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Abstract. In this note, we are interested in the evaluation of conditions of the form "The value of attribute 
a for Q items of Xis in F" or more shortly 'Q items o fXare  F', where Xis a set of items, Q denotes a possibly 
vague proportion (which may be linguistically expressed, e.g. "most'), F is a (possibly fuzzy) subset of the 
attribute domain of a. and where the available knowledge about the value a(x) of  the attribute a for any 
item x may be imprecise or even vague. The evaluation is based on a fuzzy pattern matching procedure 
repeated two times. Such conditions may be encountered in queries addressed to an incomplete information 
data base or in the "if-part" of  expert rules. 
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1. Introduct ion 

If they are allowed, vague predicates and vague quantifiers are often encountered in 
the linguistic expression of(i)  requests addressed by a user to an information system, 

or of (ii) pieces of knowledge given by human experts. In the first case, it means that 

the user may be more or less flexible about the required properties of the items he/she 

is looking for, while some vagueness in the expression of the condition part of an 
expert rule may mean that the rule still more or less apply to borderline situations 
(in other words, the conditions of application of the rule are robust); if the vagueness 

appears in the conclusion part of the rule, it often indicates some uncertainty. It is 

then interesting when evaluating a request or a condition to estimate to what extent 

the request can be considered as satisfied by a given item (it enables the ordering of 
the items according to their agreement with what is required), or to what extent the 
condition is fulfilled in order to combine, in a suitable way, this estimate with the 
uncertainty bearing on the conclusion of the rule if any. 

A so-called fuzzy pattern matching procedure has been developed and designed (see 
Cayrol et al., 1980, 1982) in the framework of fuzzy set and possibility theory in order 
to deal with evaluation of patterns made of the logical combination of fuzzy predi- 
cates. Besides, this procedure still applies if the available information about the items 
or the facts is pervaded with uncertainty and imprecision and is represented in terms 
of possibility distributions. In the case of partial imperfect information, we can thus 
distinguish between the extent to which it is possible and the extent to which it is 
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certain that a condition is satisfied. This procedure has been applied to the manage- 

ment of incomplete information databases as well as to the treatment of fuzzy 

conditions of ' I f . . .  then rules' in expert systems. See Dubois and Prade (1988). 
In this short paper, we consider the case where requests or conditions do not only 

involve vague predicates but also vague quantifiers. An example of such a request is: 

'To what extent is it true that most of  the products made by a company are sold on 

markets which are in.fast expansion?'. The following section offers a background on 

the two measures of possibility and certainty used in fuzzy pattern matching and 

discusses a modification of one of these measures in the case of a pattern with a fuzzy 

predicate. Then it is explained how the number of items satisfying a condition 

(possibly fuzzy) can be counted in the case of partial information. Finally, the 

proposed treatment of conditions involving vague quantifiers is presented. 

2. Background 

2.1. M E A S U R E S  USED IN F U Z Z Y  P A T T E R N  M A T C H I N G  

Let X = {x~ . . . . .  x,,} be a finite set of items. Let A (xi) denote the (possibly fuzzy) 

subset restricting the (more or less) possible values of the single-valued attribute a for 

x~; thus A (xi) is a subset of mutually exclusive values; A (xi) represents the available 

knowledge; the information is not precise as soon as A (xi) is not a singleton. The 

membership function of a fuzzy subset A will be denoted by #A and will range in the 

interval [0, I]. The function/~A,-,I is also called a possibility distribution since/~Ac,. ~(d) 

estimates the extent to which it is possible that a takes the value d for x~. Since D, is 
supposed to include all the possible values of a, for any x there should exist at least 

a value d which is completely possible for a(x), i.e. 3d,/2~.,.~(d) = l; then the fuzzy set 

A(x) is said to be normalized. Let F be a (possibly fuzzy) subset of the attribute 
domain D, of a. F will be also supposed to be normalized when F is fuzzy. The extent 

to which it is possible (resp. necessary or certain) that the value a(x) of the attribute 
a for the item x, known to be restricted by A (x), is compatible with F is given by the 
possibility measure FI(F; A (x)) and the necessity measure N(F; A(x)) (Zadeh, 1978; 

Dubois and Prade, 1988) which are defined, respectively, by 

n (F ;  A(x)) = sup min (#F(d), ktA,.,.l(d)) (1) 
de D a 

and by 

N(F; A (x)) 

which gives 

N(F; A (x)) 

= 1 - I-I(F"; A (x)) (2) 

= inf max (#~-(d), 1 - /2A(,.l(d)), (3) 
d~.O. 

where the membership function of the complement F '  of F is defined by 

12r,(d) = I --/zr(d). (4) 
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The two quantities FI(F; A (x)) and N(F; A (x)) play a central role in the fuzzy pattern 

matching technique developed in Cayrol, et al. (1980, 1982), and are easy to compute 
in practice where it is sufficient to use membership functions with trapezoidal shape. 
The possibility measure FI(F; A (x)) estimates to what extent the intersection of Fand  
A (x) is not empty (i.e. there exists a value restricted by A (x) which is (somewhat) 
compatible with F), while the necessity measure N(F; A (x)) estimates to what extent 
the (fuzzy) set of values restricted by A(x) is included in F, which represents the 
requirement. 

2.2. A NEW DEFINITION OF THE NECESSITY OF A FUZZY EVENT BASED ON A 

PARA-CONS1STENT C O M P L E M E N T A T I O N  

N is defined from 13 by (2) using the fuzzy set complementation (4). The relationship 
between N and 13 is in agreement with the idea that something is all the more certain 
as the opposite is impossible. When F is an ordinary subset, we always have 

13(F;A(x)) < 1 ~ N(F;A(x))  = 0. (5) 

It expresses that something should be fully possible before being somewhat certain. 
This no longer holds in the case of a fuzzy requirement F, as it can be checked. This 
is due to the complementation (4), taking for granted relation (2). Indeed with 
definition (4), the union o f F a n d  F '  (pointwisely defined on the membership functions 
by the max operation) does no perfectly cover the domain D (there exists some values 
at the border o f F a n d  F', which do not fully belong to Fnor  to F ' )  and then it is not 
surprising that the possibility that the value a(x) of attribute a for x belongs to F to F '  
is less than 1 (although 13(Da; A (x)) = 1 since ~d, /t , , ,(d) = 1, i.e. there exists at least 
a value in Da completely possible for a(x)). Indeed we have 

Fl(Fw F'; A(x)) = max (H(F; A(x)), 13(F': A(x))) < 1 

if F is a fuzzy set, which leads to the violation of (5), taking (2) into account. 
If we want to keep both (2) and (5) when F is fuzzy, since they are intuitively 

appealing (we shall see also that (5) plays an important role in our procedure for 
guaranteeing a normalization condition), we have thus to modify the definition of the 
complementation. 

There are two other (extreme) ways of defining the complement A' of a subset A 
of D by extending the following identities for classical sets 

o r  

A' = N{s, A to S = D} (6) 

A' = U{S, A n S = ~O}. (7) 

This yields (see Dubois and Prade, (1983) for instance), using min and max, respect- 
ively, for defining the intersection and the union, to the following definitions in case 
of fuzzy sets 
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�9 para-consistent complementation (from (6)) 

lAFc(d) = in f{s  ~ [0, 1], max  (lAF(d), S) = 1) 

1, if lAy(d) < 1 
= ( 8 )  

0, if lAF(d) ---- 1. 

Note  that  F c = [core(F)] '~ with core(F)  = {d ~ D, lAg(d) : 1 ) ;  F~"' _ ~ F and 

F w F '  = D ( b u t w e h a v e n o t F ~ U  = r 

�9 Intuitionistic complementation (from (7)) 

lArc(d) = sup {s ~ [0, 1], min (lAr(d), S) = 0} 

1, if lAr(d) : 0 
= { (9) 

0, iflAr(d ) > 0. 

No te  that  F '  = [Support  (F)] '  with suppor t  (F) = {d E D, lAr(d) > 0}, F cc ~ F a n d  

F n F  C = O ( b u t w e h a v e n o t F w F "  = D). 
Using the para-consis tent  complementa t ion  for defining N(F; A (xi)) = 1 - I-I(U; 

A(x~)) guarantees that  I I(F;  A(xi)) < l =~ I-I(U; A(x~)) = 1 (provided that  A(x~) 
is normalized),  since F w U =  D and, consequently,  N(F; A(x~)) = 0 if H(F; 
A(x~)) < 1; then (5) is preserved. Thus,  we keep the definition (1) of  I-I(F; A(x)), 
acknowledged by all au thors  in the fuzzy set literature, while N(F; A (x)) is now 

changed into 

inf  m a x  (lAcore(F)(d), l - -  lAAix)(d)) = N(core(F) ;  A(x)). (10) 
d 6 D  a 

Clearly, N(F; A(x) )= N(core(F);  A(x)) when F is not  fuzzy, since then 

F = core(F)  = suppor t  (F),  and N(core(F) ;  A(x)) <<, N(F; A(x)) in the general 
case, which means  that  we are now more  pessimistic in the expression of  certainty; this 

is a cautious,  and thus satisfying, behavior .  
N.B.: Keeping the definition (3) o f  N and defining FI f rom N by FI(F; 

A (x~)) = 1 - N ( U ;  A (xi)) using the intuitionistic complementa t ion  would preserve 

(5) also. 

3. Fuzzy Evaluation of the Number of Items whose Attribute Value Belongs 
to F 

3.1. CASE WHERE F IS AN ORDINARY SUBSET 

In this section, F is assumed to be an ordinary subset o f  Da. 
Fo r  each xi ~ X we have the pair  (II(F;  A(x~)), N(F; A(x~))) computed  f rom (1) 

and (3). The  rI(F;  A (xi))'s, for i = 1, n, define the fuzzy set o f  items whose at t r ibute  
value possibly belongs to F. A fuzzy-valued cardinali ty of  this fuzzy set is easily 
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obtained using the following procedure (Prade, 1984; Dubois and Prade, 1985; 
Zadeh, 1983) 

(1) rank the II(F; A (x~))'s in decreasing order. Let u~ be the value of rank i in this 
ordering, for i = I, n and let u0 = 1. 

(2) the fuzzy-valued cardinality we use is then the fuzzy subset of N defined by 

uo/O + u,/1 + " .  + u,,/n, 

where the membership grade is before the '/' and the corresponding element of 
after; here + denotes the union of singletons. 

E X A M P L E .  X = {x~, x2 . . . . .  x6} and we have the following values for the H(F; 
A(x~))'s: 

Xl X2 X 3 X4 X 5 X6 

H(F; A(x~))  0.2 1 0.8 1 0.5 0.5 

Then the fuzzy cardinality is given by 

1/0 + 1/1 + !/2 + 0.8/3 + 0.5/4 + 0.5/5 + 0.2/6 

Note that this fuzzy integer is always normalized since we always have u0 = 1. This 
fuzzy set represents the number of elements which may be found in the fuzzy set 
defined by the II(F; A (xi))'s. However, note that in case of an ordinary set with p( ~< n) 
elements, it reduces to the subset of N {0, i . . . . .  p} and not to { p}. See Dubois and 
Prade (1985) for a discussion. 

Similarly, by ordering the N(F;  A (xi))'s in a decreasing order, we can compute a 
fuzzy subset of N which represents the number of items whose attribute value more 
or less certainly belongs to F. Let vi be the value of rank i in the ordering of the N(F;  

A(xi))'s. The fuzzy set restricting the possible values of the cardinality of the set of 
items x which are such that a(x) e F, is then given by 

m i n  (ui, 1 - v~+t) / i ,  (11)  
i - O , n  

where Z stands for the repeated use o f ' + '  and v,,+~ = 0. (11) must be understood in 
the following way. We are certain at the degree vi that there are at least i items which 
satisfy the condition, and then it is possible at the degree 1 - v,+~ that there are at 
most  i items (due to (2) and since the negation of 'at least i' is 'at most i - 1'). 
Moreover, it is possible at the degree u~ that there are at least i items which satisfy the 
condition. Finally, rain (u~, 1 - v~ + L) is the possibility that there are at least i and at 
most i items, in other words it is the possibility that there are exactly i items which 
satisfy the condition (Prade, 1984). 
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When F is an ordinary subset, as already said, we always have 

Vi, H(F; A(xi ) )  < 1 ~ N ( F ; A ( x i ) )  = O. 

Then the fuzzy subset of N defined by (11), is always normalized (i.e. there is at least 
one value with a membership grade equal to 1). In case of complete information (i.e. 
all the A (x~)'s are singletons), this fuzzy set reduces to a singleton corresponding to 
a precise integer, which is the number (precisely known in that case) of items which 
satisfy the condition. Let K be the fuzzy proportion of items of X which satisfy the 

condition; we have 

Vi, 0~< i ~<  n , # K ( ~ )  = m i n ( u ~ , l -  v~+~). (12) 

We are now in position for evaluating (in terms of possibility, and necessity) the 
condition 'The value of attribute a for Q items of X is in F '  by computing (using (1) 
and (3) again) the quantities I-I(Q*; K) and N(Q*; K) where/~e, denotes the restriction 
of the membership function/~Q (defined from [0, 1] to [0, 1], since it represents a 
vaguely specified proportion in the most general case) to the subset of rational number 

{,2 t 0 . . . . . . .  1 . 
n n 

We have 

( ) I I (Q*;K)  = maxmin  ~Q ,u~, 1 - v~+~ , (13) 
i = 0 , n  

N(Q*;K)  = minmax  ~o ,1 - ui, vi+l �9 
i=O,n 

II(Q*; K) (resp. N(Q*; K)) estimates to what extent it is possible (resp. necessary or 
certain) that the condition 'The value of attribute a for Q items of X is in F '  is satisfied 
when the available information is represented by the A (xi)'s. Thus, by repeating the 
fuzzy pattern matching procedure two times, first in order to estimate the com- 
patibility of each item with the requirement, second in order to compare the (fuzzily- 
known) relative number of items which satisfy this requirement with the requested 

proportion. 
It can be checked that when Q corresponds to the existential quantifier '3' (i.e. 

#Q(0) = 0 and Vi /> 1, 12q(i/n) = 1), or to the universal quantifier 'V' (i.e. #q(l) = 1 
and Vi < n, t~Q(i/n) = 0), then H(Q*; K) reduces, respectively, to max,_ ~., H(F; 
A (x~)) and to min i = ~,, II(F; A (xg)), and similarly for N(Q*; K) changing 11 into N in 

the preceding expressions. 
N.B.: In case Q would restrict the possible value of an absolute number (rather than 

a relative number, i.e. a proportion), the above procedure applies as well changing 
#x(i/n) i n to /~ ( i )  in (12) and I~Q(i/n) into /2~(i) in (13)-(14). 
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3.2. CASE W H E R E  F 1S A F U Z Z Y  SET 

When F is a fuzzy set, (5) no longer holds and we only have H(F; A (xJ) >/ N(F; 

A(xJ)  (provided that A (xi) is normalized). Then, the fuzzy set of N defined by (11) 
and the fuzzy set K may be subnormalized if we use definition (3). This is due to the 
fact that with a fuzzy set we cannot definitely say if a precise attribute value satisfy 
or not the corresponding requirement. This uncertainty is echoed by the sub- 

normalization of K. However, this situation is undesirable here, since this sub- 
normalization would blur the computation of H(Q*; K) and N(Q*; K). 

One way of escaping this problem would be to renormalize K by dividing each 
membership grade by the height of K. A more satisfying way to cope with this 

difficulty is to modify the definition of N in order to preserve (5). This may be done 

in the following way. 

When F is a fuzzy set, we compute the H (F; A (xj) 's  by (1) and the N(F; A (x~))'s 
are replaced by the N(core(F); A (x~))'s given by (10), which is based on (2) and the 

para-consistent complementation (8). Then (5) is preserved, K remains normalized 
and (13)-(14) still apply without any particular problem. 

Let us examine the particular case where F is a fuzzy set and the pieces of 

information A(xj) are precise; i.e. Vj, A(Xj) = {4}, dje  D. Then 

n (F ;A(x j ) )  = UF(d,,) 

and 

N(core(F); A(Xj)) = 1 - H([core(F)]'; A(Xj)) = /G~cIF)(~) 

(which contrasts with the situation where the complementation (4) is used, leading to 

II(F; A (xj)) = N(F; A (xj)) = I&(dj) in case of precise information). Then the vi's 
introduced in Section 3.1 are such that 3k, vi = 1 for i = 0, k and % = 0 for 

i = k + 1, n. Moreover, u, = 1 (due to (5)). Then the subset of N defined by (11) 
can now be written 

ui/i, (15) 
i - k . n  

since Vi, k ~< i ~< n - 1, vi+~ = 0 and Vi, 0 ~< i ~< k - 1, vi+ 1 = 1. Besides, since 
#cor~(r)(~) = 0 =~ /~l:(dj) < l, then % = 0 =~ uj < 1 and in particular u,+L < 1. 
Thus, in case F would be an ordinary set, k would be the precise value of the number 
of times satisfying the requirement. 

Yager (1984) has proposed the following estimation of the extent to which the 
condition 'Q items of X are F '  is satisfied, where Q and/or F are fuzzy, Q being a 
relative quantifier, in case of precise information 

m a x  man 
C_~X 4~ C 
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where I cI denotes cardinality of C. Introducing the rank k defined above, (16) is still 
equal to 

m a x l m a x m i n ( p Q ( l ~ - ) , m i n j p F ( d j ) ) ,  max min(pO(~nC--~),minj~r(~))] 
k ICI4k dFC K:l>~k+l '{i ~(" 

= max [max (:) ,  max min(,uQ(!),,) 1 

Expression (16) estimates to what extent it is possible to find a relative number, 
compatible with Q, of items which are F. In other words, it corresponds to the 
possibility that there is a proportion 'at least Q' of items which are F. Indeed, (17) is 
equal to the expression of rl(Q*; K) taking into account (15), i.e. to 

II(Q*; K) = max min ~Q , ui 
k<~i<~n 

provided that 'Q' and 'at least Q' are identical, i.e. #Q is non-decreasing (which implies 
that max0.~j.<k min (po_(j/n), uj) = pQ(k/n)). Thus, the approach presented here and 
Yager's proposal are in agreement in the particular situations where both apply. See 
also Dubois et al. (1988) for the relation with the evaluation of conditions of the kind 
'at least Q criteria (among n) are satisfied; (here, the n criteria are 'the value of 
attribute a for xs is in F '  for i = 1, n) viewed as a special case of weighted pattern 
matching; an expression similar to (17) is then obtained. 

4. Concluding Remarks 

The proposed approach which repeatedly make use of the pattern matching pro- 
cedure first described in Cayrol et al. (1980) can be easily implemented and is com- 
putationally simple using trapezoidal possibility distributions. Moreover, the con- 
dition 'the value of attribute a for the item x is in F '  can be replaced more generally 
in the approach by a compound condition involving several attributes. 

Possibility theory thus offers a powerful and natural framework for the represen- 
tation of vague quantifiers and vague predicates and their evaluation in presence of 

incomplete information. 
The procedure which has been presented here is implemented in the inference 

engine TAIGER (Wyss, 1988; Farreny et al., 1986), which has been applied to expert 

knowledge in financial analysis. 
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