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Abstract. This review considers the theory of the magnetic field line reconnection a~Ld its application to the 
problem of the interaction between the solar wind and the Earth's magnetosphere. In particular, we discuss 
the reconnection models by Sonnerup and by Petschek (for both incompressible and compressible plasmas, 
for the asymmetric and nonsteady-state cases), the magnetic field annihilation model by Parker; Syro- 
vatsky's model of the current sheet; and Birn's and Schindler's solution for the plasma sheet structure. A 
review of laboratory and numerical modelling experiments is given. 

Results concerning the field line reconnection, combined with the peculiarities of the MHD flow, were 
used in investigating the solar wind flow around the magnetosphere. We found that in the presence of a 
frozen-in magnetic field, the flow differs significantly from that in a pure gas dynamic case; in particular, 
at the subsolar, part of the magnetopause a 'stagnation' line appears (i.e., a line along which the stream lines 
are branching) instead of a stagnation point. The length and location of the stagnation line determine the 
character of the interaction of the solar wind with the Earth's magnetosphere. We have developed the theory 
of that interaction for a steady-state case, and compare the results of the calculations with the experimental 
data. 

In the last section of the review, we propose a qualitative model of the solar wind - the Earth's 
magnetosphere interaction in the nonsteady-state case on the basis of the solution of the problem of the 
spontaneous magnetic field line reconnection. 

1. Introduction 

The interaction of the solar wind with the Earth's magnetosphere causes a series of 
phenomena, the character and intensity of which change significantly with the solar wind 
parameters. The most intensive and peculiar phenomena, such as the plasma convec- 
tion, the acceleration of charged particles and their precipitation into the ionosphere, 
and the generation of global current systems, are associated wit]h the existence of 
large-scale electric fields in the magnetosphere. The appearance of these fields is most 
often assumed to be due to the process of reconnection of magnetic fields and to 
transformation of the magnetic energy into the kinetic energy of charged particles in the 
vicinity of neutral lines at the magnetopause and in the magnetotail. 

However, magnetic field line reconnection is only a part of the whole process of the 
interaction of the solar wind with the Earth's magnetosphere, and peculiarities of the 
flow of the solar wind around the magnetosphere may greatly affect the development 
and the course of that process. 

In this connection, it has to be noted that beginning with the classic model by Dungey 
(1961), many models of the interaction of the solar wind with the geomagnetic field have 
been semiqualitative, and in some aspects they contradict each other. For example, the 
flow of the solar wind around the magnetosphere is considered in the MHD approxima- 
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tion with the magnetic field assumed to be weak, while the reconnection theories are 
based on the opposite assumption that the magnetic field is strong. 

Besides, some models are based not on a solution of the corresponding MHD 
equations but on some geometrical consideration and on ideas about the motion of 
frozen-in magnetic field lines. This concept of magnetic field line motion has often led 
to some confusion; because of that, some models based on that concept were accurately 
criticized by Alfv6n (1976, 1977). We also believe that physical models cannot be based 
on the qualitative and to some degree speculative ideas on magnetic field line motion 
(the more so because in some regions the frozen-in conditions are surely violated); 
physical models must be constructed on the basis of meaningful solutions of the 
problems of magnetic hydrodynamics (or even better, kinetics). Because of that belief, 
in the following analysis we shall first pay attention to solutions of that very kind, and 
only when the solution is obtained shall we use the concept of the field line motion in 
the physical interpretation of that solution. 

Unfortunately, the number of such solutions is rather small and is insufficient for the 
construction of consistent models. Because of that we shall briefly consider some other 
methods of investigating the reconnection problem: numerical modelling and laboratory 
experiments which have been successfully developed over the last few years. 

As will be shown further on (Section 3), for the reconnection process to begin and 
then proceed on to a steady-state mode, it is necessary that: (1) the magnetic field in 
the vicinity of the reconnection region is sufficiently intensive and (2) there exists at the 
magnetopause a quasi-stationary tangential electric field maintaining electric currents 
in the diffusion region and the plasma convection in the reconnection region. 

The first condition surely is not realized within the undisturbed solar wind (the 
Alfv6nic Mach number in the solar wind is equal on the average to 10). Because of that 
it seems to be of great importance that in the course of the solar wind flow around the 
magnetosphere, the intensity of the magnetic field increases towards the magnetopause. 
However, the value to which the solar wind magnetic field intensity may increase is not 
quiet clear. In the case of the gas dynamic flow with an isolated stagnation point as 
usually supposed, the value of B/p has to tend to infinity at the magnetopause. Both 
variants leading to this result: B = 0% p v~ 0, and B ~ 0% p = 0, seem to be unlikely from 
the physical point of view (Section 6), which raises doubts about the validity of the usual 
conception of the pure gas dynamic topology of the flow. 

The second condition, E t ~ 0 in the case of the gas dynamic flow with an isolated 
stagnation point, is not fulfilled either, which contradicts not only the hypothesis about 
the magnetic field reconnection, but also the experimental data for the electric field at 
the magnetopause (see Section 6). 

All the points stated above force one to reject the attempts to solve the problem within 
the framework of the traditional pure gas-dynamic model of the solar wind flow around 
the magnetosphere and instead to seek first a topology of the flow adequate to the 
problem. We believe that the flow with a stagnation line meets these demands. Indeed, 
the existence of such a stagnation line limits the value of B/p for the greater part of the 
magnetopause and provides for the existence of the tangential electric field along that 
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fine. Besides, the topology of the magnetic field in the vicinity of the stagnation line 
proves to be favorable for the development of the magnetic field reconnection. In its turn, 
the field line reconnection maintains the flow with the stagnation line, which makes the 
whole process self-consistent. The first preliminary estimates of the plasma parameters, 
and of the magnetic and electric fields in the magnetosheath, obtained on the assumption 
that the stagnation line exists, seem to be rather reassuring, as we shall see below. 

At the same time we must note that the steady-state reconnection of the interplanetary 
magnetic field (IMF) and the geomagnetic field may be realized only as an average over 
time. In reality the reconnection must have a spontaneous and impulsive charateer, so 
the structure of the flow and of the magnetic field at any given moment may be very 
complicated. 

The idea on the spontaneous reconnection may also be of use in explaining the change 
of the flow from a pure gas-dynamic one in the absence of the IMF to a flow with the 
stagnation line in the case of the nonzero IMF. Thus, the spontaneous reconnection 
concept allows one to look at the whole problem of the solar wind flow around the 
magnetosphere from a single viewpoint (see Sections 4 and 7). 

In this review we shall first consider the magnetic energy storing phase (Section 2) 
and discuss solutions concerning the steady-state (Section 3) and spontaneous 
(Section 4) reconnection. To illustrate the physical meaning of the phenomena under 
consideration, we tried to choose the most obvious models involving mostly incompres- 
sible media. Results of more complicated solutions are given briefly for reference. 

In order to avoid overloading the text with mathematical formulae, most of them are 
given in the Appendix. The latter may be of some independent interest, for in it there 
is given a consistent description of the techniques of the frozen-in coordinate system 
which may be useful in a series of various problems of ideal magnetic hydrodynamics. 

In Section 5 the results of numerical and laboratory experiments are considered, and 
Section 6 is devoted to the analysis of the steady-state flow of the solar wind with a 
frozen-in magnetic field of arbitrary direction around the magnetosphere. The same 
problem under nonsteady-state conditions is considered in Section 7. 

The Reconnection Process and the Development of the Current Sheet 

2.1. QUALITATIVE DESCRIPTION OF THE RECONNECTION PROCESS 

Magnetic field line reconnection is believed to be the source of many explosive 
phenomena in which the energy of the magnetic field is converted into the kinetic and 
internal energy of the plasma. At first the magnetic energy is stored near the current 
sheet; for its rapid release it is necessary to destroy the current sheet as quickly as 
possible. There are two main possibilities to do this: (i) Joule dissipation, or the magnetic 
field line annihilation as this process is traditionally called, and (ii) the current sheet 
disruption. 

The first process may be illustrated by the following simple consiideration (Yeh and 
Axford, 1970). Let us assume that an incompressible plasma with the conductivity a 
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Fig. 2.1. Configuration of the magnetic field lines near the current sheet (a) at an initial moment, and at 
some later time in the case of (b) field line annihilation, after Yeh and Axford (1970), and (c) current sheet 

disruption, after Bulanov and Sasorov (1978). 

occupies the region Y ~z 0 and is permeated by uniform magnetic field ( + Bo; 0); thus, 
initially there is a current sheet at Y = 0 (see Figure 2. la). The subsequent evolution of 
the magnetic field is described by the diffusion equation, which in the case under 
consideration has the solution: 

Bx(y, t) = +_ 2~-  1/2B o erf(Tzoy2/c2t) 1/2, 

where erf(x) is the error function. It can be seen that the width of the transition layer 
with a weak magnetic field is of the order of Yz~ = (c2t/rca) 1/2, and it increases with time 
(see Figure 2. lb). The energy of the annihilated magnetic field is directly converted into 
heat. However, the diffusion velocity I'D = (c2/4rwt) ~/2 decreases with time, and the 
annihilation process fades quickly. To provide a release of a considerable amount of the 
energy, an instability is triggered to reduce the conductivity of the current sheet plasma. 
It should be emphasized that this instability must be triggered throughout the whole 
current sheet simultaneously, which seems to be unlikely from the physical point of view. 
If the instability develops locally, a disruption of the current sheet should arise. 

In the latter case, an X-line appears, the magnetic field lines reconnect in the diffusion 
region in the vicinity of the X-line, and then, while shortening, they sweep the current 
sheet plasma away from the X-line (see Figure 2. lc). This is the so-called 'catapult' 
model which was very popular earlier. Unfortunately, it led often to some confusion; 
mainly because of the basic concepts such as 'reconnection', 'moving field lines', 
'diffusion region', and so on were not defined correctly. Only recently some progress 
has been achieved due to extensive analytical (see Section 2 and 3), laboratory and 
numerical (Section 5) investigations. The analysis of the available results allowed a 
quantitative model of the reconnection process to be developed. 

The following remark should be made before the model is described. The main 
shortcoming of the catapult model is that the role of the MHD-waves is neglected in 
this approach. In fact, a local decrease of the plasma conductivity and the appearance 
of an X-line are accompanied by the generation of the MHD-waves which may 
propagate, interfere and essentially affect the whole plasma flow and magnetic field 
pattern. Taking into consideration the MHD-waves reduces the model of the current 
sheet disruption to the well-known Petschek's (1964) reconnection model. 
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Let us consider now the disruption of the current sheet in more detail (Semenov et al., 

1984). As before, let the plasma conductivity and, hence, the current intensity decrease 
locally in a part of the current sheet. It means that a current Ii directed against the initial 
sheet current 10 appears in the region of the conductivity decrease (see Figure 2.2a). The 
appearance of the current 11 leads to the generation of MHD-waves in the plasma 
medium. Among them the Alfv6n wave is of great importance, since it produces currents 
which close the circuit. We denote this current system as I A ; it consists of the current 
I 1 in the diffusion region, the field-aligned currents I z and polarization currents 13 at the 
fronts of the Alfv6n waves. 

Initially, the current sheet is a tangential discontinuity. However, after the current 
system I A of the Alfv~n wave has been generated, the regions of the current sheet passed 
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Fig. 2.2. A qualitative model of the field line reconnection. (a) Propagation of the Alfv6n wave along the 
magnetic field lines. (b) Breakup of the current sheet and appearance of Petchek's slow shocks S - .  (c) 
Propagation of the FR-regions along the current sheet after the switch-off of the electric field in the diffusion 

region. 
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by the disturbance cease to be a tangential discontinuity. Instead, a component of the 
magnetic field normal to the current sheet as well as a tangential component of electric 
field appear in these regions. As a result, both the energy flux and the mass flux exhibit 
a jump there. A discontinuity at which the conservation laws are not satisfied is 
unstable; it breaks down immediately into a system of a fast and slow shocks, expansion 
fans, and tangential or contact discontinuities (Akhiezer et al., 1975). In the simplest 
case, when the plasma and field parameters are symmetric, the discontinuity breaks 
down into two fast shocks and two slow shocks, as illustrated in Figure 2.2b. 

Thus, the initial breakup of the current sheet and appearance of Petschek's slow 
shocks take place. The subsequent influence of the diffusion region on the reconnection 
process proceeds by means of the same mechanism. For example, let the current 11 
increase (that is, let the total current I o + 11 decrease) in the diffusion region. Then 
Alfv6n waves arise and propagate along the field lines which permeate the diffusion 
region. The conservation laws are violated in those parts of the slow shocks which this 
new disturbance has reached. These parts of slow shocks have to break down, but in 
contrast to the initial breakup of the current sheet, this breakup seems to reduce to a 
deformation of the slow shocks. By this mechanism the slow shocks adjust themselves 
to the new reconnection rate: if the current I 1 grows, then the inclination of the slow 
shock with respect to the initial magnetic field increases. As a result, the plasma flow 
and magnetic field pattern also adjusted to the new reconnection rate. The process is 
self-consistent, it is initiated and controlled by the behavior of the plasma in the diffusion 

region. 
In the course of time, the Alfv6n wave propagates along the field lines and makes a 

new parts of the current sheet to break down. The whole process has an explosive nature 
with a characteristic velocity of the order of the Alfv6n speed. 

Two slow shocks confine the field reversal region (FR-region) in which the plasma 
is heated and accelerated up to the Alfv6n velocity, and the magnetic field is reconnected. 
The leading fronts of the slow shocks (marked as C and C' in Figure 2.2b) propagate 
with the Alfv6n velocity. Once the reconnection process is complete, the FR-regions run 
along the current sheet as a solitary wave (Figure 2.2c). The part of the current sheet 
is recovered behind them, but the magnetic field intensity near the origin (where the 
diffusion region was initially located) is smaller than its initial intensity, B o . Deficit of 
magnetic energy is carried out by the moving FR-regions. 

In the general case, a reconnection line can move along the current sheet with a 
velocity U. If the neutral line moves to the right (see Figure 2.3), the right hand FR-region 
inflates, the reconnected magnetic field and the electric field are enhanced here. At the 
left hand side the configuration evolves in the opposite direction: the FR-region flattens 

and the magnetic field magnitude decreases. 
Several requirements have to be satisfied for the reconnection process to start. First 

of all, there must exist a current sheet I o . The reconnection is not possible at all in the 
case of a current-free magnetic field. It is the energy of the current sheet magnetic field 
that is converted into the plasma energy; the magnetic field from distant sources affects 
the reconnec t ion  only in an indirect way. 
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Fig. 2.3. Effect of the reconnection line motion, U being the velocity of the reconnection line. 

It is necessary also that the current system of the Alfv6n wave be generated by some 
causes. Most often it seems to arise owing to the development of the anomalous 
resistivity in a parl of the current sheet. Besides, the tearing mode instability may lead 
to the necessary redistribution of the electric currents in the current sheet and thereby 
to initiate the reconnection in the case of a sufficiently long-wave mode. 

The generation of the current system IA may be caused also by external sources. For 
example, if the Alfv4n wave with the appropriate polarization falls upon the current 
sheet, the currents at the front of the Alfv4n wave may initiate the reconnection (see 
Section 3). 

2.2. DEVELOPMENT OF THE CURRENT SHEET 

As we have seen above, the reconnection (in the framework of Petschek's mechanism 
for the generation of shocks) cannot develop in the current-free (i.e., rot B = 0) magnetic 
field. Some currents have to flow in the reconnection region; their energy is the source 
for all the other kinds of energy gained by the plasma in the course of the reconnection, 
including the kinetic and thermal ones. For the energy to accumulate, some time as well 
as certain conditions are needed. At present only the simplest regimes have been 
investigated: (a) when the total amount of energy entering the system is accumulated 
as free energy, and (b) when all the energy is spent for Joule heating of the plasma. 

We shall start with the first case. Thus, assume there exists a magnetic field with a 
neutral X-line of the vacuum type in a perfectly conducting plasma, and let the electric 
field be switched on along that line at a certain moment. Just after tlhat moment a fast 
magneto-acoustic cylindrical wave appears (Syrovatsky, 1979b, 1981), propagating 
towards the line. Before the wave front the medium is not disturbed, while behind it the 
convection is set up which compresses the magnetic field along the Y-axis and stretches 
it along the X-axis (Figure 2.4a). 

The main features of the process of the magnetic energy accumulation may be 
obtained from the following rather simple consideration (Figure 2.4b) (see also Priest, 
1981). The plasma convection caused by the electric field is carrying the magnetic field 
lines to the X-line. In a perfectly conducting plasma the field lines cannot tear and, 
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Fig. 2.4. Development of a current sheet at the site of the X-point of the magnetic field. (a) Distortion of 
the magnetic field by a converging cylindrical wave. Circle with a small radius represent the wave front; solid 
lines represent the magnetic field lines, and dotted lines show their initial configuration; the arrows show 
the displacement of the plasma. The picture is symmetric with respect to the coordinate axes. The figures 
at the curves show the values of the vector potential. (b) The structure of the plasma flow and of the magnetic 

field in the vicinity of a developed current sheet; 'b' is the half-width of the sheet. 

hence, they are accumulated.  At the X-fine the field lines stop moving (otherwise, they 

would be torn) and, therefore, the electric field intensity has to be zero there. 

The compensat ion  of the electric field is accomplished in the following way. As we 

have jus t  seen, the magnetic field intensity increases in the vicinity of the current sheet. 
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According to Lenz's rule, the induction electric field E r is directed against the initial field 
E o. Thus the electric field at the current sheet equals ENs = E o - E  r ~ Eo, and 
(ENs "INs) ~ (Eo" INs). According to the Poynting theorem, in such a case most of the 
energy entering the system is stored as magnetic energy. 

Certainly, this qualitative and very rough consideration has to be c.onfirmed by more 
rigorous calculations. As often occurs in magnetic hydrodynamics, the solution of the 
problem does not exist in the general case, and some simplifications are usually 
introduced; in particular, in a more complicated case we have to restrict ourselves by 
a simpler geometry. 

To begin with, let us consider some more or less general and, as a consequence, rather 
rough models of that kind. 

(1) Syrovatsky's approximation (Syrovatsky, 1971, 1979a, b, 1981). In that approxi- 
mation, magnetic pressure is supposed to be much greater than both the thermal and 
the dynamic plasma pressures: fl = 8rCpo/B 2 ~ 1; Ma = V o / V  a <~ 1. Then in the zero- 
order (with respect to fl and Ma) approximation the magnetic field is self-balanced 
(j x B = 0). Besides, in studies of the systems with current sheets, magnetic field may 
be considered as not only force-free but also as current-free (rot 13 = 0) everywhere 
except for the current sheets, which, in their turn, can be considered as infinitely thin. 

Such an approach appears to be remarkably fruitful, as it allows one to introduce such 
powerful mathematical tools as functions of complex variables. 

To illustrate the method, we shall discuss in detail the problem considered qualita- 
tively at the beginning of this section. So, let there exist at some initial instant a 
hyperbolic magnetic field with a vacuum-type X-line, and at that very instant let there 
be switched on an electric field Eo(t ) parallel to the X-line. It is obvious that the electric 
field cannot penetrate into the plasma instantly. It exists initially only outside the plasma 
volume; let us consider the latter to be enveloped by a cylindrical surface with radius 
R and the axis along the X-line. After the converging cylindrical magneto-acoustic wave 
has approached the X-line, a current sheet arises there (Figure 2.5). The complex 

Fig. 2.5. 
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The neutral sheet developed at the site of  an X-line of the first order; 'b' is the half-width of the 
sheet. The figures at the curves show the values of  the vectors potential A (x, y, t). 
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potential corresponding to that solution is 

F(z,  t) = ~ z ( z  2 - b2) 1/2 - hOb2 In z + (z 2 - b2) 1/2 

2 b 
(2.1) 

where h o is the ghradient of the initial magnetic field in the vicinity of the neutral line 
and b is the halfwidth of the current sheet. The Z-component of the vector potential may 
be obtained from F as A (x, y, t) = Re F(z,  t). The components of the magnetic and of 
the electric fields are expressed by formulae: 

dF 

dz 
- / ~ y  - i / L  = ( z  2 - b ~ )  1/2,  (2.2) 

I ~ A  
Ez = - -  - - .  (2.3) 

c Ot 

One can see from (2.3) that the electric field is greatly inhomogeneous; it vanishes 
at the current sheet and reaches the maximum value E o at the boundaries of the region 
under consideration. 

The current sheet evolution is described by the function b(t) which may be obtained 
by equaling the tangential components of the electric field at the boundaries: 

b2(t) 1 - In b(t )_  = _ Eo(C) dt ' .  (2.4) 
2R ,I 

0 

It follows from (2.4) that when Eo(t ) does not change sign, the current sheet is widening 
with time. The free energy of the magnetic field per unit length of the neutral line is 
estimated as 

\ b 2 

and A W  increases rapidly as b(t) increases. 
The total current in the current sheet is 

(2.5) 

J - ch~ (2.6) 
4 

An important conclusion may be drawn from the results obtained above: the free energy 
is the more effectively accumulated, the more intense the electric field E 0 is, the nearer 
to the X-line it is applied, and the greater the gradient of the initial magnetic field is. 

Syrovatsky's method is good for calculation of the magnetic and electric field 
intensities (Somov and Syrovatsky, 1974; Priest and Raadu, 1975; Tur and Priest, 
1976). However, it is difficult to obtain gas dynamic parameters of the flow in that 
approximation. Because of that, in seeking for an accurate solution of the problem, we 
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have to restrict ourselves to considering only incompressible plasma in the immediate 
vicinity of the current sheet. 

In a dimensionless form, the solution may be written as: 

B x = t; By = 0; V x = x/t;  Vy = - y / t ;  P = Po -Y2/ t2 .  (2.7) 

Here P is the total pressure. It is seen from (2.7) that when the magnetic field increases 
with time, the velocity of the plasma motion is decreasing. Such a decrease of the plasma 
velocity is caused by the requirement that the field lines cannot break and are accu- 
mulated in a perfectly conducting plasma. 

According to Syrovatsky (1979b, 1981), who has calculated the flow parameters for 
a compressible plasma, the plasma density also decreases with time in the vicinity of 
the current sheet, and may drop to a very small value. As will be shown below (see 
Section 4, formula (4.27)), this promotes especially effective energy release (the latter 
being proportional to p-  1) at the reconnection phase. 

Syrovatsky's model permits one to calculate the magnetic field and the plasma flow 
outside the current sheet, as well as the amount of free energy accumulated in the system. 
However, that model cannot provide any information on the internal structure of the 
current sheet and, hence, on the development of instabilities causing the reconnection. 
To investigate the structure of the current sheet, quite another technique is necessary, 
in particular, the technique developed by Birn and Schindler. 

(2) Birn-Schindler's approximation (Birnetal., 1977; Birn, 1979; Schindler, 1979; 
Schindler and Birn, 1982). 

It is supposed that the Amptre force in the current sheet is balanced by the plasma 
pressure gradient 

1 
-P'p = - j  x B. (2.8) 

C 

Calculating the dot product of (2.8) by B, one obtains: (B~7)p = 0, i.e. plasma pressure 
is constant along the magnetic field lines and, hence, may be specified at some initial 
surface. Then, having expressed the magnetic field by means of Euler potentials: 
B = go~ x gfl, Equation (2.8) may be reduced to equations in terms of variables ~ and 
ft. In the above-referenced papers a method of solving these equations is developed for 
the case in which the gradients across the current sheet are much greater than those 
along it. The method allows one to calculate the magnetic field and the plasma pressure 
within the current sheet, with the proper boundary conditions. 

Thus, Birn-Schindler's method is local and is applicable only to the inner part of the 
current sheet where significant gradient exist. It would be of great interest to match the 
solutions of the models by Syrovatsky and by Birn and Schindler, because such a 
matching could provide the boundary condition for the pressure, which has been 
imposed by Birn and Schindler rather arbitrarily. 

So far we have considered stationary current sheets. To deal with dynamic problems, 
the time-dependent boundary conditions for the pressure have to be assumed. Then, as 
earlier, the magnetic field is calculated and from that the electric field, the plasma den-sity 
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and the velocity may be obtained. Such an approach permits one to find out some fine 
details of the energy accumulation process. 

In one of their first papers of that kind Schindler and Birn (1982) obtained a family 
of analytical solutions for the evolution of the current sheet in the magnetosphere's tail, 
under a variety of imposed boundary conditions. The regime under consideration was 
chosen in such a way that no neutral line could arise there. The main results obtained 
in that study are as follows (Figure 2.6): 

t 
, 

~g 

Fig. 2.6. Evolution of the magnetic field and of the electric field in the magnetotail according to Schindler 
and Birn (1982). Figures at the curves show the values of the vector potential A (x, z, t) - (a), or of the electric 

field intensity E ( x ,  z ,  t )  - (b). The bottom figure corresponds to a later moment. 
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(1) The stationary convection in the magnetotail is possible only in a rather special 
case with the polytropic exponent 7 < 1; in the opposite case the balance of forces is 
impossible. 

(2) Typically, the magnetospheric convection is nonstationary. Convection may be 
caused by the following conditions at the boundary: (a) by the electric field, (b) by the 
increase of the magnetic field intensity in the magnetotail lobes; (c) by the increase of 
the total pressure (P = p + B2/8zt). 

(3) Electric field intensity rapidly decreases with distance from the boundary, and 
drops to very small values near the current sheet, where it can even change its sign. 

(4) Intensity of the currents within the plasma sheet, as well as the magnetic field 
energy in the magnetotail lobes, increase with time, while the magnetic field component 
normal to the current sheet decreases; thereupon the threshold of the tearing instability 
(or that of anomalous resistivity) is achieved. Thus, the current sheet evolves in the 
process of energy accumulation to an unstable state. 

These results, combined with the conclusion by Syrovatsky on the decrease of the 
plasma density in the vicinity of the current sheet at the phase of energy accumulation, 
provide a sufficiently complete picture of that phase. 

2.3. P A R K E R ' S  M O D E L  

By now we have considered plasma as a perfectly conducting medium. In reality the 
plasma has a finite conductivity and, hence, a part of the energy entering the system or 
even all of it may dissipate as Joule heat. In particular, there was obtained (Parker, 1973; 
Sonnerup and Priest, 1975; Priest and Sonnerup, 1975) a simple and nevertheless exact 
solution of a special problem in which the magnetic field energy converts completely into 
heat (the so-called process of the magnetic field annihilation). 

Let us consider the flow of a incompressible plasma in the vicinity of the stagnation 
point (see Figure 6.3 in Section 6): 

Vx = - k l x ,  Vy = kz,v, V~ = ( k l  - kz )z .  (2.9) 

Magnetic field lines are supposed to be straight ones and parallel to the Z-axis: 
B x = By --- 0; B z = B ( x ) .  Then the pressure may be obtained fronzt the equation of 
motion: 

1 2 1 B 2  p = const. - 5 p V  - 
8rt 

a n d  B ( x )  is determined by the equation: 

C 2 
rot [V x B] + V2B = 0 

4~a 

which is reduced in the case under consideration to: 

(2.10) 

(2.11) 

1 d2B dB 
+ x - - +  c~B = 0, 

Re,.,, dx 2 dx 
(2.12) 
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where Re,, is the magnetic Reynolds number, and ~x = (k~ - k z ) / k  1 . The solution of 
(2.12) may be expressed in parabolic cylinder functions and is characterized by the 
following peculiarities. When Re m >~ 1, there appears a magnetic boundary layer with 
a width of the order of L / ( R e m )  1/2. Beyond that layer the magnetic field intensity 
increases as B ~ x -  ~ while approaching x = 0. The most rapid increase takes place 
when c~ = 1 which corresponds to the stagnation line being perpendicular to the magnetic 
field. In the case of a longitudinal stagnation line (i.e. parallel to B) e = 0, and the 
magnetic field intensity does not increase (Figure 2.7); the axially symmetric flow 
corresponds to e = �89 

1.0" 

0.5- 

w ~ - 0  

~ ~  0.25 
/ 

r -'~~ t.OO 

Fig. 2.7. Distribution of the magnetic field intensity in Parker's model of the magnetic field merging. The 
dotted line corresponds to the case of the infinite conductivity and ~ = 1. 

It is of interest to compare the behavior of the magnetic field intensity in Parker's 
model (B  ~ 1/x)  with that corresponding to the nonsteady-state solution (2.7). In both 

cases the flow structure is the same, and the field lines are equally stretched in the two 
cases. However, in Parker's model this stretching corresponds to the plasma (and field 
line) motion in an inhomogeneous magnetic field with B --> oe at x --> 0, while, according 
to (2.7), this stretching is associated with the increase in time (B ~ t) of a homogeneous 
magnetic field; thus, in the latter case the singularity in B at the point x = 0 disappears. 

Let us now discuss basic similarities and differences between the process of the 
magnetic field annihilation (Parker's solution) and of the magnetic field line reconnection 
(Petschek's solution). As we have seen, when considered locally within the diffusion 
region, both processes are indistinguishable. However, with the plasma flow and 
magnetic field configuration being taken into account, the two processes are quite 
different. The main differences are as follows. 

(1) In the reconnection process, the magnetic energy transforms at the shocks into 
kinetic and thermal energy, and the energy dissipation is necessary only locally in the 
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diffusion region, for the magnetic field lines could break there. In the case of the magnetic 
field annihilation, the energy is transformed into Joule heat, and for this process to 
proceed effectively, the plasma conductivity has to be sufficiently low in a significant 
part of the current sheet. 

(2) In the process of reconnection the shock waves are generated which drastically 
modify the configuration of the magnetic field and of the plasma flow, turning it into 
quasi-two-dimensional one. This effect is especially important in the case of a three- 
dimensional flow of a highly conducting plasma around a blunt body (e.g. the magneto- 
sphere) (see Section 6). In the case of the magnetic field annihilation, the structure of 
the flow is similar to that in the purely gas-dynamic flow. 

Of great importance is the question of which state - stationary or impulsive recon- 
nection, or annihilation of the magnetic field lines - the system is evolving to, and what 
determines this final state. However, this problem is far from being solved as yet, and 
we have to restrict ourselves to a qualitative consideration. For example, we shall 
consider the problem formulated at the beginning of this section, the plasma conductivity 
now assumed to be finite and equal to ~r o (or o'er if the current density exceeds some 
critical value jcr corresponding to the threshold of some plasma instability development). 

First of all, it is necessary to ascertain if the system can evolve to the state of field 
line annihilation. As stated above, the width of the magnetic boundary layer equals 
h = L / x ~ m m ,  and the magnetic field frozen into the plasma increases towards the 
boundary up to the value 

n = no(Rem) 1/2, (2.13) 

where Be is the magnetic field intensity at the boundaries of the region under considera- 
tion; we set here 7 = 1 for the sake of simplicity. Then the mean current density in the 
boundary layer is: 

c AB c BORe,,. ( j ~ -  (2.14) 
47r h 2re L 

If the plasma conductivity a o is low, so that ( j )  <Jot, the anomalous resistivity does 
not develop, and it seems that the system evolves to the state of magnetic field 
annihilation. When ( j )  > jot, the anomalous resistivity starts to develop, at first locally, 
and at that very region the field line reconnection begins. The greater is the anomalous 
resistivity, the more effective is the process of the field line reconnection. 

Thus, both processes are associated with a low plasma conductivity. However, in the 
case of the field line annihilation the plasma conductivity has to be low everywhere from 
the very beginning of the process, while in the case of the field line reconnection, the 
plasma conductivity has to be sufficiently high at the initial stage (that is necessary for 
the free energy accumulation). Later on it drops off; this decrease of the plasma 
conductivity develops only locally. 

A similar consideration can be applied to the case of the field line reconnection 
triggered by the tearing-mode instability. 
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Fig. 2.8. Sequence of events leading to the magnetic field line reconnection. (a) Hyperbolic magnetic field 
in the vicinity of an X-line. (b) Development of a current sheet at the site of the X-line. (e) Development 
of a plasma instability (tearing mode or anomalous resistivity) in the current sheet. (d) Beginning of the 
time-dependent magnetic field line reconnection. (e) Steady-state reconnection. (f) Impulsive reconnection. 

On the role, the sequence of events constituting the field reconnection may be 
illustrated by the following scheme (Figure 2.8). An electric field applied along the 
neutral line (Figure 2.8a) leads to its development into the current sheet (Figure 2.8b), 
and free magnetic energy is stored. During the process of energy accumulation, the 
current sheet evolves to an unstable state (Figure 2.8c). On having approached the 
instability threshold, a spontaneous reconnection starts to develop (Figure 2.8d). If 
there exists a stationary electric field, and the boundary conditions are favorable, the 
system may proceed to the steady-state reconnection (Figure 2.8e). In the opposite case, 
the reconnection seems to have a spontaneous and impulsive character (Figure 2.8f). 

3. Steady-State Reconnection of the Magnetic Field Lines 

As we have seen in the preceding section, the reconnection process js responsible for 
the drastic change of the magnetic field structure and the release of the magnetic energy. 
Thus, the process is essentially nonstationary and, logically, a stationary reconnection 
would be described as a particular case of the general time-dependent reconnection 
problem. However, from a mathematical point of view it is convenient to choose 
another, quite different way: first we shall consider the most simple Sonnerup's model, 
then Petschek's stationary model and finally the time-dependent reconnection problem. 
Mathematically, all these problems are successive ones: each problem will be solved on 
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the basis of the previous simpler one. For simplicity we shall restrict our consideration 
to the case of incompressible plasma. The solutions of all problems mentioned above 
will be obtained by means of the method of the frozen-in coordinates (see Appendix 2). 
The system of MHD equations in frozen-in coordinates (t, ~) is: 

F ' 2 X t t -  Xo:o: = - P t Y ~  + PoYt ,  (3.1) 

e2ytt - y ~  = - P~x~ + P t x ~ ,  (3.2) 

xtY~ - xoYt  = 1, (3.3) 

where e = V o / V  a is the Alfv6nic-Mach number (the symbol e is used here instead of the 
standard symbol M a  to emphasize that this ratio is playing the role of' a small parameter 
in the problem of reconnection), and P is the total pressure. The dimensionless form 
of the system of Equations (3.1)-(3.3) is obtained by normalizing to the characteristic 
values for velocity Vo, magnetic field B o and length (which will be detailed later). 
Formally, the slow shock is degenerated in an Alfv6n discontinuity in the case of 
incompressible plasma; all the relations at the shock may be desc, ribed in frozen-in 
coordinates (t, ~) by (A35) and the equation of the shock front reduces (as shown in 
Appendix 2) to 

+ ec~ = t. (3.4) 

The frozen-in coordinate system is a double-Lagrangian one: both the parameter 
along the stream flow line (time t) and the parameter along the magnetic line ~ are 
Lagrangian ones. As usual, while using the Lagrangian approach (see for example 
Sedov, 1973), the dependence of the Cartesian coordinates on Lagrangian ones (frozen- 
in ones in this case) should be found first: 

x = x ( t ,  7); y = y ( t ,  ~) (3.5) 

and then the flow velocity and magnetic field intensity are obtained: 

B x  = x~(t ,  ~); B y  = y~(t ,  c0; Vx = x , ( t ,  ~); Vy = y~(t, ~). (3.6) 

Thus, formulas (3.5) and (3.6) give a solution in a parametric way. From a mathematical 
point of view, the functions given in (3.5) map the physical space onto parameter space. 
The structure of that space is nontrivial in the reconnection problems, so according to 
Semenov and Pudovkin (1978) the space of the frozen-in coordinates onto which 
physical space is mapped is called F-manifold. For the convenience of the reader we 
shall list the results in the Cartesian coordinates as well. 

3.1. SONNERUP'S MODEL (Sonnerup, 1970) 

We start with a two-dimensional case. Let two constant magnetic fields B I and B 2 exist 
in two different hemiplanes (x, y) and a constant electric field be applied along the z-axis. 
Then plasma convection appears and both conditions {Vn) = 0, {Bn)= 0 are not 
fulfilled at the x-axis (see Figure 3.1), except for the trivial case B 1 --= B 2 . A system of 
shocks must arise that deflects the flow and magnetic field in such a way that conditions 
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Initial state (the zeroth approximation) of the system in the problem on the steady-state 
reconnection of the magnetic field lines. 

{V,} = { B , }  = 0 can be satisfied. In Sonnerup's model an additional assumption is 
introduced according to which the solution consists of the homogeneous flow and 
magnetic field in newly created sectors between shocks also. 

As there is only one free parameter on a shock and there should be four parameters 
(two components of the flow and two of the magnetic field) in agreement, it is clear that 
eight discontinuities (four in each of the left and right hemiplanes) must develop in 
Sonnerup's model. 

For constant V and B the differential equations are satisfied automatically and the 
problem is reduced to algebraic relations on shocks. The symmetric solution corre- 
sponding to initial data 

B ,  = (1,  0);  V 1 -- (0,  - 1); 

(see Figure 3.2a) in the I quadrant is: 
Region 1: 

x = ~; y = - t ;  B = (0, - 1); 

discontinuity 

t = - eo~; y = e x .  

Region 2: 

f t f ~  1 
X = ~ 0 ~  + -- + - - t '  

B 2 = ( - 1 , 0 ) ;  V2=(0 ,1 )  

B = (1,  0),  

(+ 
f 
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Fig. 3.2. The field line reconnection in Sonnerup's model. (a) Configuration of the magnetic field lines (the 
solid lines) and of the stream lines (dotted lines with arrows) in the physical space. The dotted lines passing 
the origin of the coordinate system represent the shock waves. (b) F-manifold consisting of two sheets. The 

figures show correspondence of various regions within the physical and parametric spaces. 
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discontinuity 

t = ca, 

Region 3: 

y =  - - x .  
f2 

f 
x = - t  = f t ' ,  V = ( f / e ,  0 ) ,  

y = - - ~  = , B = (0 ,  e l f ) ,  (3.7) 
f 

where 
f = 1 + ~ / /2 ,  t ' =  t /e ,  e = V o / V  a . 

On the left-hand side the solution is presented in frozen-in coordinates; on the right- 
hand side it is given in Cartesian coordinates. 

Let us consider the physical sense of the results obtained. Having accepted that the 
structure of the magnetic field and flow shown in Figure 3.1 is the initial state, and the 
configuration shown in Figure 3.2a is the final state to which the system has evolved, 
then the following conclusions can be deduced. First of all, one may see that the 
magnetic field structure reconstructs itself, i.e., two hemispaces which did not interact 
at the initial instant turn out to be connected by the magnetic field lines. Second, from 
(3.7) it follows that the plasma is accelerated up to the velocity of the order of Alfv6n 
speed while the magnetic field weakens in region 3. Though the magnetic field increases 
slightly in region 2, on the whole the magnetic energy is transformed to kinetic energy. 

As we have said above, Sonnerup's model assumes the flow and the magnetic field 
to be homogeneous in all the four sectors shown in Figure 3.2. To meet these demands, 
the model contains four discontinuities produced by external causes, so-called incoming 
discontinuities. Indeed, information in an incompressible plasma is propagated with the 
velocity V + Va, and the same vector defines the inclination of the Alfv6n discontinuity. 

In the I quadrant, the vector V + V a is parallel to the internal .(between regions 2 and 
3) discontinuity while V - V a is parallel to the external (between regions 1 and 2) 
discontinuity, with vector V + V a directing along the shock front from the origin and 
V - V~ to the origin. This means that the internal discontinuities are produced by the 
causes at the origin whereas the external ones are generated by the sources at infinity. 
Physically, since field lines are reconnected exactly at the origin, the solution must 
contain only the outgoing shocks. Besides, as Landau and Lifshitz (1959a) have pointed 
out, the intersection of three or more incoming shocks along a single line would be an 
improbable coincidence (see also Vasyliunas, 1975). For all these reasons, Sonnerup's 
model is unlikely to describe real physical conditions. 

However, Sonnerup's model can be useful because many of its important features are 
conserved in the more realistic model devised by Petschek, as described below. In 
addition, Sonnerup's model is sufficiently simple so that up until now it is the only one 
investigated completely (Sonnerup, 1970; Yeh andDryer, 1973; Cowley, 1974a, b; 
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Vasyliunas, 1975; Yang and Sonnerup, 1976; Mitchell and Kan, 1978; Semenov and 
Kubyshkin, 1981). It should be emphasized that almost all our knowledge about 
three-dimensional reconnection is based on Sonnerup's model. 

Let us now list the features of the reconnection process following from Sonnerup's 
model which may be preserved to some extent in other reconnection models that do not 
deal with incoming shocks. 

(1) Three-dimensional solutions turn out to be, in fact, quasi-two-dimensional. Any 
of them may be obtained from the two-dimensional case by adding the V and B 
components (which are different in different sectors) parallel to the reconnection line. 
This permits one to describe a three-dimensional reconnection based on the more simple 
two-dimensional problems. 

(2) For the reconnection to take place, the reconnection line should be located within 
the smaller angle between the magnetic field projections on the current layer (Figure 3.3). 
In other words, the magnetic field projections on the normal to the reconnection line 
should be antiparallel. 

! 

f - - 1  b~ 

N I 

N 

I 
I I 

Fig. 3.3. A scheme to illustrate conditions necessary for the reconnection to proceed in Sonnerup's model. 
NN' is the merging line; PP' is perpendicular to NN'. Projections of the reconnected fields on PP' have to 

be orthogonal to each other. 

The location of the reconnection line may be determined uniquely provided the 
position of the current layer is known and the electric field is given on opposite sides 
of the current layer. 
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If the electric field is not given on one side of the current layer (as occurs in the solar 
wind interaction with the magnetosphere) the position of the reconnection fine is not 
determined by the geometry of the reconnected magnetic field. The only requirement, 
as in the previous case, is that the reconnection line falls within the smaller angle between 
the magnetic field projections. In this case the electric field penetrating through the 
current layer is not determined by the magnetic field geometry either, and its intensity 
may vary from zero to some maximum value. 

(3) Formally, beside the magnetic field line reconnection, in the Sonnerup model 
the stream line reconnection is also possible (Figure 3.4). A solution corresponding to 
the stream line reconnection may be derived from the solution for the magnetic field 
reconnection by a simple change: 4 ~  V ~ B; B ~ - 4 ~  V; e ~ e- 1. However, as 
yet it is not quite clear whether such a solution is realized physically. Indeed, no solution 
concerning the stream line reconnection which would contain only outward propagating 
shocks is yet known. If such a solution were found it might be used for describing the 
solar wind - magnetosphere interaction in the case of the northward IMF. 

Fig. 3.4. The stream line reconnection. The solid lines are the magnetic field lines; the dotted lines with 
arrows are the stream lines; the dotted lines passing the origin of the coordinate system represent the shock 

waves. 

(4) Sonnerup's model is useful also in investigating the structure of the F-manifold. 
Using a symmetry considerations, the expressions (3.7) may be extended from quadrant 
I to the whole plane. Formulas extended in such a way permit one to map the physical 
plane onto an F-manifold consisting of two sheets (planes) in the (t, ~)-space (see 
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Figure 3.2b); the cut is made along the t-axis from 0 to ~ .  Thus, from the topological 
point of view, the existence of the field-line reconstruction caused by the reconnection 
manifests itself as a two-sheet structure (a many-sheet structure in the general case) 
mapping the physical space onto the F-manifold. (One may say that the two-sheet 
structure is the topological feature of the reconnection process.) 

(5) When the Alfvrnic Mach number is small, i.e. when the magnetic field is strong, 
the inclination angles of discontinuities to the x-axis are of order e (see Equation (3.7)). 
Consequently, when e ~ 0 the width of the region in which the magnetic field varies 
rapidly and plasma is accelerated tends to zero as well. Such a behavior of the solution 
is typical for the boundary layer phenomena, which arise when the main derivative is 
multiplied by a small parameter (e in our case). As will be seen below, the appearance 
of a boundary layer in the problem of reconnection is essential. Following Vasyliunas 
(1975), we shall call the boundary layer in the reconnection problem the FR-region (field 
reversal region). 

3.2. PETSCHEK'S RECONNECTIOr~ MODEL (Petschek, 1964) 

The principal defect of Sonnerup's model is the presence of the incoming discontinuities. 
Now we shall construct a solution with outgoing discontinuities only (Semenov 
et al., 1983a). 

The stationary reconnection problem may be formulated as follows. In a zero-order 
approximation with respect to the Alfvrnic Mach number ~ = Vo/Va ~ 1, there are given 
homogeneous magnetic fields and flows B = (1, 0); V = (0, - 1) in the upper hemiplane 
and B = ( - 1, 0); V = (0, 1) in the low hemiplane respectively. Evidently, the condition 
{Vn} = 0 is not satisfied on the neutral sheet (y = 0). Then a system of shocks is 
assumed to arise to deflect the flow in such a way that a stationary state can exist. It 
is necessary to find the shape of the shocks as well as the flow, magnetic field and 
pressure. The problem will be treated over an area which is a square with a unit side. 

The F-manifold is believed (and as follows from the results) to contain two sheets, 
as it does in Sonnerup's model. In contrast to that model, Petchek's solution suggests 
the existence of the outgoing shocks only; the assumption that the magnetic field and 
the plasma flow are homogeneous in the regions between the shocks is rejected (see 
Figure 3.5). Clearly it is sufficient to consider only the I quadrant of the physical space, 
which is mapped onto the upper hemiplane of the first sheet of the F-manifold. 

Following Petschek (1964), we shall try to find an asymptotic solution in the inflow 
region (sectors 1, 3 in Figure 3.5a) in the following form: 

r(t, . )  = r(~ . )  + er(1)(t, ~) + . . . ,  

P(t, ~) = P~~ c~) + ePO~(t, ~) + . . . ,  (3.8) 

where r ~~ = (,,  - t), p~O~ = const, in the upper hemiplane of the physical space while 
r ~~ = ( - ct, t), p~O~ = const, in the lower hemiplane, which corresponds to a homogen- 
eous magnetic field and flow that are opposite in direction. 

Inserting (3.8) into (3.1)-(3.3) we obtain the equations of the first-order approxima- 
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Fig. 3.5. The field line reconnection in Petschek's model. (a) Physical space; (b) F-manifold. Designations 
are the same as in Figure 3.2. 
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tion: 

X(1)  = p~l); _ 1)(1) = pt(1); y}l) = X(1) ,  ( 3 . 9 )  ~ct J ct~ 

which results in: 

Ay ~1) = j~ (3.10) 

It can be proved that the function jv)( t)  on the right-hand side of (3.10) is the first-order 
approximation of the electrical current. This function is determined by the conditions 
at the boundary of the region considered. We assumej~l)(t) = 0. Thus, in the zero-order 
approximation as well as in the first-order approximation there are no currents in the 
inflow region (Vasyliunas, 1975). Then (3.10) may be rewritten in the form: 

Ay~I)(t, ~) = 0. (3.11) 

Some points must be noted. When ~ # 0 the total system in Equations (3.1)-(3.3) is of 
the elliptic-hyperbolic type because the speed of sound is infinite, while Alfv6nic speed 
is finite. The degenerated system (corresponding to e = 0) is elliptical; the limit e ~  0 
corresponds to Va ~ ~ .  As a consequence of the degeneration of Equations (3.1)-(3.3), 
a boundary layer appears, which in the case under consideration is the FR-region. 

Since the pioneer paper by Prandtl (1904), it has been clear that the key to any 
problem involving the boundary layer is the appropriate choice of variables inside the 
layer. It is of no use to look for the solution in the FR-region in the form given in 
Equation (3.8), corresponding to the regular perturbation theory, because of the rapid 
variation of the magnetic field and flow at the shocks. For this reason all the variables 
should be changed to new ones in the FR-region. Unfortunately, a formal mathematical 
theory giving the methods to find these new variables is not yet worked out, and this 
lack is the main difficulty in any concrete problem with the boundary layer. 

In the case under consideration, the question about new variables in the FR-region 
is solved on the basis of Sonnerup's model. It may be seen from (13.7) that the new 
variables must be the following: x = x( t ' ;  ~);y  = @(t',  ~); t' = tie. Now it is possible to 
apply the regular perturbation theory: 

x(t ' ,  ~) = Y(~ ~) + gx(1)(t ', ~) + " ' ' ,  

y(t ' ,  ~) = e[y~~ ', ~) + @(1)(t', ~) + " '" ], 

e ( t ' ,  ~) = P(~ ~) + eP(l~(t ', o:) + " " .  (3.12) 

The steps to find the unknowns are: 

(x (O) ,  y (O) )  ~ 2 ( 0 )  ~ f i (o)  ~ x(X)  ~ y ( 1 )  ~ ~ ( I )  ~ f i (1)  ~ . . . .  ( 3 . 1 3 )  

In accordance with this scheme we start with finding 2~o~. 
The problem considered here is rather simple, hence one may find 2~o~ in the form: 

y~o) = at' .  The unknown constant is determined from the discontinuity relation {x} = 0 
(see (A35)). In the upper hemiplane this relation combined with the shock equation 
t' = ~ gives: x (~ = ~ = y(o) = at'[c=~ = a~. It results in a = 1. Then ~(o~ is obtained 
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from Equation (3,3) and condition Vy(y = 0) = yc(~ = 0) = 0: •(o) = ~. The pressure 
relation {P} = 0 yields: ~(o) = p(o) = const. Thus, the zero order approximation in the 
FR-region gives: 

y(o) = t'; y(o) = ~; ~(o) = p(O) = const. (3.14) 

Now it is necessary to obtain the function yO)(t, ~) from (3.11). The boundary condition 
for y(1) follows from the relation valid at the discontinuity {y) = 0: 

y(~ ~) + e(y}~ ~) 0~ + y(1)(0, ~)) = @(o)(~, c0" 

This results in 

y(a)(0, ct) = 2 I~l. (3.15) 

For ~ < 0, Equation (3.15) follows from the symmetric condition. For solving the 
Laplace equation (3.11), it is necessary to specify the solution at the whole boundary 

of the reconnection region. In principle this could be done, e.g., as described in 
Vasyliunas (1975), but as we are basically interested in the reconnection process in the 
vicinity of the origin of the coordinate system, we can confine ourselves to ~ ~ 1, t ~ 1, 
and use the Poisson formula for the determination ofyO): 

- -  - - + t I n  . ( 3 . 1 6 )  

t 

Then (see Equation (3.13)), p(1) and xl(t, ct) are obtained from (3.9) with the boundary 
condition x(t, 0) = 0, which implies that Vx(x = 0) = 0: 

x(l)(t'ct)=4( ttg-l~--t ~ln ; ~ + t 2  ) ,  (3.17) 

p(x)(t ' ~) = _41n  1 (3.18) 
7T N//~ 2 + t 2"  

The next step consists of finding y(1) and y(1). Inserting (3.12) into (3.1)-(3.3) we get 
the first order equations in the FR-region: 

~(1)  -- ~-(1) -- e } l ) ,  
t "  t "  " "  owz 

~ 2  ) = o, 

~ '  ) + -~,~ ) = o. 

(3.19) 

(3.20) 

(3.21) 

From (3.20) it follows that .~(1) __. ~o)(t, ) and then from the pressure relation {P) = 0 
may be obtained: 

?(1)(t,) = 4 In t '. (3.22) 
7Z 

The boundary condition for Y(x)(t', ~) may be obtained in the case: when ~ = 0 from 
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the condition Bx(y  --- 0) = 0, which implies ~(~ll(t', 0) = 0; and when e = t' (at the 
shock), from the discontinuity relation {x} = 0, which implies 

~(1)(~, ~) _____ X(1)(0, ~) = -4 g in e. 
7~ 

The integration of Equation (3.19) leads to the solution: 

2(l~(t,, ~) = 4 {(t' + e) In (t' + e) + (t' - e) In (t' - ~) - t' In 4t'}. 
7Z 

(3.23) 

Finally, y(1)(t', ~) is calculated from (3.21) for the boundary condition y(1)(t', 0) = 0: 

y(1)(t,  ' ~) = 4 {(l, + C~) In ( t '  + C~) + ( t '  - ~) In (t' - e) - ~ In 4t' - ~}. (3 .24)  
7~ 

Formulas (3.14), (3.16)-(3.18), and (3.22)-(3.24) completely describe the solution in the 
zero- and first-order approximation; flow and magnetic field are obtained with the 
formulas given in (3.6). Taking into account the symmetry of the problem under 
consideration, we shall present formulas for the upper hemiplane and the right-hand 
FR-region only. The results will be listed in Cartesian coordinates also, using the fact 
that in the inflow region ~ = x, t = - y ,  while in the FR-region ~ = y/e, t' = x,  in the 
zero-order approximation: 

Inflow region: 

4 x 
Vx = - - Vo e tg -  1 - ,  (3.25a) 

rc y 

Bx = Bo _ 4~ Bo { l n  L - 1 ) ,  (3.25b) 

4e ( ln  L_ 1) ,  v , =  - Vo - Vo 
rc \ x / x  2 + y2 

(3.25c) 

4g x 
By = - -  B o tg -  1 - - ,  (3.25d) 

rc y 

p = p(o) _ 4~ pVoZ in L (3.25e) 
rc x / ~ + y S y  2 '  

FR-region: 

4 ( X 2 - . Y  2 ) 
V~= Va+ Vo In +1  , (3.26a) 

rc 4 L x  

4e x + ~  
B x = B o In - - ,  (3.26b) 
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x-y 
4 , ' ( I ' - , ' )  

By = eB o - In  + 1 
4f x ' 

(3.26c) 

(3.26d) 

p = p(O) _ 4_e_e pV~ In L .  (3.26e) 
7g X 

Shock equation 

y - - ,  Ixl, (3.27) 

where V o = cEo/B o ; e = Vo/Va ; L is characteristic length, y = y/ , .  

The magnetic field line configuration as well as the flow structure are shown in 
Figure 3.5a. Unlike Sonnerup's model, there are only outgoing shocks in Petschek's 
model, hence Petschek's model has its own special features. But for the main properties 
of the reconnection process, both models are quite similar. As one may see from 
comparison of Figure 3.1 and 3.5a, the reconstruction of the magnetic field structure 
takes place in both cases. From Equation (3.25a) it follows that plasma in the FR-region 
is accelerated at the shocks up to the Alfvrn velocity, i.e., the transformation of the 
magnetic energy to kinetic energy takes place. 

Petschek (1964) was the first to solve the reconnection problem in the formulation 
described above. He found the zero- and the first-order approximation in the inflow 
region but only the zero-order approximation in the FR-region. These results were 
extended and improved by Vasyliunas (1975). A first-order approximation in the 
FR-region has been obtained by Soward and Priest (1977), who used a different 
technique based on the generalization of similarity solutions. 

Unlike Yeh and Afford (1970) and Yeh and Dryer (1973), who looked for a similarity 
solution in the form 

= rg(v); A = r f (v ) ,  

where @ is a stream function, A is the vector potential, and (r, v) are polar coordinates, 
Soward and Priest searched for a solution in a form containing a weak (logarithmic) 
dependence on r: 

~k = rg(R, v); A = r f ( R ,  v); R = In (r/l) + Ro ,  

where R o is a constant. Solutions for f and g in the inflow region were assumed as 
follows: 

f = R l/2fo(v ) + R - 1/2(f 1 l(v) In R + f l (v ) ) ,  

g = R - 1/2go(V ) + R -3/Z(gll(v ) In R + gl(v)). 

In the FR-region they changed the variable from v to r v/O(R), where equation 
v = O(R) defines the discontinuity. 
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Recently, by use of an analogous technique, Soward and Priest (1982) have obtained 
the solution of the reconnection problem for the case of compressible plasma. In spite 
of that, in Soward and Priest's model the Alfvrnic Mach number slowly (logarithmically) 
varies with distance; their results may be compared with those obtained by means of 
the frozen-in coordinates method (Semenov et aL, 1983a). With the exception of some 
details, the results proved to be the same. 

The plasma acceleration in Petschek's model is, in fact, a cumulative effect. Gathered 
from a big area under the action of tile electric field, plasma is then focused by the shocks 
into narrow jets. The more intensive the initial magnetic field is, the higher is the velocity 
up to which the plasma is accelerated. Physically the acceleration is accomplished by 
the Amp~re's force on the shock front or, in other words, by the work of the electric 
field: (E .j) > 0. This principal idea by Petschek is valid also for all more complicated 
cases: compressible plasma, asymmetric and nonstationary flow, etc. The investigation 
of these cases is of great importance for practical applications because the solution 
obtained by Petschek in frames of the incompressible plasma model is oversimplified. 

The qualitative consideration of the problem is given below. 
In the case of compressible plasma (Soward and Priest, 1982; Soward, 1982; 

Semenov et aL, 1983a, b) the picture is qualitatively similar to that in Petschek's solution. 
In a wide sector, plasma flows slowly to the current layer with its density remaining 
constant up to terms of the second order. Plasma acceleration and density change takes 
place on the slow shocks S - .  In the zero-order approximation, the plasma velocity in 
the FR-region is equal to the Alfvrnic one while the pressure and density increase as: 

?(/~ + 1) . __BE (3.28) 
P = P o ? ( ] 3 + I ) _ I ,  P=87r  +p~ 

where ? is the ratio of specific heats,/~ = 8 Zpo/B~. The density increases insignificantly 
(approximately by two times) while the pressure in plasma with fl ~ 1 amounts to the 
magnetic field pressure in front of the shock. This means that in the low-pressure plasma 
intense heating takes place in addition to its acceleration. The incompressible case is 
attained in the limit fl ~ ~ .  

The structure of the FR-region is much more complicated in the nonsymmetrical case, 
i.e. when the plasma parameters are different on the opposite sides of the current layer 
(Levy etal., 1964; Yang and Sonnerup, 1977; Semenov etal., 1983b). Depending on 
the parameter relations, the following four cases may take place: A S -  C S - ,  AR - C S - ,  

S C S - A ,  and S - C R  A; here S , A, C, and R -  are slow shock, Alfvrnic dis- 
continuity, contact discontinuity and slow expansion fan, respectively. 

The flow structure and magnetic field configuration for the case A S -  C S -  are shown 
in Figure 3.6. 

As is shown by Semenov et al. (1983b), only one possible sequence of discontinuities 
exists for any concrete set of parameters satisfying the pressure balance equation 
(Figure 3.7). 

The parametrical space (/~ = B 1 / B  2 = V2/Vl; v = PE/Pl) may be divided into four 
fields with a single solution in any of them. At the boundaries of these fields one of the 
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Fig. 3.6. 

~ :  ~ | ~ 
I I i I I I I I I 

,<< 
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I 

The scheme of the flow and of  the magnetic field lines in the case of asymmetric flow for the 
A S -  C S -  version. 

4 ~ A  S'cS" 

ACS 

Fig. 3.7. The regions of existence of various solutions of the problem on the field line reconnection in the 
space of  parameters  v = P2/P~, # = B2/B1, in the case of  an asymmetric flow. Indices 1 and 2 correspond 

to the hemiplanes above and beneath the current sheet. 
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waves degenerates. In addition, there are points at the boundaries where two waves 

degenerate. The typical solutions A R -  C S -  (ill = 8~Zpl/B~ = 2.3; fi2 = 8rcp2/B~ -- 0.3; 

la = B2/B 1 = 1.7; v = P2/Pl = 0.5) a n d A S - C S -  (/?2 = 3; 172 = 1; # = 1.7; v= 0.5) are 
shown in Figure 3.8a, b. As the Alfv6nic discontinuity is the first (or the outermost) one, 
the velocity reaches the value of 2 V, just behind it. Then, in version A R  - C S -  the 
plasma is accelerated some more in the expansion fan while in the version A S -  C S -  

it is slowed down behind the first slow shock. Thus, plasma acceleration in the non- 
symmetrical case is more effective than in the symmetrical one. The more asymmetry, 
the more intense is the plasma acceleration. In the caseAS-  C S -  the 'velocity lies within 
the limits V a ~< V ~  2Va while in the c a s e A R - C S -  2Va <~ V ~  2 ( ~  1 + 1)V~. So the 
plasma acceleration (up to V~) in the symmetrical case considered by Petschek is the 
smallest of all the possible ones. 

As is shown in Figure 3.7, the solution A S - C S -  describes the case of weak 
asyrmnetry whereas A R  - C S -  corresponds to the strong one. 

3.3. MIXED RECONNECTION MODELS 

Now we consider reconnection models with an arbitrary number of incoming discon- 
tinuities (Semenov and Kubyshkin, 1984). These models have the features of both 
Petschek's solution and Sonnerup's one. For simplicity we shall restrict our conside- 
rations to the cases of two and four incoming discontinuities. 

A R- c ~- 

. . . . . . . .  ' - " - ,  a ~:i . . . . .  n. 
. . . . .  - F - - - , i  

- 'I* . . . . . . . . . . . . . . . . . . . . . . . . .  

r / ,'- . . . . . . . . . . . . . . . . . . . . .  

~o" ' Jo" ~o" io" " ]o" .~o" ~o" ~o" .~o" ~' 

o .  

eV,  A 

~ -  .k," /o- 

. r  

)o" ,4o" .~o" ~,'o" ~" ~' 

. . . . .  1 

. . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 3.8a. 
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Fig. 3.8b. 

Fig. 3.8a-b. Typical solutions A R -  C S -  (a), and A S -  C S -  (b ). The variations of the density, temperature 
and of the X-component of the velocity and of the magnetic field are shown; q~ is the polar angle in the 
frozen-in space (t/~, c0; this angle is related to the polar angle in the physical space by approximately linear 

dependence. 

We start with the first case of  two incoming discontinuities (see Figure 3.9). The 
magnetic field and flow are believed to be homogeneous and known in the zero-order  
approximation in the inflow regions 1 and 5:x(1 ~ = ~; y(1 ~ = - t; x(5 ~ = - c~; y(5 ~ = t. 
Two incoming discontinuities are assumed to be of  the same intensity, the electric 
current I on the discontinuities is known in the zero-order  approximation: 

(x(z~ - (x(l~ = (x(4~ - (x~~ = I. (3.29) 

I f / <  0 (I  > 0), the current on the discontinuity is parallel (antiparallel) to the current 
in the current sheet. The  incoming discontinuity will be called the discontinuity with 
parallel (I  < O) or antiparallel (I  > O) current polarization. 

In the outflow regions 2, 3, 4, and 6 we look for a solution with a constant  velocity 
and magnetic field in the zero-order  approximation: 

x~O) = ai  ~ + b i t ,  ; y}o)  = cicc + d i t ,  ' (3.30) 
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I i ~ l  I t 
I I I I I 

2 -  - - " - " - -  

I I 

Fig. 3.9. Mixed reconnection model in the case of two incoming discontinuities, shown by asterisks. 
Designation are the same as in Figure 3.2. 

where i is the region number, t' = t/e, y = ~/e. The constants a; and bi are determined 
by the jump relation {x} = 0 and the Equation (3.29). Taking :into account that 

d3 = d6 = 0 (e.g., Vy(y = 0) = 0 in regions 3 and 6) the constants c,. and di are determined 
by the jump relation {y} = 0 on the discontinuities 2 ~ 3 and 3 ~ 4 and Equation (3.3). 
The solution in the upper hemiplane is: 

X (0) = ~,  

x(2 ~ = (I  + 1)~ + It', 

x~3 ~ = (21 + 1)t', 

X (~ = -- t ' ,  

y~O) = _ t, 

y~2 ~ = ((3I + 2)~t - (I + 1)t')/(2I + 1) 2, 

y~3 ~ = c~/(2I + 1), 

y ~ 6 o ~  = _ = .  (3.31) 

Now from {y} = 0 across the discontinuities 1 ~ 2 and 1 ~ 6 we obtain the boundary 
condition for the first-order approximation y(l~(t, ~) in the inflow region 1: 

y~l)(0, ~) = ~2(1 - 212)~/(2I + 1) 2, ~ >~ 0, (3.32) 

L - 2 ~  ~ < 0 .  

Solving the Laplace equation (3.11) we find: 

y~ll)(t'~) = - k (  ~ t g - 1  -~t - t in (~2x/ - (~  2) +p~,  

x(11~( t '~)=k( t tg-1~-+ c~ln (~x/(~2+ ts))  

(3.33) 

(3.34) 
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where 

4 (1 + i)2 2I(3I + 2) 
k - ; P (3.35) 

rc (1 + 21) 2 (21 + 1) 2 

It may be seen from the solution obtained that the incoming discontinuities with 
antiparallel current polarization (I > 0) stimulate the reconnection process, since the 
plasma is accelerated in outflow region 3 more effectively that in Petschek's model 
(I = 0). Rather, the incoming discontinuities with parallel current polarization ( / <  0) 
decrease the intensity of the reconnection process. It is worth noting that when I ~< - 1, 
the reconnection is not possible at all. From a physical point of view, this phenomenon 
can be explained as follows. As we have seen in Section 2, the reconnection process is 
due to the development of the current system 11 . The incoming discontinuity with 
antiparallel current polarization increases current 11 in the diffusion region and therefore 
stimulates the reconnection process. On the other hand, the incoming discontinuity with 
parallel current polarization weakens the current system I1, and when I ~< - i it forbids 

the reconnection. 
The solution with four incoming discontinuities is constructed analogously. It is given 

by the same formulas (3.31) and (3.32) in the I quadrant, but with new constants k and 
p: 

k = 4 (1 - 212) p = 0. (3.36) 
~c (1 + 21) 2, 

The solution presented in (3.31), (3.32), and (3.36) is of particular interest as a generali- 
zation of Petchek's and Sonnerup's solutions. Actually, the solution obtained is reduced 
to Petschek's solution when I = 0 and to Sonnerup's solution (3.7) when I = 1/,,f}. In 
this latter case the solution becomes strict rather than asymptotic. 

4. Time-Dependent Field Line Reconnection 

4.1. A S Y M P T O T I C  S O L U T I O N  O F  T H E  T I M E - D E P E N D E N T  R E C O N N E C T I O N  P R O B L E M  

Let us now consider the formal method of obtaining the solution of the time-dependent 
reconnection problem (Semenov e t  al . ,  1983c). Just as in Section 3, we restrict our 
consideration to the case of an incompressible plasma. Then the MH D  system 
(A27)-(A31) in frozen-in coordinates (T, ~, ~) will be: 

e 2 x ~  - x ~  = - P r  + P ~ y c ,  

e 2 y ~  - y ~  = - P~,x~ + P~x~,,  

x~y~, - x ~ y ~  = 1. 

(4.1) 

(4.2) 

(4.3) 

The dimensionless form is obtained by normalizing to the initial magnetic field B o, 
velocity Vo = (4 npo)- 1/2bdim, where Po is the plasma density, and bdi m is the reconnected 
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magnetic field, e = Vo/Va is the Alfv6n Mach number. We suppose that e ~ 1 or 

bdim/Bo ~ 1, that is, the reconnection process is expected to be weak. 
M H D  system (4.1)-(4.3) is similar to the stationary system (3.1)-(3.3), hence the 

method of  the previous section can be used here again. It must be borne in mind that 
in an incompressible plasma the sound velocity is infinite and the fast shock instantly 
goes up to infinity. Similarly to the stationary case, the asymptotic solution in the inflow 
region is given by: 

r(T', ~, ~) = r<~ ', ~, ~) + er~l>(v ', ~, ~) + " " ,  

P(z ' ,  c~, ~) = e<O)(,,, ~, () + ~e(1)(,c,  ' ~x, ~) + ' ' ' ,  (4.4) 

where p<o) = const., z' = z/e, r (~ = (c~, - ~) in the upper hemiplane, r <'~) = ( - c~, () in the 
low hemiplane. The fast z' time is introduced to take into account fast movement  of  
the FR-regions. In the FR-region it is necessary to change the variables used to ~' = r/e, 
~' = (/e, and y: = y/a, and to look for an asymptotic solution of  the form: 

x(~' ,  ~, ~') = ~(o)(~, ,  ~, ~,) + e~(1)(z, ,  ~, ~,) + . . . ,  

y('c', c~, ~_') = e{y(~ ', 0q ~') + ey(1)('c ', ~, ~') + '" "}, 

P(z ' ,  c~, ~') = ~(o)(z,, ~, ~,) + ~P(~)(z', cq ~') + " " .  (4.5) 

The procedure of obtaining the unknowns is the same as (3.13). The equation of  the slow 
shock in the first quadrant  is (see (A34)): 

= ~ ' -  q(~'), (4.6) 

where q(~') is an arbitrary function. 
Now let us determine the unknowns according to the scheme (3.13). The zero-order 

approximation in the inflow region is known, hence we may start with the zero-order 
approximation in the FR-region. We are describing the simplest case of  reconnection, 
and thus one might find the function ~<~ ~, ~') in the form y(o) __= z' - ~(~'). F rom 
the jump relation on the shock {x} = 0 we get q = q. F rom (4.3), ~r176 c~, ( ')  is: 

~(o)  = z' - q(~ ' ) ;  ~(o) ~ - f ( ~ "  ~ ' ) ,  (4 .7 )  
qr 

where an arbitrary function f ( z ' ,  ~') is defined by the condition Vy(y  = 0) = 0, that is 

~)(c~ = 0), which gives f = f (~ ' ) .  
The next step is the determination of  the boundary condition for the function 

y(1)(~,, ~, ~) from the relation on the shock {y} = 0: 

y ( z ' ,  ~x, ~) = y ( z ' ,  o;, e~.') = y(~ o~, O) + 

+ e[y(~~ ', c~, 0) ~_' + y(1)(z', cq 0)] = e.~(~ ', c~, ~'). 

For  the shock ~' it can be found from (4.6): ~' = h(z < - ~), where h is the inverse to q 
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function. It results in: 

Y(1)('C', ~, 0) = - ( l ~ l - f ) h ' ( z ' - 1 ~ 1 )  + h ( z ' -  1~1), ~ S - ,  

y(1)(z,, ~, O) = O, ~ S - ,  (4.8) 

where h ' ( z ' -  [~[) is the first derivative of h with respect to the argument z ' -  [~]. 
Inserting (4.4) into (4.1)-(4.3) one obtains the equations to the first-order approximation 
in the inflow region: 

X ( I )  -- ~ ( 1 )  = -- p(1), (4.9) 

yO) _ v(1) = p(J), (4.10) 

X ( 1 )  = y~l). (4.11) 

Whence it appears: 

+ 
a~2] -  . 

For y(1) must vanish at the infinity, only the elliptical operator has to be used: 

y(X) + ,,(1) 0. (4.13) cz~x .,v ~ -  = 

The solution of the Laplace equation (4.13) with the boundary condition (4.8) is 
obtained by using the Poisson formulas: 

= 

y(1)(z,, ~,O) d~ 
n L ,  ( ~  ~ ? ] ~  -[- ~2  ' (4.14) 

- o o  

x(1)(z,, ~, () = 1 ~ (~ - q)y(1)(z', ~/,0)d~ (4.15) 

--0(3 

Here x (1) is found from (4.11). The first-order approximation for the pressure can be 
determined from (4.4) or (4.10). 

Let us now find the first-order approximation in the FR-region for the case f = 0. 
Substitution of the series expansions (4.5) into (4.1)-(4.3) yields: 

y ( 1 )  - -  u  = - -  p ( 1 ) .  T ; ( o )  (4.16) 

P(~) = 0, (4.17) 

~(o).~(1) y(1).~(o) ~o).v(o) 0, (4.18) ~" Yc~ + U -vet --  ct Y ~ '  = 

(4.17) implies that the total pressure does not depend on 7 and can be found from the 
discontinuity condition {P} = 0: 

P~ C.') = e(1)(z ' ,  z ' -  q, 0). (4.19) 
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The total pressure in the inflow region is defined by (4.9), hence the equation for 
~(1)(z', ~, ~') will be: 

y(!) ~(z) x 0) (z' z' ~, - ~ = ~,~,~ , - q, 0) - M (l)('r' ~7' . . ~ , ~ ,  - q ,  0). (4.20) 

Boundary conditions for the Equation (4.20) may be obtained from the discontinuity 
condition {x} = 0 as well as from the condition Bx(y = 0) = 0: 

YO)(z', r ' - q ,  ~') --- xO)(r ', z ' - q ,  0), 

2(~)(r ', 0, ~') = 0. (4.21) 

The solutions of the Equation (4.20) with the boundary conditions (4.21) can be written 
as follows: 

- x ( D (  ~ ' - ~ + q ' 2  ' ' c ' -~  0 ) - ~ ( ' r ' + ~ + q . 2  ' ~ ' ) -  

- q i (  z ' -  ~ + q ' 2  ' ( ' ) -  ~(*" ( ' ) -  #(q' (')' (4.22) 

where x~ ', ~, 0) is given by (4.15), and the function # is: 

"c' 
/ib 

t [x~!)(#; # - q(('); 0) - x~l)(#, # - q(('), 0)] d#. (4.23) ~(, ' ,  ~') 

0 

After ~(1)(z', ~, ~') has been obtained, the function y(l)(z,, ~, ~,) can be found from 
equation (4.18). 

Formulas (4.6), (4.7), (4.14), (4.15), (4.22) and (4.23) describe the zero- and the 
first-order approximations of the solution of the time-dependent reconnection problem. 
This solution depends on the arbitrary functions q(~') (or h(,' - Ic~l) and f(~').  

The function h ' ( , ' -  I~1) has to meet the following conditions. According to the 
definition, ~' = h(z' - I~1), hence h(/0 < 0 since y = - ~; y > 0 in the upper hemiplane 
of the physical space. Besides, h(#) is supposed to be monotonous: h'(#) ~< 0. 

Let us now investigate the solution obtained. The zero-order approximation for the 
right-hand FR-region is given by the formulas (4.6) and (4.7) in the parametric manner. 
If the second arbitrary function f is assumed to be zero, the shock equation, x- and 
y-components of both V and B, and z-component of E in the Cartesian coordinates can 
be expressed as follows: 

y = - exh'(t/~ - x), (4.24a) 

V~ = l/e; Vy = 0, (4.24b) 
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B x = 0; By = -eh ' ( t /e  - x), (4.24c) 

E = h'(t/e - x). (4.24d) 

The leading front of the FR-region (where h' = 0, x # 0, i.e. x = t/e - see (4.24a)) is 
moving with the Alfv6n speed (see Figure 2.2b). Within the FR-region the plasma 
velocity is V x = x~ = 1/e (the plasma is accelerated up to the Alfv6n speed), and Vy and 
B x vanish in this zero-order approximation. Both the electric field and y-component of 
the magnetic field are inhomogeneous here: they equal zero on the leading front, while 
h'(t/e) # 0 at the coordinate origin. 

It can be seen from (4.24d) that the first arbitrary function h'(t/e) is just the electric 
field in the diffusion region. In that sense the solution obtained is determined by the 
temporal variation of the electric field at the reconnection line. 

The reconnected magnetic flux F o and the kinetic energy W (kinetic energy density 
�89 multiplied by the volume of the FR-region) can be calculated as follows: 

t/~ 
t~ 

F b = | By(X, t) dx  = - eh(t/e), (4.25) 
r 

0 
t ie tie tie 

W = - ( 1 / e )  f x h ' ( t / e - x ) d x = - l  f h (~)d~= 1 f ~ Fb(~) 04, (4.26) 

0 0 0 

where the integration by parts is used in the derivation of (4.26). It follows from (4.26) 
that kinetic energy in the FR-region changes proportionally to the time integral of the 
reconnected magnetic flux. Roughly, W can be estimated as: 

B~bt2l 
W =  P V f L x L y L ~  = (Vat)(eVat)l - , (4.27) 

2 

where L x = Vat, Ly = ~Vat, L z = 1 are the characteristic dimensions of the FR-region 
along the x, y, and z axes, respectively, and t o is the characteristic duration of the 
reconnection process. As is shown in Section 2.2, the magnetic field increases and the 
plasma density decreases in the vicinity of the current sheet during the initial phase of 
the current sheet evolution. Both these effects of the initial phase will enhance the energy 
release in the spontaneous reconnection process. 

To illustrate an overall structure of the field and plasma flow we turn now to the 
Figure 4. la, b obtained for a particular example of time dependence E(t)  (or h(t)). Some 
features, which are common in different types of E(t) time dependence, can be seen from 
here. In the inflow region the magnetic field strength clearly decreases around the 
reconnection site, while it is enhanced before the passage of the FR-region leading front. 
A sign of dectric field is, therefore, opposite at these two positions. A jump in the electric 
field at the slow shocks in Figure 4. lb arises here due to the fast movement of the shocks. 

The same formulas (4.24) can be used to describe the situation after the reconnection 
electric field is turned off in the diffusion region. At this moment the backward 
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I j 
Fig. 4.1. The structure of the magnetic field (a) and of the electric field (b) for the case of the time- 
dependent reconnection, in which the electric field in the diffusion region is assumed to change as E(t) = 3t 2. 

The equicontours of E z < 0 and E z > 0 are shown by solid and dotted lines, respectively. 

boundaries of  the FR-regions are formed which move afterwards in both x-directions 

with the same Alfv4n velocities as the leading fronts of  the FR-regions (see Figure 2.2c). 

As a result, each FR-region conserves at this phase both its size along x axis and the 

reconnected magnetic flux, but its height (4.24a), volume, and the energy release at the 

shock front (4.26), (4.27) will grow in time. 
The importance and meaning of  the second arbitrary function f ( ~ ' )  in (4.7) can be 

clarified by taking into account  the movement  of  the reconnection line. For  this purpose 
let us introduce a new function x = g(t ' ) ;  the speed of  the reconnection line is, hence, 

U = gc .  As before, the function h'( t ' )  is the electric field given at the reconnection line. 
Similarly to (4.24), the equations for the slow shock front and the reconnected magnetic 
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and electric field within the FR-region are obtained from (4.6), (4.7) in the form: 

y = - e ( x  - f + ( x  + t ' ) )h '+(x  + t ') ,  

~2 = - ~h+  ( x  + t ' ) ,  

! 

E + = h + ( x  + t ') ,  

y = - ~(x - f -  (x  - t '))h'_ ( x  - t ') ,  

B y  = - eh'_ (t '  - x ) ,  

E -  = h'_ (t '  - x ) ,  

(4.28a) 

(4.28b) 

(4.28c) 

(4.29a) 

(4.29b) 

(4.29c) 

where signs ( + )  and ( - )  correspond to the left-hand and right-hand FR-regions, 
respectively, and electric fields E+ are expressed in the fixed frame of reference. In the 
frame moving with the neutral line velocity U, a relation between h'+ (or E + - see (4.28c) 
and (4.29c)) and h' is as follows: 

h'+(g + t')(1 + u) = h ' _ ( t ' -  g)(1 - u) = h' ( t ' ) .  (4.30) 

The electric fields E_+ in both FR-regions can be simply determined from (4.30). 
A position of the neutral line in addition to the equation x = g( t ' )  may be specified 

also by two other equations x = f +  (x + t') and x = f -  (t' - x) (see (4.28a) and (4.29a)). 
This allows us to express arbitrary functions f-+, contained in the formal solution (4.7) 
through the physically meaningful function g. 

The effect of the movement of the reconnection line consists mainly in the deformation 
of the shock fronts and changes o f  By  and  E amplitudes. So, when the neutral line moves 
to the right (see Figure 2.3), the right-hand FR-region is inflated and the field magnitudes 
By and  E are enhanced by a factor of(1 + U)/(1 - U). At the left-hand side the changes 
are in opposite direction. We emphasize, however, that both the reconnected magnetic 
flux and energy release (a volume of the FR-region) are not affected by these effects, 
so that a function f influences mainly on the configuration and local features of the 
FR-regions, but not on their global properties. 

As follows from this discussion of time-dependent reconnection problem, a solution 
is completely defined by the two functions which describe the temporal evolution of the 
electric field at the reconnection line and the movement of this line. 

4.2. THE ROLE OF THE DISSIPATIVE EFFECTS 

It seems well known (see also Section 2.1) that dissipative processes are of crucial 
importance in the reconnection phenomenon. However, the solutions considered above 
are obtained in the framework of the ideal MHD model. Absence of dissipation in our 
treatment displays itself through the siguularities which appear in our formal asymptotic 
solution. E.g., in the case of an incompressible plasma all the components of V and B 
vectors in the FR-regions tend to infinity at the shock fronts (3.2a)-(3.2g). It will be seen 
below that in the time-dependent case the singularities also take place. In the compres- 
sible plasma these singularities disappear on the shocks, but instead of them there 
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appear singularities in the density and entropy at the x-axis in the FR-region, which 
corresponds to the generation of an entropy wave (Soward and Priest, 1982). 

The appearance of singularities may be considered as evidence for the reconnection 
to be impossible for infinite conductivity. This means that the very fact of the existence 
of the logarithmic singularities points to the places where dissipative effects are of 
particular importance. From the mathematical point of view logarithmic singularities 
correspond to jumps of the function y(1)(z,, r/, 0), which may be derived from (4.8): 

y(~l)(z ' ,  r/, 0 )  = s i g n  r / (  - 2rh' + ]~ll h"); r/~ S - ,  

y(i)(z,, r/, 0) = 0; r / g S - ,  (4.31) 

where h = h (v -  ] ~/[). The X-component of the magnetic field B x in the inflow region can 
be found from (4.15): 

1 ~ (c~ - r/)y(1)('c ', r/, 0) dr/ 
B(x 1) j ( ~ 7 ~ 7 ~  ~ �9 (4.32) 

- - 0 0  

If the function y(i)(r , ,  r/, 0) is continuous with respect to r/and finite, then B:, together 
with other functions of the first-order approximation do not have any singularities and 
vanish at infinity. The jump ofy(~I)(z ', r/, 0) produces the logarithmic singularities in the 
Bx and in some other functions. For example, in the stationary case 
y(~I)(z', r/, 0) = 2 sign ~/, the jump of y(i) is Ay(~ 1) = 4, and the solution contains the 
in-singularity B(x I) ~ (4e/re) In (~2 + t z) - i/2. In the time-dependent case the jump ofy(~ I) 
at the origin is Ay(~ l) = -4h'(~'),  which results in the in-singularity in B(xI): 

B(I) = 2 h'(z')In ~ ,22  
c~2 + ~2" (4.33) 

At the leading front at point C Ay(~ ~) = z'h"(0). If the reconnection starts gradually, 
h"(O) = 0, then the FR-region should propagate without dissipation, with the outer 
surface of the FR-region having a characteristic nose at point C (see (4.17) and 
Figure 2.3). 

Let us now consider the role of the dissipation in more detail. In the stationary case, 
the only one treated by many authors (Sweet, 1958; Parker, 1963; Petschek, 1964; 
Cowley, 1975; Vasyliunas, 1975; Soward and Priest, 1977, 1982), the main question is 
what the plasma conductivity should be to provide the reconnection, or, in other words, 
what the relation between the basic parameters of the problem should be (i.e. the Alfvrn 
Mach number ~ and the magnetic Reynolds number Rem) to make the reconnection 
possible. 

It is in principle clear how to find such a relation between e and R e  m . The solution 
of the MHD-equations including the dissipative effects should be constructed in the 
vicinity of the singular points and lines, and then it should be joined with the solution 
of the ideal magnetohydrodynamics. Unfortunately, in such a formulation the problem 
is not solved, and only some estimates of the sought relation are available so far. We 
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consider briefly the estimations obtained by Petschek (1964) and by Vasyliunas (1975), 
which can be generalized for the time-dependent case. The main idea of their approach 
is the following. The first-order approximation perturbation of the magnetic field B~ 1) 
(3.25b) is opposite in direction to the initial field Bo and increases when moving to the 
origin of coordinates. Thus, the summary field equals zero on the y-axis at some distance 
l from the origin. If the size of the diffusion region estimated by L / R e  m is less than l, 
a zero magnetic point appears there, and, in addition, the electric current in the diffusion 
region is opposite to the electric field applied, which may be easily proved by the 
circulation theorem. Because the current in the diffusion region should be parallel to Eo, 
so I is the minimum size of the diffusion region. Equating l and L / R e m ,  one obtains the 
relation between the reconnection rate (as traditionally the Alfv6n Mach number is 
called) and the magnetic Reynolds number Rein. To improve the estimation, it is 
necessary to estimate the size of the diffusion region and the magnetic field on its 
boundary as exactly as possible. Thus, the following estimation has been obtained: 

1 >~ ke In e Rem, (4.34) 

where k = 8/n (Petschek, 1964; Vasyliunas, 1975). In the compressible plasma 
k = ~z7/4(27 - 1) when f l~  1, M ~  1, and k = ~7/3(27 - 1) when fl>> 1, M>> 1; where 
7 is the ratio of specific heats, fl = 8gpo/B 2 is the pressure ratio, and M is the Mach 
number (Soward and Priest, 1982). 

A different approach to this problem is possible on the basis of the following 
consideration. A reconnection process can be decomposed into two parts. First of all, 
an electric field must be created someway in the diffusion region, this field will control 
all the properties of the reconnection phenomena (see Section 4.1). At the next stage 
this electric field must be transferred into the surrounding medium by the Alfv6n wave, 
which is fed by the field-aligned currents (Figure 2.2a). A maximum intensity of these 
currents (and, hence, of the transferred electric field) can be obtained in case all the 
current flowing within the diffusion region is deflected via field-aligned currents of the 
Alfv6n wave. This limiting value of total current available is clearly related to the size 
of the diffusion region. 

A linear current density in the diffusion region J is given by 

1J ( z ' )  = 1 + eB(~l)(z ', 0, 0), (4.35) 

where B(~ 1) is the first-order approximation of the x-component of the magnetic field in 
the inflow region. Following Petschek (1964), let By to change linearly with the scale x d 

in the diffusion region. This results also in smooth behavior of both y(1) (see (4.31)) and 
B(x a) (see (4.32)). Physically, J may change between 2 (no reconnection yet possible) and 
0 (all current is deflected into the Alfv6n wave current system). From this we can obtain 
an estimation of maximum possible reconnection rate versus the scale of the diffusion 
region x d. By using (4.31), (4.32) and (4.35) we have: 

-c' 

e [ (~ - q)y(~l)(z', q, 0) d~l 
1 + --~z ,] ( ~ _ - ~ 2 .  >~ 0. (4.36) 

- -  -r' 
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From here, by neglecting the quantities of the order of max{e; (xa/'c') ln(xa/z')} , a 
limiting value of the electric field transferred by the Alfv6n wave is 

Ih'(t')l ~ re/4 ln(z'/Xa), (4.37) 

or, in the dimensional form: 

E*(t) ~ 4c(4rCpo) I/2 In (Vat/Xd) ' (4.38) 

By(t) <~ zcBo/4 In (Vot/xd), (4.39) 

where By(t) is the reconnected magnetic field at the boundary of the diffusion region. 
In a stationary case x d must be replaced by L/e Re m and Vat by the characteristic scale 

L. Then (4.39) yields the Petschek condition (4.34) with k = 4/re. 
In the stationary case both main parameters e and Re m are given; then it follows from 

(4.32) that the stationary reconnection may take place only when (a) the electric field 
applied is small enough, (b) the initial magnetic field is strong, and (c) the plasma 
conductivity is low. If the Petschek condition is not fulfilled, the system stays in a 
non-stationary state (see Vasyliunas, 1975). That state, as we have seen in Section 2, 
is characterized by magnetic energy accumulation. In such conditions, the magnetic field 
increases, e decreases, and at some instant the Petschek criterion (4.32) is satisfied. 
Thus, the Petschek condition determines the steady-state reconnection threshold. 

It is interesting to dis.cuss the mixed solutions obtained in Section 2 from this point 
of view. The constant k given by formulas (3.35) and (3.36) for the cases of two and 
four incoming discontinuities respectively can be shown to determine the reconnection 
threshold. It may be seen from (3.35) and (3.36) that incoming discontinuities with the 
antiparallel polarization (I > 0) cause the thresholds to decrease in comparison with the 
Petschek model (I = 0), and therefore they stimulate the reconnection process. On the 
contrary, in the case of parallel polarization (I < 0), the threshold increases and becomes 

1 infinite when I = - ~. The solution obtained by Sonnerup is the only one which gives 
k = 0 when I = 2 -  1/2, i.e. the threshold equals zero; the reconnection is caused in that 
case by incoming discontinuity only without any dissipation. 

It is worth now comparing the main features of the time-dependent and the stationary 
reconnection processes. In contrast to the stationary case, the spontaneous recon- 
nection is a local process. Until the fast shock reaches the boundaries, reflects and 
returns back, the reconnection is completely determined by plasma properties in the 
diffusion region. For the stationary reconnection to take place, at least three conditions 
should be fulfilled: 

(a) During the initial phase the magnetic field intensity has to amount to the value 
which is necessary to satisfy the Petschek condition (4.34). 

(b) In the diffusion region, the steady-state conditions (E(t) = const.) have to exist 
for sufficiently long time. 

(c) The boundary conditions correspond to the stationary state. 
In reality the simultaneous realization of all these requirements seems to be unlikely. 
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That is why the reconnection proceeds in most cases as a nonstationary impulsive 
process. 

5. Laboratory and Numerical Experiments 

For the last several years the reconnection process has been investigated not only 
theoretically but also using the laboratory and numerical experiments. 

Before giving an account of the main results of these investigations, we have to make 
the following remark: unfortunately, it is impossible to simulate an event precisely in its 
whole complexity in laboratory conditions. Therefore, the principle of limited simulation 
(Podgorny and Sagdeev, 1969), which allows a certain group of conditions to be 
simulated, is most often used. This means that an experiment has to be carried out in 
such a way that only those dimensionless parameters should be preserved which are of 
the order of unity in the real space phenomena, whereas for the parameters much smaller 
or much greater than unity only the signs of inequalities should remain the same. Thus, 
the laboratory simulation experiment is not a precise copy of the real phenomenon; 
rather, it is merely similar to it, to some extent. Because of that, a complex approach 
including theoretical, laboratory and numerical methods should be developed, for each 
way has its own merits and disadvantages. Only after having combined these methods 
can one produce a comprehensive description of the reconnection process. 

Now, with that remark in mind, let us consider the laboratory results on the recon- 
nection problem. First of all, the current sheet appears to develop if an electric field is 
applied along the neutral X-line of the magnetic field (Ohyabu and Kawashima, 1972; 
Baum and Bratenahl, 1974a, b, 1977; Frank, 1974; Kirii et  al., 1979; Bogdanov et  al., 
1980; Stenzel and Gekelman, 1981; Gekelman and Stenzel, 1981). The accumulation 
of magnetic energy in the vicinity of the current sheet has been shown to depend on the 
following parameters: (a) The magnetic Reynolds number Re m . If the conductivity of 
the plasma is low, no significant amount of the free energy can be stored. (b) The 
Alfvrnic-Mach number Ma; this quantity has to be suitably small. If Ma exceeds a 
certain limiting value, an intermediate plasma configuration develops, instead of the 
current sheet (with respect to current sheet and cylindrical z-pinch) (Kirii et al., 1979). 
(c) Ratio of the gas to magnetic pressure fl; fl has to be relatively small as well. For 
example, in experiments by Stenzel and Gekelman (1981) and Gekelman and Stenzel 
(1981) with a plasma having fl~ 1, the current sheet formed. However, no more that 
20~o of the energy which entered the system could be accumulated as free energy; the 
rest of the energy was spent in heating the plasma, mainly electrons (Stenzel et  al., 1982). 

Thus, the laboratory experiments confirm as a whole the theoretical conclusions: to 
accumulate effectively the free magnetic energy in the vicinity of the current sheet, the 
following conditions are to be met: Rem >> 1, B < 1, Ma < 1. Free energy is accumulated 
the more effectively, the greater magnetic Reynolds number, the smaller the ratio of the 
gas to magnetic pressure and the greater the Alfvrnic-Mach number are, though, as has 
been mentioned above, the latter has an upper limit value. All three conditions have a 
simple physical meaning. A greater Re m corresponds to a smaller energy spent on the 
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Joule heating; the smaller fi is, the easier can the magnetic field affect the plasma; and, 
finally, the greater Ma is, the greater is the rate of the energy input to the system. 

As to the process of reconnection associated with the fast reconstruction of the 
magnetic field structure and magnetic energy release, it has been investigated in less 
detail, mainly because the process turned out to be highly time-dependent. 

In the experiments by Baum and Bratenahl (1974a, b, 1977) on the double inverse 
pinch, the magnetic field was maintained by two parallel currents I flowing along two 
metal rods, and by a return current 21 flowing in the plasma along the outer envelope 
(see Figure 5. la). At the beginning, during the first 7 ms a current sheet had developed 
at the X-line of the magnetic field, and then reconnection took place, which was observed 
as fast reconstruction of the magnetic field structure. Therefore this phenomenon was 
called an 'impulsive flux transfer event' (IFTE). The time scale of IFTE is shorter than 
that of the change of currents in the rods. On the other hand, when averaged in time, 
the distribution of the current density was similar to that in Petschek's model with the 
slow shocks (see Figure 5. lb). 

The oscillograms of the magnetic field component normal to the current sheet (Hy) 
obtained for different points x along the sheet are shown in Figure 5.2 (experiments by 
Bogdanov et al., 1980, with the quadrupole magnetic field). At the initial phase of the 
process the Hy-component decreased which correspond to the development of the 
current sheet. At some instant a fast increase of the Hy-component in the center of the 
current sheet was observed and then the disturbance moved out of the origin along the 
sheet with a velocity of the order of 6 x 1 0  6 c m  s 1, which approximately coincided with 
the Alfvrn velocity V a = 6.5 x 106 cm S - 1 calculated for the region above (but not 
inside) the current sheet. This behavior of the Hy-component is very similar to the 
time-dependent reconnection considered in Section 3. 

Bogdanov etal. (1980) and Kirii etal. (1979) have pointed out that the time- 
dependent reconnection process takes place only when a sufficient amount of free 
magnetic energy is stored in the system. Just before the beginning of the reconnection, 
a drop of the plasma density has been observed, and, of great importance, a local 
increase of the plasma resisitivity near the neutral line has been detected. Baum and 
Bratenahl (1974b), who observed the local increase of plasma resistivity, ascribed this 
phenomenon to the development of the ion sound turbulence. Thus, according to these 
experiments the reconnection process seems to be due to the development of anomalous 
resistivity rather than to tearing instability. 

It should be noticed that in the laboratory experiments the reconnection process is 
highly time-dependent, with a time scale of order of t o = L/Va, where L the length of 
current sheet, due to the presence of device walls, impulsive regime and other reasons. 
For the majority of devices used t o < 0.5 ms and, hence, it is very difficult to investigate 
the reconnection expermentally. On the whole, the process observed by Baum and 
Bratenahl (1977) and Bogdanov et al. (1980) seems to be similar to the one described 
in Section 3; nevertheless, additional evidence is quite essential. 

Now we shall discuss the results of numerical simulation. In contrast to laboratory 
experiments, stationary (or quasi-stationary) reconnection with standing slow shocks 
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Fig. 5.1. Experiments on the double inverse pinch (Baum and Bratenahl, 1977). (a) The scheme of the 
installation. The solid lines show the equipotentials of the Z-eomponent of the veetor potential produced 
by a two-current system. The heavy solid line shows the separator (boundary between magnetic fields of 
two kinds). (b) Current density contours and magnetic field lines at the moments t = 7.0; 7.4; 7.8 ms (from 

the left to the right). 
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Fig. 5.2. Oscillograms of the electric voltage (Uz) on the plasma interval, of the current intensity (Iz) and 
of the magnetic field component perpendicular to the current sheet (Hy) obtained at three points spaced 
along the X-axis: x 1 = 0.3 cm; x 2 = 1.9 cm; x 3 = 3.3 cm. Conditions of the experiment: initial gradient of the 

magnetic field intensity h = 2 kG cm- 1; p = 10 -2 Torr, E ~ = 250 V cm- 1. 

has been set in numerical simulation (Ugai and Tsuda, 1977; Tsuda and Ugai, 1977; 

Hayashi and Sato, 1978; Sato and Hayashi, 1979; Sato, 1979; Brushlinskii et al., 1980; 
Podgorny and Syrovatsky, 1979; Ugai, 1981). These simulations confirm Petschek's 
assumption concerning the appearance of a slow shock system. This is of great impor- 

tance, since the analytical methods are asymptotic and formal ones; using them does 
not provide any proof  for the existence of solution. 

In simulation by Sato and Hayashi (1979) and Sato (1979) formation of the shocks 
was investigated and it was proved that the shock was a slow one. The dependence of 
the numerical solution on different parameters such as conducitivity, viscosity, boundary 

conditions, etc. has been studied also. Unfortunately, space and time resolution is not 
yet sufficient to test the Petschek criterion. 

The fast time-dependent reconnection has been studied in papers (Birn, 1980; Birn 
and Hones, 1981; Forbes and Priest, 1982, 1983). In these papers the tail magnetic field 
calculated by means of Birn-Schindler 's method (see Section 2) has been adopted as 
an initial magnetic field configuration. Then a finite conductivity has been set up and 
the further evolution of the system has been investigated numerically. The current sheet 
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became thinner in the Earthward part and then a neutral line appeared there. Then the 
reconnection process started, with the formation of shocks and plasma acceleration by 
the induced electric field. The head fronts of FR-regions were not distinguishable, while 
parts of shocks near the X-line were clearly seen. 

Based on laboratory and numerical simulation, one can make the same conclusions 
as from the results of theoretical investigation. By now the main regimes of the current 
sheet have been revealed, but the transitions between them require further studies. To 
do this it is necessary to carry out simulation at greater magnetic Reynolds numbers, 
with smaller ratios of gas to magnetic pressure, and to improve the temporal and spatial 
resolution. 

6. Steady-State Solar Wind Flow Around the Magnetosphere 

Results of the investigations presented in previous sections show that the field line 
reconnection can proceed in media with arbitrarily high conductivity and with an 
arbitrary jump of the magnetic field and plasma parameters at both sides of the 
reconnection region. The rate of reconnection is proportional to (In Rem)- 1; it is thus 
relatively high and provides sufficiently effective transformation of the magnetic field 
energy into the kinetic and thermal energy of the plasma. One would believe this 
circumstance to ensure the validity of the solar wind - magnetosphere interaction 
models that are based on the assumption of the reconnection of the geomagnetic field 
with the solar wind magnetic field. However, the problem is much more complicated. 
Indeed, as we have seen, the electric field providing the transport of the plasma to the 
merging region and its energization has to exist in the vicinity of the reconnection region 
in order that the process of reconnection could proceed. However, under steady-state 
conditions the electric field can by no means be a result of the magnetic field recon- 
nection. Rather, it is an extemal parameter determined, in particular, by the peculiarities 
of the flow in the vicinity of the merging region, as well as by those at a significant 
distance from tfiat region (Vasyliunas, 1975; Pudovkin et al., 1975). Thus, to find the 
electric field in the vicinity of the reconnection region at the day side magnetopause, one 
has to know the structure of the plasma flow around the magnetosphere as a whole. At 
the same time, most of the nowadays-existing 'open' models of the magnetosphere are 
based on the pure geometrical (vacuum) superposition of the interplanetary and the 
Earth's magnetic fields, the features of the plasma flow being completely ignored. Then, 
assuming typical values of the solar wind parameters (V = 400 km s - 1, B = 57) and for 
the magnetosphere's diameter (O m = 4 0  R E )  , the polar cap potential drop (AqS) proves 
to be of the order of 500 kV (Stern, 1977). However, such a large potential drop across 
the polar cap has never been observed, and indeed the observed drop seldom exceeds 
100 kV; thus, the experimental data are at least 5 times less than the theoretical 
estimations. In order to have the model agree with the experimental data, some addi- 
tional assumptions limiting the value of Atp at the magnetopause are often introduced. 
For example, Levy et al. (1964) assume that only one-fifth of the magnetic field lines 
impinging on the magnetopause take part in the process of reconnection. The mecha- 
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nism for such selective behavior of the field lines at the magnetopause is not discussed 
in that paper. On the other hand, according to papers by Morrill mad Scholer (1972), 
Siscoe and Crooker (1974), and Stern (1975), all the field lines entering the reconnection 
region are merging. However, these authors assumed that the process of reconnection 
takes place not over the whole magnetopause but only within a limited longitudinal 
sector. What the physical mechanism is that limits the length of the reconnection line 
is not clear; the width of the 'window' is estimated so that the potential drop along that 
line equals the potential drop across the polar cap. Thus, the physical significance of 
those models may hardly be estimated. 

Second, the steady-state reconnection of the magnetic fields is possible only when the 
merging rate does not exceed the limit value V a = Va/ ln  Re m. On tlhe other hand, the 
Alfv6nic Mach number is known to be of the order of Ma w ~ 10 in the solar wind, and 
even downstream the bow shock the flow continues to be super-Alfvdnic. Whether the 
Petschek condition may be fulfilled closer to the magnetopause depends on the charac- 
teristics of the plasma flow in the magnetosheath, that is, on the peculiarities of the solar 
wind flow around the magnetosphere. 

Thus, before trying to apply the theory of the magnetic field reconnection to the study 
of the processes of the interaction of the solar wind with the magnetosphere, one has 
to consider the problem of the MHD flow of the solar wind around the magnetosphere. 

6.1. T H E  F L O W  W I T H  A N  I S O L A T E D  S T A G N A T I O N  P O I N T  

Solution of the system of the MHD equations (A1)-(A5) involves a fair number of 
difficulties that are insuperable at present. Because of that, while studying the flow of 
magnetized solar wind around the magnetosphere, researches introduce some simplifi- 
cations into the system of the MHD equations, and first of all into the equation of motion 
(A1). This equation may be written in a dimensionless form as: 

1 #Y Po VP= +Ma-Z[rotB • B], (6.1) 
VoP t + + poVo 

where the tilded variables mean dimensionless quantities, and Ma = V a / V  a is the 
Alfv6nic Mach number. Since the density of the kinetic energy of the plasma within the 
solar wind is much higher than the magnetic field energy, hence Ma-  2 ~ 1, the problem 
of the solar wind flow around the magnetosphere is often considered approximately by 
expanding all the variables in series with respect to the small parameter e = Ma-  2, and 
by using the linear theory of disturbance. In the zero-order approximation, the whole 
problem may be split into two separate problems: a pure hydro (gas) dynamic one, in 
which any influence of the magnetic forces is neglected and hydro(gas) dynamic charac- 
teristics of the flow (the plasma density, pressure, velocity) are sought, and a magnetic 
one, in which the distribution of the magnetic field is calculated on the basis of the known 
distribution of the plasma velocity and density. 

This is the method by which the problem of the solar wind flow around the magneto- 
sphere has been considered by Spreiter et  al. (1966), Alksne (1967), and Spreiter and 
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Alksne (1967). Nowever, while numerically integrating equation (A4), Spreiter and 
Alksne have found that in the case a---, ~ the magnetic field intensity increases infinitely 
on approaching the magnetopause. Because of that, solution of the problem was 
obtained only for a region at some distance from the magnetopause (Figure 6.1). 

Fig. 6.1. 
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Magnetic field line configuration and isolines of the magnetic field intensity in the magnetosheath 
(Spreiter et aL, 1966). 

The physical meaning of such behavior of the magnetic field within the flow was 
considered by Pudovkin and Semenov (1977a, b), Semenov and Pudovkin (1978), and 
by Sonnerup (1979). Following them, we shall assume the solar wind plasma to be 
perfectly conductive. The solar wind magnetic field is assumed to be homogeneous at 
infinity and perpendicular to the velocity, and the flow of the plasma is assumed to be 
pure gas dynamic, that is, with a stagnation point at the 'nose' of the magnetopause 
(Figure 6.2). 

The magnetic field intensity variation in a moving plasma is described by equation 
(A6). In the case a ~ oo, this equation is transformed into the equation of the frozen-in 
magnetic field and may be written in the form: 

B (v.7)-B = ( p . 7 ) v .  (6.2) 
P 

One can see from (6.2) that the mean value of (B/p) pertaining to some segment of 
a field line changes in proportion to the length of that segment. 

Let us consider a segment AC of a field line situated at a distance r o from the 
stagnation stream line (Figure 6.2.). While moving with the plasma, that segment 
transforms toA'C ' ,A "C", and so on. By that, the mean value of the (B/p) at the segment 
under consideration increases in accordance with (6.2) in proportion to the length of 
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Fig. 6.2. Configuration of the stream lines and of the magnetic field lines in case of the solar wind flow 
around the magnetosphere with an isolated stagnation point; (a) in the physical space; (b) in the space of 

the parameters t, e, ~o. 

the segment: 

(6.3) 
1 oo "'.--"-Joo' 2 oo ".AC.,oo oo 2ro 

here O m is the diameter of the magnetosphere at section A "C". It is not difficult to see 
that at the very surface of the magnetosphere, the value of the 'impact parameter' ro of 
corresponding stream lines tends to zero; as the consequence, the value of (B/p)  tends 
to infinity; and that is why Spreiter and Alksne have obtained their inauspicious result. 

The relation between the value of (B/p)  and the length of the field line has been 
illustrated in a sufficiently explicit form by Parker (1973). As we have already said, that 
paper contained an investigation of the flow of two encountering slLreams of a highly 
conductive incompressible fluid spreading over the plane of contact so that the stream 
lines were lying in the (Voo, Boo) plane (Figure 6.3). A strict solution of the problem gives 
V(x, z)  = k (  - x e  x + zez) (see Section 2.2), where k is constant and the Z-axis is directed 
along the B field. Thus, the length of segment A C  of the magnetic field line and, hence, 
the magnetic field intensity, are proportional to 1Ix.  

In the case when the streams spread over the encounter plane in the Y-direction (that 
is perpendicular to the magnetic field), field lines are not stretched and the magnetic field 
intensity does not change (Priest and Sonnerup, 1975; Sonnerup and Priest, 1975). 

A solution of the problem under consideration (in a kinematic approximation) for a 
sphere immersed into a stream of a perfectly conductive fluid, with a t?ozen-in magnetic 
field transversal with respect to V, was obtained by Bernikov and Semenov (1979). 
According to that solution, in the case when the flow preserves the peculiarities of a pure 
hydrodynamic flow, the magnetic field intensity at the surface of the sphere may be 
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Fig. 6.3. 
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Configuration of the magnetic field lines (solid lines) and of the stream lines (dotted lines) in 
Parker's (1963) solution. 

written as: 

sin 0 2 
B~ = ~ Boo ~ sin q~, 

1 + cos 0 

Bo~ sin cp 
Be= ~ ' 

Bo~ cos ~0 
B~o- x / ~  (6.4) 

Here s = (r - ro)lr o is the dimensionless distance from the surface of the body, 0 is the 
angle measured from the polar axis passing through the stagnation point, and (0 is the 
azimuthal angle counted from the meridional plane which is perpendicular to the 
magnetic field B~.  Formulas (6.4) show that, indeed, the magnetic field intensity 
increases infinitely while approaching the surface of the body; this result seems to 
deprive that solution of a real physical meaning. 

The way out of this situation was proposed by Parker (1973). According to the 
analysis presented in that paper, the increase of the magnetic field intensity takes place 
only beyond some distance from the body surface. At sufficiently small distances, 
x ~< ~ = a/(Re,,,)- 1/2 (where 'a' is a characteristic dimension of the problem), the 
gradient of the magnetic field intensity turns to be so high that the last (diffusion) term 
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in Equation (A.6) cannot be neglected; as a consequence, the field lines are 'slipping' 
through this region, and the field intensity is no longer increasing. 

Unfortunately, the fact that the solution of (6.4) is valid only outside the boundary 
layer does not improve the situation in the problem of the solar wind flow around the 
magnetosphere. Indeed, the width of the boundary layer determined by the value of the 
magnetic Reynolds number (Re m ~ 101~ in the case under consideration) is rather small, 
so that the magnetic field intensity must be significantly high even at the external 
boundary of that layer. For example, having assumed the value of s in (6.4) to equal 
s = b/r o = 1/R,,/~mm ~ 10- 5, one obtains the value of the magnetic field intensity at the 
outer surface of the boundary layer as B ~ B ~ / , ~  ~ 200 B~.  

It is not difficult to see that the results obtained contradict the initial assumption that 
the Ampere forces are sufficiently small so that the kinematic approximation could be 
valid. As we have seen, the unequality M a -  2 ~ 1 changes its sense well before plasma 
entering the boundary layer, so that magnetic forces are playing a predominant role in 
the equation of motion (6.1). In contrast to the gas pressure forces, magnetic forces are 
strictly perpendicular to the magnetic field, and as a consequence, are greatly aniso- 
tropic. In particular, if the magnetic field components in the vicinity of the magnetopause 
are determined by (6.4), the tangential components of the Amptre forces are: 

2 0 
Fo = BQ (1 - 2 sin 2 q~).- ,  

3roS 2 

0 
F e -  B% s i n 2 ~ o . .  (6.5) 

3roS 2 

One can see from these formulas that magnetic forces decelerate the plasma motion 
along the meridian q~ = + n/2 and accelerate it along the meridian (q~ = 0; n), so that 
the plasma flow around a blunt body tends to be a quasi-two-dimensional. It is worth 
noting that the flow keeps a quasi-two-dimensional character in a more general case also 
(Semenov and B ernikov, 1979). Thus the assumption that the flow of a highly conductive 
plasma around a blunt body preserves the structure of the pure gas dynamic flow in the 
pressure of a magnetic field also seems to be not only poorly grounded 10ut rather unlikely 
on the whole. 

Influence of the magnetic field on the plasma flow was considered by Lees (1964), 
Pivovarov and Erkaev (1978) for the case of Boo II V~,  and by Zw~t  and Wolf (1976) 
and by Pivovarov and Ekraev (1978) for the case of a magnetic field of arbitrary 
direction. It has to be noted that in all those studies the plasma flow was supposed to 
proceed with an isolated stagnation point as it does in pure gas dynamics. As a result, 
there was shown that the singularity found by Alksne and Spreiter in the magnetic field 
intensity refers in the general case to the ratio of B/p, which agrees with the results by 
Pudovkin and Semenov (1977a) and by Sonnerup (1979). Thus, a solution for a limited 
magnetic field intensity may be obtained; however, in such a case, the plasma density 
at the surface of the body has to tend to zero, as if the magnetic field, increasing as it 
approaches the body, drives the plasma away from its surface. 
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From the pure mathematical point of view, such a solution may be satisfactory; 
however, it seems to be unlikely for physical reasons. Indeed, in a low-density plasma, 
the electric current density is known to be limited by the value ofjc r ~ Csne, where C s 
is the velocity of the ion sound (Cs ~ ~ ) .  As a result, a very low density plasma 
with n ~ 0 cannot bear the current providing the jump of the magnetic field existing at 
the magnetopause. Thus, the final result of the calculations - p ~ 0, and hence Jet ~ 0 
- contradicts the initial assumption about the perfect conductivity of the plasma. A quite 
opposite result was obtained by Shen (1972). Having considered a two-dimensional 
problem of a cylindrical body flowed by a stream of highly conductive magnetized 
plasma (with Bo~ non-parallel to Vow), Shen obtained a solution in which the magnetic 
field intensity at the magnetopause was limited; in spite of that, the plasma density did 
not vanish and even increased while approaching the magnetopause. However, his result 
may be explained by his very particular choice of the coordinate system. Because of that 
coordinate system, he had to exclude the points at the subsolar stream line and near 
the stagnation point from his numerical computation. 

So, as we have seen, most of the existing solutions of the problem bring one to 
unsatisfactory conclusions: the value of B/p has to increase rapidly towards the 
magnetopause, and, what is more, such an increase has to take place not only in the 
vicinity of the stagnation point (which would be quite understandable and admissible), 
but along the whole magnetopause, which seems to disagree with the experimental data. 

As was shown above (Figure 6.2), the singularity in the behavior of the function (B/p) 
near the magnetopause arises from the assumed topology of the flow with a stagnation 
point. At the same time, Figure 6.2 shows that for an acceptable solution to be obtained, 
the flow has to proceed in such a way that the stream lines enveloping the flanks of the 
magnetopause do not pass the stagnation point, or that, in accordance with the 
conclusions by Priest and Sonnerup (1975) and Sonnerup and Priest (1975), the plasma 
spreads along the magnetopause perpendicularly to the magnetic field. The flow 
topology meeting those demands was considered by Pudovkin and S emenov (1977 a, b) 
and by Semenov and Pudovkin (1978). As follows from their analysis, a magnetic field, 
frozen in the solar wind plasma, changes the flow of the latter in such a manner that 
instead of a stagnation point, there appears at the 'nose' of the magnetopause a whole 
line of singular points where the stream lines are branching. 

The existence of such a branching line was later shown by Erkaev (1981) on the basis 
of a strict solution of the MHD equations for the case of the stream of a perfectly 
conductive magnetized plasma flowing around a cone. According to that solution, the 
magnetic field, the intensity of which increases up to values of the order of ~ 8x/8nprr, 
affects the flow so that stream lines are branching not only at the vertex of the cone, 
but also at a whole ensemble of points producing a line (Figure 6.4), which agrees with 
the results by Pudovkin and Semenov (1977a, b) and by Sonnerup (1979). 

In a two-dimensional case (for example, in the problem by Parker-Priest-Sonnerup), 
that branching line (or a separator, according to Sonnerup et al., 1981) turns in to an 
usual stagnation line (V = 0). In a three-dimensional case, the plasma velocity along that 
line may differ from zero (Semenov and Pudovkin, 1978; Erkaev, 1981). Nevertheless, 
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(a) 

(b) 

Fig. 6.4. The flow of a perfectly conductive plasma by a conus; (a) in case ofB = 0; (b) in case ofB r 0, 
after Erkaev (1981). 

taking into account  the coincidence of  the main pecularities of  the flow topology in the 
two cases and their evolutionary similarity, we shall use the term 'stagnation line' in a 

three-dimensional case as well (Pudovkin and Semenov, 1977b; Sonnerup 1979). 
N o w  we shall consider characteristics of  the flow predicted by the model with a 

stagnation line. 
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6.2. T H E  FLOW WITH A STAGNATION LINE 

When the body is axially symmetric, and, at infinity, the magnetic field frozen in the 
plasma is perpendicular to the velocity, the flow has two planes of symmetry. Conse- 
quently, two modes of the flow are possible, corresponding to the cuts lying in the plane 
(Voo, Boo) or in the plane perpendicular to B. 

The first variant (a longitudinal stagnation line) is shown in Figure 6.5 ((a) in the 
physical space and (b) in the space of parameters t, ~, q~ (see Appendix)). As is seen 
from the figure, the stream lines are lying in a plane perpendicular to the magnetic field. 
The stretching of field lines is finite in this case, hence the mean value of B/p at the 
magnetopause is also limited and equals, as is seen from the figure, 
(B/p)m ,~ (B/p)o o "Dm/Zoo, where D m is the diameter of the magnetosphere and L is the 
distance (in the undisturbed flux) between two extreme stream lines forming the mague- 
tosphere's surface in its meridional section. The intensity of the tangential component 
of the electric field at the maguetopause and, as a consequence, the potential drop along 
it, equal zero, which agrees with the results by Sonnerup and Priest (1975) for a 
transversal flow of the fluid. 

i  I!ill t 

Fig. 6.5. Configuration of the stream lines and of the magnetic field lines in case of the solar wind flow 
around the magnetosphere with a longitudinal stagnation line. (a) in the physical space; (b) in space of 

parameters (t, e, q0. 

The flow with a transversal stagnation line is shown in Figure 6.6. In this case the 
flow spreads around the magnetopause mainly along magnetic field lines, the flanks of 
the magnetosphere being covered by the stream lines passing two tips of the stagnation 
line instead of a single stagnation point. So, the value of r o in Equation (6.3) cannot be 
less than L/2; because of that, the mean value of(B/p) at the flanks of the magnetopause 
is limited and as in the previous case equals 

(B/p)m ~ (B/p)~ ~ . 
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Fig. 6.6. 
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The same  as in F igure  6,5 in the  case  o f  a f low wi th  a t r a n s v e r s a l  s t a g n a t i o n  line. 

The behavior of the magnetic field where the stream lines cross the stagnation line 
is more complicated. Concerning the field line segments moving above and below the 
plane of the cut, their stretching, and hence the mean value of B/p at them, remain finite 
(see, e.g., the solution obtained by Shen, 1972). At the same time, the field line segments 
crossing the stagnation line, still exhibit an infinite stretching, and the value of B/p should 
infinitely increase there. However, as we have seen in the case of the Parker flow, this 
increase is limited by dissipative processes within the boundary layer, which allows one 
to obtain a finite solution all over the magnetopause. It is of great importance that the 
configuration of the magnetic field lines be favorable for the process of magnetic field 
reconnection. In such a case, the magnetic field intensity described in the frame of 
Petschek's model amounts to a much smaller values than in case of Ohmic dissipation 
is the Parker model. The concrete value of the ratio (B/p) is determined by the pecularities 
of the plasma flow in the i'econnection region, and will be considered later on. 

Figure 6.6 shows two more features of the flow with a transversal stagnation line. 
First, the potential drop at the magnetopanse does not vanish and equals 

A~b = ~1 ([v~ x Boo ] .Loo ) (6.6) 
c 

so Aq~ depends on the length of the stagnation line which, in its turn, is determined by 
the parameters of the flow and of the frozen-in magnetic field. 

Second, the existence of a tangential component of the electric', field under the 
condition Vm # 0 suggests the existence of the normal component of the magnetic field 
at the magnetopause. The rate of the magnetic flux penetration into the magnetosphere 
is 

dF/dt = Boo" Voo'Lo~. (6.7) 

Thus, the day side magnetopanse turns out to be transparent for the magnetosheath's 
magnetic field. 
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The penetration of the solar wind magnetic field into the magnetosphere was proved 
experimentally by Kovner and Feldstein (1973). 

Which of those two kinds of flow takes place in reality? As we have seen, in the case 
with a longitudinal stagnation line, the stretching of the field lines in the vicinity of the 
stagnation line is rather small, so that the energy loss of the stream flowing around the 
magnetosphere is minimum. Because of that, one can suppose that in the case of the 
northward IMF, the flow proceeds with a longitudinal stagnation line. 

In the case of the southward interplanetary magnetic field, the picture is much more 
complicated. The IMF turning to the south causes an increase of the magnetic field 
jump and, hence, of the current density at the magnetopause. On the other hand, it is 
not difficult to show that even in the absence of the solar wind magnetic field, the current 
density at the magnetopause is close to the critical one corresponding to the develop- 
ment of the wave turbulence in the plasma. Indeed, in the absence of the solar wind 
magnetic field, the jump of the magnetic field across the magnetopause in the vicinity 
of the subsolar point is equal to 

4n 
{B) = B i = - -  h e y  e �9 6, (6.8) 

r 

where Bi is the magnetospheric magnetic field, b is the thickness of the current layer, 
and n and V e a r e  the number density and current velocity of the electrons in that layer, 
respectively. According to the experimental data by Sonnerup (1981), the thickness of 
the current layer near the subsolar point is of the order of some gyroradii of energetic 
protons in the magnetosheath. The critical value of the electron velocity cannot exceed 
the value of C s = ~ ,  so the critical jump of the magnetic field intensity is: 

( B 2 ) o r  ,.~ 8~znmicZ~ ,~  4rcpT , (6.9) 

wherepr is the thermal plasma pressure. At the same time, the pressure balance at the 
magnetopause requires that 

B z = 8rcpr. (6.10) 

Having compared expressions (6.10) and (6.9), one can see that the current density 
at the magnetopause is close to the critical one even in absence of the IMF. The 
appearance of a southward magnetic field within the solar wind is followed by the 
increase of the magnetic field's jump at the magnetopause, which results in the develop- 
ment of plasma instabilities in the current sheet, in the violation of the magnetic field 
screening and in a sporadic beginning of the magnetic field reconnection at the magneto- 
pause. Then the character of the plasma motion in the boundary layer changes signifi- 
cantly and the flow transforms into one with a transversal stagnation line. In its turn, 
the flow with the transversal stagnation line results in the existence of an electric field 
directed along that line, which stimulates and promotes the process ofreconnection and 
permits it to proceed in a steady-state regime. The steady-state character of the recon- 
nection is favored by the fact that the enhanced intensity of the magnetic field at the 
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magnetopause secures the fulfilment of the inequality V a <~ Va(ln Rein)- ~ predicted by 
Petschek's model. 

So, it seems reasonable to combine the peculiarities of the flow considered above with 
the boundary conditions predicted by the reconnection theory. Such an investigation 
was carried out by Pudovkin et al. (1981a, b, c) in the cold plasma approximation. As 
the result, it proved to be possible to estimate such parameters of the problem as the 
intensity of the magnetic field in the magnetosheath and in the magnetosphere near the 
subsolar point at the magnetopause, the intensity of the electric field and the potential 
drop across the magnetosphere, the geocentric distance of the magnetopause, and the 
location of the polar cusps relative to the solar wind parameters. The results obtained 
are confirmed by experimental data. 

In spite of the extreme simplification of the model used in that investigation, it 
contained all the main features of the assumed process of the interaction of the solar 
wind with the Earth's magnetosphere: the increase of the magnetic field intensity at the 
magnetopause; the appearance of a stagnation line; the penetration of the magneto- 
sheath's magnetic field into the magnetosphere; and the reconnection of the magnetic 
fields of the solar wind and of the Earth. The coincidence of the experimental and 
theoretical data may be considered as confirmation of the basic assumption of the 
model. 

A great advantage of that model is that the dependence of the quantities mentioned 
on the values of the solar wind parameters may be described analytically, and this 
permits one to obtain easily these quantities under various conditions. However, the 
cold plasma approximation does not allow one to obtain the gas dynamic parameters 
of the solar wind plasma in the magnetosheath. 

The interaction of the solar wind with the Earth's magnetosphere, taking the thermal 
plasma pressure into account, was considered by Pudovkin et al. (1982). In accordance 
with the above, in that analysis it was assumed that: 

(1) The magnetic field frozen in the solar wind plasma changes the topology of the 
flow in the magnetosheath so that instead of an isolated stagnation point a stagnation 
line appears at the 'nose' part of the magnetopause; its direction is determined by the 
orientation of the magnetosheath's magnetic field as (Yeh, 1976): 

- - 3 + X / 9 + 8 t g 2 0 m  ( + ) i f  O<~Om<Z/2 , 
tg ~0 = -- (6.11) 

2tg0m ( - - ) i f  n / 2 < O m < ~ ,  

where q~ is the angle (in the Y Z  plane) measured clockwise from the Z-axis of the 
solar-magnetospheric coordinate system to the stagnation line (Figure 6.7); 0m is the 
angle between the Z-axis and the Bm-vector; in the general case, the angle 0m may differ 
from 0o~ in the undisturbed solar wind; index 'm' marks the values of the variables at 
the magnetopause, and Ma,,, = 0.1-0.2 (Petschek, 1964). 

(2) Stream lines passing the stagnation line are straight lines parallel to each other 
all through the sheath. In such a case, Equation (6.2) for the frozen-in magnetic field 
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stagnation line 
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Fig. 6.7. Coordinate systems used for calculations in the case of the IMF of arbitrary orientation. 

may be 

B tl/P = const. (6.12) 

for the magnetic field component parallel to the stagnation line, and 

B• �9 V = const. (6.13) 

for the magnetic field component perpendicular to it. 
(3) The boundary condition for the normal component of solar wind velocity at the 

magnetopause is determined by the Petsehek condition: 

sin (Ore -- rp) , (6.14) V m = Ma m B m  

where Mare = 0.1-0.2 is the Alfv6nic Mach number. 
However, even when these assumptions are accepted, solution of the system 

(A1)-(A5) is a very difficult problem. In this connection, the region of the flow under 
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consideration was restricted to the immediate vicinity of the streaxn line passing the 
subsolar point. Besides, it was assumed, as in the Parker (1973) model, that the flow 
velocity within the magnetosheath depends linearly on the distance t~om the magneto- 
pause, and the curvature radius of the magnetic field lines was supposed to equal their 
geocentric distance. 

On these assumptions, the system of Equations (A 1)-(A5) can be integrated. Results 
of the analysis are presented below. 

Figure 6.8 shows the variation of the plasma density across the magnetosheath for 
different directions of the IMF (0oo) in the case Ma = 8. As the graph.,; show, in the case 
of a predominatingly northward magnetic field (0~ < 60~ the plasma density mono- 
tonically increases all through the magnetosheath from the bow shock to the magneto- 
pause. This situation corresponds to the case of a pure gas dynamic flow around a blunt 
body. 

, , ,  i ~,',F 
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Fig. 6.8. 
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Variation of the plasma density across the magnetosheath for various directions of the IMF. 

In the case 0oo > 60 ~ the behavior of the plasma density is rather complicated: first 
the value of p slightly increases; then, while approaching the magnetopause, it rapidly 
decreases, so that a region of a relatively low density plasma appears at the surface of 
the flown body. This result perfectly agrees with earlier results by Lees (1964), Zwan 
and Wolf (1976), Pivovarov and Erkaev (1978). The plasma density does not drop to 
zero because the flow velocity at the outer boundary of the reconnection region is 
supposed to be nonzero. 

In contrast to the plasma density, the magnetic field intensity is shown to increase 
all through the magnetosheath irrespective of the IMF direction. 

Figure 6.9 shows the normalized values of the plasma density at the magnetopause 
for Mam = 0.2 depending on the orientation of the IMF for various values of the 



6 2  M . I .  P U D O V K I N  A N D  V. S.  S E M E N O V  

•/• l Man =0.2 

g.S- 

0 i ! i i i I ! I i 

20 gO r tOO /gO 8 ~  

~ ~  

Fig. 6.9. The value of the plasma density normalized to the plasma density at the bow shock in dependence 
on the IMF orientation (0~o) for various Alfv6nic Mach numbers Ma in the solar wind; Man = 0.2. 

Alfv6nic Mach number in the solar wind. One can see in the figure that when 0~ < 60 ~ 
the plasma density at the magnetopause differs insignificantly from that at the bow 
shock; only in the case of a very intensitive magnetic field (Maoo = 4), (Pm/Po) = 1.3 
instead of 1.1 in a pure gas dynamic flow. 

For 0~ > 60 ~ the plasma density at the magnetopause decreases with the increase 
of the angle 0~,  with the depth of the density depression increasing with the decrease 
of the Maoo number. 

Figure 6.10 presents the normalized intensity of the magnetic field at the magneto- 
pause (/~m = B m / ~ )  depending on the 0~ angle and on the Mao~ number for 
Ma,,  = 0.2. One can see that when Ma D is of the order of  10 (which is typical for the 
solar wind), the intensity of the magnetic field at the magnetopause amounts to the value 
B,, ~ ( 0 . 4 - 0 . 8 ) ~  which is 5-10 times more than in the undisturbed solar wind. 
This result agrees with the experimental data by Reiff et al. (1981) and Crooker et al. 
(1981) concerning the degree of the magnetic field compression in the magnetosheath. 

Furthermore, one can see that the magnetic field intensity at tlae magnetopause 
depends on the orientation of the IMF, increasing with the increase of the angle 0o~. 
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Fig. 6.10. Magnetic field intensity at the magnetopause normalized to the dynamic pressure in the solar 
wind in dependence on the orientation of the IMF for various Alfv6nic Mach numbers  M a ~  in the solar 

wind; M an  = 0.2. 

In Figure 6.11 there are given the values of the angles and q~ in dependence on the 
orientation of the IMF (the angle 0~) for Mare = 0.2. As is seen, the direction of the 
magnetic field at the magnetopause may significantly differ from the direction of the IMF 
in the undisturbed solar wind. In particular, at 0oo = 60 ~ ~ an interesting phenome- 
non takes place: the z-component of the magnetic field at the magnetopause proves to 
be negative, while in the undisturbed solar wind it is positive. 

These are the main features of the flow and of the magnetic field in the magnetosheath 
that are predicted by the model of the flow with a stagnation line. It would be interesting 
to see if these predictions agree with the experimental data. 

6.3. C O M P A R I S O N  OF THE M O D E L  WITH THE EXPERIMENTAL DATA 

(1) As we have already said, the existence of the stagnation line is closely associated 
with the process of the magnetic field reconnection. However, the very idea on the 
magnetic field reconnection at the magnetopause has been called in question (Heikkila, 
1975). In this connection, the results of observation onboard the satellites ISEE-1 and 
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Fig. 6.11. Orientation of the magnetosheath's magnetic field at the magnetopause (Om) and that of the 
stagnation line (q~) depending on the IMF orientation (0o~) for various Alfvrnic Mach numbers Ma~ in the 

solar wind; Man = 0.2. 

ISEE-2 seem to be of great importance (Mozer et aL, 1979; Paschmann et al., 1979; 

Sonnerup et aL, 1981). These observations show that: 
(a) The normal component of  the magnetic field at the magnetopause, as a rule, is 

not zero (the mean value of B n ~ 3~;)  and is directed to the Earth in the northern 
hemisphere, and from the Earth in the southern hemisphere. 

(b) At the dayside magnetopause, there exists a tangential (with respect to the 
magnetopause) electric field with the intensity of the order of 1 mV m -  1 

(c) In the vicinity of the magnetopause, there are observed intensive fluxes of acceler- 
ated particles directed from the low latitudes to the higher ones. 

These data give convincing evidence that the magnetic field reconnection does really 

exist at the magnetopause. 
(2) According to Crooker etaL (1981), the intensity of the magnetic field at the 

magnetopause is equal to: 

Ber~ p = 25/4 MaL ~ 4 ~ a ,  ~ . (6.15) 

This empirical dependence /~mXp(Ma~) is shown in Figure 6.12 (the upper curve). 



M A G N E T I C  F I E L D  R E C O N N E C T I O N  T H E O R Y  A N D  T H E  S O L A R  W I N D  65 

t.t.- 

t.O- 

Og" 

06" 

0~" rL,7  
Mum g,g 

O i f i I | I i 

Fig. 6.12. The magnetosheath's magnetic field intensity at the magnetopause in dependence on the Alfvdnic 
Mach number Ma w . The upper curve corresponds to the experimental data by Crooker et aL (1982); two 
other curves correspond to calculations by Pudovkin et al. (1981 d) for 0~ = 90 o, Mam = 0.1 and Ma,, = 0.2, 

respectively. 

Unfortunately, the IMF orientation is not given in the paper by Crooker et al. (1981); 
because of that, a detailed comparison of the experimental data with the predictions of 
the model is rather difficult. However, it is known that the solar wind magnetic field is 
directed on the average along the Parker spirals, so that [0~ 1~ ~/2. Therefore, in 
Figure 6.12 there are given also the values of (flm)Ooo = ~/2 calculated according to the 
model by Pudovkin et al. (1982) for Ma m = 0.2 and Ma m = 0.1, respectively. One can 
see from the figure that the theoretical curves are sufficiently close to the experimental 
one. At the same time the absolute values of tim, calculated for Mare = 0.2, are 1.5-2 
times less than the experimental ones. For Mam = 0.1, the coincidence of the model and 
experimental data is better, and for Mao~ < 25 the discrepancy between those data does 
not exceed 25 ~o. 

(3) Reiff et al. (1981) have thoroughly studied the polar cap potential drop (A~b exp) 

in dependence on the value of the solar wind parameters. In particular, the value ofA~ exp 
was shown to be independent of the solar wind velocity and proportional to the squared 
value of the Boo. 

According to the model of the flow with a stagnation line, the potential drop across 
the magnetosphere equals the voltage along the stagnation line or, in accordance with 
(6.6): 

AO = 1 v ~ B ~  sin(0~ - cp).Lm, (6.16) 
c 
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where L,n is the length of the stagnation line. Having assumed Lm = Lo = L ~ ,  and 
determining L o from (6.3) as 

(Bo/Po) 
L o g D,,, - - ,  (6.16a) 

(Bm/Prn) 

where B o and Po are the magnetic field intensity and the plasma density at the bow shock, 
one obtains: 

A(gy = ! O2,~ Pm .DO. sin(0~ - q~) sin ~0 Isin ~ol, (6.17) 
c PO 

here Dm is the diameter of the magnetosphere (Om ~ 30 R E ~ 2 X 10 l~ cm), Po/Po~ is the 
jump of the plasma density at the bow shock; P,,,/Po is shown in dependence on MaD 
and 0o~ in Figure 6.9, and/~m is given in Figure 6.10. 

The value of A(ay corresponds (under some assumption about the configuration of the 
equipotentials) to the polar cap potential drop along the dawn-dusk line, and it is to be 
compared with the value of the polar cap potential drop observed by Reiff et al. (1981). 

Expression (6.17) shows the value of A~y to be independent of the solar wind velocity 
and to be proportional to B~_,~, which agrees qualitatively with the results by Reiffet al. 
(1981). Moreover, the relation between A(Dy and A~b exp proves to be not only qualitative 
but also quantitative. Indeed, in Figure 6.13 the values are shown of AC~y calculated 
according to (6.17) for Man = 0.1 in dependence on the Acp exp (the data on  A~b exp were 
kindly provided to us by P. H. Reiff). As may be seen, the relation between the two 

/5o-1 

Ma~ ~ 0. r 

Fig. 6.13. 

o y  �9 �9 
0 %'~w" i "  ~ . . . .  , 

Comparison of the experimental (A~exp) and calculated (A~y) values of the polar cap potential 
drop. 
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quantities is linear; the correlation coefficient between them amounts to the value 
r = 0.88, and only one point (corresponding to the polar cap crossing on January 11, 
1976) does not fit the general dependence. It has to be noted, however, that the intensity 
of the z-component of the IMF was greatly variable during that crossing. 

The coefficient of regression which determines the dependence of /IqSy o n  A~b exp 
proved to be 0.7 instead of 1, which may be due to an improper choice for the value 
of O m o r  t o  inaccuracy of the equality (6.3). 

Apart from that, one can see that all the experimental values exceed the theoretical 
ones by approximately 30 kV. According to Reif fet  aL (1981), this discrepancy may be 
explained by the quasi-viscous interaction of the solar wind with the Earth's magneto- 
sphere. 

(4) The enhanced intensity of the solar wind magnetic field at the magnetopause and 
the penetration of that field into the magnetosphere disturb significantly the pressure 
balance at the magnetopause and shift the latter earthwards (Kowaer and Feldstein, 
1973; Kuznetsova and Pudovkin, 1978; Pudovkin et al., 1982). The magnetopause 
distance calculated in the framework of the discussed model is shown in dependence 
on the IMF orientation in Figure 6.14. According to the figure, the turn of the IMF 
southwards causes earthward displacement of the magnetopause; assuming that the 
mean radius of the latter is of the order of 10 RE, that displacement axaounts to the value 

Fig. 6.14. 
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Geocentric distance to the magnetopause (normalized to the magnetopause's radius in Mead's 

model) in dependence on the IMF orientation (0o~). 
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of about 1.5 R E, which perfectly agrees with the data by Maezawa (1974), Formissano 
etal. (1979) and by Pudovkin etal. (1981c, 1982). 

Thus, the available experimental data seems to confirm the conclusions of the model 
and thereby verify its adequacy. 

6.4. T H E  G E N E R A L  S C H E M E  O F  A S T E A D Y - S T A T E  F L O W  A R O U N D  T H E  

M A G N E T O S P H E R E  

The process of a steady-state solar wind flow around the magnetosphere may be 
presented as follows. 

In the case of the northward IMF, the jump of the magnetic field at the magnetopause 
is relatively small, and the currents which flow in the boundary layer completely screen 
the magnetosphere from the penetration of the solar wind magnetic field. Under such 
conditions, there exists at the 'nose' part of the magnetopause a longitudinal (that is 
parallel to B) stagnation line; the plasma density and the magnetic field intensity 
increase insignificantly across the magnetosheath; the tangential component of the 
electric field and the normal component of the magnetic field at the magnetopause equal 
zero; and the magnetopause is in a 'closed' state. However, as was shown by Reiffet aL 
(1981), an electric field may exist in the magnetosphere even in that case due to the 
quasiviscous interaction of the solar wind with the Earth's magnetosphere. 

At the high latitude magnetopause the solar wind magnetic field is antiparallel to the 
magnetospheric field; thus, the geometry of the field is favorable for the process of the 
reconnection. However, since the stationary electric field along the magnetopause 
vanishes in the case under consideration, the process of the reconnection may be 
realized only as short bursts of a spontaneous reconnection (see Section 4). 

Let now the vector of the IMF turn southwards. Then the jump of the magnetic field 
at the magnetopause increases, which results in the development of plasma instabilities 
and of the anomalous resistivity and, finally, leads to the field reconnection. When 
10~1 > 10crl (the value of 0or depending on the value of jcr) the processes of the 
reconnection become predominant, and the flow changes to one with a transversal 
stagnation line. This results in the appearance of the quasi-stationary normal component 
of the magnetic field and of the tangential component of the electric field at the 
magnetopause; so, the magnetosphere turns to the 'open' state. Parameters of the 
plasma and of the magnetic field in the magnetosheath are described in that case by 
formulae (6.11)-(6.15), and are characterized by the decrease of the plasma density and 
by the increase of the magnetic field intensity at the magnetopause. 

At the high latitude magnetopause the geometry of the magnetic field may be still 
favorable for the process ofreconnection. However, the electric field at the high latitude 
magnetopause is directed now against the electric currents, so that (E .j) < 0; conse- 
quently, the probability of spontaneous reconnection in that region decreases with the 
increase of the value 10ool. 

Having summarized results of the analysis given above, one can arrive at the 
conclusion that the physical content of the phenomenon of the solar wind - the Earth's 
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magnetosphere interaction is determined by two oppositely directed and at the same 
time closely related processes: 

(1) The deceleration of the solar wind flow and the increase of the magnetic field 
intensity towards the magnetopause. 

(2) The reconnection of the magnetic field of the solar wind with the geomagnetic field 
followed by the acceleration and heating of the plasma. 

The first of those processes is followed by the transformation of the kinetic energy 
of the flow into magnetic energy, while in the course of the second process magnetic 
energy is released and converted into the kinetic and thermal energy of the plasma. This 
circumstance allows one to find an analogy between the processes of the solar wind flow 
around the magnetosphere and the development of maguetospheric substorms. Indeed, 
the motion of the solar wind through the magnetosheath where the kinetic energy of the 
plasma transforms into the magnetic energy, corresponds to the initial phase of a 
substorm. The reconnection of the magnetic fields at the magnetopause is analogous 
with the expansive phase of a substorm. However, in contrast to the auroral substorm 
developing in time, the 'substorm' in the magnetosheath, and at the maguetopause in 
the case of a steady-state flow, develops in space. 

The extreme inhomogeneity and variability of the magnetic field and the plasma 
parameters in the magnetosheath make the process of the reconnection highly non- 
stationary, thereby increasing the similarity between that process and the magneto- 
spheric substorm phenomenon. 

7. Time-Dependent Interaction of the Solar Wind with the Earth's Magnetosphere 

7.1. R E C O N N E C T I O N  A T  T H E  D A Y  S I D E  M A G N E T O P A U S E  

The scheme of the solar wind - the Earth's magnetosphere interaction considered above 
is based on the Petschek solution of the problem of the steady-state field line recon- 
nection, and hence is not complete. First of all, the high level of fluctuations of the 
plasma flow and magnetic field parameters within the magnetosheath as well as motions 
of the magnetopanse and of the bow shock make the process of the field line recon- 
nection at the magnetopause greatly irregular and impulsive, a steady-state existing only 
as a time average. Second, as we have seen, the scheme based on the steady-state 
solution cannot explain the solar wind - magnetosphere interaction in the case of an 
utterly northward IMF. So it would be interesting to try to construct a more adequate 
model on the basis of a solution on the time dependent (spontaneous) field line recon- 
nection. Unfortunately, we have got by now only the simplest solution of that kind and 
so have to confine ourselves to a qualitative consideration of the problem and to some 
rough estimates. 

Let a front of a southward magnetic field approach the magnetosphere. As we have 
seen in the previous section, while nearing the maguetopause, magnetic field lines are 
stretched, and the magnetic field intensity increases; hence, at the maguetopause a 
current sheet develops and the amount of free energy increase. The field line recon- 
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nection may start at any point at the day side magnetopause; however, it is most likely 
that it will set in somewhere near the subsolar point where the field line stretching and 
hence the magnetopause current intensity are maximum (Figure 7.1). 

After reconnection has started, the fronts of the FR-regions move towards the cusps, 
and the flux of the reconnected magnetic field increases. 

Fig. 7.1. Magnetic field line reconnection at the day side magnetopause in the case of the southward IMF. 
'B' is projection of the diffusion region into the ionosphere; 'A' is projection of the last reconnected magnetic 

field line. 

Beyond the cusps, the magnetopause currents change their direction, and Ampere 
forces F a = (1/c)j x B n (where B n is the magnetic field component normal to the 
magnetopause) are directed sunwards so that they hinder the plasma motion. This 
hindrance is compensated by the gradient of the plasma pressure which arises as the 
result of the plasma acceleration and heating in the course of the field line reconnection. 

Thus, at the high latitude magnetopause beyond the cusps, the plasma is moving 
against the Ampere forces, thus performing some work. As a result, a corresponding 
amount of the electromagnetic energy is produced which is transported into the magne- 
tosphere's tail in the form of the Poynting vector. The whole chain of the energy 
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transformation may be presented as: solar wind kinetic energy -- magnetic energy 
(stretching of the field lines) - kinetic and thermal energy (reconnection) - electro- 
magnetic energy (Poynting vector). 

So, the character of the interaction of the solar wind with the Eart]h's magnetosphere 
is different in different regions of the magnetopause. After the reconnection has started, 
not only the configuration of the magnetic field changes, but also the plasma flow 
pattern: the flow with an isolated stagnation point transforms into the flow with a 
stagnation line where the stream lines are branching and magnetic field lines disrupted. 
At the sPontaneous reconnection, the stagnation line (or lines, if several FR-regions 
arise simultaneously) is local and extends only for a limited part of the magnetopause. 
As a result, the configuration of the flow and of the magnetic field at any given moment 
is very complicated: in one region the reconnection may be just starting, while in another 
it may be already well developed or even decaying. However, if it is averaged over time, 
the structure of the flow becomes simpler and may be presented similarly to the 
steady-state solution as a flow with a single stagnation line. This means that every 
magnetic field line with the 'impact parameter' r o (see Section 6) less than some limit 
length lsp tears at one of the local stagnation lines corresponding to the spontaneous 
reconnection. This length (lsp) may be accepted as the effective length of the stagnation 
line, and when one estimates the electric potential drop at the magnetopause or the 
reconnected magnetic flux, this length plays the same role as the lengt]h of the stagnation 
line in the case of a steady-state flow. 

Thus, having averaged the solar wind plasma and the magnetic field parameters over 
a time interval longer than the characteristic time of the spontaneous reconnection, for 
the southward magnetic field we have to obtain results close to those in the steady-state 
model given in Section 6. As we have seen, in such a case the magnetosphere is open 
for the magnetic field and closed for the plasma. 

In the case of the northward IMF, the situation is quite different. The reconnection 
is taking place beyond the cusps (Figure 7.2) where the magnetopause current is now 
the most intensive (Maezawa, 1976; Horwitz and Akasofu, 1979; Quest and Coroniti, 
1981). On the day side, the magnetosphere captures magnetic field lines which belonged 
previously to the solar wind (NN' in Figure 7.2). As the captured magnetic tubes contain 
some plasma, this process is associated with the plasma flow into the magnetosphere. 
At the night side of the magnetosphere, an opposed process takes pl[ace: the magnetic 
tubes that belonged to the magnetosphere (NC and N'N' in Figure 7.2) are torn off the 
magnetopause, and the plasma flows out of the magnetosphere. 

At the cusps, the FR-regions are impeded, which results in the increase of the plasma 
pressure there; the gradients of the pressure drive plasma someway farther sunwards. 
The whole convection picture obtained by averaging the flow over time is shown in 
Figure 7.3. Near the cusps, the structure of the flow and of the magnetic field corre- 
sponds to the stream line reconnection considered in Section 3. 

Thus, in the case of the northward magnetic field the magnetosphere is open for the 
plasma and closed for the magnetic field. 

In the case of the IMF of an intermediate direction, the situation must be more 
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C I 

Fig. 7.2. Magnetic field line reconnection in the case of the northward IMF. 

complicated, and the magnetosphere seems to be simultaneously open for both the 
magnetic field and the plasma. 

Thus, the physical mechanism of the solar wind - magnetosphere interaction is the 
same for all the directions of the IMF, and that mechanism is spontaneous reconnection 
of the magnetic field lines. However, being averaged over time, this process results in 
very different steady-state models; in particular, the situation with the southward solar 
wind magnetic field corresponds to the model with the magnetic field reconnection, 
while that with the northward IMF corresponds to the model with the stream line 
reconnection. Unfortunately, the last process is studied insufficiently as yet, which 
makes any quantitative consideration of the problem impossible. Nevertheless, we 
believe that this process has to be taken into consideration in future investigations. 
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Fig. 7.3. The pattern of the magnetospheric plasma convection in the case of the northward IMF. The 
magnetosphere is closed for the magnetic field and open for the plasma. 

7.2. THE INITIAL PHASE OF THE SUBSTORM 

Now we shall consider (though very briefly) the problem of magnetospheric substorms. 
First of ally it has to be noted that a single entrance of the magnetic flux into the 
magnetosphere (in the case of the southward IMF) is not sufficient for the necessary 
amount of magnetic energy to be accumulated there. Indeed, the field line reconnection 
results in the appearance of a normal component of the magnetic field B n at the day side 
magnetopause. The mean value o f B  n may be estimated from the experimental data for 
the electric potential drop across the polar cap: 

A~ 
B,, VswL (7.1) 

where L is the characteristic dimension of the magnetosphere. Assuming that 
A~= 60kV, Vsw = 4 0 0 k m s - 1 ,  L =  30RE, one obtains B,  --- 0.5 nT. As a conse- 
quence, an additional magnetic field appears in the magnetosphere with approximately 
the same intensity (the inner sources of the magnetic field in the naagnetosphere are 
assumed to be unchanged). In such a case, the total magnetic field energy within the 
magnetosphere increases by an amount which is insufficient for a sub:storm, and for the 
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energy to be accumulated, a current sheet has to develop in the magnetotail (see 
Section 2). 

Basic features of the initial phase of a substorm, such as the increase of the magnetic 
flux in the magnetotail's lobes, expansion of the auroral oval, intensification of the 
plasma sheet currents, and decrease of the Z-component of the magnetic field in the tail 
(McPherron, 1970; Pudovkin et al., 1970a; Sergeev and Tsyganenko, 1980) allow one 
to identify this phase with the process of the magnetic energy accumulation. 

As was shown in Section 4, a current sheet may effectively accumulate magnetic 
energy if three basic dimensionless parameters of the problem are small: Re,S 1 ,~ 1; 
Ma ,~ 1, and fl ~ 1. As regards the first inequality, it is surely fulfilled in the magnetotail 
(Re m ~ 1). However, the other two are not valid everywhere. In particular Ma = 1 
within the plasma mantle, and fl = 1 in the central regions of the plasma sheet. So, from 
the theoretical considerations, it is not clear if the magnetic energy must be stored in 
the tail lobes. At the same time, analysis of experimental data shows (Semenov and 
Sergeev, 1981) that a greater (though it is not clear exactly how much) part of the 
electromagnetic energy entering the tail's lobes during the initial phase of a substorm 
really is stored there. A very rough estimate of the energy amount accumulated in the 
magnetotail may be obtained in the Syrovatsky approximation. In this approximation, 
the component of magnetic field normal to the current sheet equals zero: (Bor)n = 0. 
Hence, the current sheet, like the bottom of a vessel, gathers the magnetic flux entering 
the magnetotail. 

P 

Fig. 7.4. Free energy accumulation in the magnetotail in Syrovatsky's approximation. PQ and PQ' show 
the fronts of the fast magnetoacoustic wave. 

Let us assume that the front of a southward magnetic field is approaching the 
magnetosphere (Figure 7.4). For simplicity, we shall assume that the reconnection 
proceeds at the day side magnetopause in a steady-state regime, so that the magnetic 
flux entering the magnetopause is given by equality (7.1). Then the magnetic field 
intensity in the tail may be calculated by adding the magnetic flux, that has entered by 
a moment t to that existing there previously: 

B(x,  t) = Bo(x ) + AB(x, t), 

AB(x, t) = 2cA4~ FVsw" t + (x - Xo) ~ O(Vsw. t + x - Xo), (7.2) 
~R~ k Lw A 
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where 0 is the Heaviside function, R r is the radius of the magnetosphere's cross section, 
and x o is the geocentric distance to the subsolar point at the magnetopause. The values 
of LIB calculated for A~ = 50 kV, Vsw = 300 km s - 1, are shown in Figure 7.5. As may 
be seen from the figure, for an initial phase 30 min long, the magnetic field intensity 
increases at x --- 10 R E by 5 nT, that is 10 times more than in the case., when the current 
sheet is absent. And what is especially important, all those 5 nT contribute to the free 
energy which is necessary for the reconnection. Indeed, as we ihave earlier seen 
(Section 2), at the phase of energy accumulation, the electric field is small (Ecs ~ Eo) in 
the vicinity of the current sheet or it even vanishes (Ecs = 0), as in the Syrovatsky 
approximation. Thus, (Its. Ecs ) --- 0 (where I~ is the current density), and the total energy 
entering the magnetotail is transformed into magnetic energy. 

Fig. 7.5. 

5 

XSM(e,E) -,10 
Magnetic field intensity in the magnetotairs lobes at moments 15, 30, and 60 rain after the 

disturbance front approached the magnetopause. 

Thus, Equation (7.2) presents the estimate of the maximum value of the magnetotail's 
magnetic energy during the initial phase of the substorm. 

7.3. THE MAGNETOSPHERIC SUBSTORMS 

According to Equation (7.2), the extreme values of the current sheet parameters which 
may 'switch on' the reconnection process are reached at the inner edge of the sheet: the 
current density there is maximum, and the sheet's thickness is minimum; besides, 
significant gradients of the electric field intensity exist there. This is why the reconnection 
may be expected to start in that region (Hones, 1973; Schindler, 1979; Akasofu, 1977; 
Vasyliunas, 1976). 

Taking into account the known MHD solution, the expansion phase of the substorm 
may be connected to the spontaneous reconnection of the magnetic field lines (see 
Section 4). According to the experimental data (Sergeev and Tsyganenko, 1980; 
Sergeev, 1981), a substorm ~ 15 min long consists of a sequence of' microsubstorms 
5-7 min long, each in their turn consisting of a series of activations with a characteristic 

�9 duration of about 2 min. Every individual burst of reconnection is associated with the 
development of FR-regions (Figure 7.6), with the left-hand one moving earthwards and 
the right-hand one tailwards. 
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Fig. 7.6. An elementary act ofreconnection in the magnetotail: development phase. Projections of the inner 
edge of the plasma sheet onto the inosophere (points A and A ') are motionless while the projections of the 

diffusion, zone (points N and N') are moving polewards. 

Bearing in mind the theoretical results of Section 4, let us now discuss some effects 
which may be observed in the magnetosphere. 

(1) The plasma flows accelerated up to the Alfv6n speed V a = (0.5-1.5) x 103 km 
s - i have to be observed in the magnetospheric tail (see the data by Frank, 1971; Nishida 

et al., 198i). 
(2) I f  a spacecraft is situated in the right-hand FR-region (see Figure 7.6), a plasma 

flow directed away from the Earth and a southward magnetic field component are to 

be expected; an opposite case is that with a spacecraft in the left-hand FR-region 
(Sergeev et al., 1985). 

(3) After the reconnections have started, an expansion of the plasma sheet is to be 
expected since the FR-region should pass by a spacecraft. A plasma sheet expansion 

speed can be estimated as eV a, where 8 = biB o, and b is the reconnected magnetic field. 
As ~ = 0.1-0.2, then eV~ = 100-200 km s-1 .  It  should be emphasized that this is a 
fictitious movement. The real plasma velocity in the direction of the ZGS M axis should 
be much less (Forbes etal . ,  1981; Andrews etal . ,  1981; Sergeev etal . ,  1985). 

(4) The reconnection process leads to generation of an induced electric field of the 
order of Er= C-18VaBT (see formula (4.24)). Taking e =  0.2, B T =  25nT,  
V o = 108 cm s - 1, we have E = 5 mV m -  1, which exceeds by more than one order of 
magnitude the value for the stationary convection electric field under A~ = 60 kV. Direct 
observation in the magnetospheric tail indicated the impulsive electric field of the 
intensity up to 80 mV m -  1 (Cattell et al., 1982). 

(5) The impulsive electric field seems to be responsible for the fast particle acceler- 
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ation in the diffusion region (Bulanov et al., 1979; Zeleny et  al., 1982); the energetic 
protons and e-particles are observed at the dawn side of the plasma sheet while 
electrons appear at the dusk side. The acceleration of a-particles must be more effective 
than that of protons (Sergeev et  al., 1985). 

We considered the features of the spontaneous reconnection in the magnetospheric 
tail and proceed now to some ionospheric effects. 

(6) The presence of a strong dawn-dusk electric field in the diffusion region should 
result in a strong auroral electron precipitation (bright auroral arc - see calculations by 
Tsyganenko and Zaitseva (1979)) slightly equatorwards of the ionospheric projection 
of the X-line. Therefore, the bright poleward edge of the expanding auroral bulge is 
supposed to delineate the X-line projection into the ionosphere. Since the reconnected 
magnetic flux increases during the reconnection process, this projection has to move 
polewards (points N and N' in Figure 7.6) providing the expanding auroral bulge. The 
area of the auroral bulge characterizes the amount of reconnected magnetic flux. 

(7) After the current system of the Alfv6n wave I A has reached the edge of the current 
sheet in the magnetospheric tall, the interaction of the systems 10 and I A (see Section 2.1) 
seems to be stopped. Then the Alfv6n wave has to propagate along the magnetic field 
lines into the ionosphere, resulting in a formation of the Birkeland current system loop 
(see Figure 7.7), which is now adopted as the most essential element of the substorm 
expansive phase (Atkinson, 1967; Akasofu, 1972, 1977). 

Fig. 7.7. Formation of the Birkeland current loop in the magnetotail. 

(8) The incident Alfv6n wave (see point 7) appears to be reflected at the ionosphere. 
It does not come back into the diffusion region since the reconnected magnetic flux 
increases, and, hence, this wave is located now inside the internal magnetosphere and 
propagates along the closed field lines. Furthermore, another Alfvq~n wave can be 
generated a little earlier due to an increase of the ionospheric conductivity caused by 
the intense electron precipitation (see point (6)) (Lyatsky and Maltsev, 1L983). Both these 
waves seem to be able to produce a train of the Pi-2 pulsations, which are one of the 
most typical features of a substorm (Saito et  al., 1976; Akasofu, 1977; Sergeev and 
Tsyganenko, 1980). 
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Thus, the spontaneous reconnection model is able to explain some important features 
(points (1)-(8)) of a substorm. Having no opportunity to discuss the problem in a more 
detail, let us yet carry out some estimations. We begin with the estimation of the electric 
field using the ionospheric data (Semenov and Sergeev, 1981). Let us construct the 
surface of field lines emanating from the X-line (delineating the edge of the auroral bulge) 
for each moment of the expansion. As the magnetic flux across this surface is zero, by 
neglecting the field-aligned 'potential difference' we have: 

(Ew + c-1U'Be) l  = EyAY, (7,3) 

where Ey and E w are the values of the azimuthal component of the electric field in the 
diffusion region and in projection into the ionosphere, AY and l are the lengths of the 
X-line (NN' in Figure 7.7) and its projection in the ionosphere (N~N" in Figure 7.7), 
respectively; and U is the speed of poleward auroral expansion. As Y/l ~ 20 (Sergeev 
and Tsyganenko, 1980)we obtain: 

= 1 E (7.4) 

Taking E w = 10-20 mV m -  1, U = 1 km s - 1, we have: Ey = 3 mV m -  1. The maximum 
observed expansion speed of U = 3 km s - 1 (Hirasawa and Nagata, 1972) will result in 
the values Ey = 10 mV m -  1, which is in agreement with the values obtained in point (4). 
Formula (7.4) allows us to reconstruct the reconnection process if we have ionospheric 
data with a high temporal resolution, since the electric field in the diffusion region as 
a function of time determines the solution of the reconnection problem (see (4.24)). 
Therefore the speed of poleward auroral expansion taken as a function of time is the 
most important characteristic of the reconnection process. Unfortunately, we have no 
data with the appropriate time resolution. 

To estimate the energy released in the reconnection process, the following values can 
be accepted as pertinent to the expansive phase of a magnetospheric substorm (Sergeev, 
1981): t o = 102 s, n = 0.1 c m -  1, Bo = 25 nT, e = 0.1 (b = 2.5 nT), I = 2 • 109 cm. Then 
expression (4.27) gives W = 2 • 1020 erg. The total energy of a substorm is a sum of 
energies of the subsequent individual acts of the reconnection, and amounts to the value 
of 1022 erg. 

The important question as to what plasma instabilities may initiate the reconnection 
will not be discussed (see the corresponding reviews in Kindel and Kennel, 1971; Smith, 
1977; Papadopoulos, 1977; Galeev and Zeleny, 1978; Syrovatsky, 1981; Zeleny et al., 
1982; Liperovsky and Pudovkin, 1983). However, we shall breafly consider the extern- 
ally induced reconnection. It is known from the experimental data (Pudovkin et al., 
1970b; Dmitrieva and Sergeev, 1983) that southward reversals of the IMF do not 
initiate substorms, whereas northward reversals do. This effect can be explained in the 
following way. The jumps of the IMF in the solar wind are transformed into the fast 
magnetoacoustic waves inside the tail lobes. If the IMF turns southwards, the current 
at the wave front is parallel to the current in the plasma sheet (see Figure 7.4); i.e., the 
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wave has parallel current polarization. As we have seen in Section 3, such a wave makes 
the reconnection threshold increase, and thus hinders the reconnecfion. On the other 
hand, if the IMF turns northwards, the fast magnetoacoustic wave has antiparallel 
current polarization and, therefore, stimulates the reconnection process. 

Once the reconnection process is complete, the left-hand FR-region dissipates in the 
inner magnetosphere, while the right-hand FR-regions runs into the magnetotail. At the 
steady state the right-hand FR-regions are carrying away magnetic flux equal to that 
entering the magnetosphere from reconnection at the day side magnetopause. Once it 
has been averaged over a time interval longer than the initial phase duration, the whole 
picture (Figure 7.8) is close to the classical scheme of the magnetospheric convection 
(Dungey, 1961). 

Zig. 7.8. Time-averaged configuration of the magnetic field (solid lines) and of the flow (dotted lines) in 
the case of the southward IMF. 

Now we shall consider a delicate question on the initial (growth) phase of the 
substorms. The basic features of the solution of the spontaneous reconnection problem 
having been taken into account, considering the initial phase of the substorm may be 
unnecessary. Indeed, as we have seen, in the framework of the Petschek model, the 
reconnection is impossible only in the current-free magnetic field. At the same time, 
according to experimental data, a current sheet with spare magnetic energy always exists 
in the magnetotail, so that the reconnection may start there as soon as the necessary 
conditions arise in the current sheet (for example, due to a rapid change of the solar wind 
parameters). 

On the other hand, intensive substorms are associated with the accumulation of a 
great amount of the free energy in the magnetotail's lobes, with the process of accumula- 
tion being most effective in the case of a southward IMF. And this exact process is the 
initial phase of the substorm. 

Thus, we believe that in a long and, in our opinion, sufficiently fruitful argument on 
the initial phase of the substorm, both sides proved to be right. In particular, the 
conclusion by McPherron (1970), Pudovkin et  al. (1970a), Aubry et  al.. (1970), that every 
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substorm has the initial phase may be correct on principle, as we have just seen, since 
the process of reconnection, requires some free energy, and the process of energy 
accumulation is the initial phase. Besides, every isolated and sufficiently intensive 
substorm really has its initial phase. 

On the other hand, the current sheet always exists in the magnetotail in a sufficiently 
developed form; therefore many substorms start without any preliminary variation of 
the magnetotail parameters. Thus, Akasofu and his colleagues (see Akasofu, 1977), who 
assumed the initial phase to be unnecessary, are also right. 

8. Conclusion 

On presenting this review, the authors have intended to clear up to what extent the 
theories existing nowdays can explain qualitatively and describe quantitatively the 
process of the interaction of the solar wind with the geomagnetic field, and in particular, 
the process by which the solar wind energy enters the magnetosphere. Taking into 
account that within the solar wind the energy exists mainly in the form of the kinetic 
energy of the moving plasma, while it enters the magnetosphere in the form of electro- 
magnetic energy, it is necessary also to find out the mechanism of the solar energy 
conversion within the magnetosheath and in the boundary layer at the magnetopause. 

The analysis of experimental and theoretical data carried out above allows us to 
formulate the following general conception of the interaction of a highly conducting 
plasma with a magnetic field within the systems characterized by Re m >~ 1. At the initial 
stage of evolution of such systems, the magnetic field as a rule may be considered as 
frozen into the plasma. In the case of an inhomogeneous flow, a stretching of the field 
lines may take place, the last effect being the most drastic near singular points of the 
type of V = 0 and B = 0. Those points are the 'weak' places in the plasma, and the 
processes developing at them determine totally the following evolution of the system. 
At the sites of singularities current sheets appear; these develop and intensify, and finally 
the threshold of some plasma instability is reached; then there begins the process of the 
field line reconnection associated with the generation of running shock waves (the 
process described by Petschek). 

Concerning the plasma motion, the singularities B = 0 and V = 0 may be considered 
as some barriers, and the magnetic field lines have to tear while passing them; it is the 
process of the field line reconnection that provides the field line disruption. 

The field line reconnection is a global process embracing a significant part of the 
system; at the same time, it is initiated and is determined mainly by local characteristics 
of the plasma in the diffusion region, such as the plasma density, temperature, and 
conductivity, as well as by the electric and the magnetic field intensities. As regards the 
magnetosphere, all those characteristics are determined by peculiarities of the solar wind 
flow around the magnetosphere. Thus, the whole problem of the solar wind interaction 
with the Earth's magnetosphere, though it is in essence the problem of the field line 
reconnection at the magnetopause, may be solved only in common with the problem of 
the solar wind flow around the magnetosphere. 
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The first attempts to solve that problem for an idealized steady-state flow are given 
in this review. Unfortunately, that solution is applicable only to the low-latitude regions 

of the magnetopause; the processes developing at the high-latitude magnetopause seem 
to be non-stationary, and another approach is required to describe them. 

The processes developing inside the magnetosphere are considered only very briefly 
in our review. This has happened because many processes important for the develop- 
ment of the magnetospheric disturbances, such as the energy accumulation and dissi- 
pation processes, are mainly determined by the configuration and intensity of the current 
systems and of the electric fields in the magnetosphere. At the same time, both theoretical 
and experimental data concerning this point are rather poor as yet, and the search for 
the configuration of the three-dimensional current systems and for their sources is one 
of the basic problems of magnetospheric physics. 
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A P P E N D I X  

A.1. THE MHD-SYSTEM OF EQUATIONS 

The MHD-system of equations can be written as follows: 

8V 1 
p ~  + p(VV)V = - V + + - -  (BV)B, 

0t 4~ 
(A1) 

8p 
- -  + div pV = 0, (A2) 
0t 

div B = 0, (A3) 

8B 
- rot[V x B], (A4) 

~t 

d p _ 0, (AS) 
dt p~ 

where p, p, and V are plasma density, pressure, and velocity, respectively. B is magnetic 
field, and 7 is the ratio of specific heats. 

When the plasma conductivity a is finite, Equation (A4) should be replaced by: 

~B c 2 
- rot[V x B] + AB. (A6) 

0t 4rca 
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In magnetohydrodynamics the following conditions must be satisfied at any discon- 
tinuity surface: 

{ B . }  = 0 ;  B,,{V,}=m{~}; { m }  = 0 ,  (17) 

V z p m D ,  B~ ] Bn 
- -  + - -  + - -  + t - { B t ' V z }  = 0 ,  ( A 8 )  

2 p p 4np) m {(7 -Pl)p 

m 2 
+ - - +  = 0 ,  

8re 

I mv,-i 4  .,t :~ 

(A9) 

where m = p ( V ,  - D , ) ,  D is the velocity of the discontinuity, and suffices l and n refer 
to the components that are tangential and normal to the surface of the discontinuity 
(Baranov and Krasnobaev, 1977). 

A.2. F R O Z E N - I N  COORDINATE SYSTEM 

Some problems of ideal magnetohydrodynamics can be solved by use of a special 
coordinate system, so-called frozen-in coordinates. The main idea of their introduction 
is as follows. Let there be two vector fields a(r) and b(r). It is required to construct such 
a coordinate system in which vector lines of a and b were coordinate lines simultaneously 
whereas both a or b were covariant base vectors. As is shown in general theory (Misner 
et al., 1973; Dubrovin et al., 1979), this may be done only when the following condition 
is fulfilled: 

(aV)b = (bV)a, (h l  1) 

which means that the Lie derivative of the two vector fields a and b equals zero. 
In the ideal magnetohydrodynamics, magnetic field lines are frozen in the flow. The 

mathematical formulation of this fact is (Landau and Lifshitz, 1959b): 

- - - + ( V V )  = V V .  (A12) 
O t p  p \ p  / 

It results immediately from (A12) that in a stationary case, the vectors V and B/p  satisfy 
the condition (A 11), and hence, a frozen-in coordinate system can indeed be introduced. 
And what is more, having interpreted (A12) as a condition in the four-dimensional 
Minkovsky space, one may construct a frozen-in coordinate system in that space also, 
which allows one to proceed to the time-dependent case. 

For simplicity, only a non-relativistic case will be considered. Let us introduce the 
coordinates x ~ = ct, x I = x,  x 2 = y, x 3 = z, and two four-vectors: V(4 ) = (c, V) ,  and 
B(4 ) = (0, B). For V(4 ) and B(4)/p, Equation (A12) coincides with (A11); therefore there 

(A10) 
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exist such coordinates z and ~, that: 

d x  i _ Vi~); dx' _ B ~ 4  ) 

dz de p 
(A13) 

Let us add two other coordinates 0, [ to z and e, such that the Jacob:ian of transforma- 
tion from (x ~ x l, x 2, x 3) to (z, e, 0, [) does not equals zero. To simplify the notation 
of the MHD-equation, we may choose the arbitrary coordinates 0, [ in some special 
way. On this purpose, let us write the first pair of the Maxwell equations in coordinates 
(~, ct, 0, [). The simplest way to do this is by using the technique of differential forms 
(see for example Flanders, 1963; Misner et al., 1973): 

1 w e = 5Fi ,  d x  i A d x  ~, 0 E x Ey E z 

- E x 0 - B =  By 
dr F = O, Fik - Ey B= 0 - B x 

- E =  - B y  B x 0 

(A14) 

~z 0c~ 

where ~ / -  g is the Jacobian. Thus, p ~ - g  depends only on 0 and ~. The arbitrary 
coordinates 0 and [ may be chosen so that 

p ~ Z g  = 1. (A15) 

The matrix of transformation from (t, x, y, z) to (z, c~, 0, [) will be: 

1 0 

A = Vx Bx/p 
v~ ~/p 
v= B=/p 

0 0 
xq, xr 

Yq, Yr 
z~, z~ 

It would be noticed that some arbitrariness in choosing coordinates 0, ~. preserves. 
Namely, transformations t' = t + f (0 ,  ~-); ~' = e + h(0, ~); [.' = f'(~b; ~); 0' = 0'(0, ~-) 
with Jacobian equal to unity are possible. This can be useful in some cases. 

Coordinates (z, e, 0, ~) are called frozen-in ones since they can be; constructed only 
when frozen-in condition (A12) is fulfilled. Frozen-in coordinates are studied in detail 
by Pudovkin and Semenov (1977a), Semenov and Pudovkin (1978), Semenov (1979). 

Of course, the frozen-in coordinates are unknown a priori, and the problem consists 
of finding the functions t = z, x = x(z ,  ~, O, ~), Y = y(z ,  ~, O, ~), z = z(z,  ~, O, [), i.e. of 
mapping f on the physical space into the parameter space: f :  (t, x, y, z) --+ (z, e, 0, [)- 
After the mapping o f f  has been carried out, the unknowns V, B, and p are found from 
(A13) and (A15), and then the remaining unknowns may be easily determined. Such an 

(A16) 

where (.o F and Fik are two-form and tensor of the electromagnetic field, respectively. In 
new variables (-c, e, 0, [), and using (A13), co F = - p ~ - g  d o A d[; then from equation 
dw F = 0 we obtain the first pair of the Maxwell equations in the form: 
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approach turns out to be more convenient in some M H D  problems than is solving the 
system of the system of equations (A1)-(A5). 

The image of the physical space in the frozen-in coordinate space will be called 
F-manifold. 

Different subsets of F-manifold have a simple physical sense. First of all, z and 
a-coordinate lines are the images of the trajectories and magnetic field lines, respectively. 

Let us pass from (z, c~, q/, ~) to (t, x, y, z) in the following forms: 

dv A d~/x d@= B zdt  A dx ^ dy + Bydt/~ dz A dx + 

+ B x dt A dy Adz, (A17) 

d~/x d~/~ d ~ =  p d x  ^ dy A d z -  pVxdt  A dy A d z -  

- pVy dt A d z  ^ dx  - pV z dt A dx A dy, (A18) 

d~ ^ d~/x d~/x d~ = p dt A dx/~ dy Adz, (A19) 

(A17) means that the area of  a section of the hypersurface a = const, equals the 
magnetic flux through the corresponding surface in the physical space integrated over 

time S Bn dS dt; 
(A18) means that the area of  a section of the hypersurface r = const, equals the mass 

of the plasma in the corresponding volume in the physical space; 

(A19) means that a volume in the frozen-in coordinate space equals the mass of the 
plasma integrated over time in the physical space ~ p dV dt. 

In the stationary case d/dr = ~/~;  i.e., all the functions depend on (~ + ~). Using a 

new variable t = r + ~ (t - time along stream line), one can obtain for elementary 
displacement: 

dr = V dt + B d~ + r~o dq~, (A20) 
P 

where the q~ symbol is used instead of ~ since q~, as will be shown below, is in essence 
an electric potential. On this purpose we recall the relation between a covariant e i and 
a contravariant e; basic vectors (Korn and Korn, 1961) 

ei x /g  ek • e:; e; 1 = = ~gg e k x ej, (A21) 

where symbols i, j,  k are circular permutations of symbols t, ~, cp, and C/g is Jacobian. 
By means of (A21), grad ~o will be: 

7q~ = e ~ ~  q~ = e ~~ = V x B. 

Since E = - (l/c) [V • B], q~/c is really an electric potential. Analogously, the following 
formulas can be deduced: 

pV = V~ x Vq~; B = iTcp • Vt; pr~o = 7 t  x ~7cc (A22) 
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One can see from (A22) that functions c~(r), t(r), and ~o(r) are Euler potentials (see also 
Erkaev, 1981). In a two-dimensional case, e(r) is the stream function, whereas - t ( r )  
is the z-component of the magnetic vector potential. 

Let us consider similarly to (A17)-(A19) the following forms: 

dt A dq~ = B~ dx /x /x dy + By dz A dx  + B x dy Ix dz, (A23) 

d~o A dc~ = pVz dx ^ dy + pVy dz /x dx  + pV x dy A d z ,  (A24) 

dt/x d~/x dq~ = p dx A dy/x dz. (A25) 

(A23) implies that the area of a section of the plane t -- const, equals the magnetic 
flux through the corresponding surface in the physical space; 

(A24) implies that the area of a section of the plane t = const, equals the plasma mass 
flux through the corresponding surface in the physical space; 

(A25) implies that a volume in the frozen-in coordinate space equals the mass of the 
plasma in the corresponding volume in the physical space. 

The simplest way to write the MHD system of equations in frozen-in coordinates is 
to use the variation principle (Polovin and Akhiezer, 1959) which reduced in our case 
to a variation of the Lagrangian: 

B 2 
L =  f ( l p V 2 - p W - ~ ) d v d t  (A26) 

with additional condition (A 15), the total pressure P = p + (B2/8 rt) being the Lagrangian 
multiplier. In (A26), W is the internal energy, x(r),  y(r), and p are variated in two- 
dimensional case. The spreaded Lagrangian L'  will be: 

2 + y2) _ w - ~ (x~ + y=) + P(x~y~ - x j : )  -- dz  de doc 

Having variated L ' ,  the following system of equations in the frozen>in coordinates is 
obtained: 

,~2X,rz -- ( p X a ) ~  = - - P r  + P,  " y ~  , 

e2y~ _ (py~)~ = _ P,xr  + Pr 

p ( x~y~-  x~,y~) = 1, 

e = [p + y(x  2 + 

p =fl 'pY,  

(A27) 

(A28) 

(A29) 

(A30) 

(A31) 

where e = V/V  a is the Alfv6nic Mach number, fi = 8npo/B2o is the ratio of the magnetic 
to the gas pressures. 

Let us now consider the conditions to the satisfied at MHD discontinuity, the only 
case of an incompressible plasma being studied. Let the equation of discontinuity be 

= f (r ,  ~); then the discontinuity will be defined in the physical space in parametric 
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way: x = x(z, f(z,  ~), ~); y = y(~, f(z,  ~), ~). Using formulas of differential geometyry, 
one can find the tangential to discontinuity vector |, the normal vector n, and the 
discontinuity speed D" 

1 = l ( x c  + x ~ , ' f ~ ; y c  + y~, ' f~) ,  
a 

1 
n = - ( - ( y c  + y~,'f~); xr + x~,'fr 

a 

nt 2 a 2 = (xr + x~'f~)2 + (y~ y ~ . f : ) ,  

D = (xr + x ~ ' L ; y ,  + Y~ 'L ) .  (A32) 

(A32) yields: 

1 
n n = - - :  V n - D, = _ l f ~ .  (A33) 

a a 

When the plasma is incompressible, e ( V  n - Dn) = + B n, and equation of the discon- 
tinuity will be: 

_+ e = z + q(~), (A34) 

where q(~) is an arbitrary function. In a stationary case the equation of discontinuity 
i s  + e ~  = z. 

In the case of incompressible plasma all the conditions at the discontinuity (apart 
from those at the tangential discontinuity) reduce to the following: 

{x} = {y} = {P}= 0. (A35) 

For simplicity we shall prove that if (A35) is fulfilled, (A7)-(A10) are fulfilled also. In 
the space of (z, cr ~), the discontinuity is a two-dimensional surface with tangential 
vector L = (1, f~, 0). Since the functions x ( z ,  cr ~) and y(z ,  cr ~) are continuous at the 
discontinuity, the tangential derivatives of these functions have to be continuous also: 

{e,x~ + x~} = 0, {ey~ + y~} = 0. (A36) 

It can be easily shown that together with {P) = 0 (A33), (A34), and (A35) fulfill all the 
discontinuity condition/ts (A7), (A9), and (A10) (condition (AS) cannot be taken into 
account in an incompressible plasma). 
For a tangential discontinuity the mapping of f,  generally speaking, will not be 
continuous. 

In the case of a compressible plasma the mapping o f f  is continuous at discontinuity 
too, but all the discontinuity conditions do not reduce to (A35) (Semenov et  al., 1983a). 
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