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Abstract. The goal of this paper is the learning of neuro- 
muscular control, given the following necessary conditions: 
(1) time delays in the control loop, (2) non-linear muscle 
characteristics, (3) learning of feedforward and feedback 
control, (4) possibility of feedback gain modulation during a 
task. A control system and learning methodology that satisfy 
those conditions is given. The control system contains a neu- 
ral network, comprising both feedforward and feedback con- 
trol. The learning method is backpropagation through time 
with an explicit sensitivity model. Results will be given for a 
one degree of freedom arm with two muscles. Good control 
results are achieved which compare well with experimental 
data. Analysis of the controller shows that significant differ- 
ences in controller characteristics are found if the loop delays 
are neglected. During a control task the system shows feed- 
back gain modulation, similar to experimentally found reflex 
gain modulation during rapid voluntary contraction. If  only 
limited feedback information is available to the controller the 
system learns to co-contract the antagonistic muscle pair. In 
this way joint stiffness increases and stable control is more 
easily maintained. 

1 Introduction 

The focus of this paper is on learning optimal control of 
musculoskeletal systems. The actuators in a musculoskele- 
tal system are highly non-linear. Significant time delays are 
present in the control system. To deal with such a system the 
central nervous system employs feedback as well as feed- 
forward neuromuscular control modes. Feedforward control 
is necessary in order to make fast movements in spite of the 
significant delays in the control loop. The feedforward con- 
troller contains the inverse dynamics of  the muscutoskele- 
tal system and therefore it is a non-linear system. Feedback 
control is required for compensation of external disturbances 
and of errors in the internal model of the inverse dynamics. 
It follows from experiments (e.g. Kirsch et al. 1993) that 
the feedback gains are not constant but can be adapted by 
supraspinal pathways, depending on the task being executed. 
In summary, a neuromuscular control system is non-linear, 

combines feedback and feedforward control modes and con- 
tains varying feedback gains. 

A framework for learning control of voluntary move- 
ments by the central nervous system is given by Kawato et 
al. (1987). The suggested control system consists of an inter- 
nal model of the (forward) dynamics of the musculoskeletal 
system, an internal model of the inverse dynamics and a con- 
troller. The controller generates proper neural control signals 
based on the desired trajectory, the delayed and estimated 
states of the musculoskeletal system and inverse dynamics 
signals. The internal model of the forward dynamics predicts 
state values of the musculoskeletal system, which are used 
by the feedback controller. For training of the inverse dynam- 
ics model Kawato and coworkers introduced a learning strat- 
egy called feedback error learning (FEL). In this approach 
it is assumed that the neural input u of  the musculoskeletal 
system is the sum of the control signals generated by sep- 
arate feedback (uy) and feedforward (u0 controllers. The 
feedback system controls the musculoskeletal system in a ba- 
sic, non-optimal way. The feedforward controller is trained 
using the feedback control signals. This learning method 

comes down to minimization of E = ~TT fo T u)(t)uf(t)dt by 
a supervised learning method (' denotes the transpose of the 
vector and T a training time-interval). Since uf  = u - ui 
this means that the desired output of the inverse dynam- 
ics network in the supervised learning procedure is u. If 
the feedback control signals tend to zero and persistently 
exciting desired trajectories have been applied, the inverse 
dynamics have been learned well. 

Application of feedback error learning to robots (e.g. 
Kawato et al. 1987) as well as to neuromuscular control 
(Katayama and Kawato 1991, 1993; Gomi and Kawato 
t992) shows that this methodology can lead to good results 
for systems with several degrees of  freedom. It is stated how 
FEL could actually be applied in several specific neuromus- 
cular systems, contributing to the biological plausibility of 
this learning concept. Limitations of the reported neuromus- 
cular control simulations are: (1) the simple muscle models, 
which neglect many known non-linear characteristics, (2) 
the constant linear feeAback controllers, which neglect the 
known feedback gain variability and (3) the lack of sig- 
nificant loop delays. Kawato and co-authors (1987) admit 
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the importance of loop delays in neuromuscular control and 
suggest an internal model of the forward dynamics of the 
musculoskeletal system to compensate for time delays. In 
the learning simulations, however, they left out the internal 
forward dynamics model, due to computer limitations, and 
omitted time delays. It can thus be concluded that they as- 
sumed a perfect internal model of the forward dynamics dur- 
ing learning of the inverse dynamics. However, the existence 
of a perfect internal model of the forward dynamics when the 
inverse dynamics are completely unknown is unlikely. The 
omission of feedback delays during feedback error learning 
is therefore not justified. In simulation of simultaneous adap- 
tation of the vestibulo-ocular reflex and the optokinetic eye 
movement response using FEL, Gomi and Kawato (1992) in- 
cluded feedback delays of 10 and 20 [ms]. These delays are 
very small with respect to the applied movement frequency 
of 0.2 [Hz]. Stability of FEL for systems with significant 
delays can thus not be inferred from these simulations. 

Gorinevsky (1993) included time delays in his neuro- 
muscular control simulations concerning a two-link arm with 
two muscle pairs. He employed a linear feedback controller 
whose gains were varied according to a prespecified law. 
Furthermore the co-contraction level of the muscles was var- 
ied according to a predefined rule. A feedforward controller 
was trained using a paradigm called 'direct motor learning'. 
Limitations of this study concern (1) the omission of length- 
dependent elements in the muscle models and (2) the fact 
that feedback gains and co-contraction levels are predefined 
rather than learnt. 

The goal of this paper is the learning of optimal control 
of a musculoskeletal system, given the necessary boundary 
conditions discussed above. These conditions are: (1) inclu- 
sion of time delays, (2) inclusion of non-linear muscle char- 
acteristics, (3) learning of feedforward and feedback control, 
(4) possibility of feedback gain modulation during a task. 

In Sect. 2 a neuromuscular control system and a learn- 
ing methodology which satisfy these conditions will be dis- 
cussed. Learning and typical responses after learning will 
be discussed in Sect. 3.1. To stress the importance of the 
inclusion of time delays, the differences between controllers 
which were trained with and without delays will be analysed 
in Sect. 3.2. In Sect. 3.3 the training methodology is applied 
to study the effect of limited controller feedback. The simu- 
lation results obtained are compared with experimental data 
and further discussed in Sect. 4. 

2 Methods 

2.1 Musculoskeletat system 

The musculoskeletal system to be controlled is a one degree 
of freedom link with an antagonistic muscle pair. The sys- 
tem equations are based on the work of Winters and Stark 
(1985). Each muscle contains first-order excitation dynam- 
ics, non-linear first-order activation dynamics, a Hill type 
force-velocity dependence, a Gaussian force-length depen- 
dence, a series elastic element and a parallel elastic element. 
Constant moment arms are assumed. The link dynamics are 
represented by two states, namely angle 0 and angular veloc- 
ity 0. Contraction of the agonist muscle results in a positive 

1 

Fig. 1. Complete control system consisting of control unit, internal model, 
muscles and link. The inmrnal model estimates the muscular activations: 

= [&l fi2] T- The neural input vector u = [ul u2] T controls the mus- 
culoskeletal system. Sensorial information is known after a delay 7" and 
contains the muscular forces F = [FI F2] r and joint angle and angular 
velocity y = [0 0]T. The reference trajectory is specified at a higher level: 
Yref = [Oref 19re$ Ore f] T 

i ' Link i y �9 

0. The dynamics of each muscle can be described by three 
states, namely excitation e, activation a and contractile ele- 
ment length lee. The total musculoskeletal system thus is a 
non-linear eighth-order system. The neural input signal u of 
each muscle is normalized to the [0,1] interval. Appendix A 
gives all the system equations. The system is calculated us- 
ing second-order Runge-Kutta integration with a constant 
time step h = 0.5 [ms]. 

2.2 Control system 

The following conditions with respect to the control system 
were formulated: (1) it must be non-linear, (2) it must com- 
prise both feedforward and feedback control modes, (3) both 
parts must be adaptive, (4) feedback gains can be modulated 
during a control task (after learning) and (5) delays must be 
accounted for. Conditions 1 to 4 are satisfied by a controller 
which is one neural network with feedforward as well as 
feedback input signals. Such a system is non-linear (condi- 
tion 1) and contains both control modes (condition 2) which 
are both adaptive (condition 3), since the whole network is 
adaptive. Furthermore the feedback gains can be modulated 
by the feedforward signals during a control task (condition 
4). The fifth condition is satisfied by applying delayed feed- 
back signals. 

The control system is schematically depicted in Fig. 1. 
The total loop delay, which consists of neural processing 
time and efferent and afferent transport times, is estimated 
to be 50 [ms] (as in Gerdes and Happee 1994). The total 
loop delay is modelled by a feedback delay r between the 
receptors and the controller. 

The control unit is a multilayer perceptron neural net- 
work. The network contains one hidden layer with 15 units 
employing sigmoidal activation functions. Also the output 
layer contains sigmoidal activation functions, limiting the 
neural control signals to the [0, 1]-interval, as required. The 
neural network is represented by: 

u(t) =/'2(W21"l(Wls(t) + bl)  + b2) (1) 

a(x) = 1 / (exp( -x)  + l) (2) 
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with s(t) network input, u(t) network output, Wl and W2 
weight matrices, b 1 and b2 bias vectors, and/"1 and 1"2 arrays 
of sigmoidal functions a. 

The two-dimensional network output vector u(t) speci- 
fies the neural input of the muscles. The network input vector 
s(t) consists of feedforward and feedback signals. An aspect 
of this study is the effect of limited feedback information on 
the control strategies. The controller configuration specified 
here has a complete input set, but subsets will also be used. 
It is assumed that the central nervous system (CNS) plans 
a movement trajectory in joint coordinates. The desired link 
angle Orey(t), angular velocity 0tel(t) and angular acceler- 
ation O~$(t) are specified to the controller. Since a static 
system is applied for the control of a system with complex 
muscular dynamics and the muscular activations are impor- 
tant state variables which can not be measured, it is assumed 
that an accurate internal model of the excitation-activation 
dynamics exists. This internal model which represents only 
a small part of the total musculoskeletai system, predicts the 
actual activation of each muscle accurately. The controller 
employs the estimated activations ~(t). 

The musculoskeletal system provides the CNS with the 
following proprioceptive information: length and velocity of 
each muscle, measured by muscle spindles; muscle force, 
measured by Golgi tendon organs; and angular position and 
velocity of a joint, measured by receptors in synovia and lig- 
aments. Since the reference trajectory is expressed in joint 
variables, it is assumed that the proprioceptive information 
is transformed to the joint domain. This transformation in- 
volves a (straightforward) static mapping to link angle and 
velocity. The (delayed) feedback input signals of the con- 
troller are the muscle force of both muscles F m ( t -  ~-), angle 
error e(t - T) and angular velocity error ~(t - T): 

e(t -- ~') = O(t -- r)  -- O~,j(t -- r) (3) 

~ ( t  - r )  = o ( t  - r )  - O ~ e f ( t  - r )  ( 4 )  

2.3 Learning optimal neuromuscular control 

To achieve optimal control of the system discussed in the 
previous section, backpropagation through time (BTI') is ap- 
plied as the learning algorithm. This learning algorithm is 
usually employed with baekpropagation through an identifi- 
cation model of the plant (e.g. Nguyen and Widrow 1991). 
Applying backpropagation through an identification model 
calculates the cost gradient with respect to the model in- 
put V u J  from the cost gradient with respect to the model 
output VyJ .  The cost function specifies the desired control 
behaviour. Now implicitly the Jacobian or sensitivity matrix 
of the identification model has been utilized. This matrix 
contains the partial derivatives Oy~/Ouj for all inputs and 
outputs. In this paper a sensitivity model which calculates 
the exact Jacobian for an arbitrary working-point is applied. 
This means that the learned control is not hampered by an 
imperfect identification model, as is desired in an optimiza- 
tion study. 

In the following a general description of the BTT algo- 
rithm for learning control simulations will be given. Given a 
non-linear, time-invariant dynamical system with input vec- 
tor u(t), state vector x(t) and output vector y(t): 

~(t) = f(x(t), u(t)) (5) 
y(t) = g(x(t)) (6) 

A general static (neural network) controller q with input 
vector s(t) and output u(t) is specified by: 

u(t) = q(s(t)) (7) 

The input vector s(t) may contain all kinds of (possibly de- 
layed) signals which seem relevant for the control task. Log- 
ical candidates are reference signals r(t) and system output 
signals y(t). The desired control behaviour over the interval 
[0, T] is specified by a cost function J:  

/0 J = l(x(t), y(t), u(t), r(t), t, T)dt (8) 

Application of BTT and computer simulation requires dis- 
cretization of the system dynamics (by e.g. a Runge-Kutta 
method) and of the cost function: 

x(k + 1) = fd(x(k), u(k)) 
N 

J = E l(x(k), y(k), u(k), r(k), k, N)  

(9) 

(lO) 
k---0 

Discrete and continuous time are now associated by: 

t = hk (11) 

with h the discretization time-step. 
Learning of the controller q requires knowledge of the 

effect of the control signal u(k) on the costs J .  The total 
causal impact of uj(k) o n  J is represented by the ordered 
derivative (Werbos 1988): 

O+J 
Ouj(k) (12) 

This ordered derivative O+J/Ouj(k) measures how much a 
small change in uj at time k affects the costs J over the 
whole trajectory. The ordered derivative accounts for the 
direct and indirect effects of a change in uj(k) o n  J ,  as 
opposed to the conventional partial derivative OJ/Ouj(k) 
which refers only to the direct effect. The required ordered 
derivatives are calculated recursively by: 

O+J Ol(N) ~-~ Ol(N) Oyq(1N') 
Oxi(N) = Oxi(N----~ + ~ Oyq(N) Oxi(N) (13) q=l 

O+J Ol(k_.....~) ~ Ol(k) Oyq(k) 
Ox~(k) - Oxi(k) + q=l Oyq(k) Oxi(k) 

O+J Oxq(k + 1) 
+ Ozq(k + 1) Oxdk) 

(14) 
q=l 

k =  1 . . . N - l ,  i = l . . . n  

O+J Ol(k._.....~) ~ O~J OXq(k + I) 

Ouj(k) - Ouj(k) + ~ Oxq(k + 1) Ouj(k) 
(15) 

q=l 

k = O . . . N - 1 ,  j = l . . . m  

where n, m and p are the sizes of the state, input and output 
vectors, respectively. The partial derivatives Ol(k)/Oxi(k), 
Ol(k)/Ou~(k) and Ol(k)/Oyo(k) can be calculated directly 
given the function l(k). The partial derivatives Oyq(k)/Oxi(k) 
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are known by computation of the system Jacobian Vxg. The 
partial derivatives i)xq(k + 1)/Oxi(k) and ~)Xq(k + 1)/Ouj(k) 
are calculated in an indirect way depending on the inte- 
gration method. Computation of these derivatives is most 
straightforward for first-order Euler's integration method, 
given by: 

x(k + 1) = x(k) + hf(x(k), u(k)) (16) 

It can easily be seen that the required partial derivatives can 
now be computed, if the Jacobian matrices V~f  and V~f are 
known: 

Ox~(k + 1) 1 + h ~ ( x ( k ) , u ( k ) ) ,  i = j  7) 
(1 

Oxj(k) h~(x(k) ,u(k) ) ,  i e j 

Oxi(kou3(k) + l) = h~(x(k),u(k)). (18) 

Also more complex integration methods can be used for the 
dynamic feedback calculation. Appendix B gives the equa- 
tions for second-order Runge-Kutta, as has been applied in 
the simulations. 

Given O+J/Ouj(k) the ordered derivatives of the costs 
with respect to the weights of the neural network O+J(k)/Ow 
are calculated for each time-step k using backpropagation. 
By analogy with standard supervised learning this derivative 
information can be applied in a pattern or batch-like way 
for updating the weights. A batch update means adaptation 
of the weights in the negative direction of the derivative, 
averaged over the whole trajectory: 

N-1 
V E O+J(k) (19) A w  = - - -~  Ow 

A pattern update signifies weight adaptation for each time- 
step: 

O+J(k) k = 0 . . .  N -  1 (20) Aw(k) = -~? Ow ' 

where the learning constant ~1 for batch updating 0 9 )  is 
of course larger than that for pattern updating (20). Since 
the pattern update was found to be more effective than the 
batch variant, this former method was used in all simulations 
presented in this paper. 

Figure 2 schematically shows the BTT learning proce- 
dure for a control system without feedback delays. In this 
example the control signal u(k) is based on a reference sig- 
nal r(k) and a system output y(k). The system has been 
unfolded over N time-steps. After time-stcp N the costs 
over the whole trajectory are calculated. Going backward in 
time the ordered gradient vector V~+(~)J is calculated using 
(13) and (14), and V+(k)J is computed according to (15). 

2.4 Learning parameters 

In the previous section a general formulation of the learn- 
ing algorithm was given. Some specific procedures and pa- 
rameters as applied in the performed simulations are now 
described. The applied cost function J is: 

1 9~0T(0(t) J = ~ - -  O r e f ( t ; ) )  2 + "taT(t ) + 7a~(t) d$ (21) 

r(0) r(l) 

r(N-D 

[ ~ - - ~ - ~  u ( N - I ) _ ~ " ~  (N 

. . . - Y ( ~  f,g ~ )  

Fig. 2. Diagram of the backpropagation through time (BTT) learning proce- 
dure. The control system, which consists of a controller q and a dynamical 
system (f, g), has been unfolded over N time-steps. Going forward in time 
(continuous arrows) the control signals u(k) and the system outputs y(k) are 
calculated, employing the reference signals r(k), Going backward in time 
(dashed arrows) the ordered gradient vectors of the costs d with respect to 
the states x(k) and the control inputs u(k) are computed 

with "/ = 0.05 and T = 0.3 [s]. This cost function mini- 
mizes angle deviations as well as muscular activations. The 
activation signals are minimized in order to attain low en- 
ergy consumption. The parameters were chosen such that 
satisfactory simulation results were attained. 

As specified in Sect. 2.1, the integration time-step for 
the musculoskeletal system is 0.5 [ms]. This short time-step 
is necessary because of the inclusion of a stiff series elastic 
element in the musculoskeletal model. The output dynamics 
of the nmsculoskeletal system do not necessitate such short 
update times for the controller. This update time was chosen 
to be 2.5 [ms]: five times as large as the integration time- 
step. Unfolding the system in time, as is shown in Fig. 2, 
now implies that each controller block is followed by five 
system dynamics blocks. Unfolding the system over time T 
means a concatenation of 120 such combined blocks in the 
BTT algorithm. 

An iteration during learning lasts Ti = 5 [s]. In each it- 
eration a reference signal is specified. The applied reference 
signals consist of the sum of six sinusoids with frequen- 
cies and amplitudes randomly chosen from uniform distri- 
butions: [wmin, Wma~ ] and [Amin, Amax ], respectively. The 
amplitude of the reference signal is normalized such that 
it does not exceed Amaz. The distribution parameters are: 
w,~i~ = 0.1 [rad/s], Wma.~ = 8.0 [rad/s], A,~in = 0.1 [rad], 
Ama~ = 1.25 [rad]. 

The learning parameter ~ was constant during all simu- 
lations. A value ~7 = 20 gave good and mostly stable results. 

2.5 Controller analysis 

During learning the controller is evaluated by calculating 
the costs J ,  root mean squared angle deviations and average 
neural input signals for three sinusoidal reference signals 
with amplitude A m ~  and frequencies at 20%, 50% and 80% 
of the reference frequency interval. Apart from evaluation by 
system responses the controllcr is analysed by linearization 
of the controller along the performed trajectory. Input-output 
linearization provides us with information on the relation of 
feedforward and feedback control components and on the 
variation of feedback gain factors. 
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Given the backpropagation algorithm, linearization of the 
controller q is very straightforward. In the applied backprop- 
agation algorithm the cost gradient with respect to the net- 
work output vector VsJ  is employed to calculate the cost 
gradient with respect to the network weights Vwd and also 
with respect to the network input vector xTuJ. In order to 
calculate On~/Os~ for the working point s the derivative of 
the costs with respect to one of the outputs is defined as 
'one' and all others as 'zero': 

O d _ { 1  l = j  (22) 
Out - l C j, l= l . . . m  

with m the size of the vector u. Backpropagation now ren- 
ders the sensitivity vector of this particular output for vari- 
ations of the input signals: 

Ouj OJ 
Osi = Os,z (23) 

since 

OJ = OJ Ouj (24) 
OS~ j=l  Ouj Osi 

3 Results 

In this section the results of learning the musculoskeletal sys- 
tem with BTT will be discussed. In Sect. 3.1 typical learn- 
ing curves and responses after training will be reviewed. To 
demonstrate the importance of learning with sensorial de- 
lays, it will be shown that different control strategies have 
been acquired after learning with and without the presence 
of those delays in Sect. 3.2. Finally a self-emerging control 
strategy, found after learning with limited sensorial feed- 
back, will be discussed in Sect. 3.3. 

3.1 Learning curves and typical responses 

Learning processes with the same learning parameters re- 
sult in somewhat different learning curves, since there are 
some stochastic factors in the learning process. Those fac- 
tors are the randomly chosen initial weights and parameters 
determining the reference signals. Figure 3 shows the aver- 
age learning curves plus standard deviations of five trials for 
a typical learning parameter set. Each of the learning pro- 
cesses takes a computation time of 5�89 h on a Silicon Graph- 
ics Indigo 2 workstation. Observe the fast decay of the costs 
in the first 250 [s] and the slow decay subsequently. The 
small standard deviation indicates that the influence of the 
stochastic factors is not large. Examination of the cost com- 
ponents which are reflected in the root mean squared error 
(RMSE) and average neural input, shows a slower initial 
decay of the neural control signals than that of the RMSE. 
The higher neural input signals indicate an increased coac- 
tivation level during the initial learning phase. Because of 
slight fluctuations in the individual cost curves, the average 
curve is not monotonically decaying. Therefore the average 
costs, RMSE and neural input over the final 500 iterations, 
denoted as J r , / ) y  and ~2f, will be taken as a measure of the 
results achieved. 
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Fig. 3. Average learning curves (n = 5) plus standard deviations showing 
the course of costs (top), RMSE (middle) and average neural input (bottom) 
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Fig. 4. System responses for typical mu]ti-sinusoidal reference signals a~cr 
learning has been completed. The lefl-handfigure shows achieved and ref- 
erence angles plus agonistic and antagonistic control signals for a system 
without measurement noise. The right-hand figure shows those signals for 
a system where measurement noise is included 

After learning, good combined feedforward and feedback 
control of the musculoskeletal system with sensorial delays 
has been attained. Figure 4 shows the system responses of a 
system with and without measurement noise for typical ref- 
erence signals, as applied during learning. Only small errors 
occur and the amplitude of the neural input signals is low, in- 
dicating a low energy consumption. Furthermore, it follows 
that the system is not noise sensitive. White measurement 
noise clearly affects the neural input signals, since it is not 
attenuated by the (static) controller. The trajectory achieved 
is, however, barely influenced, given the low-frequency pass 
characteristics of the musculoskeletal system. 

The system that was trained with multi-sinusoidal refer- 
ence signals can control all kinds of movements that lie in 
the training frequency spectrum. A good example of such 
a movement, for which there exist abundant experimental 
data, is a fast goal-directed movement. Typical experimen- 
tal data of fast arm movements (e.g. Happee 1992) show 
triphasic electromyographic (EMG) patterns: activation of 
agonistic muscles to accelerate the limb, activation of an. 
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Fig. 5. System response for a step-like reference signal showing triphasic 
neural input signal 

tagonistic muscles to decelerate the limb and activation of 
agonistic muscles to compensate for too much deceleration. 
In this way a time-optimal movement is possible. Figure 5 
shows the response of the trained neural control system for 
a fast step-like reference signal. A triphasic neural input sig- 
nal, similar to EMG measurements, can be clearly observed. 
After the desired position has been reached, a low agonis- 
tic neural input is applied to resist the force applied by the 
parallel elasticity. 

3.2 Effect of sensorial delay 

An important, though often neglected feature in neuromus- 
cular control systems is the presence of time delays. To gain 
a better understanding of the effect of delays on the learned 
control strategy, learning with and without delays will be 
compared. For this analysis a sinusoidal reference signal 
with a frequency of 4 [rad/s] (approximately the mean of 
the reference spectrum) and an amplitude of 1 [rad] is used. 
Figure 6 shows the responses of the system with and without 
delay for this reference signal. After a start-up effect regular 
patterns and small errors remain. Although the RMSE and 
average neural input of the system with delay are somewhat 
higher, the responses look rather similar. Analysis of the 
control systems for the whole reference frequency spectrum 
shows that the system without delay attains lower costs for 
all frequencies. Since the omission of delays simplifies the 
control task, this is as expected. Those lower costs are in 
particular due to lower neural input signals. 

In spite of the similarity of the neural input signals the 
controllers are different. This follows from the simple exper- 
iment in which the controller that was trained without delay 
is asked to control the system with delay: unstable control 
results. This can also be concluded from a comparison of 
the contribution of feedback and feedforward control parts 
for both systems. Figure 7 shows the sensitivity of the ago- 
nistic neural input for controller input variations, as defined 
in Sect. 2.5. Notice that the sensitivity for signals specifying 
the reference trajectory is higher for the system with delays 
than for the one without delays. This means that feedforward 
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Fig. 6. Responses for a sinusoidal reference signal (4 [rad/s]) of a system 
with (left) and without (right) delays 
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Fig. 7. Sensitivity of agonistic control signal for all controller input signals: 
with (continuous line) and without (dotted line) delays. The controller inputs 
are: reference angle, velocity and acceleration, angle and velocity error, 
activations and forces of both the muscles 

control is more prominent in the system with delay. Also, 
the sensitivity for the estimated activations, which repre- 
sent a part of the feedforward control too, is higher for the 
system with delay. On the other hand the system without 
delay shows higher sensitivity for the angle error, whereas 
the sensitivity for the velocity error is similar for both the 
systems. Feedback control is thus more prominent in the sys- 
tem without delay. The sensitivity for the two other feedback 
signals, namely the muscle forces, is higher for the system 
with delay. Apparently, information regarding the arm ac- 
celeration, which is highly correlated with muscle forces, is 
barely needed in the system without delay. The system with 
delay, however, employs this knowledge to acquire a phase 
lead. 

Another striking phenomenon of Fig. 7 is that the sen- 
sitivities fluctuate. Comparison of the agonistic neural input 
in Fig. 6 with the sensitivities for the (realistic) system with 
delay makes it clear that the sensitivities fluctuate in corre- 
spondence with the neural input signal. The sensitivity for 



Table 1. Learning with limited feedback: average results plus standard deviations (n = 5) for 
final costs J$, RMSE/~f and neural input ~2i 

Conf. no. Controller input signals J f (10-3)[ - ]  /~f (10 -2) [rad] ~2 S (10-~)[ - ]  

1 0ve$ O,'reS ~,'er ~ e ~ F 3.64 (+0.091) 6.55 (-60.24) 1.78 (-60.095) 
2 0r~$ 0.re.f .0.,-el e e F 3.68 (:1:0.086) 6.94 (:1:0.17) 1.71 (:1:0.044) 
3 0tel 0re/ Ovel ~ e 6 4.00 (4-0.082) 6.57 (4-0.26) 2.08 (4-0.047) 
4 Ore$ O.re$ O.!e ! e e 5.66 (-60.25) 10.1 (+0.11) 2.34 (4-0.041) 
5 0tel 0.ref .0?-el e 12.5 (4-0.78) 15.0 (-61.2) 4.38 (:t:0.031) 
6 Ore$ O.re$ O..rey ~ 6.87 (-60.35) 14.2 (4-1.0) 2.70 (4-0.20) 
7 Ore$ Ores Ore$ 14.4 (:1:1.7) 15.5 (4-1.6) 4.70 (4-0.097) 

Conf., configuration 

79 

those signals is high when the muscle is activated and low 
when it is not. Since the sensitivities of the angle error, ve- 
locity error and muscle forces are equivalent to the feedback 
gains for those signals, it follows that those feedback gains 
vary in correspondence with the neural input signals. 

3.3 Limited sensorial feedback 

The controller in the former sections has sufficient informa- 
tion concerning the state of the musculoskeletal system: (de- 
layed) joint angle and angular velocity, activations and (de- 
layed) muscle forces. To gain more insight into the signifi- 
cance of those controller input signals, the results of learning 
with limited feedback will be discussed in this section. Sen- 
sorial delays were always included in these simulations. Ta- 
ble 1 shows the results. It specifies the average final costs J$, 
RMSE/~I  and neural input z2• for several controller configu- 
rations. Notice that the reference trajectory (0tel, 0r~f, 0~ey) 
and estimated activation signals (~) are part of the feedfor- 
ward control, whereas the error (e, ~) and force (F) signals 
specify the delayed feedback information from the muscu- 
loskeletal system. Controller configurations 1 to 5 are thus 
combined feedback/feedforward controllers, while configu- 
rations 6 and 7 are feedforward controllers. 

Table 1 shows that configuration (Conf.) 1, which con- 
tains the most ample set of input signals, achieves the lowest 
costs. Omitting only the estimated activation signals (Conf. 
2) does not, however, lead to significant performance degra- 
dation. Omitting only the force signals (Conf. 3) does not 
result in increased deviations from the reference trajectory, 
but leads to a slightly increased co-contraction level. If  both 
force feedback and activation estimation are left out (Conf. 
4) a significant cost increase results, caused by both an in- 
crease in deviations from the reference trajectory and a rise 
in the neural input signals. If in addition no velocity feedback 
is present and control is thus based only on the reference tra- 
jectory and position feedback (Conf. 5), even higher devia- 
tions and input signals result. Omitting the position feedback 
in Conf. 5 gives a pure feedforward controller (Conf. 7). This 
system achieves RMSEs similar to Conf. 5 and somewhat 
higher neural input signals. Addition of the activation dy- 
namics (Conf. 6), making the feedforward control dynamic, 
improves the results significantly. In particular the neural 
input is now much lower. 

Figure 8 shows the response of a typical system with only 
position feedback (Conf. 5) for a sinusoidal reference signal. 
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Fig. 8. Control with limited feedback: only joint angle and reference vari- 
ables are available to the controller 

Compare this response with that of a complete feedback sys- 
tem in Fig. 6. In particular the increased co-contraction level 
stands out. In spite of the limited (and delayed) feedback sig- 
nal the controller is able to steer the system fairly well. Due 
to the co-contraction the stiffness of both the muscles is in- 
creased and this results in an increase in joint stiffness. The 
average instantaneous joint stiffness (OT/O0) is 1.3 x 10 2 
[Nm/rad] for the complete feedback case of Fig. 6, whereas 
it is 3.3 x 10 2 [Nm/rad] for the limited feedback case of 
Fig. 8. 

The performance of the control system with limited feed- 
back is strongly dependent on the frequency spectrum of 
the reference signal. Figure 9 shows the RMSE and aver- 
age neural input as a function of the frequency of a sinu- 
soidal reference signal with an amplitude of 1.0 [rad] for 
control systems with complete feedback and with limited 
feedback. The systems are trained either with the normal 
(broad range) reference frequency spectrum ([0,8] rad/s) or 
with a low-range spectrum of [0,4] rad/s. It can be seen 
that large deviations from the reference trajectory occur for 
high frequencies (> 6 [rad/s]) in the case of limited feed- 
back. The musculoskeletal system thus cannot be controlled 
properly for high frequencies if only position feedback is 
available to the controller. Furthermore, the performance of 
the system with limited feedback depends strongly on the 
frequency spectrum of the reference signal as applied dur- 
ing learning. Figure 9 shows that the average neural input 
of the system with limited feedback is significantly reduced 
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after learning with low frequencies. Control now employs 
lower co-contraction levels. Besides, for all but the highest 
frequencies smaller deviations from the reference trajectory 
are attained. 

4 Discussion 

The simulation results show that good control of a one de- 
gree of freedom musculoskeletal system, embracing many 
known non-linear characteristics, is attained. The main com- 
ponent of the control system is a static multilayer perceptron 
neural network, trained by the BTF algorithm. What do these 
results tell us about real life? The validity of the simula- 
tion results is linked with the validity of the musculoskeletal 
model, the control system and the learning method. 

The musculoskeletal model used (Appendix A) is based 
on the work of Winters and Stark (1985). It contains many 
essential elements which have often been neglected in neuro- 
muscular control simulations, including excitation/activation 
dynamics, length and velocity dependent contractile force, 
and parallel and series elasticities. It is a suitable model for 
the neuromuscular control simulations performed here. 

The control system consists of three parts: (1) a refer- 
ence trajectory generator, (2) the neural network controller 
and (3) the activation estimator. The main component is 
the controller, implemented by a static multilayer perceptron 
network. This neural network structure was chosen because 
it is known to have powerful representational capabilities 
(Leshno et al. 1993) and does not need a priori specifi- 
cations, except for the dimensions of the network. Since 
the processes in a biological neural network are much more 
complex than those in its artificial namesake, the artificial 
neurons are not intended as precise models of real neurons. 
Furthermore the signals in the neuromuscular system are 
scalars in the simulations, whereas in reality they are repre- 
sented in a distributed way. The information flow in the real 

nervous tissue can, however, at a higher system level be rep- 
resented by an artificial neural network. The distributed in- 
formation processing in the two systems is a nice similarity. 
The main omission in this work seems to be the assumption 
of a static neural control unit, while dynamic processes are 
known to be present in nervous tissue. The significance of 
such dynamic processes in sensory-motor control is, how- 
ever, not known and the results achieved indicate that good 
control can be reached by a static mapping. Furthermore it 
should be observed that the control system is dynamic by 
inclusion of the activation estimation and the trajectory gen- 
eration process. It can be concluded that the applied system 
is a suitable model of the biological neural control system 
at the input-output level. 

In the Bq'T learning algorithm, a cost function containing 
deviations from the desired trajectory and activation signals 
is evaluated over a certain time and a gradient measure of 
the controller parameters is found using sensitivity models 
of the controller and the musculoskeletal system. The con- 
troller parameters are adapted along the negative gradient. 
Although some elements of this learning procedure might be 
present in biological learning, the applied learning process 
is mainly considered as an optimization procedure. Follow- 
ing the reasoning of Churchland and Sejnowski (1992) that 
real-life learning is also an optimization procedure, it fol- 
lows that valid predictions can be made by applying com- 
puter learning, given realistic assumptions about the control 
system (controller + musculoskeletal system). 

It was shown in Sect. 3.1 that plausible neural input sig- 
nals were found using the described neuromuscular control 
system and optimization method. In particular, triphasic neu- 
ral input signals, comparable with experimental data, were 
achieved for a step-like response. 

Sensitivity analysis of the trained controller in Sect. 3.2 
showed significant gain modulations for both feedforward 
and feedback signals during voluntary movement. Moreover 
those sensitivities were found to fluctuate in correspondence 
with the neural input signals. In the experiments of Kirsch 
et al. (1993) the time variations of stretch reflex dynamics 
throughout rapid voluntary changes in the isometric contrac- 
tion level of the human triceps surae muscles were exam- 
ined. They found that the stretch reflex gain was significantly 
modulated during changes in voluntary contraction level, in- 
creasing as the subject contracted the muscles and decreasing 
as the subject relaxed. In particular the time course of the 
gain changes closely followed the level of the EMG. Since 
in both the experimental case of Kirsch and co-workers and 
the simulations in this paper voluntary muscular activation is 
considered, the gain changes can be compared qualitatively, 
although in the simulations no isometric restraints were ap- 
plied. The analogous gain changes thus support the validity 
of the neuromuscular control simulations. Notice that the of- 
ten made assumption of constant feedback gains is not valid. 

Sensitivity analysis further showed that neglecting delays 
in the neuromuscular control system leads to significantly 
different control strategies. Such neglect is therefore wrong 
if one is eager to make general valid neuromuscular control 
simulations. 

In Sect. 3.3 it was shown that control under the con- 
dition of limited or no feedback results in significant co- 
contraction of the muscle pair. The co-contraction causes 
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increased joint stiffness. Because of the high joint stiffness 
the musculoskeletal system is less vulnerable to non-optimal 
control decisions based on limited feedback only. This can 
be seen as follows. Consider the neural control signal of a 
muscle u as composed of a perfect control component Up 
and a noise component un: 

u = up + u~ (25) 

The perfect control component Up consists of a constant co- 
contraction component and a varying task-dependent com- 
ponent. The noise component un depends on the available 
system information. If  the controller has only limited sys- 
tem information, noise u,~ is high. The noise component u,~ 
causes a muscle force F,~ which produces deviation of the 
achieved from the desired trajectory. If the joint stiffness 
(OT/O0) is high, due to a high co-contraction level, the ef- 
fect of Fn is only small. Although co-contraction requires 
more energy consumption, it is thus advantageous if un is 
high. 

The level of un is not only dependent on the input signal 
set of the controller, but also on the task. It was shown 
in Sect. 3.3 that learning with a lower reference frequency 
spectrum results in lower co-contraction levels. This lower 
frequency spectrum imposes an easier task on the system 
and therefore smaller co-contraction levels are necessary. 

If  better feedforward control is made possible by inclu- 
sion of internal estimation of the muscular activations, co- 
contraction levels are reduced. This indicates that addition 
of more dynamics to the neural control system enables it 
to form a better inverse dynamics model and so reduce its 
co-contraction level. 

Experimental data of Sainburg et al. (1995) indicate that 
patients who are functionally deafferented indeed employ co- 
contraction for an arm movement task which barely requires 
co-contraction in normal subjects. Nevertheless, the trajec- 
tories attained by deafferented patients deviate significantly 
from the desired one. Experimental results from Bizzi et al. 
(1978) show that monkeys employ increased co-contraction 
levels for head movements after deafferentation. The move- 
ment trajectories are not strongly affected. 

In conclusion, a viable method for learning neuromus- 
cular control under several necessary conditions has been 
discussed. The results compare well with experimental data. 
Extension of the applied methods to dynamical neural net- 
works and musculoskeletal systems with more degrees of 
freedom is theoretically possible and the practical implica- 
tions are currently being investigated. 
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Appendices 
A Musculoskeletal system 

This appendix specifies the one degree of freedom muscu- 
loskeletal system as applied in the learning simulations. 

A. 1 Muscle model 

The muscle model is based on the work of Winters and 
Stark (1985). It contains first-order excitation dynamics, non- 
linear first-order activation dynamics, a contractile element 
(CE) with a Hill type force-velocity dependence and a Gaus- 
sian force-length dependence, a series elasticity (SE) and a 
parallel elasticity (PE). The third-order model contains the 
following states: excitation e, activation a and contractile el- 
ement length Ice. Its inputs are: neural input u, muscle length 
lm, muscle velocity ira. The output of the system is muscle 
force F,~. 

x = [e a/c~] (A.1) 

u = [ u  Im im] (A.2) 
y =Fm (A.3) 

= f(x, u) (A.4) 
y = g(x, u) (A.5) 

The systems f(x, u) and g(x, u) are defined by the following 
set of equations: 

e = (u - e)/Tne (A.6) 

d = (e  -- a)/T 7" = ~ Tae e > a (A.7) 
( "Ida e < a 

lm a _< 6 (A.8) 
lee = F~(a,l lee, l~) a > 5 

Fm= Fpe(lm) + Fse(lm, lee) (A.9) 

FV~Aa, tee, t~) 
I Vshvma~(a, lee)(F, ee(a, lee, Ira) -- 1) 

0 < Fvce <_ 1 

--V~htV~hVma:~(a, lc~)(Fvee(a, l~e, l m ) -  1) 

Free(a, lee, tin) + keel 
l <Fvce <_Vm, 

(A.10) 

Fse(a, lee, lm) 
Free(a, lee, lm)= (h. 1 l) 

aFma~Ftee(lee) 

Fse(a, lee, lm) 
0 l~, _< 0 

= (A.12) 

rnax(ksex(e k'~2t'~ - 1), a kse3Ftc~(Ic~)) l~ > 0 

Ise =Im - Ice -- It (A. 13) 

Vmax(a , lee ) = Vvm(1 - Vet + VeraFtce(Ice)) (A.14) 

J" 0 l~ < lp~o (A.16) 
kpe l ( e  kp~2(l''-lr'~~ - 1) l m >  Ipeo 

where F~le(a, lce, lm) is the inverse force-velocity relation 
of the CE, Fpe is the force exerted by the PE, Fse is the 
force exerted by the SE, F~ce is the relative force of the CE 
due to the force-velocity relation, 1Be is the length of the SE, 
vma~ is the maximum velocity of the CE and Flee is the 
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Table A1. Parameters of the muscle model 

Parameter Value Unit 
r ~  0.04 [s] 
r ~  0.01 [s] 
rda 0.05 [S] 
6 10 -6 [-] 
Fmax 1000 [N] 
to 0.2 [m] 
It 0.25/o [m] 
lceo 0.75/0 [m] 
lcesh 0.2510 [m] 
SE~m 0.05/o [m] 
SEsh 3 [-] 
Vvm 3 [m/s] 
Vsh 0.25 [-] 
V~m 0.5 [-] 
V~ 0.5 [-I 
Vmt 1.3 [-I 
lpe() lo [m] 
PExm 0.4/0 [In] 
PEsh 3 [-I 

Table A2. Parameters of the musculoskeletal model 

Parameter Value  Unit 
rl 0.04 [m] 
r2 0.04 lm] 
Bt 0.2 [Nms/rad] 
II 0.25 [kgm 2 ] 

relative force of  the CE due to the force-length relation. All 
other symbols  denote  (constant)  muscle  parameters which 
are specified in Table A1 and in the fol lowing equations:  

kc~l = - 1  - (1 + V, hV, ht)(Vmz -- 1) (A.17) 

Fmaz 
ksel - e SEth - 1 (A.18) 

k,~2 = SE, h/SE~m (A.19) 

kse3 = Fmax Vml (A.20) 

F~cr~a2c 
kpel - eRE.,, _ 1 (A.21) 

kpe2 = PE~h/  PExm (A.22) 

A.2Musculoskeletalmodel  

The muscle model discussed is used as the basis of a one 
degree of freedom antagonistic musculoskeletal system. The 
system is defined by the following set of equations: 

/~ = fs(x, u) (A.23) 

y = gs(x) (A.24) 

x = [0 0 el  a l  Icel e2 a2 lee2] T (A.25) 

U = [U 1 U2] T (A.26) 

y = [F1 F2 11 12] (A.27) 

with 0 link angle, 0 angular velocity, ei excitation, ai ac- 
tivation, lcr contractile element length, ui neural input, Fi 
force and li length of both muscles (i = 1, 2). The systems 
fs(x, u) and gs(x) are described by: 

11 = lo - r l x l  (A.28) 

iI = - r l  x2 (A.29) 

Zl = [X3 a74 X5] T (A.30) 

12 = lo + r2xl (A.31) 

[2 = r2x2 (A.32) 

z2 = [x6 x7 x8] T (A.33) 

zi = f~(z~, li, ii, u,)  (A.34) 

Fi = 9i(zi, li) (A.35) 

a:l = x2 (A.36) 

x2 = (Flrl  - Fzr2 - B tx2) / I t  (A.37) 

with l0 rest length, [i velocity, ri moment arm, zi states, 
fi and gi system equations of both muscles (i = 1,2), Bl 
damping and It inertia of the link. Table A2 contains the 
parameter values of the musculoskeletal system. 

B Dynamic feedback for second-order Runge-Kutta 

A second-order Runge-Kutta integration method is given by: 

ro = h.Kx, u) (B.1) 

s = x + ~ro (B.2) 

rl = h.f(s,u) (B.3) 

x(k + 1 ) = x ( k ) + ( r o + 3 r l ) / 4  (B.4) 

The index k has often been omitted for convenience. If the 
elements of the Jacobian matrices Vxf and Vvf are denoted 
by Aij(x, u)  and # i j (x ,  u)  then the partial derivat ives Oxi(k+ 
1)/Oxj(k)  and Oxi(k + 1)/Ouj(k) can be computed  by: 

Osi { 1 + 2hAij(x,  u), i = j (B.5) 
Oxj = ~hAij(x,u) ,  i 5 t j  

Osi 
Ouj = ~ h # i j ( x , u )  (B.6) 

Ox~(k + 1) 
Oxj(k) 

1 + h/4(~i j (x ,  u)  + 3 E ( N ~ q ( s ,  u)  ~O--~sq. )), 

q=l 
n OSq 

h/4(Aij(x, u) + 3 Z ( a i q ( s ,  nl~-~x 1), 
q=l 

i = j  

i C j  
(B.7) 

Oxi(k + 1) 

Ouj(k) 

n Osq 
= h/4(pi j (x ,  u)  + 3 Z ( A i q ( S ,  n)~--~uj ) + 3# i j ( s ,  u))  (B.8) 

q=l 
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