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Abstract. This paper examines the role of the definition of the ensemble in determining the uncertainty in 
air quality model predictions. We difine the ensemble in terms of the variables included in the model input 
set. Because observations are also governed by variables not included in this set, we can have an infinitely 
large set of observations associated with a single model prediction. The variation of these observations about 
the model prediction corresponds to all possible values of the unknown variables, and it represents the 
uncertainty in the model prediction. This concept is illustrated by estimating the uncertainty related to model 
predictions for two dispersion problems. 

1. Introduction 

In principle, if boundary and initial conditions are completely specified, the equations 

of motion allow us to predict all the details of turbulent flow. However, this is impossible 

in practice because of the nature of  turbulent flow, and we are forced to treat turbulent 

motion in terms of a resolved 'mean'  flow and an unresolved residual 'turbulent' velocity. 
Each 'mean'  flow field is associated with an infinite set of unknown turbulent velocity 

fields. Therefore the best an air quality model can do is to provide an estimate of the 

average of the concentrations measured during different 'realizations' of  the flow. An 
observed concentration is expected to deviate from the corresponding model prediction. 

This paper provides a discussion of the concepts underlying the estimation of the 
expected deviation between model prediction and observations. This is not a review of 

techniques of calculating this component of model uncertainty, and the reader is referred 

to Csanady (1973) and Chatwin and Sullivan (1979) for an overview. The main objective 
of this paper is to emphasize the relationship between model prediction and observation. 

In doing so, we demonstrate the need to be precise in defining the ensemble of  observa- 

tions being considered. The role of the definition of the ensemble in the estimation of 
model uncertainty is illustrated through two examples. We then show that it is necessary 

to formulate a model for the expected deviation (concentration fluctuation) before the 
model for the ensemble mean can be evaluated. 

2. The Concept of  an Ensemble 

The concept of an ensemble of  realizations is central to the understanding of the 
statistics of concentrations. It is most simply introduced by expressing the observed 
concentration as follows: 

Co = Co(~,/3). (1) 
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In Equation (1), u refers to the set of variables whose values are known, and fl denotes 
those variables which are unknown to us but which also affect Co. For example, u could 
refer to the hourly averaged set of specified values of wind speed, mixed-layer height, 
surface heat flux and distance of the pollutant source from the receptor; fl could include 
the unresolved turbulent velocities. A fixed value of u defines an ensemble of experi- 
ments. Because fl can take on any value for a given u, the observation Co(u, fl) will vary 
from experiment to experiment. Any observation made during an experiment belonging 
to this ensemble can be written as 

Co(U, fl) = Co( - 3 B + c(u, fl). (2) 

In Equation (2), the overbar refers to an average over the ensemble defined by a specified 
set of values u. Since the average is over all possible fl, it is only a function of u and 
we can write 

Co(x, y) = Cp(U) + c(u, fl). (3) 

As u represents the input information available to an air quality model, the preceding 
discussion suggests that the model prediction should ideally be the average Cp(U) over 
all observations for fixed u. 

The relationship between a model prediction Cp(U) and observations Co(u, fl) is 
illustrated in Figure 1. Each prediction Cp(U) its associated with is own 'cloud' of 
observations. This spread of the possible observed values about Cp is tr c. Since a e is a 
function of u, the statistics of c can be calculated only by sampling observations keeping 

Co(a2,/32) Ensemble Corresponding to G ~  

rvatmns Co( 
Defined by Model Inputs a 1 

Fig. 1. Relationship between a model prediction and observations. 
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0t fixed. Because this is impossible in practice, we have to transform c to make it 
independent of ~. Proposed methods of achieving this are described in a later section. 

The next section discusses the term 'inherent uncertainty' which is often incorrectly 
applied to trc. 

3. The Meaning of  'Inherent' Uncertainty 

As mentioned earlier, the concentration fluctuation c(a, t) is directly related to our lack 
of knowledge of the set of variables ft. In principle, the uncertainty ~(ct) can be made 
arbitrarily small by including more information in the set 0t, and therefore, there is 
nothing 'inherent' or intrinsic in this uncertainty. Our definition of the ensemble rather 
than 'nature' determines the magnitude of at(a). However, turbulence, which governs 
dispersion, places a severe limitation on our ability to decrease trc(~ ). This limitation is 
caused by the rapid amplification of small disturbances in turbulent flow. Therefore, 
small model input errors have large consequences on model predictability. To see this 
in the context of air quality models, let us express the observed concentration as follows 

Co(o~, t )  = Cp(O~,) + / ( A s )  + c(~, f l). (4) 

In Equation (4), /(As) is the random error associated with the input error defined by 

Ac~ = ~ -  ~i (5) 

where ~z is the incorrect input. 
Figure 2 shows the qualitative behavior of the model errors ~ and al as a function 

of the number of variables N(~) in the set ct. If we think of ~ as a vector, N(~) is the 
number of dimensions of the space used to represent ct. 

Fig. 2. 
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Note that trc(~ ) will always decrease with increase in N(~). After we have accounted 
for all the physical variables in ~, an increase in N(~) is equivalent to improving the time 
and space resolution of the model. Beyond a certain point, this improvement is curtailed 
by the extreme sensitivity of predictions of small-scale turbulent motion to input errors. 
In the words of Tennekes 1978, "since this problem grows worse with improving 
resolution, turbulence theory (with some notable exceptions) tends to give up altogether: 
deterministic forecasting of the evolution of individual eddies is abandoned, and 
wholescale averaging techniques are employed". What this means is that beyond a 
certain ~, denoted by ~ = :t m in Figure 2, arbitrarily smal l  errors in additional model 
inputs lead to a spread in model predictions that is indistinguishable from ~ at ~ = ~,~; 
the extra information is essentially useless. We see that the model error cannot go below 
the value ac(~tm). Therefore, ac(~m) is in a sense the 'inherent' uncertainty dictated by 
the nature of turbulence. 

In the figure, A represents the region in which tr I can be made arbitrarily small by 
making the input ~ more accurate. Region B is where we have no control over the 
magnitude of a z. We do not want to imply that the transition between A and B is as 
sharp as shown in the figure. 

There is little theory to guide us on the selection of a m. The only way of determining 
the 'uncertainty barrier' is to make the set ~ as large as possible. At this point, there is 
no reason to believe that available dispersion models have reached the limits of 
predictability. In this connection, it is claimed that the long time scales associated with 
the eddies of the convective boundary layer lead to a large trc and consequently low 
model predictability. This is not true because a~ can be reduced by including more 
information in the currently used model input sets. Because the time scale of the 
dispersing eddies is of the order of ten minutes, there is every reason to believe that 
model predictions can be improved by using the measured probability density functions 
of turbulent velocity fluctuations. However, such information is not likely to be available 
routinely, and we have to live with the relatively large tr~ associated with limited inputs. 
The point to be made is that there is nothing intrinsic about the large ~ for dispersion 
in the convective boundary layer. 

In the following sections we discuss some examples that illustrate the estimation of 
tr~ for dispersion problems. 

4. The Physics of c(~, ~) 

Here we discuss the processes which determine the statistics of the 'concentration 
fluctuation' c(ct, fl). To do this, it is useful to consider the concentration time series 
caused by material released with an initial concentration C p. If we neglect the effects 
of molecular diffusion, the instantaneous concentration measured at a receptor will be 
either C p or zero as shown in Figure 3. It can be readily shown that (Venkatram, 1979) 

( ( C ( t )  - C m ) 2 ) / C  2 = CP/Cm - 1 (6) 
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Fig. 3. C o n c e n t r a t i o n  t ime  ser ies  a s s o c i a t e d  wi th  a n  initial  re lease  o f  C p. 

where 

and 

Cm = (uT(~ ,  /~)) (7b) 

T l; 
C-r(cr fl) = T C(t, ~, fl) dt. (7c) 

0 

In writing Equation (7), we have defined our ensemble with respect to the set ~ = {~, T}. 
It is seen that the deviation of the instantaneous concentration C(t) from the mean Cm 
is dependent on the way we define our ensemble. To see this more clearly, let us consider 
the example used by Chatwin and Sullivan (1979). Material with mass Q is initially 
mixed over a volume L 3 and then released into a turbulent flow. To analyze this 
situation, they consider an ensemble for which Q, L 3 and a set of unspecified turbulence 
statistics are fixed. The origin of the co-ordinate system is attached to the randomly 
moving center of mass of the pollutant cloud. The basic vectors of this system are fixed 
in space. We will see that this description of the co-ordinate system is an important 
component of the definition of the ensemble in question. 

The initial concentration in the pollutant cloud is Q/L 3. Until the effects of molecular 

diffusion become important, the concentration of the fluid marked with the pollutant 
remains at this value. However, the cloud is distorted and stretched as its center of mass 
moves around. A measure of this distortion caused by the turbulent flow field is L(t) 
given by 

QL 2(t) =- ( f I rl 2 C(r, t) d V(r)) (8) 
3 



190 A. VENKATRAM 

where r refers to the position vector from the origin of the co-ordinate system and the 
integral is taken over all space. It is easily seen that the probability that a receptor fixed 
to this co-ordinate system measures a concentration is approximately L~/L 3. The mean 
concentration at the receptor is Q/L 3 times the probability that the receptor measures 
a concentration. The answer, which agrees with intuition, is Q/L 3. On the basis of 
previous arguments, the concentration fluctuations about this mean can be expressed 
a s  

((C(r, t) - Cm(r, 0) 2) _ @2) _ L 3 
1. (9) 

cL to 

Since L(t)  increases with time, the fluctuations about the mean also increase. Note that 
the cloud spread is a function of the co-ordinate system used in describing the ensemble. 
To see this, let us assume that we have sufficient measurements of the turbulent field 
to allow us to predict the motion of the 'major axis' of the distorted pollutant cloud. We 
now put a sensor at a specified r in a co-ordinate system fixed to the major axis. It is 
clear that the probability of detecting a concentration is higher in this co-ordinate system 
than in the previous one. This suggests that L 3 will be smaller in this system and that 
the concentration fluctuations will therefore be smaller. In principle, if we have enough 
information, we can make sure that the sensor is always inside the marked fluid. In this 
case, the concentration fluctuations are zero. This discussion emphasizes the importance 
of defining the ensemble before calculating the statistics of concentrations. As Chatwin 
(1982) points out, "the term 'mean concentration' has no meaning unless it has first been 
made clear what ensemble the mean is taken over". 

Our arguments have neglected the effects of molecular diffusion. Chatwin and 
Sullivan (1979) show that this assumption is justified until the size of the cloud L(t) is 

L a given by 

L a = Lg2~-2#;  Ld/L  o -- Lo2222/7 (10) 

where 2, is the conduction length given by 

2 c = (1,'K2//~) 1/4 ( 1 1 )  

where x is the molecular diffusivity, e is the turbulent dissipation rate and v is the 
kinematic viscosity of the fluid. Estimates of 2r are of the order of 1 ram. The value of 
the 'constant' ~ is uncertain. Chatwin and Sullivan (1979) use ~ - 103 m. If we take 
Lo = 1 m, La works out to be ~ 103 m. This simple calculation suggests that we can 
neglect molecular diffusion in our analysis until the cloud is 'large' compared to L o. The 
role of molecular diffusion can be better understood when one realizes that turbulence 
only distorts the cloud. An initially spherical cloud of pollutant is stretched into strands 
by the straining turbulent velocity field. The edges of these strands are 'blurred' by 
molecular diffusion. This blurring has a negligible effect on the initial volume of fluid 
containing the pollutant. It is only when the thickness of these strands is of the order 
of 2c that molecular diffusion becomes effective. At this stage, the rate of diffusive 
transfer from these strands becomes comparable to the rate at which the strands are 
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squeezed by turbulence. We can now see how molecular diffusion 'destroys' concen- 
tration fluctuations. This rate of destruction becomes large when the cloud 'strand' 
thickness becomes small or equivalently when the local concentration gradients become 
large. Note from Equation (10) that the time at which molecular diffusion becomes 
important is very sensitive to the initial size of the cloud L o. 

Molecular diffusion is probably less important in determining the variance of time- 
averaged concentrations. In the next section, we describe a simple model for the 
variance of time-averaged concentrations measured in the convective boundary layer. 
The formulation of the model again emphasizes the need to define the ensemble to be 
considered. 

5. Concentration Fluctuations in the Convective PBL 

This section discusses a method to estimate the variance of concentrations associated 
with an elevated release into the convective boundary layer. The basic assumption is 
that we know the 'true' relationship between the variables controlling the observed 
concentration. The observed concentration cannot be calculated exactly only because 
we have no information on one or more of these variables. Note that the values of the 
known variables define the ensemble. 

In this example, the observed concentration is assumed to be given by an expression 
suggested by Venkatram (1983). This formulation yields results that compare well with 
those from the water tank experiments of Willis and Deardorff (1978). Then, the 
observed cross-wind integrated concentration is 

~ y _  2Q P(wIz); w = w~, z = h.  (12) 
X 

In Equation (12), Q is the emission rate from a point source with stack height h, x is 
the downwind distance to the receptor and P(wlz) is the probability density function of 
vertical velocity fluctuations at z. The velocity ws is given by 

ws= - u h / x  (13) 

and corresponds to the value required to bring plume material from the source to the 
receptor in a straight line. This physical picture is consistent with the assumption of 
infinite time scales in the convective boundary layer. 

Next we will assume that we cannot predict cY because the precise form of P(wlz) 
is unknown. Although P(wlz) is known to be positively skewed (Lamb, 1982), the 
experience of Weil and Brower (1982) suggests that adequate estimates of concentration 
can be obtained with a gaussian probability density function. We can then write 

1 [ ( w -  Wo)2] (14) 
P(wlz) = x//~tr ~ exp 2~w _J " 

In Equation (14), a w is taken to be a time-averaged value obtained from measurements. 
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The mean vertical velocity w o is unknown, and is responsible for the variation of 
concentrations belonging to the ensemble defined by 

= [Q, h, x, a~, u, T] (15a) 

fl = [wo]. (lSb) 

In Equation (15a), T is the averaging time corresponding to % and u. In the analysis 
to follow, we will find it convenient to deal with lnC -y given by 

InC-Y = I n ( 2 / ~ x )  (Ws--WO)22a~ 

The expression for the geometric mean concentration 
Equation (14): 

,/ ( ) --Y Q exp exp - 
Cg = a~x \ 2a w J 

(16) 

- - y  Cg follows readily from 

(17) 

where the angle brackets refer to an ensemble average. To estimate ( w 2 >, let us assume 
that the records of the vertical velocity w(t), corresponding to the different realizations 
of the ensemble, are derived from a stationary time series with an integral time scale Tw. 
Then one can show that for T>> Tw (Lumley and Panofsky, 1964), 

(wE} = 2a2wTw/T. (18) 

Note that a2w is not the ensemble variance in the sense that it corresponds to infinite 
averaging time. In our discussion, a 2 constrains the energy in each of the realizations 

of the ensemble, 

T 

2= 1 f w2(t)dt. 
~w T 

0 

With Equation (18), and using w~ = - uh/x and tr z = awX/U, Equation (17) becomes 

(19) 

) Cg = ua~ ~ " (20) 

Equation (20) is essentially the gaussian formulation in common use. 
Because w o is a time average of w(t), we can invoke the Central Limit Theorem and 

assume that w o is normally distributed. Then, it is easy to show that the standard 
deviation of concentration 'fluctuations' is given by (Venkatram, 1983): 

.0] 
a(lnC(x'Y))=L--T-kT + ~ + T \T  + ~ " 

(21) 
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In Equation (21), T v is the integral time scale for the horizontal velocity fluctuation v(t) 

a n d  (Ty = (Tvx/u. 

We can specialize Equation(21) for the convective boundary layer by taking 
a z = 0 . 6w , /u  (Panofsky, 1978) and T w " 1.5ze/u (Kaimal et al., 1976). Here, we have 
assumed that these expressions are exact and that the release height h > 0.1. Then, the 
a for the centerline concentration is 

a ( lnC)~3[z i ] a /2 / \  h-;  X = w , x / z e u  (22a) 
\ u T /  X 

s - exp [a] = exp [3(z i /uT) l /2h /X]  . (22b) 

Equation (12) is based on the assumption that the concentration is determined by the 
flux of serially released particles through an elemental area (see Venkatram, 1983 for 
details). This implies that the averaging time T ~ Tw. Therefore, the proposed formula- 
tion for Sc is not applicable for T less than or comparable to Tw. The variance of 
instantaneous concentrations has to be modeled using methods such as that suggested 
by Durbin (1980). 

5 . 1 .  T Y P I C A L  R E S U L T S  

To get an idea of the magnitude of s c, we have plotted Equation (22b) for zi -- 1000 m, 
u = 5 m s - i, and T = 3600 s (1 hr). Figure 4 shows the variation of s c with the non- 
dimensional distance X; h is the normalized source height. Because our formulation 
does not account for the limitation of mixing by the inversion lid, results beyond X = 1 
(especially for h --- 0.5) should be viewed with caution. 

To interpret Figure 4, let us assume t h a t  the concentrations are lognormally 
distributed. (The actual distribution, consistent with the assumed normality of w o, is not 
lognormal.) Then s 2 is approximately equal to the 95~  confidence interval for the ratio 
Co/Cp. For example, sc = 2 indicates that we expect 95 ~ of the observations to lie within 
a factor of 4 ( = s 2) of the prediction. 

As one would expect, sc increases sharply with h, and falls off rapidly with X. If we 
insist that a 'good' model should predict within a factor of two of the observations 95 
of the time, the required s~ is " 1.4. We see that for h = 0.1, the uncertainty meets this 
requirement for X > 0.21. When h = 0.25, the model should perform adequately for 
X > 0.52, and the corresponding X for h = 0.5 is roughly 1.0. 

It is easily shown that at the location at which the model predicts the maximum 
concentration, s~ = 1.8 for all source heights. This means that we should expect 25~/o 
of the observations to lie outside a factor of two of the maximum predicted concentra- 
tion. Clearly, this should be accounted for in regulatory applications of models. Note 
that the preceding results depend on the assumed values of the time scales of the vertical 
and horizontal velocity fluctuations. 

We have assumed that w o is the only unknown variable that is responsible for the 
variance of concentrations. We can readily extend our analysis to a case in which the 
ensemble is specified in terms of a measured velocity u which differs from the 'true' 
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transport velocity by an expected error e,. This error could be the difference between 
the estimated and the actual wind speed in the mixed layer. Then it is easy to show that 

,,p w 
a(lnC(x'O)) N ~ L ~ T -  + \ u /  \cry,, .j (23) 

If we take e, lu = 0.1, we find that except for large hla z (close to the source), the first 
term in the parenthesis is much larger than the second. 

6. The Estimation of Concentration Variance from Data 

The uncertainty estimates provided by the preceding models account for only part of 
unknown variables determining c(~, fl). However, they identify the contribution to the 
concentration variance that is correlated to the model inputs ~. It always necessary to 
construct a model for this component of the concentration variance before we can 
estimate the total variance from data. To see this, let us assume that we have an adequate 



UNCERTAINTY IN PREDICTIONS FROM AIR QUALITY MODELS 195 

model for the ensemble mean. Then the deviation between a model prediction Cp(ct) and 
the corresponding observation Co(0t, fl) is 

c(~, fl)= Co - Cp. (24) 

In order to estimate ac(~ ) empirically, we need to have a sample of c(cr fl) for the same 
~. However, this type of sampling is impossible in practice because each observation 
corresponds to a different ensemble. The only way to get around the problem is to 
normalize c(~, fl) such that it is independent of ~. To achieve this, we have to assume 
that c(~, fl) can be written as 

then 

where 

c(~, fl) = #(fl)f(~) ; (25) 

a~(~) = af(~) (26a) 

a 2 = #2(fl) t~. (26b) 

These equations suggest that we have to formulate f (~)  in order to estimate #(fl) which 
is independent of ~. Then a 2 corresponds to the variance of the normalized residual 

(Co - Cp)/f(ct). 
Note that the manipulation of residuals between observations and predictions to 

generate model performance statistics is meaningful only if c(~, fl) is independent of the 
model inputs. Binning of residuals into 'similar' categories before calculating statistics 
is not useful because the definition of 'similar' is arbitrary. This points to the necessity 
of formulating models for the mean and the variance of concentrations before evaluating 
a model. 

7. Summary 

This paper proposes a framework to estimate the uncertainty in predictions of concen- 
tration from air pollution models. We show that a prerequisite for this estimate is a 
precise definition of the ensemble in terms of the known variables determining the 
concentration. The variation of the variables not included in the ensemble definition is 
responsible for concentration fluctuations or model uncertainty. This concept is 
illustrated through two examples. 

Our analysis suggests that it is necessary to formulate a model for concentration 
fluctuations before one can determine the expected deviation of model predictions from 
observations. 
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