the Royal Signals and Radar
Establishment of the UK. Ministry of Defence, for use in safety-critical applications. Much to their credit,
the designers intended from the start that Viper be formally verified; they presented Viper's more abstract
specifications in a language suitable for formal reasoning, and they placed the design in the public domain.
Since Viper microprocessors are currently being marketed as verified chips, the need exists to identify
precisely to what extent verification is possible. The formal proof aspects of the verification work have been
carried out at the Computer Laboratory of the University of Cambridge. To date, some important
propemes of a register-transfer level model of Viper, relative to a more abstract functional specification,
have been proved (by the author) using the HOL proof generating system. 'Verified' systems such as Viper
seem likely to become commonplace in the near future. While proofs about the abstract models of
such systems are obviously a vital contribution to our trust in them, it is also important (not least in
safety-critical applications) that the limitations of the approach be understood.

Key words. Hardware verification, formal proof, Viper, automated theorem proving.

1. Introduction

The verification of hardware systems has recently become an attractive appl icat ion

area for theorem provers for several reasons. First, hardware verification is in m a n y

ways a more tractable problem than software (program) verification - it is often easier

to write a clear specification that captures the funct ional i ty of a system of hardware

than of software - and hardware proofs tend to have a certain uni formi ty of structure

which is well suited to mechanical t reatment . Second, compell ing economic reasons

exist for t rying to get hardware correct early on; correcting errors in a chip can involve

expensive refabricat ion, not merely the exiting of text. Finally, it is becoming

increasingly impor tan t to invest time and effort in the verification of hardware that

is in tended for safety-critical applications.

Several issues per ta ining to the scope and l imitat ions of verification have recently

been raised by the project to formally verify aspects of the Viper microprocessor at

the Universi ty of Cambridge. In this article, some of the issues are discussed; a l though

this discussion is presented in the context of Viper, the remarks are more general. The

in ten t ion is to encourage intell igent unders tand ing of the sense in which a piece of

128 AVRA COHN

hardware can be called 'verified', and not to undermine research in verification or to
discredit this vital work. As devices begin to appear on the market purporting to be
'verified' or 'mathematically proved' - possibly with the implication that they cannot
therefore fail - a sharp watch must be kept for unqualified claims and also for failures
to convey the sense, extent, and nature of the verification effort. This observation applies
particularly to very hazardous applications such as nuclear power plant control.

Various computing systems in recent years have been claimed to do verification or
proof, or something akin, when in fact they were doing something distinct from (if no
less valuable than) formal proof in an explicit and well-understood logic. That is, they
have done simulation, or reasoning in ad hoc logical systems, or informal reasoning,
etc. For present purposes, 'verification' is taken to mean formal proof in the usual
mathematical sense of a sequence of valid inference steps.

2. The Viper Microprocessor

Viper [8, 9, 10, 11, 20, 24] is a microprocessor designed by W. J. Cullyer, C. Pygott,
and J. Kershaw at the Royal Signals and Radar Establishment of the U.K. Ministry
of Defence (henceforth RSRE) for use in safety-critical applications such as civil
aviation and nuclear power plant control. Viper chips are now commercially avail-
able. They are currently finding uses in military areas such as the deployment of
weapons from tactical aircraft [12] and in civilian areas such as railway signalling
systems. To support safety-critical applications, Viper has a particularly simple
design; for example, interrupts in the usual sense are not permitted; the instruction set
is kept to a minimum; and the machine is designed to stop if it detects itself in an error
or illegal configuration. (The stopping feature is intended to support the running of
several Vipers simultaneously for increased reliability.) The simplicity of the design
makes it amenable to formal analysis using current techniques.

Aspects of the formal, mechanical verification of Viper were subcontracted to the
Hardware Verification Group at the University of Cambridge from early 1986 to late
1987. The results of this project are reported in [6] and [7]. A pilot study for the main
proof is reported in [5].

3. The HOL Verification System

The verification of Viper has been approached within the HOL (Higher-Order Logic)
system [2, 14, 15], a theorem-proving system derived from R. Milner's LCF (Logic for
Computable Functions) system [13, 23] and based on the version of higher-order logic
formulated by A. Church [3]. HOL was implemented by M. Gordon at the University
of Cambridge and is currently in use by the Hardware Verification Group at
Cambridge and at several sites throughout the world. 'Verification' was understood
by Viper's designers at RSRE (as by the LCF and HOL communities) to mean
complete, formal proof in an explicit and well-understood logic. Proofs in HOL are
normally constructed interactively, combining machine assistance with user guidance,

THE NOTION OF PROOF IN HARDWARE VERIFICATION 129

and not fully automatically (although the extent to which this is so is a function of
user-designed proof strategies).

4. The Models of Viper

The designers of Viper, who deserve a great deal of credit for the promotion of formal
methods, intended from the start that Viper be formally verified. Their approach was
to specify Viper in a hierarchy of decreasingly abstract levels, each of which con-
centrated on some specific aspects of the design. That is, each level was to be a
specification of the more abstract level above it (if any) and an implementation of the
one below (if any). The verification effort would then be simplified by being structured
according to the abstraction levels. These levels of description were characterized by
the design team at RSRE. The first two levels, and part of the third, were written by
them in a logical language amenable to reasoning and proof (a predecessor of HOL's
higher-order logic). (The systematic study of abstraction hierarchies and mechanisms
in the modeling of hardware is discussed by T. Melham [21, 22].)

The highest level specification of Viper is a simple state-transition function describ-
ing the way in which an abstract state (representing Viper's memory and its visible
registers) changes as Viper executes each of its possible instruction types (see [8] and
[6] for details). The specification is thus an operational semantics of the instruction set.
It characterizes no more than the fetch-decode-execute cycle of Viper; it does not
specify all of the possible behaviors of the actual microprocessor. In particular, the
capacity of Viper to be reset externally by an operator (i.e., to have its registers cleared
from the outside) is not covered, nor is its capacity for 'timing out' after some fixed
number of clock cycles because of memory failure. As will be discussed, any verifi-
cation of a more concrete model relative to this top-level specification must con-
sequently be limited to the behavior manifest at the top level. That is, no such proof
can establish that Viper resets or times-out in an acceptable way.

The next (more concrete) level is called the major-state level. At this level, an
instruction is processed via a sequence of events rather than in a single step. An event
may affect the visible registers or the memory of the top-level specification, or any of
several internal registers (which constitute the internal state). These internal registers
are still part of an abstract view of Viper and do not necessarily correspond to parts
of the actual Viper chip. The 'next' event in a sequence is determined according to the
current event, the visible state, and the internal state; some events are recognizably
terminal and some initial, in the sequences. From all of this, a new state-transition
function can be extracted and its properties established by proof. In particular, the
cumulative result of the sequence of events that processes each of the instruction types
can be inferred, and then compared to the result of the corresponding high-level
state-transformation function.

The 'block model' is the most concrete level considered in the formal verification
project (although the RSRE design continues down to the gate-level circuit design,
which could in principle also be formally verified). The block model was presented by

130 AVRA COHN

the designers in a form that was partly pictorial and partly textual (expressed in
a functional style). The model consists of 'blocks', that is, computational units such
as Viper's instruction decoder, its arithmetic-logic unit (ALU), and its memory.
Information passes between blocks, and to/from the outside world at fixed clock
cycles. The textual specifications describe only the internal combinational logic of the
various blocks. Neither their behavior over time (e.g., the delay units - registers -
which give them memory) nor the connections between separate blocks are covered
by the textual specifications: the pictorial specification fills in the rest of that infor-
mation. The block definitions and the pictorial information were supplied by the
designers at RSRE; a fully formal specification had to be constructed from these
sources - a complicated process - and the block machine's behavior had to be
logically inferred from that specification.

The block model isolates the computational behavior of Viper; to relate it to either
of the more abstract specifications (the top-level specification or the major-state model),
computational behaviors such as additions, shifts, negations, and comparisons had to
be considered in detail. The block model also specifies more of the actual behaviors
of Viper (e.g., the behavior of resets and time-outs) than appear in the top-level formal
specification. At the block level, one begins to approach the functional units and
connectivity of the actual circuit, though still in a rather abstract way.

5. The Viper Verification Project

The correctness proof of the major-state level of Viper relative to its top-level
specification was straightforward (if lengthy) in HOL, since the possible execution
sequences of the model were explicitly given. That is, the conditions under which one
event followed another were explicitly defined. The proof consisted, therefore, of a
number of cases (one for each instruction type) in which the cumulative effects of the
sequence of events processing that instruction type were inferred from the definition
of the model. In each case, the effects were then proved equivalent to the effects
specified at the top level for components appearing at both levels. It also had to be
proved that every possible execution sequence had been considered, to justify the case
analysis.

The correctness of the block model is more difficult to establish. The first task in
the verification effort was to derive a mathematical function representing the behavior
of the block over a single cycle. This had to be expressed in a formal logic suitable for
reasoning and proof, since it is not obvious how to reason formally about a schematic
diagram indicating the transfer of information to and from its subunits simultaneously.

The second task (analogous to, but more complex than that in the major-state level
proof) was to infer, using the mathematical function for each instruction type, the
accumulated effects on the registers of the block model after all of the steps that
process that instruction had been performed. This involved extracting from the
formal representation (i) the conditions under which one step led to another, and
(ii) any assumptions that had to be made about initial states and 'normal' behavior
in order to resolve the state transitions. (These were implicitly determined by

THE NOTION OF PROOF IN HARDWARE VERIFICATION 131

the mathematical representation of the block model; at the major-state level, the
conditions were given explicitly, and no assumptions were required.) Normal behav-

ior means behavior that is within the scope of the high-level specification. For
example, as mentioned, it had to be assumed in the verification of the Viper block
model that the machine was not reset at any time during the course of processing an
instruction, and that the block machine's time-out facility was never invoked. The
initial conditions, for example, had to include the assumptions that at the start of
processing each instruction (i) the time-out counter was not set at its maximum value,
and (ii) no errors were being signalled. It also had to be shown, as before, that the
state-transition conditions covered all logical possibilities, to ensure that no possible
instruction types had been omitted from the analysis.

The third task would be to verify the results of the block model relative to the
results of the top-level transformation function at each instruction type. The first and
second tasks of the block model verification have been completed to date, giving a
provably correct and complete description of the behavior of the formal represen-
tation of the block model (under the assumptions mentioned above); but for practical
reasons, the third task has not been completed. All three tasks are discussed in [7].

6. Limitations of Proof in Hardware Verification

The notion of formal proof began to receive serious attention in its own right just
before the age of computing. Since computers have been used to assist with formal
proofs, there has been renewed discussion of what proof is and what it actually
ensures. This may be in part because there is no prior reason to insist that machines
construct proofs in the way that mathematicians do; nor is there yet any well-
agreed 'standard of evidence' that a proof has been successfully completed by a
machine, of the sort that mathematicians are required to supply. In this section,
attention is drawn to some of the fresh concerns that have been raised by the Viper
verification project.

6.1. CHIPS AND INTENTIONS CANNOT BE VERIFIED

Ideally, one would like to prove that a chip such as Viper correctly implemented its

intended behavior in all circumstances; we could then claim that the chip's behavior
was predictable and correct. In reality, neither an actual device nor an intention is an
object to which logical reasoning can be applied. The intended behavior rests in the
minds of the architects and is not itself accessible. It can, of course, be reported in a
formal language - but not with checkable accuracy. Similarly, a material device can
only be observed and measured; it cannot be verified. Again, a device can be described
in a formal way, and the description verified; but as with intentions, there is no way
to assure the accuracy of the description. Indeed, any description is bound to be
inaccurate in some respects, since it cannot be hoped to mirror an entire physical
situation even at an instant, much less as it evolves through time; a model of a device
is neccessarily an abstraction (a simplification). In short, verification involves a pair

132 AVRA COHN

of models that bear an uncheckable and possibly imperfect relation to the intended
design and to the actual device.

Although these points seem obvious, they are not merely philosophical quibbles.
Errors were found both in the top-level specification of Viper and in its major-state
model, none of which was either intended by the designers or evident in the manu-
factured Viper chips. (These errors are discussed in [6].) The errors were fairly minor
and quickly repaired, but their presence highlights the rather limited sense in which
a formal specification can be said to have been verified against the architects' intended
design or against the actual chip; there remains the danger that - secure as the proof
may be - the models themselves may be wrong.

There is no complete solution to this problem, but there are avenues of approach
to be explored. In particular, as we produce clearer and more consise and readable
abstract specifications, their intuitive plausibility should be increased. At the other
extreme, as we devise more realistic and detailed models, their correspondence with
actual devices should become more convincing. Attention has been drawn to these

points by T. Melham [21].

6.2. LINKS BETWEEN DESIGNER, VERIFIER, AND MANUFACTURER

That the actual Viper chips appear not to suffer from the errors found in the models
also illustrates the still quite abstract nature of the research described in [6] and [7].
The chips were already in the process of being built by the time the subcontracted
verification work began on the major-state model at Cambridge; and they had been
built and were being advertised by the time the work on the block model was
undertaken. While it is possible in theory that an error in an abstract specification had
been reflected in the circuit design given by RSRE to the manufacturers - the abstract

specifications were no doubt in the architects' minds while they designed the circuit
- it seems more likely, because of the indirect links between the designers' abstract
specifications, the circuit design process, the manufacturers, and the verifiers, that
problems in the specification would not propagate down to chip problems. In fact, it
would seem to be the case that the manufacturers worked from different 'design texts'
than the verifiers. Until common models in a common language are adopted, we are
only studying models that bear an informal connection to the devices they are

modelling. In this respect too, there is good reason to hope that a common language
will be agreed on and an integrated approach taken in the future.

6.3. THE LACK OF A FULLY FORMAL DESCRIPTION

At more concrete levels of description, the situation may be further complicated by
not beginning with fully formal descriptions. For example, Viper's top-level specifi-
cation and its major-state level were both supplied in a logical language; but its
block-level model was given partly formally and partly pictorially (as was natural).
Combining these two parts required both ingenuity and some guesswork. The guesses

THE NOTION OF PROOF IN HARDWARE VERIFICATION 133

were based on the coincidence of line names, on the names of bound variables in
function definitions, and on annotations in the text of the definitions. None of these
notational devices can be regarded as a formal specification. Before verification can
be meaningfully applied in such cases, a fully formal description must be produced.
Once again, however, accuracy cannot be checked; the new formal description may
be a flawed translation of the pictorial specification, or a flawed combination of
picture and text, but this cannot be rigorously tested. One may therefore end up
proving properties of a formal description bearing an imperfect relation to the
intended design - and possibly never know it.

In fact, this w a s a problem in the block-level representation of Viper; in the author's
first attempt at a formal representation of the Viper block diagram, there was a pair
of interchanged line names. This flawed description was subsequently used to deduce
plausible-looking block results. The error in the representation was discovered rather
late in the proof and only by an unsystematic inspection. The problem of the
accuracy of a representation could appear at the gate level, the transistor level, or any
other level at which a linguistic description has to be constructed creatively from a
pictorial one, i.e., at which diagrams are the usual and natural model of specification.
This situation further limits the sense in which a system can be called verified.

This problem is at least partly addressed by the preceding section; if the designers,
for example, are in a position to read and scrutinize the formal description derived
from the informal specification, they may well be able to spot mistakes, particularly
those that require a deep understanding of the design. For example, a typographical
error in the formal representation caused some results to be deduced that the designers
at RSRE queried. They were then able to locate the author's error.

6.4. THE LEVEL AND COMPLETENESS OF THE MODEL

As verification relates a less abstract implementation to a more abstract specification,
it is important to be explicit about the level of abstraction and the degree of complete-
ness of the models in question. We say that a device has been verified 'at the
major-state level' or 'at the register-transfer level', and so on - it is not enough to say
simply 'verified'. For example, Viper's major-state machine has been fully verified
with respect to its top-level specification; but the proof establishing the equivalence
of these two sets of results depends only on the flow of control in the two models, and
does not depend on any of the computational behaviors of Viper. (That is, the same
formal expression represents the arithmetic-logic unit at both levels, so that expression
is never evaluated.) Therefore, the fact that Viper has been verified 'at the major-state
level' does not actually ensure very much; the essence of the microprocessor (the
behavior of its ALU) has not, at that stage, been treated. Viper certainly could not,
on that basis alone, be usefully called 'verified'.

The block model of Viper does concern itself with Viper's arithmetic and logical
operations and with the transfer of information between registers and memory. Thus,
verifying Viper to the block level would be a significant step towards a 'verified'

134 AVRA COHN

microprocessor. (In any case, the proof has not been fully completed at this level.)
However, the block model does not concern itself with gate layout, transistors,
electrical effects, timing problems, or many similar areas in which unsuspected errors
would seem particularly likely to appear. (In those areas, enormous amounts of
research remain to be done on finding useful, tractable models, even before we begin
to verify them.) Thus, again, the term 'verified' cannot properly be used without an
indication of the levels of the models involved. At every level of abstraction, some
properties are included and some ignored.

In addition, the models involved may be incompletely specified. For example,
Viper's highest level specification is complete only for the processing of instructions,
and does not cover such features as the resetting or timing out of the machine, or other
possible behaviors specified at the block level. This factor, from the outset, restricts
any analysis to the high-level behavior alone, again missing the more subtle and
perplexing issues.

6.5. NORMALITY ASSUMPTIONS

In discussing what was proved in the Viper verification project, it was indicated that
certain assumptions had to be made (about initial and normal behaviors) in order to
infer the cumulative effects of processing instructions. These assumptions are perfectly
natural, and reflect the fact that devices are intended to operate only under certain
conditions. The only cause for concern here arises if these assumptions are ignored
when claims are made about what was proved. In the formal correctness statement,
of course, any persistent assumptions will appear explicitly as the antecendents of an
implication. It is in informal summaries (marketing material and so on) that the
assumptions can easily be overlooked.

In the end, for example, the effect of each of Viper's instructions on the registers
of its block model was deduced. This was done by assuming that the machine was
initialized in a reasonable way, and assuming that it was run under certain ideal
conditions. The effect was not deduced, say, of assuming that a reset operation could
occur - it could have been, but to no useful end, since that effect is not specified at
the top level. Thus, even a fully verified block design could remain incorrect in its
resetting behavior, and the error could propagate, despite the proof, down to the chip
itself. This illustrates the importance of knowing the conditions under which the block
model has been analyzed.

6.6. PUTTING FORMAL PROOF IN CONTEXT

Finally, the correctness of an abstract representation of a system must be placed in
context when we talk about its reliability in safety-critical applications. The author
claims no expertise in the field of reliability, but this much is obvious: that an abstract
and limited sense of correctness (for example, for Viper, the equivalence of a register-
transfer level specification to a functional specification of the fetch-decode-execute

THE NOTION OF PROOF IN H A R D W A R E VERIFICATION 135

cycle) is only one of many issues that have to be considered collectively. Aside from
possible problems at more concrete levels of description, which have already been
discussed, safety will also depend on factors as yet outside the world of formal
description: these range from issues of social administration and communication, as
well as staff training and group behavior, at one end, to the performance of mech-
anical and chemical parts, and so on, at the other. One has only to contemplate the
mass catastrophes of the last ten years or so to perceive the predominant role played
by these extra-logical factors.

It is the author's guess (although, again, not an expert opinion) that the sort of
abstract design correctness discussed here, though of undoubted importance, is still
a relatively minor contribution to the overall reliability of real systems. This seems so
at least at the present state of research into representation and proof, and with the
present weak links between designer, verifier, and manufacturer. That is, using a
hardware design verified only at a fairly abstract level - and only under idealized
operating conditions - as part of the control system in hazardous applications (say,
in which large populations are at risk) does not yet seem significantly safer than using
any other design. If only because of the number of extra-logical factors involved, the
use of the word 'verified' must under no circumstances be allowed to confer a false
sense of security.

7. Conclusions

Various of the limitations on the use of the word 'verified' are obscured in claims such
as the following (both taken from promotional material):

Viper is the first commercially available microprocessor with . . . a formal specification and a proof that
the chip conforms to it. [26, 27]

One unique feature of Viper is that the instruction set is specified mathemat ica l ly . . , and the gate-level
logic design has been proven to conform to this specification. [16]

As discussed, a chip as such cannot be verified - but this is perhaps just an imprecise
use of words. The second example, depending on one's interpretation of 'proven',
could be called a false claim; no formal proofs of Viper (to the author's knowledge)
have thus far been obtained at or near the gate level. The gate-level design of Viper
has been checked by C. Pygott using an innovative simulation method called intel-
ligent exhaustion [25], but it has not yet been formally verified. Such assertions as
those quoted, taken as assurance of the impossibility of design failure in safety-critical
applications, could have catastrophic results. To summarize:

�9 Neither an intended behavior nor a physical chip is an object to which the word
'proof' meaning fully applies. Both an intention and a chip may themselves be
inadequately represented in formal language, and this is not itself verifiable.

�9 Because of the present weak links between designer, verifier, and manufacturer, it
is not at all obvious that errors deduced in very abstract specifications are likely to
manifest themselves in actual products, or vice versa. We must then ask how much

136 AVRA COHN

extra security verification currently affords. (This is an argument for continued
research, not an argument against verification!)

�9 Any verification effort is necessarily limited to those behaviors specified at the most
abstract level. It should be clearly stated when a system is called 'verified' which
actual features are not covered.

�9 It should also be clearly stated to what level of concreteness the specifications
extend. It seems fair to expect that the more concrete the models, the greater is the
likelihood of finding errors in the design, particularly errors that would propagate
through to the actual product. Since any model is an abstraction of a material
device, it is n e v e r correct to call a system 'verified' without reference to the level of
the models used.

�9 Any working assumptions about initial states or normal behaviors should also
appear in verification claims. Particularly in informal descriptions, the assumptions
may not always be evident.

�9 A proof that one specification implements another - despite being completely
rigorous, expressed in an explicit and well-understood logic, and even checked by
another system - should still be viewed in context of the many other extra-logical
factors that affect the correct functioning of hardware systems. In addition to the
abstract design, everything from the system operators to the mechanical parts must
function correctly - and correctly together - to avoid catastrophe.

For a long time, automated theorem proving was sufficiently difficult that research-
ers frequently drew upon simple (or occasionally less simple) mathematical problems
on which to exercise their automated proof systems. Advances in theory as well as in
technology have now made proof efforts feasible that once appeared impossibly large,
uneconomic, or labor intensive. Sophisticated theorem-proving environments,
together with modern workstations, operating systems, and editors, have supported
this progress. The proofs, for example, of the basic theorems of arithmetic [1] or
of the correctness of schematic compiling algorithms [4] - to choose two examples
- were challenging problems in their time, yet current verification efforts are focusing
on properties of realistic (and sometimes commercial) hardware designs. Besides
the Viper microprocessor, examples include the verification by W. Hunt in the
Boyer-Moore system of the FM8501 [18], a computer designed (by Hunt) for the
purpose of verification; the verification in HOL by J. Joyce [19] of Tamarack, a
computer designed by M. Gordon, also for the purpose of verification; the verification
in HOL by J. Herbert of the ECL chip [17], a network interface designed by A.
Hopper as part of the Cambridge Fast Ring; and the verification in HOL by T.
Melham of the T-Ring [22], a very simple ring network designed by D. Gaubatz and
M. Burrows.

It would seem, in conclusion, that we are now beginning to be able to verify
real hardware designs to useful levels of detail. None of the remarks in this article
should be taken as pessimistic - jus t cautious. As 'verified' hardware begins to be
used in life-critical applications (which could include fly-by-wire aircraft, bomb

THE NOTION OF PROOF IN HARDWARE VERIFICATION 137

deployment systems, nuclear power stations, medical equipment, automotive braking
systems, railway signalling systems, and so on), it will become increasingly important
to insist that the word 'verified' and its synonyms are modified, qualified, and
explained so that we know exactly what claims are being made, and can assess them
intelligently.

8. Future Work

At the beginning of Section 6, the problem was mentioned of establishing a standard
of evidence for having achieved a proof in an automated theorem prover. In this
capacity, neither the long chains or primitive inferences that proofs comprise nor the
particular procedures that have constructed these proofs, have so far found much
favor. The Viper block model proofs consist of several million primitive inference
steps, for example; and the procedures that generate them comprise dozens of pages
of code in the functional programming language ML. The question of proof evidence
is typical of a variety of fundamental issues that have not been broached in this article,
but that at some point must also be addressed. For example, the consistency of any
abstruse or special-purpose logic has to be established; this is a standard problem but
not always easy. Worse, it could be asked on what basis we place our confidence in
the implementation of a theorem-proving methodology (and the operating system on
which it runs, the hardware of which the host machine is built, and so on).

One pragmatic answer (which is a topic of planned research at Cambridge) is to try
to reduce the number of systems in which we must trust by agreeing on a standard
for 'proof deliverables'. That is, we could agree on a proof output format such that
the proofs produced at one site could be independently (and mechanically) checked
at another. This idea, in the context of hardware verification, is due to K. Hanna
Part of its attraction is that proof checking is generally much less difficult than proof
construction.

Another research goal is to find a uniform representation language for everyone
involved in producing a hardware device: designers, verifiers, fabricators, etc. This
would help to integrate the various communities, and thus reduce the danger, for
example, that the models that are verified differ from the plans used by the manu-
facturers. It also would increase the chances that the errors turned up by verification
were actual errors in the physical devices. Higher-order logic has been proposed for
this purpose, but any standard logic could be a candidate.

A very large step toward reliable systems would be a verification effort extending
all the way from the software level down to the gate level. Research is currently being
planned in this area (i) jointly at the University of Cambridge, SRI International, and
INMOS, and (ii) at Computational Logic Inc. in Texas.

Finally, research is continuing at various places into models for more realistic levels
of representation of hardware, in the hope of expressing and locating the more subtle
and worrisome errors that beset digital systems. Once the models are found, there
appears to be no shortage of theorem-proving tools with which to verify them.

138 AVRA COHN

Acknowledgements

Many thanks to Tom Melham and Mike Gordon for helpful comments and dis-
cussions. Thanks also to Robin Milner, Thomas Forster, and Jeff Joyce. The opinions
expressed here are the author's alone. The Viper verification work at Cambridge was
supported by a grant from RSRE. The preparation of this article was suggested by
Larry Wos and was supported by a grant from the U.K. Science and Engineering
Research Council. An earlier version of part of this article appears in [7].

References

1. Boyer, R. S. and Moore, J S., A Computational Logic, Academic Press (1979).
2. Camilieri, A., Gordon, M., and Melham, T., 'Hardware Verification Using Higher-Order Logic',

Proceedings of the IFIP WG 10.2 Working Conference: From H.D.L. Descriptions to Guaranteed
Correct Circuit Designs, Grenoble, September 1986, ed. D. Borrione, North-Holland, Amsterdam
(1987).

3. Church, A., 'A Formulation of the Simple Theory of Types', Journal of Symbolic Logic 5, 1940.
4. Cohn, A., 'Machine Assisted Proofs of Recursion Implementation', Ph.D. Thesis, Dept. of Computer

Science, University of Edinburgh, 1979.
5. Cohn, A., and Gordon, M., 'A Mechanized Proof of Correctness of a Simple Counter', University of

Cambridge, Computer Laboratory, Tech. Report No. 94, 1986.
6. Cohn, A., 'A Proof of Correctness of the Viper Microprocessor: the First Level', VLSI Specification,

Verification and Synthesis, eds. G. Birtwistle and P. A. Subrahmanyam, Kluwer, 1987; Also University
of Cambridge, Computer Laboratory, Tech. Report No. 104, 1987.

7. Cohn, A., 'Correctness Properties of the Viper Block Model: The Second Level', Current Trends in
Hardware Verification and Automated Deduction, eds. G. Birtwistle and P. A. Sabrahmanyam,
Springer-Verlag, 1988; Also University of Cambridge, Computer Laboratory, Tech. Report No. 134,
1988.

8. Cullyer, W. J., 'Viper Microprocessor: Formal Specification', RSRE Report No. 85013, Oct. 1985.
9. Cullyer, W. J., 'Viper - Correspondence between the Specification and the "Major State Machine",

RSRE report No. 86004, Jan. 1986.
10. Cullyer, W. J., 'Implementing Safety-Critical Systems: The Viper Microprocessor', VLS1Specification,

Verification and Synthesis, eds. G. Birtwistle and P. A. Subrahmanyam, Kluwer, 1987.
I 1. Cullyer, W. J., Kershaw, J., and Pygott, C., forthcoming book on Viper.
12. Gane, C. (Computing Devices Company Ltd.), Computing Devices, Hastings' VIPER-VENOM

Project: VIPER in Weapons Stores Management, Safety Net: Viper Microprocessors in High Integrity
Systems, Enq. No. 021, Issue 2, July-August-September 1988, Viper Technologies Ltd., Worcester,
England.

13. Gordon, M., Milner, R., and Wadsworth, C. P., 'Edinburgh LCF', Lecture Notes in Computer Science
No. 78, Springer-Verlag, 1979.

14. Gordon, M., 'HOL: A Machine Oriented Formulation of Higher-Order Logic', University of Cam-
bridge, Computer Laboratory, Tech. Report No. 68, 1985.

15. Gordon, M., 'HOL: A Proof Generating System for Higher-Order Logic', University of Cambridge,
Computer Laboratory, Tech. Report No. 103, 1987; Revised version in VLSI Specification, Verification
and Synthesis, eds. G. Birtwistle and P. A. Subrahmanyam, Kluwer, 1987.

16. Halbert, M. P. (Cambridge Consultants Ltd.), 'Selfchecking Computer Module Based on the Viper 1A
Microprocessor, Safety Net: Viper Microprocessors in High Integrity Systems', Enq. No. 017, Issue 2,
July-August-September 1988, Viper Technologies Ltd., Worcester, England.

17. Herbert, J. and Gordon, M. J. C., 'A Formal Hardware Verification Methodology and its Application
to a Network Interface Chip', IEE Proceedings, Computers and Digital Techniques, Special issue on
Digital Design Verification, Vol. 133, Part E, No. 5, 1986; Also in draft version: University of
Cambridge, Computer Laboratory, Tech. Report No. 66, 1985.

THE NOTION OF PROOF IN HARDWARE VERIFICATION 139

18. Hunt, W. A. Jr., 'FM8501: A Verified Microprocessor', University of Texas, Austin, Tech. Report 47,
1985.

19. Joyce, J. J., Formal Verification and Implementation of a Microprocessor, VLSI Specificatton, Verifi-
cation and Synthesis, eds. G. Birtwistle and P. A. Subrahmanyam, Kluwer, 1987.

20. Kershaw, J., 'Viper" A Microprocessor for Safety-Critical Applications', RSRE Memo. No. 3754,
Dec. 1985.

21. Melham, T., 'Abstraction Mechanisms for Hardware Verification', VLSISpecification. Verification and
Synthesis, eds. G. Birtwistle and P. A. Subrahamanyam, Kluwer, 1987.

22. Melham, T., forthcoming Ph.D. Thesis, University of Cambridge, Computer Laboratory.
23. Paulson, L., Logw and Computation, Cambridge, University Press, 1987.
24. Pygott, C. H., "Viper: The Electronic Block Model', RSRE Report No. 86006, July 1986.
25. Pygott, C. H., 'Formal Proof of a Correspondence between the Specification of a Hardware Module

and its Gate Level Implementation', RSRE Report No. 85012, Nov. 1985.
26. Viper Microprocessor: Verifiable Integrated Processor for Enhanced Reliability: Development Tools,

Charter Technologies Ltd., Publication No. VDTI, Issue 1, Dec. 1987.
27. Application for Admission and Registration Form, Second VIPER Symposium, RSRE, Malvern,

England, 6-7 September, 1988.

