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Abstract. This paper considers the near-field dispersion of an ensemble of tracer particles released 
instantaneously from an elevated source into an adiabatic surface layer. By modelling the Lagrangian 
vertical velocity as a Markov process which obeys the Langevin equation, we show analytically that the 
mean vertical drift velocity ~(t) is 

~(z) = bu.(1 - e-~(1 + z)), 

where z is time since release (nondimensionalized with the Lagrangian time scale at the source), b 
Batchelor's constant, and u. the friction velocity. Hence, the mean height and mean depth of the ensemble 
are calculated. Although the derivation is formally valid only when z ,~ 1, the predictions for ~, mean height 
and mean depth are consistent in the downstream limit (z,> 1) with surface-layer Lagrangian similarity 
theory and with the diffusion equation. By comparing the analytical predictions with numerical, random- 
flight solutions of the Langevin equation, the analytical predictions are shown to be good approximations 
at all times, both near-field and far-field. 

1. Introduction 

To describe the dispersal of  an ensemble of  tracer particles released instantaneously 

from a point source into a turbulent flow, we may define two regions. The nearf ield is 

the region t < T L (where t is the time since release and TL the Lagrangian time scale 

of  the turbulence), in which the tracer distribution is controlled mainly by the velocities 

of  the tracer particles at the source through the persistence of  the turbulent fluid motion 

(Taylor, 1921). The f a r  f ield is the region t ,> T L, where the randomness  of  the turbulence 

causes the tracer distribution to be independent of  the precise velocity histories of  the 

tracer particles. In this region the dispersion tends towards a classical diffusion process, 

described by a diffusion, or Fokker-Planck,  equation (Monin and Yaglom, 1971). 

The near field is important  in many turbulent dispersion problems, but it cannot  be 

treated with the diffusion equation (still the mainstay of  much turbulent dispersion 

research). An alternative approach is to represent the Lagrangian velocities of  the tracer 

particles as sample functions of  a Markov  process w(t) that  obeys the Langevin equation 

dw/d t  = - ~w + 2~(t), (1) 

where r is Gaussian white noise (Arnold, 1974, p. 50), which has the properties 

~(t) = O, r = b(t - s ) .  (2) 

When w(t) is stationary, which is true for dispersion in stationary, homogeneous 

turbulence, the coefficients ~ and 2 obey (Legg and Raupach,  1982) 

= 1/TI_, ,~ = ~ w 2 x / ~ L ,  (3) 
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where Oaw = w' 2 is the Lagrangian velocity variance, with overbars and primes denoting 
ensemble averages and departures therefrom, respectively. (Though the model is 
rewritten here for one-dimensional dispersion, extension to more than one dimension 
is possible.) Numerical dispersion calculations, based on the finite-difference form of 
Equation (1), have been carried out by several workers (e.g., Durbin, 1980; Durbin and 
Hunt, 1980; Legg and Raupach, 1982; Legg, 1983). 

The purpose of this paper is to present some analytical results, derived from 
Equation (1), for the near-field vertical dispersal of an ensemble of tracer particles 
released from an elevated source into a boundary layer at time t = 0. Interest will centre 
on the ensemble's mean Lagrangian vertical velocity (or vertical drift velocity) ~(t), 
mean height Z ( t )  and mean depth 

where 

Zz(t ) = ((Z - ~)2)1/2, (4) 

z(t) = h + | w(s)ds (5) 
. 1  

0 

is a stochastic process whose sample functions are the heights above the ground (z = 0) 
of the individual tracer particles, h being the release height. The near-field behaviour will 
be asymptotically matched with the far-field behaviour implied by the diffusion equation 
and by similarity theories. 

This paper will consider single-particle dispersion only; that is, the particles making 
up the ensemble will be assumed to move independently. Thus, the results will describe 
the average behaviour of a succession of independent instantaneous puffs, in contrast 
to a single puff, for which a two-particle analysis is required. For simplicity, attention 
is restricted at this stage to the adiabatic surface layer (in which T L ocz and 
a w = constant). 

2. Review of Lagrangian Properties of the Adiabatic Surface Layer 

In the adiabatic surface layer, the only velocity scale for vertical velocity statistics (either 
Lagrangian or Eulerian) is the friction velocity u,, and the only length scale is the height 
z. Dimensional analysis then fixes aw and TL: 

a w = a u ,  (6) 

and 

T L =  c z / u , ,  (7) 

where a and c are constants of proportionality. Furthermore, the vertical drift velocity 
of tracer particles in the far field is given by the Lagrangian similarity theory of Batchelor 
(1964) 

= bu, (t ~> Th), (8) 
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where b is another proportionality constant (Batchelor's constant) and T h is the value 
of TL at the source: 

T h = c h / u , .  (9) 

Values are required for a, b, and c. By adopting the common assumption (Hanna, 
1982) that ~ = O-2~E (O-Zw and tr2wE being the Lagrangian and Eulerian vertical velocity 
variances, respectively) we obtain a = a w E / u ,  ~ 1.25, a typical value for both laboratory 
and atmospheric adiabatic surface layers. To fix b and c, we follow Chatwin (1968) and 
Hunt and Weber (1979). Consider a ground source. Since h = 0 and T h = 0, the far field 
extends over all time, the near field vanishes, and the diffusion equation can be applied 
at all times. Therefore, values of Z(t) and Z~(t) deduced from the diffusion equation must 
agree with those from the extension to the surface layer of the statistical dispersion 
theory of Taylor (1921). The diffusion equation predicts (Chatwin, 1968) that 

Z = E~ = k u ,  t / P r ,  (10) 

where k is the von Karman constant and Pr the turbulent Prandtl number for the 
dispersing tracer. The statistical dispersion theory predicts (Hunt and Weber, 1979) that 

Z = b u ,  t ,  Y'z = a (bc )  1/2 u , t .  (11) 

Hence, equating these predictions, it follows that b = k / P r  ~ 0.4 (assuming k ~ 0.4 and 
Pr ~ 1, both experimentally well verified) and that 

a 2 c / b  = 1, (12) 

giving c ~ 0.26. 

3. The Vertical Drift Velocity 

To find ~(t) in the near field (t ~< Th), we consider each tracer particle to be governed 
by Equation (1) with values of TI. and % appropriate to its height Z ( t ) .  An ensemble 
average of Equation (1) gives (since ;t~ = 0): 

d-~/dt  = - w ( t ) /TL ( t )  (13) 

= - ( u , / c ) w ( t ) / Z ( t ) .  (14) 

By defining the dimensionless height 

Y ( t )  = ( Z ( t )  - h ) / h ,  (15) 

for which Y(0) = 0, a binomial expansion can be performed on Equation (14) when t, 
and hence Y( t ) ,  is small: 

d ~ _  
( u ~ * ~ ( ~ - w Y + w y 2  . . . .  ) .  (16) 

dt \ c h /  

We assume that t is small enough that Y(t) ~ 1 and that the higher-order terms, w Y  z . . . . .  
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can be neglected. The term wY can be written as 

1 i w  , wY = -~Y + - (s)w'(t) ds 
h 

0 

(17)  

.~ -~Y + ( ~w----w~ ) ( 1 -  e-  t/TO , ( 1 8 )  

where we have assumed an exponential form for the autocorrelation function of  w(t): 

w'(s)w'(t) = a2~ e (s-t)/rL (s < t). (19) 

Here TL should be evaluated at a height somewhere between Z(s) and Z(t), but it may 

be evaluated at h when T'(t) <~ i. Combining Equations (18) and (16) gives: 

d~  ~(t)  O-2w 
- + - -  (1 - e - ' / r h ) ,  (20)  

dt T h h 

where ~ Y  has been neglected in comparison with ~. This is a simple linear ordinary 

differential equation in ~(t), which may be solved with the initial condition 

~(0)  = O, (21) 

which arises from the requirement that Lagrangian and Eulerian velocities be statistically 

identical at t = 0, the 'labelling time' for tracer particles. The solution is 

~(t) = bu,[1 - e -'/'rh (1 + t/Th) ] , (22) 

in which the equality o~Th/h = bu,, established by Equation (12), has been used. 
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Fig. 1. Comparison of analytical prediction (22) and numerical prediction of vertical drill velocity N(t). 
Solid line: Equation (22); points: one run of numerical model (1000 particles, time step 0.02 TL); dashed line 

with error bars: average of 10 independent runs of numerical model. 
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The formal derivation of this solution is valid only in the limit t ~ 0, but the solution 
has the correct behaviour ~ = bu. in the limit t ~ oo. Therefore, it is reasonable to 
enquire if Equation (22) is a good approximation at all times. This has been tested by 
solving Equation (1) numerically, in finite-difference form, using a random-flight model 
similar to that of Durbin (1980) and Legg (1983). The comparison between the analytical 
and numerical solutions, given in Figure 1, shows that Equation (22) adequately 
specifies ~(t) at all values of t, both near- and far-field. In essence, the reason for the 
success of Equation (22) is that the assumptions in its derivation (especially the 
assumption Y ,~ 1) are valid throughout the near field. 

4. The Mean  Height  and Mean  Depth of  the Ensemble 

It is desirable to evaluate Z(t)  and Zz(t ) in dimensionless form. Accordingly, we rewrite 
Equation (22) as 

- tu, = b(1 - e -  ~(1 + z ) ) ,  

where z = t /T  h. Since ~ = dZ/dt,  Z follows directly by integration: 

Z/h = 1 + b c ( z -  2(1 - e-~)  + ze -~ ) .  

(23) 

(24) 

For Yz, we return temporarily to dimensional variables and use the dispersion theorem 
of Taylor (1921), which gives (on taking mean and fluctuating parts of Z and w): 

dZ~/dt = 2 (w ' ( t )w ' ( s )  ds 
i /  
0 

-2~ I 1 -  e x p ( - U * t ) ]  (25) 
u ,  \ c ~ ( t ) ] _ l  ' 

where Equation (19) has been used for the autocorrelation function, evaluating T L at 
Z(t). Since the exponential is negligible when t ~> Th, it is a good approximation to 
replace Z(t)  by h within it, giving 

dZ~Z/dt ~, 2bu.-Z(t) [1 - e-t/Th], (26) 

which can be integrated thus: 

E~ = 2bu, Z(S) \ bu, + bu. Th d~  

0 

= 2 i Z ( s ) - - d Z d s + 2 T h i - Z ( S ) d s  - -  d~  

O 0 

-Z(t) 2 - h E + 2hTh-w(t). (27) 
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In the first line, Equation (20) has been used; in the second line, the term Z(s) in the 
second integral is replaced by h since d-~/ds (the other term in the integral) approaches 
zero when t >> T h. Numerical integration of Equation (25) has shown that the approxi- 
mation (27) is good to within 0.2~o. In dimensionless variables, the result is 

Z ~ t h  2 = (-2Ih) 2 - 1 + 2bc(1 - e-~(1 + z)). (28) 

In Figures 2 and 3, the analytical results for Z and s are compared with the 
predictions of the numerical model used in the computation ofF.  For Z, the two results 
are in good agreement. For Z z, the analytical prediction slightly exceeds the numerical 
prediction (by about 10Yo) except when t < T h or z < 1. This happens because a single 
time scale T L ( Z )  has been used for the entire cloud in Equation (25) instead of giving 
each fluid particle a different time-scale according to its height, as in the numerical 
model. 
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Comparison of analytical prediction (24) and numerical prediction of Z(t). Symbols as for 
Figure 1. 

5. Discussion 

The far-field solution for Z, obtained by letting t ~ ~ in Equation (24), is 

Z ( t )  = h + bu , ( t  - 2Tn) (t >> Th) ,  (29) 

which is equivalent to the prediction of Lagrangian similarity theory 

Z ( t )  = bu , ( t  + tv),  (30) 

where t v is a displacement for the time origin which accounts for the elevation of the 
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Comparison of analytical prediction (27) and numerical prediction E~(t). Symbols as for Figure 1 
(single run of numerical model not shown). 

source (t o = 0 for a ground source). Comparing these two results, it follows that 

t o = h / b u ,  - 2 T  h ~ 0 . 3 2 h / u , ,  (31) 

which quantifies the order-of-magnitude estimate t o ~ h / u ,  obtained from similarity 
theory. If an ensemble is released from a hypothetical ground source at time ( - to), its 
trajectory passes beneath the real elevated source at height 0.8h. 

At very small times (t ~ Th),  the ensemble has the following behaviour, in dimension- 
less variables' 

F / u ,  = b z a / 2  + 0(z3), 

Z / h  = 1 + b c z 3 / 6  + 0 ( ~ ' 4 )  , 

X~/h  2 = bc~ 2 + 0(~3). 

(32) 

(33) 

(34) 

Equation (32) shows that the ensemble has a well-defined vertical acceleration at all 
times, including t = 0 when the acceleration is zero. This happens even though the 
sample functions of the Markov process w( t )  have undefined (infinite) derivatives. From 
Equation (34), it follows that E z = trwt when t ~ T h, as in homogeneous turbulence. 

Three asymptotic ranges can be identified for Zz: the first is the near field where 
Z z ~ awt, and the last is a far downstream range where Z >> h and Z z ~ Z (this happens 
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so far downstream that the distinction between elevated and ground sources is lost). In 
between lies an intermediate range where t >> T h but Z ~ h; here E~ ~ 2bu.th, so 
Zz oct 1/2. This is the classical result for diffusion in a homogeneous medium with 
diffusivity ~wT h. Figure 3 shows that, in practice, the intermediate range is 'squeezed 
out' between the outer ranges, so that the exponent s in the power law E z oc t" passes 
from 1 (near field) through a minimum of about 0.7 (the squeezed-out intermediate 
range) and back to 1 (far downstream). 

6. Conclusions 

For an ensemble of tracer particles released instantaneously from an elevated source 
into an adiabatic surface layer, analytical expressions have been obtained for the vertical 
drift velocity ~(t), mean height Z(t)  and ensemble mean depth Z~(t) (Equations (22), 
(24), and (28), respectively). The expressions describe the near field, merging into 
well-known far-field expressions (from similarity theory and the diffusion equation) at 
large times. The analysis is based on the assumption that the particle velocities are 
sample functions of a Markov process which obeys the Langevin equation with a 
time-scale TL proportional to height. 

There is no fundamental reason why the Langevin equation should describe fluid 
particle velocities in turbulence; instead, its use is justified by the fact that its solution 
w(t) is a Gaussian process with an exponential autocorrelation function (Arnold, 1974, 
p. 132). Velocities in homogeneous turbulence are approximately Gaussian, with nearly 
exponential Lagrangian autocorrelation functions (Deardorff, 1978); the vertical velocity 
in an adiabatic surface layer is also nearly Gaussian, in the weak sense that it has a 
skewness close to zero and a kurtosis of about 3 (Raupach, 1981). Therefore, the 
Langevin equation appears to offer a tenable model in these circumstances. However, 
when velocity distributions become highly nonGaussian (in crop canopies, strong 
convection, or intermittent turbulence, for example), the Langevin model is far from 
secure. 
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