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AB S TR AC T 
Since the theoretical stresses and strains at the tip of a V-notched crack in an elastic continuum are infinite, the question 
arises as to the accuracy of strain energy as calculated from finite element computer programs for systems containing 
such a crack. Two geometries for which analytical solutions are available were analyzed using a plane stress finite ele- 
meat computer program. Results show that accuracy in both cases depended upon proper selection of a grid network. 
Several methods of calculating stress intensity factors are discussed. Application of the fimte element computer pro- 
gram in the analysis of fracture in solid propellant rocket motor cartridge or grain is included. 

Introduction 

Determination of the structural integrity of rocket motor grains recently has included consi- 
derable effort in predicting the useful life of motors with damaged or cracked grains. Recent 
applications have employed the energy balance theory of fracture mechanics for linearly vis- 
coelastic materials. The energy approach developed by Griffith [1], and extended to linear 
viscoelastic materials by Williams [-2], has been used to predict depth of crack propagation 
and crack trajectory in rocket motor grains. This approach requires a knowledge of the rate 
of change of the strain energy with respect to new crack surface area as the crack extends 
(0 U/OA), which can be related to the stress intensity factors. Since direct relationships exist 
between stress, strain and energy, the stress intensity factors are proportional to the square 
root of the strain energy release rate, as was shown by Irwin [3]. This information, combined 
with the experimentally determined cohesive fracture energy function, Vc, permits a calculation 
of maximum crack depth [4, 5]. 

A rigorous determination of stress intensity factors or energy rates in rocket motor grains 
requires the exact solution of viscoelasticity problems involving complex geometries. Since these 
solutions are not generally available, numerical techniques must be used. The method which is 
currently most used in the analysis of stresses and strains in complex geometries is application 
of finite element computer formulations. The application of these computer programs to 
fracture mechanics for several different geometries is discussed in papers by Swanson [6] and 
Chan [7]. 

A method for determining the cohesive fracture energy Vc for viscoelastic materials is outlined 
in Reference [8]. However, all of the fracture mechanics analyses reported herein apply to a 
particular instant of time after load. For this time 7~ is a constant and a quasiviscoelastic strain 
energy analysis is used. 

Comparison of Numerical and Analytical Results 

Although the general three dimensional finite element computer programs are in operation, 
this discussion is limited to the special case of two dimensional plane strain and plane stress for 
which analytical solutions are available. For these problems, nonzero stress components are 
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mathematically infinite at the tip of a V-notched crack. For  example, the local stresses and 
displacements in the vicinity of the tip of a f'mite crack in a plane strain continuum subjected to a 
uniform stress, a, at infinity, are [9] : 

O" x 

0"y 

~xy 
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o t r/ocos  sm sm- 
a 0 

sin g cos  ~ c o s  ~ -  

v ( ~ + % ) ,  T~, = ~,z = 0 

•a 0 ( l _ 2 v + s i n 2  ~)  (2) ~c°s~ 
(2 a 0 - 2v - cos - ~sin~ 

where (r, 0) = polar coordinates from crack tip 
a = ½ crack length 
a = applied stress 
G = shear modulus 
u = displacement in direction of crack 
v -- displacement perpendicular to crack 

The question, therefore, arises as to the accuracy of the strain energy as calculated by finite 
element computer programs for a system containing such a crack. Two geometries for which 
closed form solutions are available were analyzed using a plane stress finite element computer 
program. 

The first geometry consists of a finite length crack (2a) in an infinite sheet subjected to tension 
at infinity. The difference in energy in a sheet with a crack of length 2a and a sheet without a 
crack as obtained by Griffith [-1] is AU = ~aZaZ/E. 

T A B L E  1 

Strain energy for Griffith crack 

Haf t -Crack  Ana ly t i ca l  300 N o d e  G r i d  720 N o d e  G r i d  
Leng th  (in.) 

A B C D E F G 

0 13.2332 13.2248 . . . . . .  
0.5 13.6096 13.5740 . . . . . .  
0.8 14.8632 14.1572 . . . . . .  
0.9 14.4716 14.4224 . . . . . .  
1.0 14.7640 14.7692 14.7596 14.7312 14.7404 14.8312 14.832 - -  
L2 15.4408 15.5360 15.5212 . . . .  15.6356 
M i n i m u m  G r i d  - -  0.01 0.02 0.04 0.08 0.005 0.02 0.02 
D i m e n s i o n  (in.) 
Percent  - -  0.418 0.483 0.674 0.612 0 0.005 - -  
f rom Fines t  G r i d  

A t'mite sheet (6 in. high by 9 in. long) was analyzed with longitudinally oriented cracks to 
simulate the infinite sheet for which Griffith's energy equation applies. A modulus of 10,800,000 
psi and Poisson's ratio of 0.3333 were used. The analytical results are compared in Table 1 
with the strain energy as calculated using a finite element computer program. The calculations 
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in column A of Table 1 show that approximately three-figure accuracy may be obtained using a 
relatively coarse grid network. 

The total energy (U) was calculated for several grid networks to determine the effect of total 
mesh size and node distribution in the vicinity of the crack tip. The grid mesh in the vicinity 
of the crack tip consisted of square elements, the First element from the crack tip having the 
dimensions shown in Table 1. In any direction from the crack tip, the elements increased in geo- 
metric progression with a ratio of two for most grids used. A difference of only 0.26 percent was 
found between the analytical and numerical results for a 1 in. crack. This small difference 
accounts for bofh the finite dimension approximation (6 in. by 9 in.) and the numerical inaccu- 
racies in the computer results. If the finest grid (E) is used as a reference, the results indicated 
in Table 1 show that an error of 0.67 percent may be introduced by using a relatively coarse 
grid. Consequently, it was concluded that, at least for this geometry, good engineering accuracy 
can be obtained in calculating strain energy from finite element computer programs. For the 
example shown in Table 1, relatively coarse grid networks are satisfactory for computing total 
strain energy accurately to the second or third significant digit. 

Figure 1 shows the rate of change of strain energy with respect to crack area (SU/SA) for 
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Figure  1. Rate of Change of Energy for Gnffith Crack. 

/ 

analytical versus the (AU/AA) numerical results. The inaccuracy for large crack areas is attri- 
buted to the finite geometry analyzed. In this analysis and all other reported herein, the OU/OA 
was calculated by computing energy for various crack depths and using a central difference 
technique. The increment size, AA, depends upon the rate of change in the slope of the energy 
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versus crack area plot. Since the OU/OA curve is normally a smooth function of crack area, a 
fairly large increment in crack area, AA, is used. 

A second analysis was performed to determine if stress concentrations due to curved boun- 
daries adversely affected the accuracy of finite element computer programs in analyzing 
V-notch cracks. The geometry, as analyzed by O. L. Bowie [10], consists of a circular hole in 
an infinite body with any number of radial cracks extending from the circular hole. A tensile 
loading is applied at infmity. 

Computer determinations of strain energy for various values of crack depth were calculated 
using several different grid densities. These values are shown in Table 2. 

TABLE 2 

Total strain energy( U) for Bowie analysis 

Crack Depth Numerical Solution* Analytical Solution 
(i~.) 

Mesh Size 
11x 11 18 x 19 27 x38 

0 3.5814 3.55525 3.547980 3.546189 
0.303 - -  3.71637 3.724561 3.731300 
0.497 - -  3.95403 3.960683 3.983400 

*Internal radius = 1.0. External radius = 10.0. 

Accuracies of 99.6 to 99.9 percent were obtained (depending upon grid mesh size) for a crack 
of 0.303 in. depth. Since the error increases with crack length, part of the error is attn~buted to 
using a finite cylinder to approximate the infinite body as analyzed by Bowie. 

Results led to the conclusion that t'mite element programs can be used to calculate accurately 
the strain energy in rocket motor grains, at least when quasiviscoelastic analysis is applicable. 

C a l c u l a t i o n  o f  S t r e s s  I n t e n s i t y  F a c t o r s  

Several methods of calculating elastic stress intensity factors using finite element computer pro- 
grams were examined. The first method consists of calculating the strain energy for several 
different values of crack depth. The rate of change of strain energy with respect to crack area 
(AU/AA) is then calculated for the crack depths of interest. These data may be converted to 
stress intensity factors using the equations of Reference [-3] or [-9]. 

The second method consists of selecting a grid with a sufficiently fine mesh around the crack 
tip that the stresses or displacements may be fit directly to the theoretical equations. Chan [7] 
shows that if displacements are used, the stress intensity factors may be obtained most accurately 
using the displacements perpendicular to the crack surface. For plane strain with no shear 
stress applied, the stress intensity factor (KI) is c r x ~  These stress intensity factor in terms of 
crack tip displacement v becomes 

(2re/r) ~ Gv 
K I = 

• 0 [ 2  -cos2(O) l  sm ~ - 2v _ 

For extremely small or very large values of r, the computed values of K I are not very accurate. 
The most accurate results are obtained by plotting K I vs. r and extrapolating the intermediate 
data to the point r=  0. 

Rice 1-11] has shown that for an elastic material the value of the line integral 

fr ( W d y -  T'OU J=  Ox ds) 

is proportional to the square of the crack tip stress intensity factor, where F is an arbitrary 
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contour surrounding the crack tip, W is the strain energy density, and T and u are traction and 
displacement vectors. 

For plane strain conditions, the following relation is given. 

JE 
K2 - 1 - v 2 

This equation may be used as a third method of calculating stress intensity factors. 
Several check cases have been investigated by Chan using the line integral method and the 

stresses and displacements in the vicinity of the crack tip. He concludes that approximately the 
same accuracy may be obtained using either method. The accuracy of these methods for the 
grids used by Chan is generally 95 to 97 percent. 

One disadvantage of both methods is that they require an extremely fine grid mesh in the 
vicinity of the crack tip. Chan uses a system of automatic ref'mement and renumbering of the 
nodes at the crack tip. The refinement of this portion of the grid increases the stiffness matrix 
bandwidth to such an extent that direct solution schemes are no longer feasible because of 
storage limitations. This problem may be resolved by using an iterative scheme. Although 
iterative techniques work well for materials with low Poisson's ratios they converge very slowly 
for nearly incompressible materials (v ~ ½) such as solid propellant fuel. 

A possible program improvement to make these methods more feasible for propellant grain 
analyses and to decrease the number of elements required for a given accuracy is replacement 
of the linear displacement triangular elements in the neighborhood of the crack tip with annular 
elements. The displacements in these elements would be chosen proportional to the square 
root of the distance from the crack tip, which would satisfy the theoretical displacement 
equations in this area. Wilson is presently studying this feature at Westinghouse. 

Several computer runs were completed to determine the relative accuracy of calculation 
methods for stress intensity factors using a Griffith sheet geometry. In the first method, the 
strain energy was calculated for two cracks of length 0.998 and 1.0 inch (6 in. x 9 in. sheet). The 
AU/AA was calculated and converted to stress intensity using the formula 

K~ = (2EA U/AA) ~ 

In the second method, the displacements perpendicular to the crack surface were converted 
to stress intensity factors for the 1.0 in. crack using the equation 

Ev (2_~) ~ 
KI = ~ -  

These results are compared with the analytical solution 

K, = o-(rca) ~ 

in Table 3. With the same material properties and geometry as used previously in this report, 

TABLE 3 

Stress intensuy factor (KI) comparison for Grtffith sheet 

Grid Grid Number Distance from K l from Percent K~ from Percent 
Dimensions of Nodes Crack Tip with Energy Error Displacement Error 

Distributed Fine Grid 
with .jr 

1 15 x 22 0 0 2,887 0.143 2,580 - 10.5 
2 15 x22 5 0.25 2,912 1.01 2,720 - 5.7 
3 15×22 5 0.05 2,862 -0 .72 2,820 - 2.2 
4 15 x 22 5 0.005 2,729 - 5.31 2,965 2.8 
5 30x49 13 0.0034 2,881 -0 .07 2,920 1.3 
Analytical 2,883 
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Grid 1 
= 

GrkI2  s ~  

Grtd 2 (F.xpan~) 

Gdd 3 Sym r l ~ J ~ ( E x p a n d e d )  

Grid 4 Sym 

~ ~ Grid 4 ( IExpinded) 

S~IG:I,2O~ 

Figure 2. Grid Network for Gril~th Sheet. 

the stress intensity factor from the above equation has the numerical value of 2,883. 
The number of nodes used in the first four grids of the study (Figure 2) was 330, which is 

considerably less than the program capability. With the exception of the first grid, the nodes 
in the vicinity of the crack tip were selected so that equal changes in the square root of the 
distance from the crack tip were obtained over each element. 

The data in Table 3 show that for a given number of nodes a grid mesh can be selected so 
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Gdd 5 Grid 5 (Expanded) 

[ 

1 

Figure 3 Stress Intensity Factor for Griffith Sheet. 

that the stress intensity factor can be more accurately obtained from strain energy than from 
displacements. Then by redistributing the nodes (fines in vicinity of the crack tip), the displace- 
ments can produce the more accurate results. 

The values of K~ listed in Table 3 for grids 1 thru 4, as calculated from displacements, are the 
maximum values for nodes in the vicinity of the crack tip. For the small mesh used, too few 
nodes were sufficiently close to the crack tip to obtain a straight line extrapolation to r = 0. 
A fifth run was conducted to demonstrate the grid requirements and accuracy obtained from 
displacements when sufficient nodes are available. Figure 3 shows KI versus r for grid 5. 
When this curve is extrapolated to the crack tip, a stress intensity factor of 2,920 is obtained, 
which differs from the analytical results by approximately 1 percent. The error in stress intensity 
factor as calculated from strain energy for this grid is less than 0.1 percent. 

Using the finite element programs as presently formulated for a given number of nodes and 
the proper selection of a grid, the stress intensity factors may be calculated more accurately 
using strain energy than from either displacements or the integral method, as discussed above. 
When methods of refining grid networks or modifying the elements in the vicinity of the crack 
tip are incorporated into the program, the displacements may produce the more accurate 
results. 

In the calculation of elastic strain energy change in rocket motor grains analyzed to date, the 
energy in the case changes radically for even fairly small crack depths; consequently, this 
change in energy must be combined with the change in energy in the propellant grain to predict 
crack behavior. 

Selection of Grid Mesh 

The basic assumption inherent in the development of our computer programs is that the 
displacements within each triangular element are linear functions of the coordinates. The 
optimum placement of nodes in any region where the functional form of the displacement field 
is known is such that the displacements may be fit most accurately by straight lines. Selection 
of the optimum node distribution often requires estimation of the displacement gradients. 
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However, since the displacements are known to be proportional to the square root of r in the 
vicinity of crack tips, the optimum node distribution is such that each element has the same 
change in the function x/r. This distribution is obtained automatically if the nodes are distribu- 
ted in an arithmetical progression in all directions from the crack tip. 

In most of our analyses, the grids have been selected in the above manner. Normally the first 
five nodes in every direction from the crack tip are kept in exactly the same relation to the 
crack as crack angle or crack depth is changed. Use of this selection technique has been neces- 
sary to prevent grid bias from distorting the energy calculations in the fourth or fifth decimal 
place. 

A second method has recently been employed which appears to provide approximately the 
same accuracy. In this method the grid network is kept constant and crack depth is changed by 
changing boundary constraints or introducing zero modulus in continuum elements. A free 
mesh cannot be obtained in the vicinity of the crack tip if many depths are required. However, 
as shown in the test cases, the energy can be calculated to 3 or 4 place accuracy using a fairly 
coarse grid. Since there is no grid bias with this method, the changes in energy provide sufficient 
accuracy to calculate a AU/AA curve accurately. This constant grid method was used on a 
complex motor grain which had previously been analyzed using a fine grid for each crack depth. 
The greatest difference between the two resulting AU/AA curves was less than two percent. 

Figures 4 and 5 show typical strain energy curves for thermal and pressure loads from a motor 
grain in a steel case. Note that changes in the fourth significant digit will contribute to relatively 
large changes in slope of these curves. Since this slope (AU/AA) is used in calculating stress 
intensity factors; and because, as shown previously, the check cases are only accurate to 
approximately three sitmificant figures, some care must be used in performing the calculations. 

In the initial crack propagation analyses, severe oscillations were noted in the fourth digit 
for small cracks under pressure load. The oscillations were decreased by redistributing the 
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nodes so that a freer mesh distribution, proportional to , J r ,  was used in the vicinity of the crack 
tip. However, a program change to calculate energy directly from the displacements and the 
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E = 1, 000 PSI 
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V = 0.495 

E = 30 x 106 PSI c 
b~c = 0.3 
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/ J  
j J  J 

0 1 .0  2 .0  

CRACK DEPTH (IN.) 

Figure 5. Strain Energy vs. Crack Depth - Pressure Load. 

3 .0  4 .0  

stiffness matrix, rather than from stresses and strains, was required to remove the oscillations. 
The analytical solution for a hollow cylinder was used to check the accuracy of the new strain 
energy calculations. The error was reduced from 0.063 percent to 0.0046 percent, thus increasing 
the accuracy by approximately one digit. 

This new method of calculating strain energy was applied to an operational missile motor  
for a pressure load, the results are shown in Table 4. 

TABLE 4 

Results of pressure load calculation in operational motor 

Energy from Energy from 
Stress and Strain Displacements 

Ori~nM Grid 2500.983 2505 7654 
Refined Grid 2501.943 2505.7594 
Percent Change 0.038 0.00024 

Not only has the strain energy changed in the fourth digit, but it appears that the more accu- 
rate calculation method is much less sensitive to grid changes. 

Critical Parameters in Fracture Propagation 

A strong dependence ofA U/AA on Poisson's ratio exists for the propellant grains under ignition 
load (nearly incompressible). For  example, a plane strain analysis of a rocket motor  grain show- 
ed that the AU/AA ranged from 27.0 to 5.0 in.-lb/sq in. for values of v of 0.495 to 0.499, re- 
spectively. Such a large variation was not expected, so a check case consisting of a smooth 
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bore grain with a thin shell in plane strain was investigated. The bore was treated as a cylindri- 
cal flaw. A closed form solution for the energy balance of this configuration was obtained 
together with a finite element computer analysis for internal pressure loading. The results are 
shown in Table 5. The configuration, material properties and results of a second check case are 
presented in Reference [4]. Both check cases verified the sensitivity of the energy balance to 
Poisson's ratio. It is, therefore, concluded that Poisson's ratio is an extremely critical parameter 
in fracture propagation analysis of pressurized grains enclosed by steel cases. Poisson's ratio 
must be known to at least three places to obtain reasonably accurate estimates of crack growth. 

TABLE 5 

Closed form solution comparison 

Poisson's Ratio ~3 U/OA (Closed Solution) A U/AA (Computer) 

0.495 120.6 120.5 
0.499 22.8 22.8 

The sensitivity of 8U/SA to Poisson's ratio for internal pressure load can be attributed to the 
apparent effect on grain-case interface pressure. This effect leads to another interesting phenom- 
enon when applying the energy balance method to fracture in propellant grains. The crack 
driving parameter A U/AA was compared for a typical smooth bore grain with a steel case vs. a 
fiberglass case for the ignition load condition. The change in pressure (chamber pressure- 
interface pressure), which is much greater in the fiberglass case, results in a A U / A A  approxi- 
mately 10 times that with the steel case. These limited results indicate a potential catastrophic 
failure if the grain contained in a fiberglass case has surface flaws such as scratches and cracks. 

For thermally loaded grains, the value of Poisson's ratio is not extremely critical. However, 
a second parameter becomes very important, as can be seen from the thermal analysis of a 
cylindrical grain in a rigid case [12]. If the temperature in the grain is uniform, the strain 
energy and energy rate may be written 

OU 
V = C 1 E ( ~ A T )  2, ~?A - C 2 E ( a A T ) 2  

Since the term aATin the above equations is squared, the measurement of the thermal coeffi- 
cient of linear expansion (~) becomes extremely important. Consequently, it is felt that emphasis 
should be directed to these measurements and to determining the effect of strain on c~ when 
fracture mechanics programs are initiated. 

Crack Trajectory Analysis 

The first step in determining crack trajectory is to locate the most probable point of crack 
initiation. For complex geometries, the crack initiation point is normally located by determi- 
ning the stress and strain distribution in the system using a finite element computer program 
and applying an appropriate failure criterion : e.9., the point of maximum principal strain could 
be selected. 

The direction of propagation of a crack from this point can be determined using the principle 
that a crack will travel in the direction of maximum strain energy release. For a crack of a given 
length (unit thickness), this will be the direction of greatest change in stored energy. Therefore, 
the procedure is to input a small length crack, initiating at the point of maximum principal 
strain, to a finite element computer program for several crack angles. The calculated strain 
energy is then plotted vs. crack angle. For a thermal load where stored strain energy is a maxi- 
mum for the uncracked condition, the angle of crack for which strain energy is minimum is the 
predicted initial angle of propagation (maximum strain energy release from initial uncracked 
configuration to cracked configuration). 
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To determine the remaining trajectory, a short crack extension is input to the initial crack 
selected. Energies are then calculated for a system with cracks of different orientation initiating 
at the terminus of the first crack. The orientation of the second crack for which the system has 
minimum stored energy (or maximum change in strain energy) is the crack direction predicted. 
This procedure can be repeated to trace the entire trajectory. 

A trajectory analysis was performed on a star grain motor (case O.D. ~ 65 in.) and the results 
were compared to the actual crack trajectory in a motor which was cracked by cold soaking. 
A 1 in. crack was assumed to have initiated at the point of maximum strata (approximately 
0.4 in. from the starpoint centerline). The finite element computer program indicated a mini- 
mum energy with a crack angle of 20 deg from the starpoint centerline, as shown in Figure 6. 
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Figure 6. Strain Energy vs. Crack Angle, 1 in. Crack. 

3. 0110 
26 

Particular attention should be paid to the scale on Figure 6. To obtain a smooth curve, energy 
changes in the fifth si~ificant digit become important. These changes were anticipated, since 
the orientation o fa  1 in. crack in a motor with a minimum web of 17 in. should not affect the 
total stored energy greatly; however, it indicates that extreme care must be used in setting up 
the grid. In the vicinity of the crack tip, the grid for this particular problem was kept constant 
for all crack angles. The small energy change with respect to crack angle also indicates that the 
crack trajectory may be very sensitive to local nonhomogeneities in the propellant. 

In the computer analysis, the crack was simulated with a row of zero modulus elements 
(0.001 in. wide). To verify that energy changes were not due to grid network, the modulus in the 
crack was changed from zero to the propellant modulus and three of the grids were rerun (no 
crack). The grid network changes were of approximately the same magnitude as the energy 
changes, However, as can be seen from the grid bias curve in Figure 6, if the grid bias is sub- 
tracted from the energy curve, the minimum energy is changed by only approximately 1 deg. 

A second series of runs was made to determine if the crack trajectory changes direction after 
propagating into the propellant. This study was conducted for an initial crack of 0.35 in. at 20 
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deg with a 0.2 in. extension. The energy versus angle curve for this configuration is shown in 
Figure 7, indicating that the trajectory changes from 20 deg to approximately 5 deg. The grid 
bias for this configuration is almost zero and would not change the predicted minimum. 
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Figure 7. Energy vs. Angle of Crack Extension. 
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The motor for which this analysis was performed was cooled to failure. Dye was placed in the 
cracks and the cracked segments were removed. The average initial crack angle was 20 deg, as 
predicted; however, the data ranged from 0 to 45 deg. The data scatter demonstrates that the tra- 
jectory is very sensitive to local nonhomogeneity of the propellant. This effect is also noted on a 
smaller scale by the jagged crack edges shown in Figure 8. 

Collclusions 

The finite element computer program is a useful means of performing fracture analysis of 
continua with complex geometries for the special cases of two dimensional plane stress or 
plane strain. Results of this study were fruitful to warrant extension to general three dimensional 
finite element computer programs. 

Using the finite element computer program, stress intensity factors were computed with 
acceptable engineering accuracy by three methods : strain energy, displacements, and integral 
method. With present program formulation, the strain energy change (AU/AA) method was the 
most accurate. 

Some interesting aspects of fracture analysis of solid propellant rocket motors can be con- 
cluded as a result of this study. 

For the thermal load, the significant parameter with energy balance is the (aAT) term 
where a is the propellant coefficient of linear expansion and AT is the bulk change in 
temperature from the zero stress temperature. 

For the ignition load with nearly incompressible propellant and a steel case, the energy 
change (AU/AA) is very sensitive to the propellant Poisson's ratio, varying by a factor of 
five when v varies from 0.495 to 0.499. 

For the ignition load, the case or chamber stiffness has a significant influence on the 
energy change (A U/AA). 
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Figure 8. Propellant Sample After Crack Propagation Test. 

Finally, a method was presented for which crack trajectory can be determined using the 
strain energies calculated from t'mite element computer programs. 
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R g S U M ] ~  
Darts un continuum 61astique, les contramtes et les d6formations/t l'extr6rmt6 d'une fissure en V6 sont thdoriquement 
infmies. La question se pose donc de savoir quel est le degr~ de pr6cision que l'on peut attendre du calcul/t l'ordinateur 
par 616ments finis de l'6nergie de d6formation correspondant/t  des systchnes off se rencontrent de miles fissures. 

On a analys~ deux types de g6om6tries diff6rentes, pour lesquelles existent des solutions analytiques, en ufilisant un 
programme d'ordinateur pour l'6tude par 616merits finis de l'6tat plan de tension. 

Les r6sultats montrent que, dans les deux cas, la pr6cision d6pend du choix du r~seau le plus ad6quat. 
Dlverses m6thodes de ealcul des facteurs d'intensit6 des contraintes sont discut6es. On traite de rapplication des 

programmes de ealcul par ordinateur des 61ements finis h ranalyse des conditions de rupture darts les cartouches ou 
616ments de combustible solide pour fns6es. 

Z U S A M M E N F A S S U N G  
Die theoretischen Spannungen und Dehnungen an der Spltze eines V-f6rmigen Pisses in einem elastischen Kontinuum 
sind unendlich grog. Es stellt sich die Frage der Genauigkeit der, fur Systeme mit solchen Rissen, nach dan  Verfahren 
der endlichen Elementen errechneten Dehnungsenergie. 

Zwei geometrische Formen, ffur welche analytlsche Ergebnisse vorlagen, wurden an Hand eines Rechenprogramms 
fur die Ermittlung des planen Spannungszustandes dutch endliche Elemente untersucht. 

Die Ergebnisse zeigen, dab in beiden Fallen die Genauigkeit yon der Wahl eines passenden Netzes abhiingt. 
Es werden verschiedene Verfahren zur Bestlmmung der Spannungsintensitfitsfaktoren besprochen; die Anwendung 

des Rechenprogr~mms zur Ermittlung der Bruchbedingungen in Festbrennstoffelementen fiJr Raketen wird behandelt. 
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