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Summary. In this paper, we report a detailed study of 
the dynamic properties of horizontal, vertical and 
oblique saccades. These eye movements were meas- 
ured with an improved version of the double-magne- 
tic induction method in two rhesus monkeys. We 
found that onsets of orthogonal components of 
oblique saccades are so well synchronized in the 
monkey that a common initiation system seems 
likely. Saccade vectors obeyed a nonlinear peak- 
velocity/amplitude relationship in all directions. The 
peak-velocity/duration/amplitude relationship for 
components was not fixed, but depended on the 
relative size of the orthogonal component: for a 
component with a given size, its duration increased 
and its peak velocity decreased, as the saccade vector 
to which it contributed turned away from the compo- 
nent direction under consideration. This stretching 
effect, which reflects a nonlinearity in the system, 
was negligible for small saccade vectors but became 
very pronounced in large oblique saccades. These 
experimental data were confronted with quantitative 
predictions derived from two different models for the 
generation of saccades in two dimensions. It appears 
that a model which assumes the existence of 
synchronized, but otherwise independent, pulse 
generators for horizontal and vertical components 
must be rejected. An alternative model, featuring a 
nonlinear vectorial pulse generator followed by a 
decomposition stage which generates component 
velocity command signals from the vectorial eye 
velocity signal, provides good fit with the data. 
According to this common-source model, the two 
nonlinear phenomena observed, viz., the curvilinear 
peak-velocity/amplitude relationship of saccades in 
all directions and component stretching in large 
oblique saccades, are due to a single nonlinearity in 
the proposed vectorial pulse generator. A possible 
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neural basis for the common-source model is dis- 
cussed. 
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ing - Nonlinearity - Neural coding - Models 

In~oducfion 

Studies aimed at characterizing the properties of 
saccadic eye movements, or at revealing the neural 
signal processing underlying their control, have 
mainly been limited to horizontal and vertical sac- 
cades. The lack of data on oblique saccades made it 
impossible, so far, to distinguish between two differ- 
ent models of the saccadic system which can account 
equally well for most data in the literature. In this 
paper, these two models are described and tested by 
comparing experimental data on dynamical proper- 
ties of oblique saccades in the monkey with quantita- 
tive predictions made from each model. 

Single-unit recordings at the level of premotor 
and motoneurons, as well as lesion studies, have 
resulted in an already rather detailed picture of how 
horizontal and vertical saccades are generated at a 
peripheral level. It has been established that the 
paramedian pontine reticular formation and the 
mesencephalic reticular formation contain so-called 
medium-lead burst cells (MLBs) whose firing rate is 
tightly related to eye velocity in horizontal and 
vertical saccades, respectively (Luschei and Fuchs 
1972; Keller 1974; Btittner et al. 1977; King and 
Fuchs 1979; Hepp and Henn 1982). It is generally 
assumed that these cells are responsible for the high- 
frequency bursts in agonist motoneurons during 
saccades. The picture emerging from the literature is 
that at this peripheral level the saccadic system is 
organized in a Cartesian coordinate system and that 
the information is temporally coded. 
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Much less is known on precisely how horizontal 
and vertical MLBs are driven. Studies using a variety 
of techniques (see Wurtz and Albano 1980; Schiller 
et al. 1980) have established that at a more central 
level both the superior colliculus and the frontal eye 
fields are involved in the visual guidance of saccadic 
eye movements. Neural maps in both structures 
encode retinal error and probably also motor error 
(Mays and Sparks 1980) and specify the desired 
saccade vector. It is generally assumed that at this 
level the information is spatially coded, which means 
that the location of the active population of neurons 
in the neural map, rather than their precise firing 
rate, is important. 

A problem of central interest in oculomotor 
control is how the spatially encoded position signal in 
the visuomotor system, which represents the desired 
saccade vector, is ultimately converted in the tempo- 
rally encoded, component related, eye velocity sig- 
nals carried by MLBs in the motor system. For the 
purpose of this paper, it is useful to distinguish two 
different aspects of the signal transformations which 
must occur in this spatio-temporal translation pro- 
cess: 

1) A vector is decomposed into signals related to 
the horizontal and vertical components of saccades, 
and 

2) A position signal is converted into velocity 
command signals. Since the latter process results, 
ultimately, in the high-frequency bursts of MLBs, it 
is denoted as pulse generation. As will be shown, it is 
important, from the standpoint of modelling, to 
know in what sequence these two signal transforma- 
tions (vector decomposition and pulse generation) 
OCCUr. 

Robinson (1975) has proposed a specific model of 
how the pulse generator may work. In his model, 
horizontal (vertical) MLBs are driven by horizontal 
(vertical) motor error. According to the model, the 
nonlinear relation between saccade peak velocity and 
saccade size reflects a nonlinearity in MLBs, which 
causes peak firing rate in the burst to be a nonlinear 
function of saccade size. Whatever the precise 
mechanism of generating the pulse (burst), the idea 
that the nonlinear peak-velocity/amplitude relation of 
saccades (Fuchs 1967; Bahill et al. 1975; Baloh et al. 
1975) reflects a nonlinearity before or at the level of 
MLBs - rather than in the oculomotor plant - seems 
a reasonable hypothesis in view of the fact that burst 
rate in burst neurons and oculomotoneurons satu- 
rates for large saccades (Robinson 1970; Keller 
1974). 

There is also evidence that, as predicted by the 
model, firing rate in horizontal MLBs is tightly 
related to horizontal motor error (Van Gisbergen et 

al. 1981). Robinson's model accounts reasonably well 
for various relations among motor error, burst cell 
firing rate and eye velocity in purely horizontal 
saccades but, since it is one-dimensional, was not 
meant to provide a description of the signal proces- 
sing underlying the generation of oblique saccades. 
The experimental data discussed so far are equally 
compatible with either of two schemes which can be 
proposed to extend the model to two dimensions. 
These two schemes (Fig. 1) differ in the sequence of 
the two signal transformations in the spatio-temporal 
translator which were distinguished above. 

In the independent model (Fig. 1B), vector 
decomposition precedes pulse generation. The idea 
here is that vectorial error is first decomposed into 
horizontal and vertical error signals which, subse- 
quently, are transformed independently into horizon- 
tal and vertical eye velocity command signals. This 
arrangement is implicit in Robinson's model, where 
MLBs are driven by a position signal, and is consist- 
ent with the data presented by Van Gisbergen et al. 
(1981). Furthermore, the curvature in human obli- 
que-saccade trajectories (Bahill and Stark 1975; 
Viviani et al. 1977) shows that horizontal and vertical 
components may have different dynamics, which 
would be expected if the independent model is 
correct. 

There are, however, other experimental data 
which are not readily explained by the independent 
model. First, it has been established in the cat that 
the dynamics of a given saccade component are not 
fixed but depend on the size of the orthogonal 
component (Evinger and Fuchs 1978; Guitton and 
Marldl 1980; Evinger et al. 1981). The present paper 
confirms several preliminary reports in the literature 
(King et al. 1983; Keller 1980) that such crosscoupl- 
ing effects are also present in the monkey's saccadic 
system. Second, Hepp and Henn (1982) have pre- 
sented some evidence that the tight relation between 
horizontal motor error and firing rate in horizontal 
MLBs, found earlier for purely horizontal saccades, 
is quantitatively different for oblique saccades. 

This, together with new data and ideas in a more 
recent paper from this group (Hepp and Henn 1983), 
has led us to explore another possibility of how the 
spatio-temporal translator may work. In this scheme 
(Fig. 1A) the sequence of vector decomposition and 
pulse generation is reversed. Suppose that the motor 
error vector signal in the neural maps is first con- 
verted into a vectorial eye velocity command signal 
carried by long-lead burst cells (LLBs) in such a way 
that the location of active neurons in an array 
determines the direction of the saccade velocity 
vector (spatial coding) while their instantaneous 
firing rate determines its magnitude (temporal cod- 
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Fig. 1A and B. Schemes emphasizing common elements and differences in the common-source model A and the independent model B. In 
both models the transformation of vectorial error into horizontal and vertical eye velocity command signals involves a nonlinear signal 
transformation (pulse generation) and vector decomposition. The two models portray the two logical possibilities for the sequential order 
of these processes. In the scheme vectorial signals are indicated by a heavy line; thin lines represent component-related signals. The filters 
on the right (H and V) comprise all signal processing after medium-lead burst cells and thus include: creation of pulse-step signal found at 
the level of motoneurons and the oculomotor plant. Since the peripheral filters are assumed to behave linearly in first approximation, the 
nonlinear peak-velocity/amplitude relation of saccades must reflect a nonlinearity further back in the system 

ing; see Hepp and Henn 1983). In the next step of the 
alternative scheme for the spatio-temporal transla- 
tor, this vectorial eye velocity signal is decomposed 
into the component related horizontal and vertical 
eye velocity signals of MLBs. To achieve this, the 
synaptic strength of the connections between the 
LLBs and the MLBs would be fixed for any given 
LLB but would have to differ from cell to cell 
dependent on the direction of its movement field. 
Because the horizontal and vertical MLBs in this 
scheme are driven by a common signal, we will 
denote this scheme as the common-source  model.  As 
we will show below, this model can account for 
crosscoupling between components of oblique sac- 
cades and for Hepp and Henn's (1982) finding in a 
natural way if it is assumed that the vectorial pulse 
generator is nonlinear. If the nonlinearity can be 
characterized mathematically, quantitative predic- 
tions of the expected amount of crosscoupling in each 
component as a function of saccade size and direction 
can be made (see below). 

The reason why reversing the sequence of vector 
decomposition and pulse generation can have such a 
profound effect (presence or absence of crosscoupl- 
ing) is that pulse generation is assumed to be a 
nonlinear signal transformation. It is well known that 
in a system composed of linear and nonlinear subsys- 
tems, their precise sequence may affect the input- 
output relations of the total system (Marmarelis and 
Marmarelis 1978). Just because this is true, it is 
sometimes possible to discriminate between alterna- 
tive models by confronting the predictions made 
from them with the experimental data. We have tried 
to do so in the present paper. Since the common- 
source model entails that the amount of crosscoupl- 
ing should increase with the size of the saccade vector 
and may be negligible with small saccades (see 
below), we have investigated saccades in a large 
amplitude range. Before the data can be confronted 
with what would be expected based on the two 
models, it is necessary to make the models explicit 
and to formulate their predictions mathematically. 
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A. Common-source model 

In what follows we will examine the implications of 
an idealized common-source model for the saccadic 
system. Its main purpose is to sketch a mathemati- 
cally tractable alternative to the independent model, 
which leads to quite different predictions. It is 
suggested that horizontal and vertical components of 
oblique saccades are derived from a common vecto- 
rial velocity command signal which specifies the time 
course and the direction of the saccade. Such a 
system generates oblique saccades with straight tra- 
jectories since the signals which drive the horizontal 
and vertical eye muscle systems are scaled versions of 
the vectorial command signal so that both have the 
same time course. 

Saccade and component peak velocity. We assume, in 
this model, that the nonlinear peak velocity/ 
amplitude relation for horizontal and vertical sac- 
cades reflects the nonlinearity of a central pulse 
generator that transforms (motor) error into vecto- 
rial eye velocity. Because of the assumed nonlinear- 
ity of the vectorial pulse generator, peak amplitude 
of the velocity signal does not increase linearly with 
saccade vector amplitude but shows soft saturation 
and its duration increases with saccade size. Accord- 
ing to the model, the well-known nonlinear relation 
between peak eye velocity and saccade amplitude for 
horizontal saccades is only a special case of a 
universal relation valid for saccade vectors in any 
direction. Let us suppose that the nonlinear peak 
velocity/amplitude relation can be represented by: 

VECp(R) = VEGa[1 - e -wRy] (1) 

where VECp represents the magnitude of vectorial 
peak velocity; VEGa represents asymptotic vectorial 
peak velocity; R represents the size of the saccade 
vector (in degrees) and Rc represents an angular 
constant (in degrees). The same type of equation has 
been used before by Baloh et al. (1975). 

Given the assumptions made above, it is now 
possible to specify peak velocity of saccade compo- 
nents. For example, peak velocity in the horizontal 
component (Hp) depends on the size (R) and the 
direction (cp) of the saccade vector as follows: 

Hp(R,c9) = VEG a �9 costp[1-e-W~]. (2) 

To obtain the relation between component peak 
velocity and component size, this can be rewritten by 
eliminating R: 

Hp(AH,cp) =VECa"  cosq)[1-e -aH/R~176176 (3) 

where AH represents horizontal component size (AH 
= R cosq)). Similarly, the relation among vertical 

peak velocity (Vp), size of the vertical component 
(AV) and saccade direction (q~) is given by 

Vp(AV,q0) = VEGa" sinq0[1- e-AV/a~176 (4) 

It follows from Eqs. (3) and (4) that the relation 
between component peak velocity and component 
amplitude, according to the common-source model, 
depends on the direction of the saccade vector. 

To illustrate these relations with an example, let 
us suppose, for simplicity, that the saccadic system 
has rotational symmetry (this assumption is not 
crucial for making predictions and will be abandoned 
later) and that VEGa and Rc in Eq. (1) have values of 
1000 deg/s and 10 deg, respectively, in any direction 
(Fig. 2A). One implication of the model is that when 
saccades are elicited as in Fig. 2B, the eye will move 
in a straight line with a peak velocity which saturates 
for large saccade amplitudes (Fig. 2C). Another 
consequence is that components of oblique saccades 
show stretching. The peak velocity of a given compo- 
nent size depends on the direction of the saccade 
vector (Fig. 2D, E). In the present example, the peak 
velocity of a large component will drop by 50% when 
q~ changes from 0 to 60 deg. The amount of stretching 
is modest for tp = 30 deg saccades. 

At this point, it is interesting to note that 
component stretching in oblique saccades betrays a 
nonlinearity somewhere in the system. This can be 
illustrated as follows. Suppose the system responds 
with a horizontal saccade with velocity profile x(t) to 
a horizontal stimulus displacement H and with a 
vertical saccade, having a velocity profile y(t), to a 
vertical stimulus V. If stretching occurs, the response 
to both stimuli simultaneously (H, V), by definition, 
will not be simply the combination of velocity profiles 
x(t) and y(t). A stretched component of the oblique 
saccade to (H, V) will still have the correct size, but 
will be executed more slowly. According to the 
common-source model, the violation of linear super- 
position, expressed in the stretching phenomenon, is 
simply a consequence of a saturating vectorial eye- 
velocity/amplitude relationship (Fig. 2A). If this 
relation were linear, stretching would not occur. In 
line with this, the common-source model predicts 
that stretching will almost be negligible in compo- 
nents participating in small oblique saccades, where 
this relation is still almost linear (i.e., for small 
horizontal components; see Fig. 2D, E). In contrast, 
as R increases, vectorial peak velocity saturates and 
the component stretching effect should become pro- 
gressively more noticeable. 

Saccade and component duration. When small (< 5 
deg) saccades are excluded, saccade duration and 
saccade amplitude have an approximately straight- 
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Fig. 2A-E. Graphical illustration of implications of common-source model. A It is assumed that saccades obey a universal nonlinear 
relation between peak vectorial eye velocity and vector size: VECp = 1000 (1 - e-W1~ B Saccade vectors, with amplitudes of 10, 20 and 30 
deg, in the directions q0 = 0, 30, 60 and 90 deg. C Peak-velocity vectors of the saccades in B as specified by the nonlinear relation in A, The 
velocity vector points in the direction of movement; its magnitude signifies peak velocity. Notice stretching in horizontal component of R = 
20, c9 = 60 deg oblique saccade which has the same amplitude as a 10 deg pure horizontal saccade (B) but a 31.6% lowerpeak velocity (C); 
this effect is a direct consequence of the nonlinearity in A. D Peak velocities reached in the horizontal component of horizontal (curve 1) 
and oblique saecades (curves 2 and 3) as a function of component size, AH. These curves are cross-sections of the Hp(AH,qg) surface 
specified by Eq. (3). Curve 1: asymptote = 1000 deg/s; angular constant = 10 deg; same curve as in A. Curve 2: asymptote = 866 deg/s [see 
Eq. (3)]; angular constant = 8.66 deg. Curve 3: asymptote = 500 deg/s; angular constant = 5 deg. E Different cross-section of the 
Hp(AH,q0) surface specified by Eq. (3). As saccade vector turns away from horizontal axis (q~ increasing), peak velocity of a given 
horizontal component size drops (stretching). This is most marked in large components. 

line relationship in both man (Yarbus 1967; Bahill et 
al. 1975) and monkey (Fuchs 1967). We assume that 
this is true for saccades in all directions: 

DvEc(qg) = p(q~) + q(cp) �9 R (5) 

where Dvzc(q0) represents vectorial saccade duration 
for saccades in direction c9; p and q represent 
constants which may be c 9 dependent, and R repre- 
sents the amplitude of the saccade vector. According 
to the common-source model, both components as 
well as the saccade proper, all have the same 
duration: 

DH(AH,q) ) = p(c9) + co~s~ �9 AH (6) 

Dv(AV,cp) = p(cr + ~ - ) ,  AV (7) smqD 

where DH and D v represent horizontal and vertical 
saccade component duration. This means that, if the 

model is correct, the DH(AH) and the Dv(AV) 
relation must have c 9 dependent slopes. This has in 
fact been noticed in the cat (Evinger and Fuchs 1978) 
and is a manifestation of crosscoupling. The model 
makes it possible to make quantitative predictions. 

B. Independent model 

Saccade and component peak velocity. In this model 
we assume that the saccadic system has two separate 
saccadic pulse generators, one horizontal and one 
vertical, which, once enabled by the initiation sys- 
tem, are driven by horizontal and vertical motor 
error, respectively. To keep the model simple, we 
suggest that both components start simultaneously. 
In the independent model, in striking contrast with 
the common-source model sketched above, the 
dynamics of horizontal (vertical) components are 
determined entirely by horizontal (vertical) motor 
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Fig. 3. A Plot of raw eye position signals measured when monkey 11 was fixating the target at each of 82 peripheral locations. Responses in 
two trials missed by the monkey (q0 = 0, R = 35 deg; ~0 = 30, R = 10 deg) are not shown. Note that, due to nonlinearity inherent in eye 
movement recording system, the response increment decreases as stimulus eccentricity increases. Scale in arbitrary units. B Same responses 
after linearization procedure in the computer (crosses) plotted together with stimulus locations (diamonds). After linearization, the eye 
movement recording technique has a useful measuring range of 0-35 deg in all directions. Scales in degrees. C First-saccade responses in 
direction q9 = 60 deg having amplitudes (R) of 10, 20 and 31 deg (after linearization). Scales in degrees, D and E Horizontal and vertical eye 
velocity profiles of saccades shown in C. Horizontal axis: time since vectorial saccade onset. Velocity profiles were smoothed digitally as 
described in text. Note that noise level remains below 30 deg/s 

error. Thus, no stretching effects would be expected 
and components of oblique saccades would have the 
same dynamics as when executed as pure horizontal 
(vertical) saccades of the same size. Consequently, 
because the vector sum of two orthogonal vectors is 
larger than either alone, oblique saccades would have 
larger peak velocities than either horizontal or verti- 
cal saccades of the same size and would be 'superfast' 
in Bahill and Stark's (1975) terminology. These 
predictions from the independent model will be 
tested in the Results. 

Saccade and component duration. If the duration/ 
amplitude relation is known for each component, it is 
possible to predict the relation between horizontal 
and vertical saccade component duration in oblique 
saccades of a given direction. Suppose that the 

duration/amplitude relation approximates a straight- 
line relationship both for horizontal: 

D H = a H I A H [  +bH (8) 

and vertical saccades: 

Dv = av I AV] + b v (9) 

then, since AV = AH tancp for a saccade in direction 
% we obtain: 

Dv(qg) = aa-~H ] tanq) [ (DH- bH) + bv (10) 

where Dv is the duration of the vertical component; 
D H is the duration of the horizontal component; bv 
and bH are intercepts of the duration/amplitude 
relation of horizontal and vertical saccades, respec- 
tively, and av and aH are the corresponding direction 



coefficients  in this re la t ion .  N o t e  tha t  accord ing  to 
the  c o m m o n - s o u r c e  m o d e l ,  the  du ra t i on  of  hor i zon-  
tal  and  ver t ica l  c o m p o n e n t s  o f  ob l ique  saccades  is 
always equa l  (DH = Dv;  see  above) .  
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saccade vectors whose overall direction (determined by a straight 
line through onset and offset position) deviated from the stimulus 
direction by more than 10 deg, were discarded. Therefore in the 
Results, q9 refers to the direction of stimulus movement and to 
overall saccade direction within 10 deg. 

Methods 

Eye movements were recorded in two rhesus monkeys who were 
rewarded for tracking a small (0.4 deg) spot of light (luminance: 5 
cd/m 2) which was rear projected on a translucent screen, with a 
background luminance of 1.2 cd/m 2, placed at a distance of 57 cm. 
Vision was binocular, In each trial, the spot first appeared at the 
primary position for a period varying from 0.8 to 1.8 s and then 
jumped randomly to one of 84 positions in a polar-coordinate grid 
(R = 5, 10, 1 5 , . . . ,  35 deg; q~ = 0, 30, 6 0 , . . . ,  330 deg). At the 
peripheral position, the spot remained stationary for at least 1.7 s 
until it was switched off and the intertrial pause (duration: 1-2 s) 
began. After this resting period the next trial began, and so on, 
until saccadic responses to all 84 positions had been elicited. The 
animals had been water deprived for 16 hours and were rewarded 
with apple juice for fixating the target both in the central and the 
peripheral position. The results reported here were collected in at 
least ten separate sessions over a period of several months. In most 
cases, data from the first stimulus sequence on each experimental 
day were used. 

Recording of eye movements 

Eye movements from the right eye were measured with our 
improved version (Bour et al. 1984) of the double-magnetic 
induction method originally described by Reulen and Bakker 
(1982). Raw horizontal and vertical eye position signals were low- 
pass filtered (-3 dB at 150 Hz), digitized at a rate of 500 samples/s 
with a precision of 12 bits and stored on disk in a PDP 11/34 
computer. The data were corrected off line, to compensate for the 
static nonlinearity inherent in this method, as described by Bour et 
al. (t984; see also Fig. 3A, B). If, for some reason, the correction 
procedure did not yield a satisfactory result, the data were 
discarded. In the monkey, the double magnetic induction method 
has a range of 35 deg in all directions. After correction, angular 
resolution in the eye position data was 0.25 deg, or better, up to 25 
deg from the primary position. To give an impression of the data 
obtained, linearized saccadic eye movements of 10, 20 and 31 deg 
(q~ = 60 deg) are shown in Fig. 3C-E. 

Saccade onset, offset and velocity 

Using the linearized data, eye velocity was computed in both the 
horizontal and vertical channel using a central-difference differ- 
entiation algorithm (T = 2 ms, Bahill et al. 1982). Subsequently, a 
symmetrical digital low-pass filter was used to smooth the eye- 
velocity profile (-3 dB at 72 Hz; Rabiner et al. 1970). 

Saccade onset and offset were detected separately in each 
channel using a 30 deg/s velocity criterion. For each component, 
peak velocity was computed and stored together with on- and 
offset moments. Vectorial eye velocity was computed as the 
Pythagorean sum of horizontal and vertical eye velocity. The 
resulting vectorial eye velocity signal was used to detect vectorial 
saccade onset and offset (criterion: 40 deg/s) and vectorial peak 
velocity. The results in this paper all refer exclusively to first 
saccades made in response to the stimulus displacement. First 

Results 

Onset synchronization of saccade components 

Since it was a s sumed  in bo th  the  c o m m o n - s o u r c e  and  
the  i n d e p e n d e n t  m o d e l  ( In t roduc t i on )  tha t  o r tho -  
gonal  c o m p o n e n t s  of  ob l ique  saccades  s ta r t  s imul-  
t aneous ly ,  this  i m p o r t a n t  p o i n t  mus t  be  c he c ke d  first.  
A n  ex t r eme  oppos i t e  p o i n t  of  v iew is to  suppose  tha t  
bo th  c o m p o n e n t s  have  s epa ra t e ,  c o m p l e t e l y  i ndepen -  
den t ,  in i t ia t ion  me c ha n i sms  (cf. Bahi l l  and  S ta rk  
1975). I f  this  were  the  case,  the  l a t ency  var iab i l i ty  
f rom tr ia l  to  t r ia l  w o u l d  be  e x p e c t e d  to  occur  
i n d e p e n d e n t l y  in each  c o m p o n e n t .  O n  the  o t h e r  
hand  if, as we a s sumed ,  the  p rocess  t r igger ing  the  
saccade  has  s tochas t ic  va r i ab i l i ty  bu t  is c o m m o n  for  
bo th  c o m p o n e n t s ,  ho r i zon ta l  and  ver t ica l  c o m p o n e n t  
la tency should  show s t rong  cor re la t ion .  

I t  appea r s  tha t ,  i n d e e d ,  the  o r t h o g o n a l  c o m p o -  
nents  of  ob l ique  saccades  have  s t rong ly  c o r r e l a t e d  
la tencies  (Fig.  4). T h e  resul t  shown,  f rom m o n k e y  
10, is r ep re sen t a t i ve  for  all ob l ique  saccade  d i rec t ions  
tes ted  (30, 6 0 , . . . ,  330 deg)  in b o t h  m o n k e y s .  The  
a m o u n t  o f  c o m p o n e n t  onse t  a synch rony  was invest i -  
ga ted  in de ta i l  in m o n k e y  11. In  the  la rge  m a j o r i t y  of  
ob l ique  saccades  (84 .9%) ,  the  l a t ency  d i f fe rence  
r e m a i n e d  be low 4 ms (N = 577). A m o r e  cursory  
inspect ion  o f  the  d a t a  ind ica tes  tha t  this  resu l t  is 
r ep resen ta t ive  also for  the  o t h e r  m o n k e y .  Because  of  
these  resul ts ,  we  feel  t ha t  our  a s sumpt ion  of  a 
c o m m o n  in i t ia t ion  m e c h a n i s m  for  bo th  c o m p o n e n t s  
is r easonab le .  

Vectorial eye velocity 

A fur ther  s tep  in the  p r o c e d u r e  to tes t  b o t h  mode l s  
p re sen ted  above ,  is to  fi t  an  e x p o n e n t i a l  curve [Eq. 
(1)] t h rough  the  vec tor ia l  p e a k  eye  ve loc i ty /  
ampl i t ude  da t a  o b t a i n e d  for  12 d i f fe ren t  mer id ians .  
A s  Fig. 5 shows,  the  e x p o n e n t i a l  func t ion  can  fit  the  
da ta  qui te  r e a sona b ly  (see  also T a b l e  1), no t  on ly  in 
the  ca rd ina l  d i rec t ions ,  bu t  equa l ly  well  for  in ter -  
me d i a t e  d i rec t ions .  A n o t h e r  conc lus ion  a l lowed  f rom 
Fig. 5 and  Tab le  1 is tha t  the  s imples t  ve rs ion  of  the  
c ommon- sou rc e  m o d e l  - a ro t a t i on  symmet r i ca l  (iso- 
t ropic)  saccadic  sys tem - mus t  be  r e j e c t e d  r ight  away.  
In  the  p a n e l  d isp laying  the  q) = 270 deg  curve ,  the  
s lowest  d i rec t ion  in this m o n k e y  (VECa = 700 deg/s;  
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Fig. 4. Onset synchronization of 
horizontal and vertical components 
of oblique saccades in various direc- 
tions. Data from monkey 10. Best fit 
lines drawn through the data points 
(not shown) appear to have a slope 
of 1.00 _+ 0.01 in the data shown. 
Extremely high correlation coeffi- 
cients (0.99 or higher) show that 
component onsets are nearly per- 
fectly synchronized 

Rc = 7.3 deg), we have retraced the curve from the q~ 
= 150 deg direction where saccades are faster (VEC a 
= 1100 dens; Rc = 12.5 deg). Curves from the other 
directions lie somewhere in between these two 
extreme examples. As summarized in Table 1, the 
best fit parameter values for the asymptote and the 
angular constant in Eq. (1) varied considerably for 
various directions. Horizontal saccades in our mon- 
keys had peak velocities comparable with values 
reported by Fuchs (1967) but seem slightly slower 
than in the study by Optican and Robinson (1980). 

Are oblique saccades superfast? 

To investigate the idea that oblique saccades are 
perhaps superfast (Bahill and Stark 1975; see Intro- 

duction), we constructed oblique saccades in the 
computer in the same way as a saccadic system, 
operating as envisaged in the independent model, 
would do this. Searching through 4 data files contain- 
ing velocity profiles of purely horizontal and vertical 
saccades of various amplitudes and corresponding to 
each of the four cardinal directions right, up, left and 
down, the computer composed as many oblique 
saccades in the directions q) = 30, 60, 120, 150, 210, 
240, 300 and 330 deg as it could, with a precision of 
+1 deg, by selecting appropriate horizontal and 
vertical saccade combinations and synchronizing 
their onsets. By computing peak vectorial velocity 
from a large number of such synthesized oblique 
saccades, of various sizes, it is possible to determine 
mean peak velocity for a given direction and saccade 
amplitude. These independent-model simulation val- 

Fig. 5. Peak vectorial velocity as a function of saccade size for 12 different meridional axes. Number in each box denotes saccade direction. 
Data from monkey 11. Exponential curve [Eq. (1)], which gave best fit, has been drawn through the data points. Note that this curve gives 
a reasonable characterization of the trends visible in both cardinal and oblique directions. To illustrate extremes in the shapes of the fit 
curves for various directions, the curve for q0 = 150 deg has been retraced in the 270 deg panel, for comparison. In general, curves showing 
early saturation have relatively low asymptotic velocity levels (see also Table 1) 
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Table 1. Dependence of parameters asymptote (VECa) and 
angular constant (Re) in Eq. (1) on saccade direction (q)). The 
goodness of fit of Eq. (1) with the data points can be judged from 
Fig. 5 and the correlation (r) between data points and the fit curve 

Monkey 10 Monkey 11 
q0 VECa Re r VEC a R~ r 
(deg) (deg/s) (deg) (deg/s) (deg) 

0 950 9.2 0.97 910 10.8 0.94 
30 1030 9.7 0.92 1070 13.9 0.96 
60 1250 13.3 0.95 1020 12.1 0.94 
90 1150 11.6 0.93 1060 13.5 0.97 

120 1470 16.9 0.96 1050 11.9 0.97 
150 1360 16.3 0.98 1100 12.5 0.96 
180 1100 10.9 0.98 910 10.0 0.90 
210 1140 12.2 0.98 1130 16.8 0.87 
240 1080 10.7 0.87 800 8.3 0.84 
270 910 8.2 0.77 700 7.3 0.90 
300 840 8.8 0.93 780 9.1 0.93 
330 850 7.8 0.90 860 9.6 0.82 

mean 1090 11.3 0.93 950 11.3 0.92 

explained in the Introduction, have been entered. 
The curve representing the independent model pre- 
diction is simply the peak-velocity/amplitude curve 
for purely horizontal (or vertical) saccades elicited in 
the same quadrant. The common-source curve for 
horizontal and vertical components was computed 
using Eqs. (3) and (4), respectively. It can be noticed 
right away that the predictions for the larger compo- 
nent (horizontal for q~ = 30; vertical for q~ = 60 deg) 
differ very little for the two models and fail to 
provide a reason for preferring one or the other. As 
for the smaller component predictions, the common- 
source model curve is closer to the data points than 
the independent model prediction. The data in Fig. 7 
are quite representative for the results in all quad- 
rants. The reason behind the fact that the common- 
source model gives better predictions, at least for the 
smaller component, is that the latter shows clear 
evidence of stretching. 

ues are compared with the experimentally deter- 
mined values (from data as in Fig. 5 and Table 1) in 
the polar plots of Fig. 6. 

The independent model predictions fit very well 
for 10 deg saccades but deteriorate progressively, in 
both monkeys, as saccade size increases. Clearly, for 
large oblique saccades, the actual vectorial peak 
velocity falls systematically below the predicted 
value. While this discrepancy argues against the 
independent model, it cannot be construed as a point 
in favour of the common-source model. The latter, in 
its present form, cannot make quantitative predic- 
tions on this point. 

Component peak velocity 

As has been made clear in the Introduction, once the 
peak-velocity/amplitude relation for saccade vectors 
is known (see Fig. 5 and Table 1), predictions can be 
made for either component, using the common- 
source model [Eqs. (3) and (4)]. In Fig. 7 we present 
data from the first quadrant (q0 = 30 and 60 deg) in 
monkey 11. Each panel shows peak velocity as a 
function of component size. In addition, predictions 
stemming from both models by using procedures 

Saccade component duration 

Another way to explore both models, outlined in the 
Introduction, is to study saccade and component 
durations. To make quantitative predictions from the 
common-source model, the relation between vecto- 
rial saccade duration and amplitude was studied for 
all 12 directions in both monkeys. It is well known 
that, in the amplitude range studied here, this 
relation is linear for horizontal saccades (Fuchs 
1967). We obtained about equally good straight-line 
fits for the amplitude/duration relation in the other 
directions (mean correlation coefficient: 0.88; range 
0.67--0.97; data from two monkeys). 

For each direction, intercept p and slope q in Eq. 
(5) were computed and used, by applying Eqs. (6) 
and (7), to predict the amplitude/duration relation for 
horizontal and vertical components in each oblique 
saccade direction tested. The resulting common- 
source model predictions for component duration 
yield straight lines with q~ dependent slopes (Fig. 8; 
see Introduction). In contrast, the independent 
model proposes that the duration of a given compo- 
nent is independent of the direction of the saccade 
vector and is the same as when it is executed as a 
purely horizontal (or vertical) saccade. 

Fig. 6. Polar plots to show relation between peak vectorial eye velocity and saccade amplitude (R) for all directions tested. Directional 
differences in peak velocity are most clear in large saccades. In both monkeys, large saccades in the fourth quadrant are slower than in any 
other direction. This reflects the observation (Fig. 5, Table 1) that, for these meridians, eye velocity saturates more rapidly as R increases 
and settles at a lower asymptotic value. Predictions of the independent model, that oblique saccades should be supeffast, are not borne out 
by the data 
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Fig. 7. Component peak velocity, as 
a function of component size and 
saccade vector direction, in the first 
quadrant. Predictions of both mod- 
els agree about equally well with the 
experimental data for the larger 
component (horizontal for q0 = 30; 
vertical for q9 = 60 deg). For the 
smaller component, the common- 
source prediction (C) is clearly bet- 
ter. The common-source predictions 
were derived from the vectorial peak 
velocity/amplitude relation by using 
Eqs. (3) and (4). The independent 
model prediction (I) for horizontal 
and vertical component peak veloc- 
ity is the best-fit curve through the 
peak velocity/amplitude data of 
purely horizontal and purely vertical 
saccades, respectively. Data from 
monkey 11 

Again, it appears that both models are about 
equally successful in predicting durations of the 
larger component of oblique saccades (Fig. 8, middle 
column). When it comes to the smaller component, 
the common-source model's predictions are dearly 
better (Fig. 8, left-hand column). This reflects the 
fact that the smaller component is stretched, a 
phenomenon the independent model cannot account 
for. To make the comparison of the two models 
more quantitative, the peak velocity/amplitude rela- 
tion and the duration/amplitude relation were fit with 
a least squares error criterion using an exponential 
relation (Baloh et al. 1975) and a straight line [Eqs. 
(8) and (9)], respectively. Each of these fit curves is 
completely characterized by two parameters: asymp- 
tote and angular constant (peak velocity); sldpe and 
intercept (duration). These experimentally deter- 
mined best fit parameters were confronted with the 
predictions from the common-source model and the 
independent model. In most cases, variations in a 
particular parameter were predicted with an accuracy 
of 20-25% by the common-source model. In con- 
trast, the independent-model predictions failed com- 
pletely to explain these variations. 

If the common-source model is correct, horizon- 
tal and vertical components should have equal dura- 
tions. To check the extent to which this is actually the 
case, a plot of vertical component duration versus 
horizontal component duration was constructed for 
every oblique direction (Fig. 8, right-hand column). 
Again, the prediction from the common-source 
model (a line through the origin with a slope of 45 
deg) fitted much better with the actual data than the 
prediction inspired by the independent model, based 
on Eq. (10). An appreciation of these differences, 
based on all data, can be gained from Table 2. This 
table shows more thoroughly that the same trend can 
be noticed also for other directions in both monkeys. 

Discussion 

The results in this paper show that the dynamics of 
oblique saccade components in the monkey can be 
reasonably understood by the common-source 
model. The alternative model, incorporating the idea 
that components are generated synchronously but 
otherwise independently, must be rejected. 
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Fig. 8. Saccade component duration/amplitude relations for oblique saccades in the first quadrant. Data from monkey 11. The prediction 
from the common-source model (C) is at least a good (larger component) or better (smaller component) than the prediction based on the 
independent model (I). Panels on the right show plots of vertical component duration versus horizontal component duration. The deviation 
from a perfect 1 : 1 relationship predicted by the common-source model is small. The prediction from the independent model is far off, 
especially for tO = 60 deg. See Table 2 for further details 

Table 2. Straight-line fits through vertical component duration/horizontal component duration plots, as in Fig. 8 (right-hand column), for all 
oblique directions tested in the two monkeys. Each fit line is characterized by a slope and an intercept (ms) and was based on at least 50 
data points (left-hand columns). The correlation coefficients, characterizing the goodness of the straight-line fit with the experimental data 
points, ranged from 0.93 to 0.99 (mean: 0.96) for the 8 directions tested in monkey 10. In monkey 11 the fit was still better (range: 
0.97-0.99; mean: 0.98). The slope and intercept were predicted according to the independent model (middle columns) using: slope = 

-- av I tan tO JbH. av J tan tO ] Dn; intercept = b v ~H 

These relations follow directly from Eq. (10); see Introduction. As explained in the text, the common-source model predicts that in all 
oblique saccades both components have equal duration (right-hand columns) 

Direction Experimental data Predictions independent model Common-source model 
Monkey 10 Monkey 11 Monkey 10 Monkey 11 Monkey 10/11 

(tO) slope interc, slope interc, slope interc, slope interc, slope interc. 

30 0.87 1.7 0.95 -1.1 0.40 13.6 0.65 3.8 
60 0.99 2.9 0.93 4.1 1.20 3.6 1.94 -25.7 

120 1.01 2.2 1.11 -2.3 1.59 - 7.2 1.73 - 9.7 
150 0.96 -1.0 1.01 -2.1 0.53 10.0 0.58 9.1 
210 0.93 1.0 1.01 -1.3 0.66 6.3 0.94 - 7.0 
240 0.89 6.2 1.00 2.4 1.99 -15.2 2.83 -37.7 
300 0.96 3.8 1.00 2.9 1.50 - 1.7 3.16 -63.8 
330 0.95 1.5 0.85 5.2 0.50 10.9 1.05 -15.7 

1.00 0.0 
(same for all 

directions) 
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Recently, we have repeated the same study in the 
human. In each of two subjects investigated, we 
found that onset synchronization of orthogonal com- 
ponents is about as good as it is in the monkey. 
Furthermore, we have obtained clear evidence for 
component stretching in oblique saccades. As in the 
monkey, and in agreement with Bahill and Stark 
(1975), the amount of component stretching in small 
(e.g., < 15 deg) saccades was negligible. We could 
also confirm Viviani et al.'s (1977) finding that 
oblique saccades in man are not as straight as they 
are in the monkey. Whatever the cause of this 
phenomenon, it is unlikely from our data that it is 
due to a saccadic system functioning as suggested by 
the independent model. 

It may be useful to contemplate alternative 
schemes which might also be able to explain the 
crosscoupling between components of oblique sac- 
cades which is so obvious in the monkey. One could 
modify the independent model by providing a possi- 
bility for crosscoupling between the horizontal and 
vertical channel which it now lacks (Fig. 1B). To do 
this at the level of horizontal and vertical pulse 
generators (i.e., in the neural control system) would 
seem to be rather ad hoc. 

It should be possible, by future neurophysiologi- 
cal studies on coding of oblique saccades by burst 
neurons and motoneurons, to get more insight into 
the stretching phenomenon. The idea gained from 
the literature is that this is almost virgin territory. A 
start in the right direction has been made by Hepp 
and Henn (1982, 1983). To test the common-source 
model further, the interrelations among vectorial 
error, vectorial eye velocity, component velocity and 
firing rate, need to be studied for various classes of 
neurons. 

The remaining Discussion will concentrate on the 
potential role of neural mechanisms to explain the 
observed crosscoupling effects. The common-source 
model can explain component stretching as a natural 
consequence of a nonlinear vectorial pulse generator 
without necessitating additional assumptions. It has 
been suggested that the pulse generator is nonlinear 
to explain the curvilinear peak velocity/amplitude 
relationship of horizontal saccades (Robinson 1975; 
Van Gisbergen et al. 1981). By proposing a single 
nonlinear pulse generator fed by a vectorial error 
signal (Fig. 1A), the curvilinear peak velocity/ 
amplitude relation for horizontal saccades is 
generalized to all directions, in good agreement with 
the experimental data (Fig. 5). An interesting conse- 
quence of this key assumption is that it can also 
explain the occurrence of another nonlinear 
phenomenon: component stretching in oblique sac- 
cades. As we have shown (Introduction), quantita- 

tive predictions can be made from this model con- 
cerning the expected degree of component stretching 
as a function of saccade vector direction and 
amplitude (Fig. 2). These predictions appeared to be 
largely correct and thus attest of the model's capabil- 
ity to bring insight into what would otherwise have 
been a puzzling set of data (Figs. 7 and 8). Since, so 
far, the common-source model was discussed only in 
rather abstract terms, it is essential to give more 
thought to the problem of how such a scheme could 
be embodied in a realistic neural network. 

Possible neural basis for common-source model 

A possible neural basis for the common-source 
model will now be discussed. We assume that the 
desired saccade vector is spatially encoded in a neural 
map, which can be exemplified by the collicular map. 
The problem to be addressed is how the spatially 
encoded collicular map is converted into the tempo- 
rally coded signals of horizontal and vertical MLBs 
(see Introduction). What seems to be needed, in view 
of the results of this paper, is a neural scheme which 
generates a vectorial eye velocity signal which is then 
decomposed in the component-related velocity com- 
mand signals of MLBs. 

We take up Hepp and Henn's suggestion that the 
spatio-temporal recoding may have an intermediary 
step where direction is still spatially coded (i.e., by 
which group of neurons in the total population is 
active) whereas vectorial eye velocity is already 
coded temporally (i.e., in the precise firing rate of 
these neurons). The LLB subclasses, called vector 
and direction burst cells by Hepp and Henn (1983; 
see Introduction), may represent different stages in 
this recoding process. 

Thus, an array of LLBs, each of which codes eye 
velocity in a certain direction, embodies the vectorial 
pulse generator proposed in the common-source 
model (Fig. 1A). Because, according to the common- 
source model, the vectorial pulse generator is non- 
linear, our scheme requires that burst firing rate in 
this LLB population (representing vectorial eye 
velocity) has a nonlinear relation with retinal error. 

Decomposition is the subsequent stage in the 
proposed chain of neural signal transformations (Fig. 
1A). Following suggestions made by Hepp and Henn 
(1983), we propose that LLBs with an oblique 
movement field drive both horizontal and vertical 
MLBs. The idea that LLBs may play an intermediary 
role in interfacing MLBs with the collicular map 
seems reasonable from a study by Raybourn and 
Keller (1977). The synaptic weight with which each 
individual LLB cell drives horizontal and vertical 
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MLBs must of course depend on the direction of its 
movement  field (q0) and would be cosq0 and sinq% 
respectively [see Eqs. (3) and (4)]. For  LLBs corre- 
sponding to the q~ = 45 deg meridian, for example,  
these synaptic weights would both be  0.707. As a 
result, horizontal and vertical eye velocity would be 
equal which is appropriate  for a 45 deg oblique 
saccade. It  should perhaps  be  emphasized that the 
synaptic weights with which each LLB cell drives the 
two populations of MLBs,  are fixed. We do not, 
however,  exclude the possibility of slow plastic 
changes under certain conditions. 

We are well aware, of course, that the scheme is 
partly conjectural and still very incomplete.  Some of 
the problems which cannot be resolved at the 
moment  are worth pointing out: 

1) If  a population of long-lead burst cells is 
recruited into activity, what ascertains that the total 
sum of all the individual movement  tendencies pro- 
duced will yield a normometr ic  saccade? This prob- 
lem was solved elegantly in Robinson 's  one-dimen- 
sional model  by assuming an internal-feedback loop. 
There is good evidence to favour the notion of some 
form of internal feedback (Robinson 1975, 1981) but 
how this idea should be generalized in a two- 
dimensional model  of the saccadic system is not a 
trivial problem (Keller 1980; Van Gisbergen et al. 
1982; Sparks and Mays 1983) and certainly beyond 
the scope of this paper.  

2) Another  problem is how the pause cell sac- 
cade-initiation system (Keller 1974) is interfaced with 
LLBs and MLBs. So far, it has been widely assumed 
that the omnidirectional pause cells inhibit MLBs 
directly. As far as we know, such connections have 
not yet been proven.  From a functional point of view, 
we think it cannot be excluded that they exert their 
presumed gating function at a more  central level. At  
any rate, every scheme attempting to model  the 
monkey 's  saccadic system will have to account for the 
rather tight synchronization of component  onset and 
offset in oblique saccades. 

3) Finally, there is the unresolved question of 
how the rather noisy eye velocity signals of LLBs can 
give rise to the neat  velocity signals in MLBs. 

This list, which could be  expanded further,  makes 
clear that we are still far f rom a complete two- 
dimensional model  of the saccadic system. Yet,  we 
think the common-source model  deserves further 
attention. An important  asset of this model  is that it 
permits a rather  simple explanation of the compli- 
cated crosscoupling effects which we found in the 
monkey.  Bahill and Stark (1977), apparently reason- 
ing from the standpoint of an independent  model,  
suggested that "a great deal of computat ional  effort" 
would be necessary to create tight crosslinking of 

horizontal and vertical components  of oblique sac- 
cades. Also the very te rm "stretching", which has 
become entrenched in the literature, seems reminis- 
cent of the idea that  a deliberate control strategy in 
the saccadic system is responsible for component  
crosscoupling. The common-source model ,  instead, 
suggests that stretching may be a corollary of a 
nonlinear vectorial pulse generator.  Thus, both  the 
nonlinear peak  velocity/amplitude relationship of 
saccades and the stretching phenomenon  in compo- 
nents of oblique saccades may be consequences of a 
single nonlinearity. 
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