
Biol. Cybern. 71, 359-373 (1994) 

�9 1994 

Analysis, classification, and coding of multielectrode spike 
trains with hidden Markov models 
G. Radons 1, j .  D. Becket 2, B. Diilfer a, j .  Kriiger 4 

1 Institut ffir Theoretische Physik, Universit/it Kiel, Olshausenstrasse 40, D-24118 Kiel, Germany 
2 Fakult/it fiir Physik, Universit/it Freiburg, Hermann-Herder-Strasse 3, D-7911M Freiburg, Germany 
3 IMIT, Hahn-Schickard-GeseUschaft, Hahn-Schickard-Strasse 10, D-78054 Villingen-Schwenningen, Germany 
4 Neurologische Universit/itsklinik, Hansastrasse 9, D-79104 Freiburg, Germany 

Received: 31 August 1993/Accepted in revised form: 8 March 1994 

Abstract. It is shown that hidden Markov models 
(HMMs) are a powerful tool in the analysis of multielec- 
trode data. This is demonstrated for a 30-electrode 
measurement of neuronal spike activity in the monkey's 
visual cortex during the application of different visual 
stimuli. HMMs with optimized parameters code the in- 
formation contained in the spatiotemporal discharge 
patterns as a probabilistic function of a Markov process 
and thus provide abstract dynamical models of the pat- 
tern-generating process. We compare HMMs obtained 
from vector-quantized data with models in which pa- 
rametrized output processes such as multivariate Poisson 
or binomial distributions are assumed. In the latter cases 
the visual stimuli are recognized at rates of more than 
90% from the neuronal spike patterns. An analysis of the 
models obtained reveals important aspects of the coding 
of information in the brain. For example, we identify 
relevant time scales and characterize the degree and 
nature of the spatiotemporal variations on these scales. 

1 Introduction 

The analysis of multielectrode data and the extraction of 
information about the coding principles in the brain are 
difficult tasks. This is mainly due to the following charac- 
teristics of the measured data: The observed processes are 
in general nonstationary, and they exhibit large vari- 
ations, which usually cannot be explained by simple 
noise but may show systematic fluctuations that may 
have hidden meanings. In addition, the data are high- 
dimensional. For instance, we have to deal with 30 de- 
grees of freedom corresponding to a measurement with 
30 electrodes. 

The experimental data treated in this work consist 
of simultaneous recordings of spike trains with 30 
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microelectrodes from the visual cortex of an anesthetized 
and paralyzed monkey (Krfiger and Aiple 1988). We are 
interested in the neuronal responses recorded during the 
application of various visual stimuli. In this work, we 
investigate the responses to bars moving in different 
directions. This gives rise to corresponding classes of 
neuronal activity at the electrode array, which are in 
some sense characteristic for the applied stimuli. It 
turned out (Krfiger and Becker 1991) that the 30 mean 
firing rates or the spike counts at each electrode during 
the relevant response intervals contain little information 
about the currently applied stimulus. Instead, this in- 
formation was found in the recorded spatiotemporal 
discharge patterns. This is in accordance with results 
from other experiments (Richmond et al. 1987). Thus, our 
goal consisted in analyzing and characterizing such spa- 
tiotemporal excitation patterns. 

As a first step in this direction, one has to evaluate, 
whether or not one can assign the corresponding visual 
stimulus to an observed spike pattern. Or, in other 
words, can one recognize the visual stimulus from the 
elicited neuronal discharges? It should be borne in mind 
that it is in this way that the animal makes use of 
neuronal excitations. This problem is basically a pattern 
recognition task which can be tackled with classical 
methods. For our data one can successfully apply linear 
classifiers (Krfiger and Becker 1991) or non-linear classi- 
fiers such as artificial neural networks. A result of these 
investigations is that the spatio-temporal patterns contain 
relevant information about the applied stimulus. These 
methods, however, do not take into account that the 
patterns are generated dynamically. Furthermore, it is 
difficult to infer which properties of the patterns led to 
the discrimination, to what extent they are of a statistical 
nature, and what are the characteristics of the various 
stochastic components of the patterns. 

Possible approaches for the solution of these 
questions could combine spectral methods like principle 
component analysis, as used, e.g., in Richmond et al. 
(1987), and classical pattern recognition techniques. Here 
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we present results based on the use of hidden Markov 
models (HMMs) and corresponding parameter estima- 
tion techniques (Baum et al. 1970). These models, which 
are otherwise known as stochastic automata (Paz 1971) 
or probabilistic functions of Markov chains (Baum et al. 
1970), have been very successfully applied in various 
speech recognition tasks (for reviews see, e.g., Rabiner 
1989; Bahl et al. 1983; Huang et al. 1990). In these 
applications, the data, energies in the time-frequency 
domain, show a similar degree of complexity, non- 
stationarity, and large variability as in our case. This led 
us to investigate whether HMMs are equally well suited 
for the classification and analysis of our multielectrode 
data (Radons et al. 1992). The idea of modeling spike 
data with HMMs was independently developed by two 
other groups. In Pawelzik et al. (1993), the experimentally 
observed oscillatory neuronal responses in the cat's vis- 
ual cortex (Gray et al. 1989) are explained in terms of an 
HMM, while in Gat and Tishby (1993), two behavioral 
modes of monkeys are identified with the aid of HMMs. 
In contrast, our work treats the problem of modeling and 
distinguishing the neuronal responses to many external 
stimuli, which implies that, similar to speech recognition 
problems, we have to work with an ensemble of different 
HMMs. Another biophysical problem in which HMMs 
were applied successfully is the analysis of ion currents 
through channels of cell membranes (Chung et al. 1990, 
1991; Fredkin and Rice 1992; Becker et al. 1994). 

The advantage of using HMMs for the analysis of 
multielectrode data is threefold: Beyond being a pattern 
recognition and classification tool, it provides us with 
probabilistic dynamical models of the pattern-generating 
process. This implies the possibility of reproducing the 
data with a reduced set of parameters, and thus serves as 
a data compression method; on the other hand, it 
preserves the possibility to extract, e.g., various correla- 
tion functions or correlograms. The third point is that the 
extracted models, although of abstract nature, are amen- 
able to an analysis in terms of subprocesses, if present, 
which contribute to the pattern-generating process as 
a whole. 

In Sect. 2 we briefly describe the nature of the data to 
be analyzed, and we introduce the principles of HMMs 
and the variants tested in this work. Section 3 is devoted 
to the presentation of results, where we compare the 
performances of the various models in terms of recogni- 
tion rates and demonstrate the quality in reproducing the 
original data. In Sect. 4, the results are discussed. The 
Appendix consists of a collection of formulas used in the 
parameter estimation procedures. 

2 General aspects 

2.1 The data 

The data were recorded with 30 microelecrodes in layer 
VI of the striate cortex of a paralyzed and anesthetized 
monkey. Electrodes were arranged in a 5 x 6 array with a 
spacing of 160 #m. Thus, the electrodes were located in an 
area of 0.64 x 0.8 mm 2. They were labelled A-E (columns) 

and 1-6 (rows). Figure 1 shows two typical recordings of 
the neuronal response to the same stimulus. Note the 
large variability of the spike patterns. The spikes were 
recorded at a sampling rate of 1 ms. For about half of the 
electrodes, the recorded signals stem from one cell. At the 
remaining electrodes, contributions from more cells can- 
not be excluded, although typically spikes from one cell 
are dominant. The stimuli were monocularly presented 
bright bars on a dark background. The bars were 7 min 
of arc wide and moved at 1 min of arc per 10 ms. One 
trial lasting 40 s consisted of a sequential presentation of 
the bar moving in sixteen equally spaced directions. The 
experiment was repeated 21 times, and therefore the data 
consist of 21 trials, i.e., repetitions of 16 stimuli. Re- 
sponses to different stimuli are well separated in time. 
A more detailed description of the measurement can be 
found in Kriiger and Aiple (1988). 

2.2 Principles of  H M M s  and their application 
to multidimensional spike trains 

In the following, we briefly survey the general principles 
of HMMs and their application to spike data. In Sect. 
2.2.1 we describe how a given H M M  is used as a prob- 
abilistic generator of symbol sequences. The meaning of 
the symbols varies from application to application and is 
described for spike data in Sect. 2.2.4. Section 2.2.2 re- 
views how an ensemble of HMMs may serve as a classi- 
fier or pattern recognition tool. Such an application pre- 
supposes optimized models which can be found by 'learn- 
ing' procedures also described in this section. How such 
optimized HMMs can be analyzed is explained in 
Sect. 2.2.3. 

2.2.1 H M M s  as probabilistic dynamic models. An H M M  
is an abstract object consisting of a given number of 
states i, i =  1 , . . .  ,N and transitions between these 
states. Transitions occur with probabilities aij, i.e., a o is 
the conditional probability p(jli) for making a transition 
to state j, if the system is in state i. The aij have the 
property ~ =  1 aij = 1 for all i, which means that some 
transition occurs with probability 1. Therefore, they can 
be considered as elements of a stochastic matrix A, the 
transition matrix. 

So far, this defines a simple Markov process, because 
the probability for the next state j depends only on the 
current state i. HMMs are characterized by the addi- 
tional ingredient that for every state i one defines a prob- 
ability distribution hi(S) for emitting a symbol S of some 
alphabet {S} of length IS I. The alphabet may also consist 
of infinitely many symbols I Sl = ~ .  Some symbol is 
generated with certainty in every state i, which means 
that ~ts~bi(S)= 1 for every i. The hi(S) are, in general, 
different functions depending on i. The meaning of the 
symbols is application-dependent and is introduced for 
our problem in Sect. 2.2.4 below. The above definitions 
explain why HMMs are often called probabilistic func- 
tions of Markov processes. 

In order to generate symbol sequences with such 
models, one also has to specify an initial probability 
distribution ~ = (re1 . . . . .  7ZN) over the states i. A symbol 
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Fig. 1. Display of two different responses to the same oriented moving bar. The duration of the records shown is 800 ms. The electrodes were 
physically arranged in the same way as the records in this picture. Each vertical line represents a spike. Although both responses were recorded from 
the same neurons almost immediately after each other, the responses are quite different 

sequence of length T, $ 1 S 2 . . . S t  with St s {S}, 
t = 1 . . . . .  T is generated as follows: One randomly se- 
lects an initial state according to the distribution ~, e.g., 
state i with probabili ty rq, and emits a symbol $1 with 
probabili ty b~(S0; then one jumps to another state, say 
j with probability au, and emits symbol $2 with probabil- 
ity hi(S2), and so on. The probability p ( S 1 . . . S t )  for 
generating a sequence S ~ . . .  Sr  is obtained by summing 
the probabilities from all paths through the automaton 
which are compatible with this sequence. It can be cal- 
culated as 

p(SIS2  . �9 �9 S t )  = 7 z B ( S 1 ) A B ( S 2 ) A .  . . A B ( S r _  1 ) A B ( S r ) ~  

(1) 

where we introduced the diagonal matrices B(S), S e {S}, 
with elements b u (S) = b f iS ) .  6 u. The multiplication with 
the vector ~ = (1 ,1 , . . . ,  1) r provides a summation over 
all states, which means that the system is allowed to be in 
any of the N states j while it emits the last symbol ST. In 
the speech recognition literature, the evaluation of (1) is 
called a forward-backward algorithm, which reflects that 
the product can be calculated iteratively from left to right 
(forward) or from right to left (backward). 

To summarize, an H M M  is defined by a set of para- 
meters which includes the initial probabili ty distribution 
~, the transition matrix A, and the symbol generating 
matrices B ( S )  with S from the alphabet {S}. These para- 
meters are conveniently collected in one vector denoted 
3, that is 

= ( ~ , a , { B f S ) } )  (2) 

In view of (1) and (2), one can identify a given H M M  
also with a parametrized probability distribution over all 
symbol sequences S ~ $ 2 . . .  S r  of arbitrary length T. We 
denote this probability distribution in the following by 
P(S1S2 .  �9 �9 Sr 12). 

The connectivity structure of an H M M ,  or its topol- 
ogy, tells which states are connected or which transitions 
between states are allowed regardless of the probabilities 
attached to them. Formally, this is described by the 
adjacency or connectivity matrix C with elements c u = 1, 
if air =fi O, or  c u = 0 if aij ~-O. This matrix is often 
represented diagrammatically by connecting states or 
nodes by arrows, if the corresponding transitions are 
allowed. There are two important  classes of topologies 
which are referred to as ergodic models and as left-right 
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Fig. 2. Examples of the two basic topologies used in this work: a a fully 
ergodic model (top), b a strict left-right model (bottom) 

models. A three-state model of each class is depicted 
in Fig. 2. 

Ergodic models are characterized by the fact that 
each state can be reached from each other state with 
some sequence of transitions. In Sect. 3 we present results 
for special ergodic models in which none of the possible 
transitions is forbidden, which means that the connec- 
tivity matrix contains no zeros (corresponding to 
Fig. 2a). Left-right models have the property that their 
connectivity matrix is an upper triangular matrix, i.e., it 
contains zeros everywhere below the diagonal, which 
implies that eventually all transitions end in an absorbing 
final state. Our results below were obtained for restricted 
left-right models characterized by a connectivity matrix 
with ones in the diagonal and the first upper off-diagonal, 
and with zeros elsewhere (see Fig. 2b). In the following, 
these two types of models are for simplicity referred to as 
ergodic and left-right models, respectively, although they 
are actually special cases of these classes. The importance 
of the topology of an H M M  lies in the fact that for the 
'learning' processes described in the next section one has 
to pre-assume one of the possible topologies which is 
preserved during the learning procedure, and this may 
have consequences for the resulting properties of the 
model obtained. It should be mentioned that methods 
exist for minimizing previously obtained models and for 
checking the equivalence of given HMMs (Paz 1971). 
Thus, the extraction of a large enough ergodic model and 
subsequent minimization should lead to a unique model 
or to an equivalence class of minimal models. For  finite 
data sets, however, these methods are currently not avail- 
able. 

2.2.2 H M M s  as classifiers. In a classification task, one 
has a given number of classes of patterns, and one wants 
to decide for some pattern to which class it belongs. This 
is often done by calculating the distance (within some 
metric) of the given pattern to some representative of 
each class (Duda and Hart  1973). Then one decides that it 

o 
o 

o 

o 

Fig. 3. Scheme of the classification process with hidden Markov mod- 
els (HMMs): An incoming signal O is attributed to the HMM which 
generates this signal with the highest probability 

belongs to the class where the distance is minimal, if this 
distance is not too large. 

HMMs can be used for pattern classification as 
follows: For each class of, say, K classes of patterns, 
one has to design one HMM, each of which is a represen- 
tative of a different type of pattern. In our application 
K = 16, corresponding to the 16 different visual stimuli 
which produce 16 classes of neuronal responses. In order 
to use HMMs for pattern classification, one has to trans- 
late the pattern into a symbol string, which may also be 
considered as a possible output of the given HMMs. We 
call this symbol string, which corresponds to some input 
pattern to be classified, the observation sequence 
0 = $1S2 . . .  S t .  Now one simply decides that O belongs 
to that class whose associated representative H M M  pro- 
duces O with the highest probability. This probability 
serves as a discriminant function for the classification 
process (Duda and Hart  1973). Schematically, this is 
depicted in Fig. 3. 

Thus, one has to calculate for each H M M  ~k, 
k = 1 . . . . .  K the probability P(Ol~k) that model ]k 
produces the observation sequence O. This is done 
with the forward-backward algorithm (1). The model ]* 
for which P(O t~t) is maximal is regarded as the represen- 
tative of the correct class, formally 

~* = argmaxi, P(O [~i) (3) 

This comparison can in principle be done with an arbit- 
rary ensemble of K HMMs, and one would always get an 
answer, i.e., a classification of the input pattern. In order 
to make sense, the classification process has to be carried 
out with an ensemble in which the HMMs really repres- 
ent in some sense the corresponding pattern classes. This 
is achieved by a training or learning procedure in which 
the parameters of each H M M  are optimized in the fol- 
lowing sense: If for each pattern class one had only one 
given representative symbol sequence 0 (k), k = 1 . . . . .  K 
one would train each H M M  such that model ~k pro- 
duces 0 tk) with the maximal probability. This is usually 
done by iteratively optimizing ~k, ~k(t = O)~  ~k(t = 1) 

~k(t = 2) ~ " " ' ~ ~.k, such that in each step the likeli- 
hood P(O(k~l~k(t)) of producing 0 tk) increases (or remains 
the same), i.e., P(O(k)[~tk(t = 0))<<. P(otk) l~k(t = 1) ~<''" ~< 
P(O(k) h--2k). With such a learning procedure, one obtains 
K HMMs, each producing the representative sequence 



O (k) with the maximal probability, and the above- 
described decision process for an incoming new observa- 
tion sequence O makes sense. 

In general, and also in our application, a class is not 
represented by only one string 0 (k) but by an ensemble of 
samples {0 (k)} which are known to belong to class k. 
Since the members of {0 tk)} may occur with different 
frequencies, the class k is actually characterized by 
a probability distribution P(O tk~) over the samples. In this 

tk) case, one wants the probability distribution P(O Ilk) 
over sequences produced by model ~k to be as similar as 
possible to p(otk)). 

This can be achieved by iteratively optimizing ]k, 
such that the Kullback-Leibler distance D 

D(P(O(k)) II P(O(k)[~k)) = ~, P(O(k)) P(O(k)) (4) 
(o(~)} log p(o(k) I ~k) 

is minimized during the optimization procedure. One has 
D ~> 0 with equality only if P(O (k)) and P(O(k)]~k) are 
identical. 

In principle, any of the known optimization algo- 
rithms such as gradient descent or stochastic methods 
like simulated annealing could be used for finding the 
optimal parameter vector ~k which minimizes the Kull- 
back-Leibler distance D(]k) (4) or maximizes the likeli- 
hood P(O(k)]]k) for a given class k. The most widely used 
method for HMMs is the so-called Baum-Welch re-es- 
timation algorithm (Baum et al. 1970), which is a variant 
of the expectation-maximization (EM) algorithm (De- 
mpster et al. 1977) of mathematical statistics. It has the 
general form 

Ik(t + i) = f  [ik(t), {O(k)}] (5) 

where f is a relatively complicated function of the 
old parameters lk(t) and the observation samples. The 
explicit form o f f  is given in the Appendix for the two 
variants of the algorithm which were used in this work 
One should note that with any optimization algorithm 
there exists the possibility of becoming stuck in local 

(k) (k) S minima of D(~ ) or maxima of P(O I ~ ). To avoid thi , 
one has to run the optimization algorithm under several 
different initial conditions ~(k)(t = 0). 

A possible criterion for the quality of the obtained 
models is the rate of correct classifications of patterns or 
sequences not used in the training phase. Another 
measure could be, e.g., the degree of correct reproduc- 
tions of correlation functions. For our data, the recogni- 
tion rate appears to be the most valuable criterion. 
A good classification and discrimination ability is a 
necessary condition for further investigations of the 
properties of the inferred models. 

2.2.3 Analyzing HMMs. Given a representative of a 
class of patterns in the form of an optimized HMM, one 
can ask what the most probable sequence or pattern 
generated by the model will be. This defines something 
like a prototype pattern of the class being considered. 
One should emphasize that this is in general different 
from some average over the pattern samples. It is rather 
a very 'pure' version or a typical pattern of the class. The 
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situation is as for general probability distributions: For 
multimodal distributions, it may happen that the average 
value of a random variable is not realized by any of the 
samples, whereas the most probable sample is always 
meaningful. To obtain such a prototype sequence, one 
has to evaluate (1) for all possible sequences of given 
length T and compare the resulting probabilities. This 
method is feasible only for relatively short sequences 
(T g 101 - 102) since the number of strings increases 
exponentially with T. In our case, this method is still 
applicable. An alternative consists in searching for the 
most probable path of given length through the auto- 
maton. The associated symbol string is often also the 
most probable sequence. This problem can be solved by 
the Viterbi algorithm (Forney 1987), a simple linear pro- 
gramming technique with complexity increasing linearly 
in T. Note, however, that optimizing an HMM is similar 
to curve fitting, and therefore, it may happen that the 
HMM extrapolates into regions of pattern space where 
no samples exist for training the HMM. A maximum of 
the probability distribution in such a region is usually 
unreliable, and one has to restrict oneself to sequences in 
the range of the training samples. Note also that one 
needs some distance measure between patterns or symbol 
sequences in order to check which situation prevails. 

A related topic is the question of whether other rela- 
tive maxima also exist in the probability distribution 
over the sequence space. Such secondary maxima corres- 
pond to a situation in which a class of patterns is made of 
several subclasses which manifest themselves as distinct 
clusters in pattern space. Physically, this would mean 
that there is not only the feature present which defines 
the class, but also secondary features which may or may 
not be known beforehand. As above, one has to investi- 
gate neighborhoods of strings, and therefore one has to 
define some metric in symbol space which reflects neigh- 
borhood relations in pattern space. The advantage of 
using HMMs instead of looking at the pattern space 
directly is that one has a simplified representation of the 
data, which makes it easier to recognize such subfeatures 
and, e.g., to find the subclass to which a new unknown 
pattern belongs. A very simple way of representing such 
different subclasses in an extracted HMM is by different 
groups of paths. In our application, this may help to 
decide which processes or features correlate with others 
on different electrodes. 

2.2.4 Application to spike data. The first problem one 
encounters in applications of HMMs to continuous time 
problems such as speech recognition and also spike data 
analysis is the segmentation problem, i.e., the dividing of 
the signal into time bins or segments of some length in 
order to obtain a discrete 'time' process described by 
HMMs as a jump process between the available states. 
The various possibilities we explored are described in 
Sect. 3.1. The second problem in using discrete HMMs 
consists in obtaining a symbolic or discrete representa- 
tion of the data for each time segment. For spike data, 
a very natural alphabet exists: One has to assign to every 
time segment simply the number of spikes contained in it. 
For one electrode, the data are then represented as a 
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sequence of numbers, which vary between zero and the 
maximum number of spikes encountered in the segments. 
The problem lies in the fact that in our experiment we 
have 30 electrodes. If the number of spikes per segment 
and electrode varies for instance from 0 to 9, this would 
lead to an alphabet with 1030 symbols if every possible 
combination of spike counts on the electrodes is taken 
into account by a distinct symbol. As explained in Sects. 
2.2.1 and 2.2.2, one has to optimize a probability distribu- 
tion bj(S) on every state j of a given model. For 
I Sl = 103~ this is clearly impossible. There are basically 
two approaches to circumvent this problem. The first 
consists in a suitable coarse-graining of the alphabet to 
obtain a smaller set of symbols. This method is basically 
the same as vector-quantizing continuous variables 
(Gray 1984; Makhoul et al. 1985): One has to design 
a code book that tells which spatial firing pattern, i.e., the 
vector of spike counts at each electrode in some time 
segment, including some neighborhood is coded by what 
symbol. Inevitably, there is some information loss, and 
also the individuality of the single electrodes is aban- 
doned and replaced by an overall pattern. The detailed 
methods used for the design of the code books and the 
results for the quality of vector quantization (VQ) are 
presented in Sect. 3.1. The HMMs based on this method 
are called VQ-HMMs in the following, and their 
performance is reported in Sect. 3.2 and compared with a 
second alternative. This alternative, in reducing the para- 
meters which characterize the output probability distri- 
butions, lies in making assumptions about the functional 
form of bj(S). This amounts to parametrizing these func- 
tions and optimizing the corresponding parameters. It 
turns out that assuming a multivariate Poisson process 
or a binomial distribution on the nodes of the HMMs 
accounts well for the actually observed spike statistics in 
individual time segments. The re-estimation formulas for 
such output processes are derived in Becker (1994) and in 
Dfilfer (1993). We can even assume independency of the 
spike distributions for each electrode on each node j. In 
the Poisson case, this means that we assume the follow- 
ing form of the output probabilities 

30 30 

bj(]~) = I-I h{') ~') ~J = 1-[ P(k,,#j ) (6) 
/=1  /=1  

where P(k, #) is a Poisson distribution with mean value 

1 k P(k,#) = ~/~ e -u (7) 

Thus, P(kz,lt~ z)) is the probability of observing k~ 
spikes on electrode I in some time segment of length A, if 
the system is in state j. The corresponding mean number 
of spikes is r ktj. For binomial output processes, P(k,, kt} ')) 
is replaced by B,(kt,#} ')) where B.(k,g) is the binomial 
distribution 

Bn(k, ld)= (~)#k(1--1.t) "-k (8)  

The additional parameter n is the maximum number of 
spikes per time interval, which we keep fixed in the 

optimization process. The only free parameter which is 
adapted is p or the mean spike number n-/~. 

Thus, in both cases, we have to optimize only 30 
parameters for every state j instead of 1030 as in the 
original formulation. We emphasize that although we 
assume independency of the single electrode processes in 
every state j, this does not mean that the electrodes are 
treated as independent. Correlations between electrodes 
are taken into account by the transitions between sub- 
sequent states. An H M M  with output probabilities (6) is 
still a discrete H M M  with a finite (binomial distribution) 
or infinite (Poisson distribution) alphabet since the sym- 
bol vector k = (kl . . . . .  k3o) consists of integer values 
kt = 0, 1, 2 . . . . .  The parametrization of the output func- 
tion and the corresponding optimization procedure are 
rather in the spirit of continuous density HMMs (CD- 
HMMs) (Rabiner 1989; Huang et al. 1990) where one 
adapts, e.g., gaussian output densities. The Baum-Welch 
re-estimation formulas for Poisson and binomial output 
distributions are listed in the Appendix. We call HMMs 
based on this second approach PD-HMMs, where PD 
stands for parametrized (output) distribution. 

3 Results 

3.1 Preparation of  the data 

3.1.1 Relevant sections of  the responses. The onset of the 
neuronal responses is not sharply connected with the 
moment at which the bar starts moving. This onset 
depends on the direction of the bar due to different 
distances of the starting point from, the receptive fields of 
the neurons. Therefore, we decided to define for each 
stimulus the relevant response interval symmetrically 
around the maximum of the time-dependent spike rate. 
This was obtained by summing the contributions from all 
21 trials and 30 electrodes and a subsequent smoothing 
of the resulting spike signal with a 10-ms time window. In 
this way, we could determine a unique maximum for each 
of the 16 stimuli. We analyzed responses in time windows 
with a total duration of 30, 300, 500, and 800 ms. 

3.1.2 Data segmentation. It is an open problem on which 
time scale relevant neuronal information is processed. 
Therefore, we investigated the data on different (coarse- 
grained) time scales. We divided the response intervals 
into a varying number of nonoverlapping time segments 
and counted the spikes in each bin. We made a system- 
atic comparison of the two fundamentally different types 
of HMMs (VQ vs parametrized output probabilities), 
each with the two basic topologies (left-right vs ergodic 
models), and these in addition with a varying number of 
internal states. In this extensive investigation, we used 
time windows (response intervals) of lengths between 300 
and 800 ms, which were divided into segments of 25, 50, 
and 100 ms length (see Table 3). This coarse-graining is 
suggested by the fact that there are only very few events 
even during a response to a stimulus. Neurons fire at 
a very low rate, which means, e.g., that a 50-ms segment 
contains at most 11 spikes, and that more than 50% of all 



Table 1. Cross-classification for two runs of the parallel clustering algorithm ([ S I = 10) with different initial group vectors (data: length 300 ms, 
bin width 50 ms). Shown are the number  of spike-count vectors which are put into a group i during a first clustering and into a group j in 
a second clustering (i, j = 1 . . . . .  10). Thus, each row represents a group for the first run and each column, a group for the second run. If there 
were data-intrinsic clusters, one would obtain equivalent partitions, i.e., one would get only one single value in each row and column, so that 
each group of the first clustering could be identified with one group of the second clustering 
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Groups  of the second partition 

Groups  of the 
first partition 

1 9 0 2 0 2 0 233 0 1 
1 226 0 143 0 1 0 1 2 0 

43 5 65 6 9 24 0 9 47 13 
0 8 0 5 1 2 0 0 246 1 

68 1 11 5 36 5 1 10 45 6 
243 4 0 0 10 9 12 2 0 0 

0 0 0 1 1 0 119 0 0 0 
2 34 859 0 3 140 0 0 32 0 
6 0 0 9 236 0 1 0 0 0 
0 13 0 5 0 8 1 0 2 314 

bins are empty or contain only one spike. We were, 
however, also interested in the performance of the 
HMMs on very short time scales. In this special invest- 
igation, we segmented a 30-ms interval around the time 
of maximal response into bins of only 2 ms. 

As a result of the segmentation of the response inter- 
vals, a stimulus was represented as a sequence of 30- 
dimensional spike-count vectors, where each component 
was an integer value. We thus obtained sequences which 
varied in length between 5 for 500-ms time windows 
segmented into 100-ms bins and 32 for 25-ms bins and 
response intervals of 800-ms duration. 

3.1.3 Vector quantization. As argued in Sect. 2.2.3, for 
VQ-HMMs one has to solve the problem of finding an 
alphabet of reasonable size I S I- This is achieved by vector 
quantization (VQ), where one divides all spike-count 
vectors into I SI groups and identifies all vectors in one 
group with the same symbol. For  up to 
16 x 21 x 32( = 10 752) spike-count vectors which should 
be partitioned into groups, a maximal alphabet size in 
the range of 10-30 symbols was reasonable on statistical 
grounds. To accomplish this, we tested three methods: 
the first two below are standard methods of cluster ana- 
lysis (unsupervised classification) (Duda and Hart  1973); 
whereas the third method is supposed to be especially 
suited for neuronal data. 

Sequential cluster analysis. First, we tried the method 
of iterative optimization (or stochastic approximation), 
which can be interpreted as a winner-take-all neural 
network without neighborhood relations. Each group is 
represented by a 30-dimensional real-valued vector. Each 
spike-count vector belongs to the group for which the 
product of group vector and spike-count vector is maxi- 
mal. To find optimal group vectors, one adds to the 
group vector each time a spike-count vector is attached 
to its group some multiple of the Euclidean distance 
between the group vector and the spike-count vector. 
This is repeated very often (each vector may be classified 
a thousand times), while turning the multiplication factor 
slowly down to zero. It was proven that this method 
divides the data into reasonable clusters (Tsypkin and 

Kel'mans 1967; Fu 1968). We found, however, that al- 
most all spike-count vectors were put into the same 
group after several iterations independently of the initial 
values. In order to understand this, we projected the 
spike-count vectors into two dimensions. For  this, we 
used principle component analysis and an Euclidean, 
distance-preserving, nonlinear method (Sammon 1969). 
There was no indication that these 2-dimensional spike- 
count vectors cluster into groups. Therefore, we can 
assume that the spike-count vectors are more or less 
uniformly distributed in 30-dimensional space. This ap- 
pears to be the reason why stochastic approximation fails 
in partitioning the spike-count vectors. 

Parallel cluster analysis. With this method, one tries 
to find a minimal distance partition. Again each group is 
represented by a 30-dimensional vector. One starts with 
some initial vectors. All spike-count vectors are attached 
to the group vector which has the shortest Euclidean 
distance to the spike-count vector. The average of all 
vectors of each group defines the new group vector. This 
is iterated until there are no more changes. 

It is indeed possible to obtain groups of more or less 
equal size. As expected due to the largely unstructured 
distribution of the spike-count vectors, the partitions that 
arise depend on the initial values (Table 1). This implies 
that the allocation of the symbols is still arbitrary. This is 
of course not a disadvantage for our purpose, though one 
should keep in mind that the symbols may have no data- 
intrinsic meaning. 

We repeated this method for I SI varying from 8 to 22 
in steps of 2. For  all numbers of groups, the sum of the 
variances of the groups is more or less the same (Table 2). 
Therefore, we have no indication that one should use 
a special number of symbols, which is in accordance with 
the uniform distribution of the spike-count vectors. 

Next we tested whether or not the chain of symbols 
still describes the stimulus. Taking the responses of 
length 500 ms segmented into 25-ms bins, and using 
standard classification methods, we get a rate of about 
90% correct recognition (see Sect. 3.2.2). In contrast, 
using the chain of symbols (e.g., for I S I = 20) and replac- 
ing each symbol by its group vector, we can also apply 
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Table 2. Values for the quality of the partition. Shown is the sum of the 
variances of the groups for two different spike-count vector sets 
(1 = length 300 ms, bin width 30 ms; 2 = length 800 ms, bin width 
50 ms) and for a varying size I S I of the alphabet. There is no preferable 
number of groups, and therefore no natural alphabet 

Number of groups I S I Quality 1 Quality 2 

8 23517 53949 
10 21800 51043 
12 21053 48968 
14 20498 47510 
16 19768 46110 
18 19606 45357 
20 19010 44469 
22 19424 44688 

standard classification methods to these data. As a result, 
we get 65% correct recognition, which is far less than the 
result with the original data. So we lose information 
about the stimuli in the clustering process. 

Classification with thresholded count vectors. Finally, 
we have assumed that the actual number of spikes in 
a small time segment is not important and that it only 
matters whether this number is smaller or larger than 
some threshold value. This idea leads to the following 
algorithm for finding a finite alphabet. We set compo- 
nents of our spike-count vectors that are larger than 1 to 
1. In this way, we obtain a chain of binary vectors 
describing a response to a stimulus. To take into account 
that there might be spikes due to noise, we also tested 
a higher threshold. We set all components with 1 or 
0 spikes to 0 and all other components to 1. With these 
methods, one gets about 4000 and 2000 different vectors 
from the about 10 000 spike-count vectors in the begin- 
ning. 

These are still too many. Therefore, we identify all 
binary vectors within a certain Hamming distance with 
the same symbol. The Hamming distance of two binary 
vectors is just the number of different bits. We do not use 
a sophisticated method for this procedure: We take a first 
vector and collect all vectors that have a Hamming 
distance less than our threshold, take a second vector and 
so on, until there is no vector left. With 4 or 5 bits as 
threshold for the Hamming distance, we again get an 
alphabet of about 20 symbols. 

Unfortunately, we noticed that we lose even more 
information with this procedure than with the method of 
minimal distance partition. Applying standard methods 
of classification to the binary vectors, we obtain about 
60% correct recognition, but only about 35% when we 
replace the binary vectors by the group vectors. 

As a result of the above comparison, we decided to 
use the symbols obtained by parallel cluster analysis 
and arbitrarily chose I SI = 20 for a detailed investiga- 
tion of the corresponding HMMs. We made sure by 
spot checking that all other alphabets led to only 
slightly different results. Although the above results 
indicate the absence of a natural alphabet, its existence 
is not fully excluded since, e.g., a variable and adaptive 
segmentation of the time series might lead to different 
conclusions. 

3.2 Comparison of the models 

3.2.1 Parametric vs VQ-HMMs. With the segmented 
and vector-quantized data, we are now in the position to 
obtain and compare various HMMs. In all cases, we used 
11 repetitions of each stimulus for training the corres- 
ponding H M M  and tried to classify the remaining 10 
repetitions. The results of a systematic comparison with 
respect to the recognition rates of the two fundamental 
types of HMMs (PD-HMMs which according to Sect. 
2.2.4 describe the spike-count vectors directly by a par- 
ametrized output probability density, and VQ-HMMs 
which use the vector quantized data) are listed in Table 3. 
The size of the error in this table (and also in Fig. 6, 
see below) is estimated to be about 5%, which for the 
high rates is distributed asymmetrically around the 
corresponding mean values. In this investigation, we 
assumed for the output probabilities of the PD-HMMs 
multivariate Poisson distributions according to (6,7). 
We tested each type in the two basic topologies (see 
Fig. 2), left-right vs ergodic models, with a varying 
number of internal states and for various lengths of the 
time windows (response intervals) and segments. As 
a first result, we see that HMMs with a poissonian output 
probability always yield higher recognition rates than the 
corresponding VQ-HMMs. Second, left-right models are 
almost always superior to ergodic models. This is in 
accordance with the observation that the training of 
ergodic models often leads to models that are essentially 
linear and therefore close to left-right models. For 
example, the recognition rates obtained for left-right 
PD-HMMs trained on 300-ms response intervals lie 
up to 10% above the rates for corresponding ergodic 
PD-HMMs and 40%-50% above the rates for compara- 
ble VQ-HMMs. The last result apparently means that 
the information loss in vector quantizing the data 
is much more serious than the assumptions made for the 
output probabilities in PD-HMMs. For a better under- 
standing, we investigated the segregation quality of the 
models obtained. Here we checked whether the 16 
HMMs, one for each of the stimuli, are able to distin- 
guish self-generated data. This means that we simulated 
or generated 20 new data sets with each H M M  and 
classified these data in the same manner as the original 
data. The resulting self-classification rate is always 100% 
for our poissonian PD-HMMs. For VQ-HMMs, these 
rates vary between approximately 60% for long segments 
and almost 100% for short time segments. This implies 
that PD-HMMs are in general better adapted to the data 
than VQ-HMMs, although they contain a comparable 
number of free parameters. We also realized that the 
recognition rates decrease as the length of the response 
intervals is increased. This effect has a simple explana- 
tion. A closer look at the data shows that the time 
window, where the neuronal response is not compatible 
with spontaneous activity, has a length of about 300 ms. 
Therefore, longer response intervals contain more noise 
and are more difficult to classify. The dependence of the 
recognition rate on the segment length shows no syste- 
matic variation for bin widths between 25 and 100 ms. 
For longer segments, we find that the recognition rates 
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Table 3. Classification rates for PD-HMMs (a) and VQ-HMMs with I S I = 20 (b). The self-recognition rate for the VQ-HMMs (c) is explained in the 
text. The recognition rates marked with an asterisk were obtained for degenerate left-right models 

a) Recognition rates for Poissonian PD-HMMs (%) 
Length (ms) 
Bin width (ms) N 300 N 500 N 800 

Left-right Ergodic Left-right Ergodic Left-right Ergodic 

25 12 90* 20 87* 32 83* 
8 86 76 12 77 68 20 60 61 
4 86 78 6 69 73 10 65 60 

50 6 85* 10 83* 16 83* 
4 90 84 6 74 75 10 73 69 
2 76 77 3 72 69 5 60 64 

100 3 91" 5 87* 8 82* 
2 83 80 3 76 74 4 67 64 

b) Recognition rates for VQ-HMMs (%) (I S I = 20) 
Length (ms) 
Bin width (ms) N 300 N 500 N 800 

Left-right Ergodic Left-right Ergodic Left-right Ergodic 

8 49 32 12 25 
4 40 34 6 29 

4 48 36 6 28 
3 26 

23 

25 42 31 20 31 
25 31 10 30 

50 37 30 10 28 
30 31 5 27 

I00 3 44 28 4 28 

c) Sel~recognition rates for VQ-HMMs (%) (I S I = 20) 
Length (ms) 
Bin width (ms) N 300 N 500 N 800 

Left-right Ergodic Left-right Ergodic Left-right Ergodic 

25 8 97 79 12 98 92 20 99 96 
4 84 80 6 88 85 10 98 89 

50 4 86 67 6 84 81 10 98 91 
3 70 69 5 84 79 

100 3 71 62 4 75 69 

decrease in accordance with earlier results (Kriiger and 
Becker 1991). 

To obtain an impression of  the quality of  the typically 
obtained H M M s ,  we show in Fig. 4 examples of original 
and simulated responses to one of  the stimuli. We used 
a P D - H M M  with 12 states for the generat ion of  the data  
on the right of  this figure. This a u t o m a t o n  is depicted in 
Fig. 5a. The spike patterns in each time bin were gener- 
ated by randomly  distributing spikes in each segment 
according to the Poisson law, (7), with the mean values 
prescribed by the H M M .  For  each repetition, a path  
th rough  the H M M  is chosen randomly,  with probabili t-  
ies determined by the transit ion matrix of the H M M .  The 
recognit ion rates for the corresponding H M M  ensemble 
are 77%, which is not  the highest value reached. Never- 
theless, we see that  the overall patterns are quite similar. 
Note,  however,  that  in the simulated data  the transitions 
between low and high activity regions are not  as sharp as 
in the original da ta  (see, e.g., electrodes C2 and E2). This 
is due to the self-transitions on the states enforced by the 

chosen ratio of  the number  of  segments (T = 20) over the 
number  of  states (N = 12). These transitions apparent ly  
produce a too  large variability in the timing of  the spike 
events, which is not  present to this extent in the data. 
This is in accordance with the observat ion that  the ratio 
T/N lies between 1.0 and 1.5 for models with the highest 
recognition rates of  about  90%. The optimal models with 
T/N = 1.0 are treated separately in Sect. 3.2.2. The sec- 
ond  au toma ton  (depicted in Fig. 5b) is an example of  the 
fact that  one can considerably reduce the number  of  
parameters  in the H M M s  if one is only interested in the 
recognition rate: This 3-state model  represents the same 
stimulus but  was trained on 100-ms segments. It  contains 
essentially all the information necessary for the pat tern 
recognition process, since with these models one obtains 
basically the same recognition rate (74%) as for the 
12-state models. The same holds for all the other  topolo-  
gies and models we tested. We can thus get a quite 
compact  representat ion of  the ensemble of  possible re- 
sponses to a given visual stimulus. F r o m  a biological 
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Fig. 4. Two dot displays of responses during 500 ms are shown. The l e f t  one is the original ensemble of responses to the same moving bar. The r i g h t  
one is a simulated response. The simulation was made with the strict left-right PD-HMM of Fig. 5a, based on 25-ms segments and a response interval 
of 500 ms. Different repetitions are shown below each other 

point of view, it is interesting to note that the relevant 
time scale for the information processing appears to lie in 
the region around 25-100 ms. 

3.2.2 Relation to linear classifiers. At this stage it is 
appropriate to remember that the recognition rates with 
simple linear classifiers lie around 90% (Krfiger and 
Becker 1991) 1, which is similar to the best results re- 
ported above. It is explained below that linear classifiers 
can be understood as limiting cases of HMMs, namely 
models with transitions to only one next state (i.e., left- 
right models as in Fig. 5a, with the delay loops missing). 
Therefore, it should be possible to obtain similar recogni- 
tion rates with such degenerate HMMs. This is indeed 
the case: If the number of nodes in our left-right models 
coincides with the number of segments in the chosen time 
window, we get the highest recognition rates. For  
example, for a 3-state model based on 300-ms data win- 
dows segmented into 100-ms bins, we obtain 91% correct 

1 The recognition rates reported in this paper increase by about 10% 
for the data set used in the current work. See also Fig. 6. 

classifications. The dependence of the recognition rate 
on the segment length is depicted for these models in 
Fig. 6. 

This result deserves several comments. Let us first 
explain the equivalence of these degenerate HMMs with 
linear classifiers: The simple linear structure of the 
HMMs (a u = 6j,~+1, for i = 1, 2 , . . . , T -  1, with T =  
number of time segments = number of H M M  nodes) and 
the assumed factorization of the output probabilities (6) 
imply that the probability for the spike-count vector 
sequence ~(1), ]~(2) . . . . .  ~(T) factorizes with respect to 
discrete time t and with respect to the electrode number, 
i.e., 

T 3 0  

P(~(1), ~(2) . . . . .  ~(T)) = l-] 1-I P(k,(t), i~ t)) (9) 
t = l l = l  

Such an H M M  can be regarded as the representation of 
a multivariate probability distribution of (30 x T)-dimen- 
sional spike-count vectors ~ around the prototype vector 
of mean rates ~, with components #~0. Since the factoriz- 
ation implies that the covariance matrix is diagonal, our 
data are now fully characterized by the 16 prototype 
vectors ~ ,  i = 1 . . . . .  16 and the corresponding Poisson 
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Fig. 5. Two typical examples of obtained PD-HMMs. a (top) this 12-state left-fight model was used to generate the data on the right of Fig. 4. 
b (bottom) an ergodic 3-state model which describes the same stimulus response as in a, but on a coarse-grained time scale. It starts with nl = 91% in 
the state drawn on the top. The gray levels of the inserts code for the mean rates at the electrodes (arranged as in the experimental setup), if the system is 
in the corresponding state. The width of the arrows measures the transition probabilities between the states. The HMM types yield comparable 
recognition rates on 500-ms data samples 

d is t r ibut ions .  As one would  expect,  the  mean  rates  esti- 
m a t e d  with the  Baum-Welch  fo rmula  (see the Appendix)  
coincide  in this case wi th  the rates in each t ime segment  
ob ta ined  f rom a s imple average  over  the t ra in ing  sam- 
pies. The  resul t ing p ro to types  are depic ted  in Fig. 7. As 
expla ined  in Sect. 2.2.2, the probabi l i t i es  of  (9), which 

are  convenien t ly  deno ted  by  P(~ l~ i ) ,  serve as dis- 
c r iminan t  funct ions gi(~) in the classif icat ion process  
with H M M s ,  i.e., an observed  to ta l  sp ike-count  vector  

is classified into  class number  i for which gi(~) is largest.  
The  classif icat ion process  is no t  a l tered if a m o n o -  
tonica l ly  increas ing funct ion is app l ied  to all gi, o r  if 
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Fig. 6. The dependence of the recognition rate on the segment length 
for degenerate HMMs shows a broad plateau between 25 and 100 ms. 
For comparison, the rates obtained with a linear classifier with Euclid- 
ean di s tance  measure are depicted (dashed line) 

class-independent constants are added (Duda and Hart 
1973). Taking the logarithm of P(~ I#i), omitting class- 
independent constants, and using the functional form (7) 
of the Poisson distribution, one obtains the equivalent 
discriminant function 

gl = ~k~ log/ai,~ -/~i,~ (10) 

where  the summation is over  all t ime segments  and  all 
electrodes. This discriminant function is linear in J[, and 
therefore the decision boundaries are also linear. We see 
that these special HMMs are equivalent to linear classi- 
fiers. The obtained models are also minimal-distance 
classifiers: We define a distance D between k and ~ as 

o( 11 ) = Y k, log( ] + k, (11) 
�9 \ # , 1  

which is an analogue of the Kullback-Leibler distance of 
(4) for non-normalized positive quantities. It is positive 
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Fig. 7. The neuronal responses to the 16 stimuli of the experiment are optimally classified by the 16 prototype vectors shown as columns. From left to 
right, the angle of the bar increases in equal steps. The components of each prototype vector are the time-dependent mean rates in each segment at 
every electrode (here 6 time segments per electrode, electrodes from top to bottom: A1, A2 , . . . ,  E6). The height of the bars in each segment measures 
the corresponding rates on a logarithmic scale. The logarithmic scale is motivated by (10, 11) 
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Fig. 8. A typical H M M  obtained 
for short time windows (30 ms) and 
2-ms segments. This is basically the 
superposition of two binomial 
processes since the transitions 
between the states can be neglected. 
For  about half of the stimuli, the 
two states can be reduced to one 
state 

and zero only if J~ and ~ coincide. It is easily seen that the 
same classification of a pattern ~ is achieved by searching 
for the prototype/*i  for which D(J~[[~i) is minimal. In 
contrast, the linear classifiers used in Krtiger and Becker 
(1991) utilized the Euclidean distance measure I J~ - / t i  I, 
which is known to correspond to multivariate gaussian 
distributions with identical diagonal covariance matrices 
for all classes (Duda and Hart  1973). Since we are dealing 
with point processes and therefore with discrete events 
a continuous probability density as the output process of 
an H M M  is not appropriate from a physical point of 
view, although it leads (with an optimally chosen vari- 
ance parameter) to classification rates similar to those of 
the more adequate Poisson model (see Fig. 6). 

The fact that these degenerate HMMs yield the best 
results for almost all time windows and segmentations 
implies that the data have a quite simple structure on 
time scales between 25 and 100 ms. Firstly, from (9) it 
follows that to a very good approximation the fluctu- 
ations on different time segments and on different 
electrodes are independent. This implies that the corres- 
ponding covariance functions are zero on these time 
scales. A direct numerical computation confirmed this 
result. Secondly, the data for each visual stimulus are well 
described by one assigned prototype spatiotemporal ex- 
citation pattern. Such a pattern consists, e.g., of a time 
sequence of six rates (data averaged over 50 ms) for each 
electrode, as depicted in Fig. 7. As mentioned above, an 
averaging over more than 100 ms results in a decrease of 
the recognition rates. Thirdly, the pattern space turned 
out to be linearly separable, which explains the success of 
linear classifiers as used in Kriiger and Becker (1991). As 
will be seen below, this picture is no longer valid if we go 
to small time scales. It is also obvious that with these 
models one can reproduce the original data, e.g., of 
Fig. 4, with high accuracy if the segmentation is chosen 
small enough. In particular, the transitions between high 
and low activity regions become sharper due to the 
missing delay loops. 

3.2.3 Performance on short data segments. From a biolo- 
gical point of view, it is interesting to know whether 
a stimulus can be recognized by using only a relatively 
small part of the elicited spike patterns. This addresses 
the question of whether it is possible for an animal to 
make reliable decisions in short times. Therefore, we 
decided to use a window of only 30-ms length around the 

maximal response, which was binned into segments of 
2-ms length. We observed at most one spike event in each 
segment. For  such processes, it is appropriate to use the 
binomial distribution of (8) with n = 1, i.e., a Bernoulli 
process, as output on the states of the HMMs. By varying 
the number of nodes of the HMMs, it turned out that two 
states yield optimal recognition rates. Further, we found 
that in about half of the 16 stimuli the HMMs reduce or 
are equivalent to one state only, which means that in 
these cases the response is well characterized by a single 
mean rate for each electrode. In the remaining cases, the 
transitions between the two states are often very low, and 
therefore the corresponding process is basically a super- 
position of two Bernoulli processes. An example of such 
an H M M  is depicted in Fig. 8. Here the initial probabilit- 
ies are 0.5 for each state, which essentially means that 
one-half of the training samples is characterized by the 
30 mean rates of node 1, and the other half by the rates 
of node 2. Thus, there is not much temporal structure 
on the time scale of 30 ms, and the corresponding 
HMMs are again quite simple, although not of the linear 
type as above. The two states suggest that during the 
experiment the animal was in two different response 
modes. One simple physiological explanation of this 
effect is a change of the monkey's eye position in the 
course of the stimulus repetitions. Such spontaneous eye 
movements may occur even with paralyzed animals, with 
the result that different receptive fields and corres- 
pondingly different neuronal excitation patterns are 
elicited by the same visual stimulus. For  two stimulus 
classes, we also found non-negligible transition probabil- 
ities between the two states, which means that the rates 
change within the 30-ms time window with a certain 
probability. From such a model, one can also extract the 
mean dwell time in each state, which amounts to an 
automatic segmentation of the data. The latter models 
show that there is variability in the timing of the events 
on this time scale. 

The classification rates with these models lie at ap- 
proximately 50%, which is 10%-20% more than the 
rates for corresponding linear classifiers. This shows that 
for only slightly more complex excitation patterns, the 
H M M  algorithms are superior to conventional pattern 
recognition algorithms. This is important since we expect 
that data from future experiments with active monkeys 
will have a higher degree of complexity than those invest- 
igated in this paper. 
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4 Discussion 

We have shown that HMMs are very well suited for 
classifying, coding, and analyzing neuronal spike pat- 
terns. It turned out that it is possible to infer the adequate 
class of models by using recognition rates as the selection 
criterion. We obtained rates of more than 90%. These 
high rates, on the other hand, allow us to draw con- 
clusions about the nature of the data. For the current 
data, we found relatively simple structures: On a coarse- 
grained time scale, i.e., for the data averaged over 
segments of 25-100 ms length, we found that the neu- 
ronal responses to the stimuli are well described by 
spatio-temporal prototype patterns of mean rates with 
a poissonian statistic superimposed. Further, the pattern 
classes appear to be linearly separable, which explains 
the success of our degenerate HMMs and of the corres- 
ponding linear classifiers. The fact that the recordings at 
a given electrode may contain contributions from more 
than one cell does not affect the above conclusions. In 
general, however, the interpretation of the extracted 
HMMs may depend on the number of simultaneously 
observed data sources. 

By taking the pattern samples in small time windows 
of only 30 ms, we still found recognition rates of about 
50%, which is a factor of eight higher than an unbiased 
guess. This implies that, in principle, decision tasks can 
still be solved with reasonable accuracy on these time 
scales. Our investigations also revealed that there is 
a higher degree of variability in the better resolved data. 
At the moment, the small number of data samples forms 
the main limitation to obtaining a more accurate charac- 
terizati0n of the corresponding probabilistic structures. 
An interesting point in this context is that the addition of 
more electrodes will not necessarily enhance the discrim- 
ination ability with respect to the stimulus classes. On the 
contrary, by selecting the 20 most important electrodes, 
we basically obtain the same recognition rates as with the 
full set of 30 electrodes, which on the other hand means 
that the HMMs are robust against noise or irrelevant 
information. The importance of individual electrodes 
with respect to the recognition task was determined in 
Dfilfer (1993) with standard methods of variable selection 
from statistical classification theory (see e.g., Chap. 6 of 
Hand 1981). 

Experiments with permanently implanted electrodes 
are currently being prepared which will provide us with 
much larger data sets. Based on the results reported in 
this work, we expect that HMMs will be very useful in 
evaluating such experimental data. It is expected that this 
will be even more the case if the responses in one class are 
more structured and differentiated due to, for instance, 
the presence of several features represented in the re- 
sponses. With the current data, such a situation can be 
simulated by neglecting, e.g., the information about the 
direction of the moving bar, while retaining knowledge 
about the orientation. This results in eight classes corres- 
ponding to eight orientations in the experiment. Each 
extracted H M M  in such a situation consists of two 
branches, which code the feature that each orientation 
allows for two signs of the velocity. In the planned 

experiments these subfeatures are not necessarily known 
a priori. They may be form, color, or internal modes of 
behavior. The detection of such subfeatures is a task in 
unsupervised learning. The given arguments indicate that 
HMMs can also solve this kind of problem and possibly 
detect, e.g., distinguished states of attention as found in 
Gat and Tishby (1993). In such cases, it may also be 
worth using more sophisticated methods for quantizing 
the data for possible applications of VQ-HMMs. 
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Appendix 

The parameters ~[ = (~,A,{B(S)}) of the HMMs (see 
Sect. 2.2.1) are calculated iteratively. To avoid too many 
indices we mark the parameters from the next iteration 
by a hat - e.g., d - and leave the parameters from the 
preceding iteration step unmarked. As usual we define 
the following useful quantities (see e.g. [Rabiner 1989, 
Huang et al., 1990]): 

f'l~jbj(O1) f o r t =  1 
 j(t) := 

i~--I a i ( t -  1)aijbj(Ot) otherwise' 

fli(t) := f j i l  aijbj(Ot+ 1)flj(t + 1) 

for t =  T 

otherwise ' 

~ij(t) := 
aij~i(t)flj(t -4- 1)bj(Ot+ 1) 

P(OI~) 

ai(t) fli(t) tlli(t ) := ~ l~ij(t) = ~ "  
J 

In our work the observation sequence 
0 = 0102.  �9 �9 Or is either a sequence of symbols St e {S}, 
t = 1 , . . .  , Tin  the case of VQ-HMMs, or a sequence of 
spike-count vectors ~(t) for PD-HMMs. The probability 
P(O 12 ) is defined in (1) and can be calculated as 

P(O I ~) = ~a , (T)  i 
The quantities a and fl are known as forward respec- 

tively backward probabilities. For both types of models 
one obtains the following iteration equations for the 
elements of the transition matrix A and the initial prob- 
ability ~: 

E -I g,,j(t) 
aij ~-- zT__-11 tlYi(t ) 

 i(1) 



For  V Q - H M M s  the EM-a lgor i thm yields the following 
recursion for the ou tpu t  probabil i t ies  b: 

E, :l 
and  for P D - H M M s  with Poisson densities one obta ins  
for the update  of the mean  values p [-Becker 1994; Dfilfer 
1993] 

fi!,) = rt= 1  i(t)kt(t) 

E , \  l 

For  b inomia l  ou tpu t  densities fi!'J has to be replaced by 
fi!0. n. In  the case of mult iple  observat ion  sequences one 
has to sum over all observat ions in each enumera to r  and  
denomina tor .  

References 

Bahl LR, Jelinek F, Mercer RL (1983) A maximum likelihood approach 
to speech recognition. IEEE Trans Pattern Anal Machine Intell 
5:179-190 

Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization tech- 
nique occurring in the statistical analysis of probabilistic functions 
of Markov chains. Ann Math Stat 41:164-171 

Becker JD (1994) Versteckte Dynamik neuronaler Prozesse. Harry 
Deutsch Verlag, Frankfurt 

Becker JD, Honerkamp J, Hirsch J, Schlatter E, Greger R (1994) 
Analyzing ion channels with hidden Markov models. Pfliigers Arch 
426:328-332 

Chung SH, Moore JB, Xia L, Premkumar LS, Gage PW (1990) Charac- 
terization of single channel currents using digital signal processing 
techniques based on hidden Markov models. Philos Trans R Soc 
Lond [Biol] 329:265-285 

Chung SH, Krishnamurthy V, Moore JB (1991) Adaptive processing 
techniques based on hidden Markov models for characterizing 
very small channel currents buried in noise and deterministic 
interferences. Philos Trans R Soc Lond [Biol] 334:357-384 

Dempster AP, Laird NM, Rubin DR (1977) Maximum likelihood 
from incomplete data via the EM algorithm. J R Stat Soc [BI 
39:1-22 

Duda RO, Hart PE (1973) Pattern classification and scene analysis. 
Wiley, New York 

373 

Diilfer B (1993) Klassifikation and Merkmalsextraktion. Thesis, Uni- 
versity of Freiburg 

Forney GD (1987) The Viterbi algorithm. Proc IEEE 61:268-278 
Fredkin DR, Rice JA (1992) Maximum likelihood estimation and 

identification directly from single-channel recordings. Proc R Soc 
Lond I-Biol] 249:125-132 

Fu KS (1968) Sequential methods in pattern recognition and machine 
learning. Academic Press, New York 

Gat I, Tishby N (1993) Statistical modelling of cell-assemblies activities 
in associative cortex of behaving monkeys. In: Moody JE, Hanson 
S J, Lippmann RP (eds) Advances in neural information processing 
systems 5. Morgan Kaufmann, San Mateo, p 945 

Gray CM, Krnig P, Engel AK, Singer W (1989) Oscillatory responses 
in cat visual cortex exhibit inter-columnar synchronization which 
reflects global stimulus properties. Nature 338:334-337 

Gray RM (1984) Vector quantization. IEEE Acoust Speech Signal 
Process Mag 1:4-29 

Hand DJ (1981) Discrimination and classification. Wiley, Chichester 
Huang XD, Ariki Y, Jack MA (1990) Hidden Markov models for 

speech recognition. Edinburgh University Press, Edinburgh 
Kriiger J, Aiple F (1988) Multimicroelectrode investigation of monkey 

striate cortex: spike train correlations in the infragranular layers. 
J Neurophysiol 60:789-828 

Krfiger J, Becker JD (1991) Recognizing the visual stimulus from 
neuronal discharges. Trends Neurosci 14:282-286 

Makhoul J, Roucos SR, Gish H (1985) Vector quantization in speech 
coding. Proc IEEE 73:1551-1558 

Pawelzik K, Bauer HU, Deppisch J, Geisel T (1993) How oscillatory 
neural responses reflect bistability and switching of the hidden 
assembly dynamics. In: Moody JE, Hanson S J, Lippmann RP (eds) 
Advances in neural information processing systems 5. Morgan 
Kaufmann, San Mateo, p 977 

Paz A (1971) Introduction to probabilistic automata. Academic Press, 
New York 

Rabiner LR (1989) A tutorial on hidden Markov models and selected 
application in speech recognition. Proc IEEE 77:257-285 

Radons G, Becker JD, Diilfer B (1992) Analysis of multielectrode data 
with hidden Markov models (Abstract). In: Loose W (ed) 18th 
IUPAP International Conference on Statistical Physics. Berlin, p 175 

Richmond BJ, Optican LM, Podell M, Spitzer H (1987) Temporal 
encoding of two-dimensional patterns by single units in primate 
inferior temporal cortex. I. Response characteristics. J Neuro- 
physiol 57:132-146 

Sammon JW (1969) A nonlinear mapping for data structure analysis. 
IEEE Trans Comput 18:401-409 

Tsypkin YaZ, Kermans GK (1967) Recursive algorithms of self-learn- 
ing. Izv Akad Nauk SSSR Tekhn Kibernetika (Engineering Cyber- 
netics SSSR) 5:70-80 


