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Abstract. This paper considers the near-field dispersion of an ensemble of tracer particles released
instantaneously from an elevated source into an adiabatic surface layer. By modelling the Lagrangian
vertical velocity as a Markov process which obeys the Langevin equation, we show analytically that the
mean vertical drift velocity w(?) is

W(1) = bus(l — e~ (1 + 1)),

where 1 is time since release (nondimensionalized with the Lagrangian time scale at the source), b
Batchelor’s constant, and u. the friction velocity. Hence, the mean height and mean depth of the ensemble
are calculated. Although the derivation is formally valid only when 7 < 1, the predictions for w, mean height
and mean depth are consistent in the downstream limit (t> 1) with surface-layer Lagrangian similarity
theory and with the diffusion equation. By comparing the analytical predictions with numerical, random-
flight solutions of the Langevin equation, the analytical predictions are shown to be good approximations
at all times, both near-field and far-field.

1. Introduction

To describe the dispersal of an ensemble of tracer particles released instantaneously
from a point source into a turbulent flow, we may define two regions. The near field is
the region ¢ < Ty (where ¢ is the time since release and T, the Lagrangian time scale
of the turbulence), in which the tracer distribution is controlled mainly by the velocities
of the tracer particles at the source through the persistence of the turbulent fluid motion
(Taylor, 1921). The far field is the region ¢ > T , where the randomness of the turbulence
causes the tracer distribution to be independent of the precise velocity histories of the
tracer particles. In this region the dispersion tends towards a classical diffusion process,
described by a diffusion, or Fokker-Planck, equation (Monin and Yaglom, 1971).
The near field is important in many turbulent dispersion problems, but it cannot be
treated with the diffusion equation (still the mainstay of much turbulent dispersion
research). An alternative approach is to represent the Lagrangian velocities of the tracer
particles as sample functions of a Markov process w(z) that obeys the Langevin equation

dw/de = —aw + 24(0), n
where &£() is Gaussian white noise (Arnold, 1974, p. 50), which has the properties
=0, DD=3-5). ()

When w(¢) is stationary, which is true for dispersion in stationary, homogeneous
turbulence, the coefficients o and A obey (Legg and Raupach, 1982)

a=1/T;, A=o0,2/T., 3)
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where 62 = w’'? is the Lagrangian velocity variance, with overbars and primes denoting
ensemble averages and departures therefrom, respectively. (Though the model is
rewritten here for one-dimensional dispersion, extension to more than one dimension
is possible.) Numerical dispersion calculations, based on the finite-difference form of
Equation (1), have been carried out by several workers (e.g., Durbin, 1980; Durbin and
Hunt, 1980; Legg and Raupach, 1982; Legg, 1983).

The purpose of this paper is to present some analytical results, derived from
Equation (1), for the near-field vertical dispersal of an ensemble of tracer particles
released from an elevated source into a boundary layer at time ¢ = 0. Interest will centre
on the ensemble’s mean Lagrangian vertical velocity (or vertical drift velocity) w(z),
mean height Z(z) and mean depth

(0 =(Z-Z))", 4)

where
Z) =h+ f w(s) ds » 5)

is a stochastic process whose sample functions are the heights above the ground (z = 0)
of the individual tracer particles, 4 being the release height. The near-field behaviour will
be asymptotically matched with the far-field behaviour implied by the diffusion equation
and by similarity theories.

This paper will consider single-particle dispersion only; that is, the particles making
up the ensemble will be assumed to move independently. Thus, the results will describe
the average behaviour of a succession of independent instantaneous puffs, in contrast
to a single puff, for which a two-particle analysis is required. For simplicity, attention
is restricted at this stage to the adiabatic surface layer (in which T; ocz and
o,, = constant).

2. Review of Lagrangian Properties of the Adiabatic Surface Layer

In the adiabatic surface layer, the only velocity scale for vertical velocity statistics (either
Lagrangian or Eulerian) is the friction velocity ux, and the only length scale is the height
z. Dimensional analysis then fixes ¢,, and 77 :

0, = aux (6)
and
TL = cz/u* s (7)

where a and ¢ are constants of proportionality. Furthermore, the vertical drift velocity
of tracer particles in the far field is given by the Lagrangian similarity theory of Batchelor
(1964)

W=bux (t>T,), ®)
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where b is another proportionality constant (Batchelor’s constant) and T, is the value
of T} at the source:

Th = ch/u* . (9)

Values are required for a, b, and c. By adopting the common assumption (Hanna,
1982) that 62 = 671 (62 and o2 being the Lagrangian and Eulerian vertical velocity
variances, respectively) we obtain a = o6,z /ux & 1.25, a typical value for both laboratory
and atmospheric adiabatic surface layers. To fix b and ¢, we follow Chatwin (1968) and
Hunt and Weber (1979). Consider a ground source. Since 2 = 0 and T, = 0, the far field
extends over all time, the near field vanishes, and the diffusion equation can be applied
at all times. Therefore, values of Z(¢) and £2(¢) deduced from the diffusion equation must
agree with those from the extension to the surface layer of the statistical dispersion
theory of Taylor (1921). The diffusion equation predicts (Chatwin, 1968) that

7 =%, = kust/Pr, (10)

where k is the von Karman constant and Pr the turbulent Prandtl number for the
dispersing tracer. The statistical dispersion theory predicts (Hunt and Weber, 1979) that

Z=bust, X, =a(bc)’?uxt. (11)

Hence, equating these predictions, it follows that b = k/Pr ~ 0.4 (assuming k ~ 0.4 and
Pr ~ 1, both experimentally well verified) and that

a’clb=1, (12)
giving ¢ = 0.26.

3. The Vertical Drift Velocity

To find w(¢) in the near field (+ S T},), we consider each tracer particle to be governed
by Equation (1) with values of T; and 6, appropriate to its height Z(f). An ensemble
average of Equation (1) gives (since 1¢ = 0):

dw/dr = —w(B)/T (9 (13)
= — (us/c)w()/ Z(7) . (14)

By defining the dimensionless height
Y(1) = (Z(®) - Wk, (15)

for which Y(0) = 0, a binomial expansion can be performed on Equation (14) when ¢,
and hence Y(¢), is small:

dw Uk . — T3
E_—<a>(w—wY+wY ). (16)

We assume that ¢ is small enough that Y(f) < 1 and that the higher-order terms, w¥?2, . . .,
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can be neglected. The term wY can be written as

t

wY = wY + % J w ($)w () ds amn
0
- [
~W ( T”) (1 -e 9Ty, (18)
where we have assumed an exponential form for the autocorrelation function of w(¢):
WEW (@) = eI (s<i). ' (19)

Here T} should be evaluated at a height somewhere between Z(s) and Z(?), but it may
be evaluated at & when Y(f) < 1. Combining Equations (18) and (16) gives:

dW w(t) _
—_ 1 —e 974, 20
pp I, ( ) (20)

where WY has been neglected in comparison with w. This is a simple linear ordinary
differential equation in w(t), which may be solved with the initial condition

w(0) =0, 1)

which arises from the requirement that Lagrangian and Eulerian velocities be statistically
identical at ¢ = 0, the ‘labelling time’ for tracer particles. The solution is

W(t) = bux[1 — e~ YT (1 + ¢/T,)], (22)
in which the equality 62T,,/h = bux, established by Equation (12), has been used.
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Fig. 1. Comparison of analytical prediction (22) and numerical prediction of vertical drift velocity w(z).
Solid line: Equation (22); points: one run of numerical model (1000 particles, time step 0.027; ); dashed line
with error bars: average of 10 independent runs of numerical model.
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The formal derivation of this solution is valid only in the limit z — 0, but the solution
has the correct behaviour w = bux in the limit 1 — co. Therefore, it is reasonable to
enquire if Equation (22) is a good approximation at all times. This has been tested by
solving Equation (1) numerically, in finite-difference form, using a random-flight model
similar to that of Durbin (1980) and Legg (1983). The comparison between the analytical
and numerical solutions, given in Figure 1, shows that Equation (22) adequately
specifies w(¢) at all values of ¢, both near- and far-field. In essence, the reason for the
success of Equation (22) is that the assumptions in its derivation (especially the
assumption Y < 1) are valid throughout the near field.

4. The Mean Height and Mean Depth of the Ensemble

It is desirable to evaluate Z(f) and Z,(¢) in dimensionless form. Accordingly, we rewrite
Equation (22) as

Whuxs=b{1 —e” (1 + 1)), 23)
where 1 = ¢/T,,. Since w = dZ/dt, Z follows directly by integration:
Zh=1+bc(t~2(1 ~e %)+ 1€ 7). (24)

For Z,, we return temporarily to dimensional variables and use the dispersion theorem
of Taylor (1921), which gives (on taking mean and fluctuating parts of Z and w):

dz2?/de = 2 j w ()w'(s) ds

0

_ Zvac?(t)[ _ (—u*t>]
== 1 - exp Z0) ) (25)

where Equation (19) has been used for the autocorrelation function, evaluating T, at
Z(y). Since the exponential is negligible when ¢ > T, it is a good approximation to
replace Z(t) by h within it, giving

dX2/dt ~ 2bus Z(£) [1 ~ e~ ¥74], (26)

which can be integrated thus:

t

£2 = 2bux J Z(s) (W(S) ) dj) ds

busx bus ds

0

_ 4z C_ dw
=2 | Z(s) — ds + 2T, Z(s) — ds
Oj © 2 j <

0

~ Z(1)* - h* + 2T, %() . @7
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In the first line, Equation (20) has been used; in the second line, the term Z(s) in the
second integral is replaced by 4 since dw/ds (the other term in the integral) approaches
zero when ¢ > T,. Numerical integration of Equation (25) has shown that the approxi-
mation (27) is good to within 0.2%,. In dimensionless variables, the result is

$2/R% = (Z/h)? — 1 + 2be(l — e~ *(1 + 1)). (28)

In Figures 2 and 3, the analytical results for Z and X, are compared with the
predictions of the numerical model used in the computation of w. For Z, the two results
are in good agreement. For X_, the analytical prediction slightly exceeds the numerical
prediction (by about 10%,) except when ¢ < T, or < 1. This happens because a single
time scale T; (Z) has been used for the entire cloud in Equation (25) instead of giving
each fluid particle a different time-scale according to its height, as in the numerical
model.
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Fig. 2. Comparison of analytical prediction (24) and numerical prediction of Z(¢). Symbols as for
Figure 1.
5. Discussion
The far-field solution for Z, obtained by letting ¢ — co in Equation (24), is
Z(@) =h+ bus(t - 2T,) (1> Tp), 29)
which is equivalent to the prediction of Lagrangian similarity theory
Z(t) = bux(t + 1), (30)

where 7, is a displacement for the time origin which accounts for the elevation of the
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Fig. 3. Comparison of analytical prediction (27) and numerical prediction Z,(t). Symbols as for Figure 1
(single run of numerical model not shown).

source (¢, = 0 for a ground source). Comparing these two results, it follows that
t, = hjbux — 2T, ~ 0.32h/ux , 3D

which quantifies the order-of-magnitude estimate ¢, ~ h/ux obtained from similarity
theory. If an ensemble is released from a hypothetical ground source at time ( - t,), its
trajectory passes beneath the real elevated source at height 0.84.

At very small times (¢ € T, ), the ensemble has the following behaviour, in dimension-
less variables:

Wiux = b12[2 + 0(z%), (32)
Z/h =1+ bet’/6 + 0(1Y), (33)
S22 = bet? + 0(2%). (34)

Equation (32) shows that the ensemble has a well-defined vertical acceleration at all
times, including ¢ = 0 when the acceleration is zero. This happens even though the
sample functions of the Markov process w(z) have undefined (infinite) derivatives. From
Equation (34), it follows that £, = ¢, when ¢ < T}, as in homogeneous turbulence.

Three asymptotic ranges can be identified for Z_: the first is the near field where
Z, - o,t, and the last is a far downstream range where Z > h and Z, — Z (this happens
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so far downstream that the distinction between elevated and ground sources is lost). In
between lies an intermediate range where ¢> T, but Z ~ h; here X2 — 2buxth, so
X, oc t'2. This is the classical result for diffusion in a homogeneous medium with
diffusivity o2 T,. Figure 3 shows that, in practice, the intermediate range is ‘squeezed
out’ between the outer ranges, so that the exponent s in the power law X_ oc t* passes
from 1 (near field) through a minimum of about 0.7 (the squeezed-out intermediate
range) and back to 1 (far downstream).

6. Conclusions

For an ensemble of tracer particles released instantaneously from an elevated source
into an adiabatic surface layer, analytical expressions have been obtained for the vertical
drift velocity %(f), mean height Z(¢) and ensemble mean depth Z_(z) (Equations (22),
(24), and (28), respectively). The expressions describe the near field, merging into
well-known far-field expressions (from similarity theory and the diffusion equation) at
large times. The analysis is based on the assumption that the particle velocities are
sample functions of a Markov process which obeys the Langevin equation with a
time-scale 7, proportional to height.

There is no fundamental reason why the Langevin equation should describe fluid
particle velocities in turbulence; instead, its use is justified by the fact that its solution
w(t) is a Gaussian process with an exponential autocorrelation function (Arnold, 1974,
p. 132). Velocities in homogeneous turbulence are approximately Gaussian, with nearly
exponential Lagrangian autocorrelation functions (Deardorff, 1978); the vertical velocity
in an adiabatic surface layer is also nearly Gaussian, in the weak sense that it has a
skewness close to zero and a kurtosis of about 3 (Raupach, 1981). Therefore, the
Langevin equation appears to offer a tenable model in these circumstances. However,
when velocity distributions become highly nonGaussian (in crop canopies, strong
convection, or intermittent turbulence, for example), the Langevin model is far from
secure.
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