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Modeling FMS with Decision Petri Nets
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Abstract. Decision point extended timed Petri nets or decision Petri nets (DPN) are introduced as an extended
modeling framework for FMS performance evaluation. The decision point extension allows the explicit modeling
of the control of the flow of tokens in timed Petri nets and hence represents the control of the flow of material,
resources, and information in FMS. Further, the concept of a bounded transition is proposed to conveniently
muodel the blocking logic in an FMS with limited buffer capacities. The motivation to present these conventions
is to develop a user-friendly graphic model to represent FMS designs for analysis by discrete event simulation.
DPN affords concise models that can be conveniently developed and easily transformed into discrete event simulation
models. With the help of a simple FMS example, which includes a number of part types, loading rules, dispatch-
ing rules, and probabilistic branching (at an inspection station), we illustrate the DPN model development. As
an illustration of the ease with which it can be transformed into a simulation model, we have developed a generalized
simulator called ROBSIM and outline here its methodological basis. The proposed concepts should be of interest
to users of discrete event simulation in FMS design or elsewhere to tap the potential of basic Petri net concepts
for graphic representation and specification purpeses. In particular, our work should encourage other researchers
to develop extensions relevant to their own areas of interest.!

1. Introduction

The analysis of flexible manufacturing systems (FMS) for design and control is complex.
Typically, investments in FMS are very large, and the design and operation of such systems
must be planned in detail. A number of analytical and simulation techniques to address
various levels of FMS design complexity are available. This article explores the use of
Petri-net-based simulation as a design technique. The Petri nets serve as a graphic represen-
tation and specification framework, and simulation is the analysis tool for this framework.

Petri nets are used as a formal graph method of modeling the flow of information and
control in systems, especially those that exhibit asynchronous and concurrent properties
(Agerwala and Flynn 1975; Peterson 1981). Flexible manufacturing systems exhibit such
characiteristics during the manufacture of part types with different processing sequences
(Dubois and Stecke 1983).

The dynamic element in Petri nets is the transition, which can be viewed as an event.
A place represents the definition of a state. The tokens in a place represent the quantifica-
tion of this state. Thus, the fundamental feature that a Petri net portrays is the state-event
ot state-transition relations of a system. The transition firing represents an evolution of
the states based on logical relations in the system modeled as a Petri net.

Timed Petri nets involve the notion of time between the firing of various transitions. The
fundamental aspect of Petri nets that is useful for discrete event simulation is the represen-
tation of the state-transition relations of a system over time. The literature on timed Petri
nets is growing (see Ramchandani 19%4; Sifakis 1979; Ramamoorthy and Ho 1980; Dubois
and Stecke 1983; Alanche et al. 1984; Martin and Alla 1987; Germain and Descotes-Genon
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1987; Wadhwa and Browne 1988). Dubois and Stecke (1983) outline the usefulness of timed
Petri nets for planning and control problems in FMS. They preseat a brief discussion and
comparison of the Petri net approach and other approaches: queueing networks (Solberg
1979); perturbation analysis (Ho, Chi, and Cao 1983); and simulation (Stecke and Solberg
1981). Performance evaluation using timed Petri net modeling has been attempted by
analytical techniques (Sifakis 1979; Ramamoorthy and Ho 1980; Dubois and Stecke 1983).

Dubois and Stecke (1983) provide examples of the use of timed Petri nets in manufactur-
ing systems. They argue that under some structural assumptions, the timed Petri net models
translate into linear equations in a (max, +) algebra. Efficient algorithms can solve these
equations for the purposes of performance evaluation and real-time control. The structural
assumption calls for a deterministic, decision-free, safe, and live Petri net class. In conclu-
sion, Dubois and Stecke point out that there appears not to be much of a limit to the modeling
capabilities of Petri nets. However, at present, the decision-free requirement is necessary
for using analytical techniques to evaluate the performance of a system with timed Petri
nets. To analyze non-decision-free Petri nets, the modeling capabilities of simulation are
usually needed. Since FMS is characterized by flexibility and real-time control, the decision-
based aspect is crucial for detailed design in this area. Thus, analytical technigues at present
are limited in analyzing FMSs in detail. Simulation is now widely accepted for detailed
FMS design. Dubois and Stecke suggest the need for developing new modeling conven-
tions with respect to the use of timed Petri nets in new applications. We propose some
extensions to timed Petri nets to conveniently model flexibility and real-time control aspects
of an FMS.

2. Motivation for our work

Several researchers who have used Petri nets to model systems have found them too simple
and limited to easily model real systems (Peterson, 1981). Thus, there has been a marked
tendency to extend the Petri net model. Peterson (1981) discusses some of these exiensions,
one involving an exclusive-OR transition and the other a priority transition. In the exten-
sion involving an exclusive-OR transition, the transition firing rule is to fire a transition
if and only if exactly one of its input places has tokens and all the other input places have
zero tokens. When the transition fires, it removes a token only from the input place with
tokens. Similarly, in the priority transition extension, the concept of associating priorities
with the transitions is used: if two or more transitions are simultaneously enabled, the
highest-priority transition is chosen to fire first.

These extensions to Petri nets were created for solving specific problems that the research-
ers encountered in their attempts to model real systems. With regard to bounded Petri nets,
Peterson (1981) shows that the modeling power of Petri nets is vast and that the above exten-
sions are only for convenience. It can be argued that extensions to bounded Petri nets have
been suggested for the following reasons:

* To achieve convenience in the translation of the system into the extended Petri net model
and its subsequent interpretation. The extensions are based on identifying a set of per-
tinent state-transition rules in the system domain. New graphic notions and new tran-
sition firing rules are then defined to represent these systems easily.
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* To achieve convenience in transforming the extended Petri net model into an analysis
technique. For instance, Dubois and Stecke {1983) chose to translate a manufacturing
system and its control problems into decision-free and safe timed Petri nets to ease
the transformation into the analytical technigue based on lincar equations in a (max,
+) algebra. For modeling the blocking logic, they define two transitions, an instan-
taneous and a noninstantaneous transition. The decision-free and safe timed Petri net
is not an extension but a subclass. However, such a subclass is chosen to facilitate
the analysis.

It can be concluded that the simplicity (and hence generality) of the transition firing
rule in a conventional Petri net allows us to model a large spectrum of systems but involves
a lot of modeling effort and results in models that are not concise. The extensions proposed
in the past and the ones proposed in this article are primarily motivated by the need to
develop a concise and convenient graphic model to represent a specific domain. While re-
taining the fundamental Petri net concept of representing states, transitions, and their rela-
tions, one should explore what type of transition firing rules will represenr the pertinent
features of a particular domain more conveniently. The use of such extensions is only justified
if the means for analyzing the resulting models can also be formulated.

We present some simple yet effective extensions as four types of transition firing rules
to timed Petri nets to model the flexibility and real-time control in an FMS when discrete
event simulation is the chosen analysis tool. Based on these, we propose a decision point
extended timed Petri net framework, referred to as decision Petri nets (DPN). Each exten-
sion involves a new transition firing rule and is associated with a graphic notation as the
rule identifier. We have simply added these to the normal transition firing rule of conven-
tional timed Petri nets. Thus, the DPN framework contains five types of state-transition
rules. Further, we develop a methodological basis for a data-driven DPN simulator. The
featurcs of Petri net execution logic are coded in the SLAM II simulation language, and
suitable data input formats are interfaced. Such formats allow the user to express the Petri
net model unambiguously to the simulator. This simulator is generalized, since any class
of Petri nets can be simulated. It is data-driven, because the user needs no programming
or simulation expertise: it is only required to input the data defining the DPN model, We
call this DPN-based simulator ROBSIM. It is implemented on a VAX-11/780.

There are already simulators hased on Petri nets (Alanche et ai. 1984; Martin and Alla
1987; Germain and Descotes-Genon 1987). These are based on colored Petri nets (CPN).
Some of the concepts in DPN-based ROBSIM are similar to that of CPN, i.e., providing
attributes to the tokens. However, we believe that the flexibility and decision-based aspect
of FMS are more convenient to model by DPN.

If we need to use simulation, why should we build models with timed Petri nets initially
and then simulate them? FMS involves complex materials flow. In our experience, the use
of discrete event simulation for the detailed modeling of FMS (flexibility, real-time con-
trol, nondeterminism, and multiple part flow) is inevitable irrespective of whether we use
Petri nets. The problem with the use of discrete event simulation is that the available simula-
tion languages do not provide a graphic means to specify the simulation model. Seen from
another perspective, this suggests that the operational features of an FMS design cannot
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be portrayed graphically by a designer in a manner that could be understood unambiguously
by the simulation modeler, and vice versa. The DPN modeling framework proposed by
us is essentially a step towards meeting this requirement.

Bel and Dubois {1985) point out that a model should be a communication medium between
people and also a tool for computer-based experiments. In our opinion, the graphic nature
of Petri net models allows them to be used as a design specification and representation
scheme. Further, the use of Petri nets helps in the development of a well-planned simula-
tion model (Dubois and Stecke 1983). Thus, a Petri-net-based framework has the potential
of becoming an expedient mode of communication between the designers and the simula-
tion modelers.

3. Requirements of a graphic model

The logical requirements of a user-friendly graphic model for supporting the design specifica-
tion of an FMS rto be analyzed by discrete event simulation may be listed as follows:

1. The model should portray the most significant elements of an FMS as explicitly as
possible. Flexibility, real-time control, a number of part types with different opera-
tion sequences, and limited buffer capacities are some of these elements.

2. Tt should provide a process-oriented view of the FMS operation. Such a view is easier
to understand and interpret. Further, the graphic model development is simplified,
because this is the natural way in which we view manufacturing systems, as a set of
interacting processes competing for resources. The design problem is the synchroniza-
tion of these processes.

3. The graphic model should be concise, and the notions used in the graphic model should
be simple to understand and unzmbiguous to model.

4. The graphic model should allow an easy transformation into a simulation language
based on discrete event simulation.

5. If possible, such a model should be an extension of an existing and popular model,
for greater user familiarity and acceptance.

6. If possible, there should be a one-to-one mapping of the notions in the graphic model
with every operation logic in the modeled FMS. This means that there should be a
minimum of auxiliary modeling effort involving the combination of basic graphic
notions to represent a simple element in the real system. In many graphic models,
we fear, such auxiliary modeling efforts tend to make the maodels look much more
complicated than the system itself! Thus, the graphic model loses its user friendliness
both in its development and its interpretation.

Petri nets have the fundamental property of providing a process-oriented representation
of the logic of the flow of tokens through transitions. A transition is similar to an event
in discrete event simulation. If we can develop a one-to-one mapping between the FMS
elements and the Petri net elements with suitable extensions, the model development in
a process-oriented fashion is facilitated. Similarly, if we can outline a one-to-one mapping
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of the transition firings into an event scheduling logic, we can achieve simplicity in simula-
tion model development. The model then can act as a communication medium between
the designer and the simulation modeler.

Following the above guidelines, we have evolved the concept of a DPN model. The exten-
sions in DPN are convenient and may not be necessary from the Petri net model develop-
ment point of view. Since in DPN we define the places with bounds to map the constrained
buffers in FMS, the key advantage in using DPN is modeling convenience and not the model-
ing power.

4. Modeling an operaticn with timed Petri-net-based representations

All manufacturing systems involve the production or assembly of compenents. These in turn
consist of a series of operations that must be carried out. The operation is therefore the
basic step in manufacturing. Two timed Petri-net-based representations for an operation are
presented in Figure 1. In Figure la, the start and end of an operation are modeled as transi-
tion ¢l and transition 72, respectively. A token in place pl models an idle resource, and
a token in place p2 implies a job waiting for an operation to begin on the resource. Places
pl and p2 are input places to transition ¢1, which is enabled to fire if both pl and p2 have
a token. After it fires, it consumes the enabling tokens in pl and p2, and then it sends
a timed token instantaneously to place p3, which is its output place. This token remains
in an indisposable state until the operation activity time associated with it expires. For
descriptive purposes, we say that transition ¢1 schedules transition 2 to fire after the activ-
ity time expires. Further, we call transition 72 the scheduled fransition when this time expires.
Transition £2 is enabled to fire when this token reaches the disposable state. Note that the
transition firing is an instantaneous event. When end transition 12 fires, it frees the resource
by sending a token to place pl and releases the job by sending a token to place p4.

Figure 1a illustrates timed Petri-net-based representation where time is explicitly associated
with a timed token in a place. This form of representation is conventionally used to con-
form to the theory of Petri nets. We present an alternative representation of time in Figure
Ib, which in our opinion is more user-friendly, although it deviates from the Petri net theory.
Here we do not associate time with a token in a place. Instead, we simply mark an activity
al underneath the directed arc joining transitions #1 and r2. While we suggest using this
convention, the DPN framework and the simulator ROBSIM are not restricted to this
convention.

5. Decision Petri nets (DPN)

In this section, we outline some extensions to timed Petri net graphs and corresponding
extensions to the execution logic of the nets to cater for the modeling of FMS. We refer
to this extension as a decision point extended timed Petri nefs and in short as DPN (deci-
sion Pelri nets). These extensions result from superimposing the concepts of a decision
point framework (Wadhwa, Maguire and Browne 1986) onto Petri net concepts. At each
point in the Petri net where a priority based decision is to be made about the flow of a



260 S. WADHWA AND JIM BROWNE

© -

w| i
pl :
al
<:-j ; tl 12 ' '
p2 D“
(b)

Figure 1. Thustration of two timed Petri-net-based representations to medel an operation.

token, a hollow box is printed. Associated with each hellow box is one of the three deci-
sion point types: token priority decision point {DP1); transition priority decision point (DP2);
place priority decision point (DP3). Figures 2-4 illustrate these decision points (DP).

DP1 : Token Prlority Decision Point

pl 11 pi 1k

(a) )]

Figure 2. Tllustration of the token priority decision point.
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DP2: Transition Priority Decision Point
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Figure 3. Tllustration of transition priority decision point (DP2).

DP3: Place Priority Decision Point
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Figure 4. Illustration of the place priorily decision point (DP3).

Figure 24 illustrates a marked Petri net with four token types in place pl. Transition
11 is enabled by any one of the four tokens. Figure 2b shows a corresponding decision point
extended timed Petri net (DPN) for the net in Figure 2a with DP1 as the token priority
decision point. DP1 selects which token should be consumed by transition 1 when it fires.
The user identifies this decision point type with identifiers dt, 42, etc. Further, the ROB-
SIM interface prompts the user to input a priority control option on it. Figure 3a illustrates
a marked Petri net with one token in place pl. Transitions fl and 72 are simultancously
enabled by this token. Figure 3b shows a decision point extended timed Petri net for the
same, with DP2 as the transition priority decision point. It selects which transition should
fire and consume the enabling token. The other transition is disabled automatically. Figure
4a illustrates a marked Petri net with one token in place pl. Transition 71 is enabled by
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this token. After firing of transition 71, the token can either go to output place p2 (say,
a probability of .2) or to place p3 (say, a probability of .8). Figure 4b illustrates a decision
point extended timed Petri net (DPN) for the same, with DP3 as the place priority decision
point. Tt probabilistically decides the output place where the token should be deposited.
The choice of the next place may also be defined as a priority.

We also introduce the concept of a bounded transition to model the blocking logic of
an FMS operation explicitly. A bounded transition is represented by a double bar, as shown
in Figuore 5. Conventional Petri nets do not have such representation. However Dubois and
Stecke (1983) showed how to model the blocking situation in FMS using conventional Petri
nets. We propose to extend the modeling conventions of Petri nets to include this double
bar representation, as it is simpler to use. We adopt the Petri net with bounded places to
have a one-to-one mapping with a constrained buffer in FMS. We define a new rule for
the firing of a bounded transition: a bounded transition is enabled to fire only if its input
places have enabling tokens and its output places have capacity to hold the released tokens.
Referring to Figure 5, suppose that place p2 is bounded to a maximum of three tokens.
As shown in the figure, place pl has one token and place p2 has three tokens in its current
marking. Transition 71, though enabled by its input token at place pl, cannot fire because
its output place p2 has no capacity to hold the released token. We refer to this as the block-
ing of the bounded transition 71. As soon as place p2 has some capacity in any future mark-
ing, this blocking is relieved and transition 11 will be set to fire. Such a case will arise
when a transition such as 2 is scheduled to fire and as it fires it consumes a token from p2.

We now summarize the transition firing rules for each of our proposed extensions to
the Petri net modeling conventions.

Normal transition execution

A normal transition is one that is not associated with any decisions and whose firing is
not influenced by the status of the bounded output places. This is a transition in conven-
tional Petri nets. Its firing rule is the same as in conventional timed Petri nets. It fires when
its scheduled time has expired and it has enabling tokens in its input places. After firing,
the tokens are deposited to its output places.

Transition t1 as a bounded transition

pl p2 p3

O— O~

1 12

Figure 5. Transition ¢l is represented as a bounded transition.
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DPI (token priority) execution

DP1 is executed when its associated transition is enabled. The execution of DP1 results
in a selection of a token type from all enabling tokens in its associated place. In Figure
2b, the associated transition and place for DP1 are 11 and pl, respectively. The selection
criteria can be based on priorities assigned to tokens or some other attribute of the tokens.

DP2 (transition priority) execution

DP2 is executed when its associated transitions are enabled simultaneously. We can refer
to this set of transitions as flexible transitions. In Figure 3b, transitions #1 and 2 are flexible
transitions. The execution of DP2 results in a selection of one transition from this set of
flexible transitions. Such a selection will be based on predefined priorities of the transi-
tions. Once a transition is selected to fire, all other transitions in its set are disabled
immediately.

DP3 (place priority) execution

DP3 is executed when its associated transition fires. In Figure 4b, the associated transition
is tl. The execution of DP3 results in a selection of the output place to which the token
should be deposited. The set of possible places to which the token can be probabilistically
deposited can be referred to as probabilistic places or priority places.

Bounded transition execution

A bounded transition is enabled to fire only if its scheduled time has expired and it has
enabling tokens in its input places and its output places have capacity to hold the released
tokens.

In the following sections we illustrate and discuss DPN model development for a simple
FMS example.

6. An example of the use of DPN

Figure 6 gives a schematic of a simple FMS configuration and a description of the resources,
work-in-process (WIP) buffer locations, allowable buffer levels, part flow control points
(the decision points), the nature of decision points (loading control, dispatching control,
probabilistic routing point), and the activity times. Though ROBSIM provides the facility
to specify times as samples from a number of standard distributions, we have chosen deter-
ministic times to keep the description simple. The objective of the simulation is to estimate
the throughput in a production shift of 480 minutes. We assume no breakdowns during
this duration.
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A SIMPLE FMS CONFIGURATION

P 4
| M | lI R
2 1
FINISH
0.2
I
1 0.8
P 3 PS5

JOBS M JoBs
ENTER LEAVE
l 3 |

THE FMS SPECIFICATION

An FMS consists of 3 machines (M1,M2,M3), an inspection station (I1) and
a repair station (R1). All the machines and stations are flexible and can
process any part type. There are 3 Part types to be processed in this
system. The routing for each part type is given below :

PART | 1 : ENTER - M1 - M2/M3 - Ii - R1/FINISH
PART - 2 : ENTER - M2/M3 - I1 - R1/FINISH
PART | 3 : ENTER - M1 - M2/M3 - FINISH

(note : M2/M3 indicates M2 or M3 and R1/FINISH indicates R1 or FINISH)

After inspection either the parts go for FINISH or are sent for Repair
R1. On average 80% parts are passed as finished and 20% need Repair R1.

The part types enter in a cyclic sequence with time between arrival of 3
minutes. The parts are assigned static priorities at the time of entry
into the system. Part # 3 has highest priority, followed by Part # 2.

Loading control is exercised at all station inputs i.e. P1,P2,P3
and P4. The control rules used for part type selection are :

P1 P2 P3 P4

RULE . FCFsS JOB PRIORITY RANDOM FCFS

Figure 6. An FMS configuration.

6.1. DPN model development

The following outline is presented to accomplish the DPN model development task. First,
the elements of a DPN model are transitions and their types, places and place types, tokens
and token types, activities, input and output functions, decision points (DP), DP types,
and their location. In the following sections, we describe how to derive these elements
from the FMS specification.
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Dispatching contrel is exercised only at P2. If both machines, M2
and M3 are simultaneocusly free and a part is waiting at P2 to be
processed then part is dispatched to the priority machine M2.

The maximum allowable buffer levels are limited and are sahown aa under.

PLACE BUFFER CAPACITY
P1 3

P2 3

P3 3

P4 2

PS 5

If a buffer is full, then the preceding operaticn can not unlecad its
finished part. In this case the operation is blocked and the station
is unavailable to take in a pnew part. The situation exists until
some available capacity is created in the full buffer due to part
movement to the next station.

The operation times for the part typee are given in minutea as under :

PART # M1 M2 M3 I1 R1
1 1. 6. 3. 10.
2 - 2. 5. 4. 11.
3 3 7 - -

Assume that the transport required in moving the parts from one station
to next entaile no time. Also assume that there are no breakdowns.

Figure 6. An FMS configuration (continued).

6.11. Transitions. A transition can be viewed as an instantaneous event at which the status
of the system changes. The status of the system changes every time a resource staris or
ends an operation. Figure 7 shows the transitions with identifiers and definitions for the
FMS example. There are four types of transitions in DPN. The start transition signifies
the entry of jobs into the FMS. The finish transition refers to the departure of finished
jobs from the FMS. The flexible transitions refer to a set of transitions that can all be enabled
by a part token in a place if their resource places have a oken also. The concept of flexible
transitions is used to represent a situation in FMS where a job has the option of being
dispatched to one of the many machines available to process it. In the present example,
M2 and M3 are such machines. Their corresponding transitions 4 and 16 are thus flexible
transitions.
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TRANSITIONS
IDENTIFIER DEFINITION
5 A job enters the system.
t2 A job starts on M1.
3 A job finishes on M1
t4 : A job starts on M2.
t5 A job finishes on M2.
t6 : A job starts on M3.
7 A job finishes on M3.
t8 : A job starts on I1.
9 A job finishes on Il.
t10 A job starts on R1.
t11 A job finishes on R1.
t12: A Finished job leaves the system.

Figure 7. Transitions with identifiers and definitions for the FMS example.

A bounded transition is a transition that is blocked if its part output place cannot hold
the released token. A bounded transition is denoted as a double bar on the DPN model.

6.1.2. Places. A place can be viewed as a representation for a static state of a system with
regard to the condition of a resource, a WIP buffer, or an activity.

The complete status of the system is a set of places defining the state of the system for
each resource, WIP buffer, and activity. We identify a place by a place identifier (p1, p2,
p3...). Figure 8 shows the identification and definitions for the places. There are two types
of places in DPN: the job type (or part type) places and the resource type places. The
job type places model the status of the jobs, whereas resource type places only store the
availability or nonavailability of a resource.

6.1.3. Tokens. Tokens may be viewed as quantifying the magnitude of the state of each
place in the system. For instance, two tokens present in place p2 implies that two jobs
are waiting for M2/M3. The Petri net with tokens is called a marked Petri net. A marking
defines the distribution of tokens in various places at any instant. Thus, a marking holds
the information of the complete state of the system. The tokens may be of different types.
For instance, we have a resource type token and a job type token. ROBSIM implicitly con-
trols the movements of token types into corresponding place types. The job type token
carries various attributes about the status of a token, thereby uniquely identifying it. These
attributes include the part number, priority, last transition, and next transition.

6.14. Activities. The operation time on machine M1 is represented by the time between
the firing of transition #2 and transition 3. We identify activities on DPN graphs by sym-
bols al, a2, a3, . . .. These are marked under the output functions from one transition to
the other and are associated with the activity places.
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PLACES
IDENTIFIER DEFINITION
pl : A Job waite in queue for M1.
p2 A Job waite in queue for M2/M3.
p3 A Job waits in queue for I1.
pd A Job waite in queue for R1.
P& A Job waite in queue to leave aystem.
pé M1 is idle.
p7 M2 is idle.
p8 : M3 ie idle.
po : Il is idle.
plo: Rl is idle.
pil: Operation on a job on M1 in progrese
pi2: Dperation on a job on M2 in progrese
pi3: Operation on a job on M3 in progrese
pla: Operation on a job on Il in progress
pl6: Operation on a job on Rl in progress

Figure 8 Places with identifiers and definitions for the FMS example.

6.1.5. Decision points. The decision points (DP) indicate the points in the FMS where deci-
sions regarding the control on the flow of parts have to be made. The decisions involve
the selection of part flows, resource flows, and where the part is routed. The part flow
is a physical flow, whereas the resource flow may be a flow from one state to another.
For instance, if the state of M1 changes from idle to not idle, we say the resource M1 flows.
The flow is represented in the DPN by the movement of tokens. The tokens move only
when a transition fires. Thus, all the decision points are associated with one or the other
transition on the DPN graph.

Lenz (1983) describes six types of controls in the operation of FMS. We have covered
three of these in our current example, those dealing with part flow control. The other three
controls involve transport control. This simply implies the use of DP1, DP2, and DP3 for
transporter type tokens if such an FMS is being modeled. Figure ¢ illustrates the decision
point information for the example.

6.1.6. Input and output functions. The input/output functions to a transition can be viewed
as the representation of input/output conditions, activity relations and decision points to
the start and end of each FMS operation. The input and output functions for transitions
are linked to each other. The token movement takes place along the linking of these func-
tions. The operation sequence and the flexibility in the FMS operation determines these links.

6.1.7. Integration of DPN elements. The DPN model is an integration of transitions, places,
activities, and decision points linked by input and output functions in logical relations derived
from the logic of an FMS operation. Tokens represent the flowing entities (parts, resources,
and information) of the FMS.
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DP1 identifiere Definition

di Loading Contrel at P1 (input queue to M1.)

d2 Loading Control at P2 (input queue to M2/M3.)

d3 Loading Control at P3 (input queue to Ii.)

44 Loading Contrel at P4 (input queue to Ri.)
DP2 identifiers Definition

d1 Diepatching control et P2 (selection between M2/M3)
DP3 identifiers Definition

di Probabilistic routing on parts after inspection.

Figure 9 Decision points with identifiers and definitions for the FMS example.

To obtain a process-oriented view we need to concentrate on the flow of each part type.
The operation sequence of each part type will be different depending on the resources needed
for each operation. Thus, when there are n part types, we have 2 different operation
sequences and hence n different logical relations. How do we represent n sets of logical
relations graphically in two dimensions such that the resulting model remains concise and
conveniently interpreted?

We realize this objective by assigning attributes to tokens and graphically portraying each
of the n logical relations as n disjointed DPN graphs. Each graph represents the operation
sequence logic for each part type. We generate these graphs using the common set of iden-
tifiers and definitions for transitions and places. There may be common places and transi-
tions on two or more nets. The complete marking of the DPN model is the union of the
markings of the » disjointed nets. The individual token types will flow on a particular net
but under the constraints of the complete marking. However, the logical sequence followed
by each token will depend on its own net.

The physical interpretation of this concept is simple. Since all the transitions and places
have been identifted from all the resources in the FMS, the different nets simply portray
the different operation sequences being followed by the part types under the status of
resources no matter what part type is involved. If a resource type token is consumed from
its place by the transition fired on one net, this information is available on each net through
the same place identifier. Any other token on its net requiring a resource token in this
place will have to wait in the input buffer place for this resource’s transition. Since the
input buffer places are also identified from a common set, this information will be available
on every net having this place. Thus, we may have different token types with their atiributes
deposited in the same input buffer place and every net “knowing™ this via the union of
the marking.
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6.1.8. Token entry control. The disjointed DPN model requires 2 mechanism for net assign-
ment when the tokens enter the nets. In FMS we have part entry control, which governs
the part entry into the systemn. In ROBSIM we provide a menu for options on entering
the tokens into the nets. When a token enters, we invoke the start transition of the net (opera-
tion sequence) assigned to it. The token carries the attributes that store its identity uniquely,
i.c., token type, assigned net number, priority and time of entering the net, and so on.
ROBSIM automatically moves this token on the assigned net under the constraints of the
union of the disjointed net markings as the simulation progresses.

Following the above steps, we construct the DPN disjointed nets for our current example.
These are shown in Figures 10, 11, and 12. Note that the places pll, pi2, pl3, pi4, and
pl3, which represent the busy states of the machines M1, M2, M3, Il, and R1, respectively,
are shown simply as activities a2, a5, 47, ... for the sake of clarity.

Start J] Finish
6 : ;'5 a6 »
DF DOP
| Del 1 2 m&s
|' : D a2
Pl 17

1l 4 oun dzd!

M1 JJ

Figure 10. DPN-based disjointed net to model the logical relations for the operation sequence followed by part
type 1.

Finish

Figure 11. DPN-based disjointed net to model the logical relations for the operation sequence followed by part
type 2.
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Figure 12. DPN-based disjointed net to model the logical relations for the operation sequence followed by part
type 3.

6.2. Discussion

This concept of disjointed Petri nets makes DPN model development very easy and facilitates
its easy interpretation. The disjointed nets allow us to model the FMS design in a process-
oriented fashion, that is, a number of part types flowing through the system and competing
for some common resources. Transitions representing the events at individual resources,
and tokens representing the part types, allow us to view the part types flowing through
the resources. The decision points on the nets capture the control points and their locations
with respect to the resources in the FMS. One can envision the flow of part types being
controlled at these decision points. Further, the use of decision points does not pose any
limitation in developing the model as disjointed nets. The resulting models are concise
because the number of transitions and places is independent of the number of part types.
Further extra modeling effort to model blocking has been avoided by the use of a bounded
transition. There is a one-to-one mapping of the FMS elements and the DPN elements.
Thus, we meet the requirements for a user-friendly graphic model.

In the following section, we outline the ease of transforming a DPN graphic model into
a discrete event simulator called ROBSIM.

7. Overview of ROBSIM

ROBSIM has been developed as a data-driven DPN simulator. It can simulate both con-
ventional Petri nets and decision point extended timed Petri nets (DPN), is based on the
discrete event framework of the simulation language SLAM II (Pritsker 1987), and is imple-
mented on a VAX-11/780 under VMS. It provides the user with Petri-net-oriented data input
formats. The output results are provided as SLAM summary reports and application-oriented
output screens. A trace report can be generated at the user’s request for verification purposes.
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71. The methodological basis of ROBSIM
The development of ROBSIM was based on the following ideas:

1. The identification of a unified framework of concepts between FMS, decision point
extended timed Petri nets (DPN), and discrete event simulation.

2. The develcpment of a nomenclature for describing a DPN as input data.

3. The identification of static and dynamic elements of a DPN. The static element
represents the system design and the relations between the various components of a
system. The DPN graph portrays this information. The dynamic element is the exe-
cution of a DPN and represents the system operation in a time frame. In the context
of ROBSIM, the static element is data input for a DPN to be simulated and is system-
dependent. The dynamic element is a set of fixed execution rules, which are system-
independent. Thus, ROBSIM is basically a collection of these execution rules, which
operate on the input data.

4. The identification of a generalized set of execution rules in DPN. These rules were
presented in the previous section. An FMS operates through control on the flow of
parts through a set of resources, the basic dynamic element being an operation. A
DPN model is executed by control of the flow of tokens (representing parts and
resources), the basic dynamic element being a transition.

5. Coding of these execution rules into the SLAM H simulation language using the defined
nomenclature.

72. DPN transformation to ROBSIM

We have developed a nomenclature in which the DPN can be unambiguously input as data
to ROBSIM. Here we illustrate only one input format, which is the heart of DPN model
— the logic table. For each net we have a different logic table. Figure 13 shows the logic
table for net number 1. The first column, named the source transition, covers all the transi-
tions in the net. A source transition implies a firing transition to ROBSIM. The transition
1l is the start transition and is invoked by the token entry control mechanism in ROBSIM.
This transition has no input places and thus it fires as soon as it is invoked. Afier firing,
it releases a part token with its attributes (assigned in token entry control) and depusits
the token in its output place pl. It then schedules transition 72 to be invoked by activity
al corresponding to the time for the part to be present for machine M1 after it enters the
system. The transition ¢2 is invoked by al when the simulation current time equals the
scheduled time of al. ROBSIM identifies 12 as the source transition and checks the status
of its input places to see if it can fire. If £2 is specified as a bounded transition, the status
of output places is also checked. If the input places pl and p6 for source transition 12 have
a token each (ROBSIM assumes one input/output function for each place and hence only
one token is needed from each input place), the transition can fire. If it cannot fire, ROB-
SIM stores this transition on a wait file as a request from the token waiting in pl. Every
time a token moves into a part place, a request is sent to the transition to fire. Thus, the
transition wait file holds the request from a token to fire. In ROBSIM each transition has
a corresponding wait file. In each of these files, the token requests are stored. If source
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NET # : 1

Source Input Output Scheduled Activity

Transition FPlaces Placesa Tranasitions identifiers
t1 - - - pl - - t2 - - al - -
t2 pl pé - piLt - - t3 - - a2 - -
t3 - - - P2 p6 - t4 t6 - a3 ad -
t4 p2 p7 - piz - - tb - - ab - -
tb - - - p3 p7 - 8 - - a6 - -
t6 p2 p8 - pi3 - - 7 - - al - -

Figure 13. ROBSIM sample data inputs for the logic data table.

transition £2 can fire, it consumes one token from each of the places pl and p6. ROBSIM
checks the decision points corresponding to firing of 12 (DP menus are described later).
Corresponding to 2, it finds DP1 with identifier d1. ROBSIM then selects a token based
on a criterion input for 4l in net 1. The attributes of this token are saved to be passed
over to the output token place. Then the output places for source transition 2 are checked.
Transition 2 has pll as output place, so the selected token is deposited as a timed token
with its saved attributes and transition £3 is scheduled with activity 2. Again, 13 is invoked
at the scheduled time and the above logic is repeated for source transition ¢3.

7.3. ROBSIM implementation

Each transition in a DPN is an event. The start transition is treated as a token arrival event—
subroutine ARVL. In this routine, we assign initial attributes such as part number, time
of arrival, and net number (0 the arriving token. All other transitions are modeled by the
event ENDSV.

Figure 14 shows the logical sequence of subroutines in ROBSIM. The routine USERD
reads the ROBSIM input data for the DPN nets. The user interface for ROBSIM (not shown)
saves all these data in ROBSIM input formats, After reading the data, the subroutine SLAM
is called to bring in a discrete event simulation environment. The routines INTLC, ARVL,
ENDSV, OTPUT are written in this environment. The routine INTLC is used to initialize
the marking of the DPN model and to initiate the token entry control. ARVL is coded
as a SLAM event routine to exercise token entry control. The event routine ENDSV is
used to analyze the scheduled transitions. Finally, SLAM standard routine OTPUT is used
for statistics presentation over multiple runs.
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ROBSIM : Decision Petri Net Simulator

USE R, D : Read DPN model data.
¥
S LAM : Discrete Event Simulation
4
. Start Simulation.
Il NTLC :
. Initialize DPN marking.
. Assign Token Attributes
ARVL . " Entef Token nto nets.
. Invoke Start Transitions.
L
ENDSYV : DPN model execution.
¥
OTPUT ¢ Output results.

Figure 14. Subroutines used in the ROBSIM software.

Figure 15 illustrates the flow diagram for event subroutine ENDSV. This routine is invoked
when the current simulation time equals the scheduled time for any transition. The invok-
ing transition is identified from its attributes for transition number and net number. Then
routine FIRE-CHECK is called, which checks if this transition can fire. If the transition
cannot fire, it is saved on the transition wait file {file number identified by transition number)
with its attributes. If it can fire, subroutine FIRE is called, which takes all necessary actions
on the input and output places as defined by the logic table. Then, time-persistent and obser-
vation statistics are taken. Finally, a SEARCH routine is set to see if the new created marking
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ENDSYV/| : DPNmodel execution.

l

Identify Transition

Identify Net

l

FIRE_CHECK | : Check status of input and

output places.
S
Transit
Return
: Fire the transition i.e.
FIRE change merking.

Collect Statistics
% q : Search for waiting
SEARC transitions that can fire.

Figure 15, Flow diagram for the subroutine ENDSV.

can fire any of the waiting transitions. Figure 16 illustrates the FIRE routine. This routine
takes all the actions with regard to token and attribute flow on the input and output side
of the calling transition. First, a check is made to see whether the identified transition
is a flexible transition. If it is, a special routine collects all firable transitions of its set
invoked by the same part and exercises DECISION TYPE 2 to select the one to be fired.
All other transitions of this set are removed, both from the calendar and the wait files.
If it is not a flexible transition, the actions of dispatching the released token to a priority
place are taken in DECISION TYPE 3. The token attributes of the transition are deposited
in the part place (since tokens trigger the transitions, the transitions always carry their attri-
butes). The next action is to consume the selected input token. This is done by DECISION
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FIRE

[dentify, Transition

No Isita

flexible
transition
7
Collect all enabled
v transitions of this set
: Select priority transition.
DECISION_2
ECISION- (DP2)
: Select priority output
DECISION.3 attribute place (DP3).
DECISION _1 : Select priority token from
_ input attribute place.
(DP1).
A
Schedule ENDSV : Schedule next transitions

Figure i6. Flow diagram for the subroutine FIRE.

TYPE 1. Then the next transitions are scheduled through activities. Since a new token
has been selected for the transition, its net number may be different than the net number
of the firing transition. Finally, we schedule the activities corresponding to the logic table
for this new net number.

Thus, we see that the selected token drives ROBSIM to move from one net 1o the other.
This is a mirror of what happens in an FMS. When one part finishes on a machine, a
new part starts and its process requirements are followed.

8. Comparison of DPN with other modeling frameworks

As mentioned earlier, the Petri nets graphically represent the state-transition relations in
a system viewed in a discrete event perspective. The transition firing rules basically represent
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the state-transition logic by which the dynamics of the system are modeled.

In DPN we have simply added four state-transition rules (transition firing rules) to timed
Petri nets. These rules represent the part priority state-transition, resource priority state-
transition, queue priority state-transition, and bounded operation state-transition. The first
three rules essentially map a type of flexibility and its corresponding control element, and
the fourth one models a “lookahead’ operation constraint element in an FMS. The addi-
tion of a DP associated with a firing transition simply exercises a priority-based selection
mechanism. The interface in ROBSIM allows the user to specify the selection criterion
for each DP on the Petri net.

The motivation for adding these rules is to model the flexibility and the corresponding
priority-based control. The idea is that if a system can be expressed completely in terms
of (entity) states and transitions, there are only four types of flexibilities that can arise
at any point in time:

* A number of alternative input states may invoke a transition.

® One input state may invoke a number of possible alternative transitions.
* An invoked transition may change one of the possible cutput states.

® A number of transitions may change one output slate,

The last sitwation is not possible in our discrete event view: more than one transition
cannot fire simultaneously. Thus, only three possible types of state-transitions can take
place at any one time.

The priority control rule in each case is simply a selection criterion as to which states
or transitions take part in the state-transition logic. Flexibility in any system is completely
determined by one of these three types. Thus, if we provide a mechanism to define this
and set a priority rule for each type of flexibility, we can model any FMS with real-time
conirol.

Bel and Dubois (1985) developed a unified setting for various models of automated material
flow and production systems. They concluded that various types of models of production
systems can be obtained, according to the way the state-transition logic is described. A
discrete event based unified setting is used 1o compare various models such as stochastic,
event-graph, Petri-net-based, and discrete event simulation models. They point out that
the limitation in using Petri nets for systems such as FMS are the risks of combinatorial
explosion of the size of the Petri nets and the difficulty of expressing elaborated state-
dependent control rules. To overcome the first limitation, the use of colored Petri nets (CPN)
and the use of processes can be contemplated. Using a simple FMS example, we have shown
how we can achieve the same result using a DPN model. The concept of token attributes
and disjointed nets is similar to those of CPN models.

With bounds specified with the places, each new transition firing rule may be modeled
as a process with the conventional Petri net firing rule. For instance, Peterson (1981) shows
how to model a priority transition extension. Similarly, the blocking logic as modeled by
the bounded transition in DPN can be modeled by safe and decision-free Petri nets, as
shown by Dubois and Stecke (1983). Thus, extensions in DPN can be viewed as higher-
level functions describing these processes. It is the identification of these functions that
can be regarded as the core effort in developing a DPN modeling framework.
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There are other proposed nets to express the control rules, for instance, interpreted Petri
nets (Peterson 1981). In these Petri nets, each transition is associated with a logical predicate,
which must be true when firing occurs, otherwise firing is delayed. These predicates express
control rules that may depend upon external events, external criteria, the state of the system,
or its history (for instance, past resource utilizations). In our opinion, the DPN framework
provides us with a basis to view the flexibility and control in FMS. Being domain-specific,
it is less general than the predicate approach but more user-friendly in its domain.

Bel and Dubois (1985) further point out that the gain in expressive power is balanced
by the increased difficulty of a priori analysis of structures or dynamic behavior. Available
techniques for Petri nets cannot apply to their extensions; hence the structural validity can-
not be determined. Such models are then only developed for simulation purposes. Thus,
the DPN model is only useful for simulation purposes.

One of the ways to compare various models is by their state-transition rules. Figure 17
presents various models classified by their state-transition logic. with a suggested place
for the DPN model indicated. DPN models essentially provide a capability to conveniently
represent the priority-based control rules for various flexibility types. Thus, with respect
to the classification of the models, the position of DPN lies just short of the discrete event
simulation model. The present DPN model appears to be useful for comparatively simple
flexible systems with priority rules based on the status of immediately interacting states
and transitions (i.e.. it cannot conveniently express complex algorithms).

Static-Transition logic Model

. Transitien Probabilities Markov chaine, queuing networka.
between states with FIFQ
queuve discipline.

. Linear order of trajectories Event-grapha, Cyclic event-graphs,
for all entities.

. Partially defined trajectories Timed Petri nets.
for all entities.

. Predicates Intexrpreted Petri nets.

30 o e e B oo o 2 o o B o s s ol e e ok o e o o ok o oo o e Rk kR o ok
. PRIORITY RULEE DECISION PETRI NETE (DPN)
152 ot o o ol K e S e o o s e o Ao o o ol o o o o ok o o o s o oo o o ok ok ok ko ok ok e o ko

. Priority rulee co complex Discrete event simulation model.
algorithme.

Figure 17 A classification of modcls bascd on state-transition logic. Adapted from Bel and Dubois (1985).
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9. A note on ROBSIM

The ROBSIM simulator is developed to show the ease of transforming a DPN into a discrete
event framework in SLAM II (Pritsker 1987). At present, its use is for academic purposes
only. It is implemented on VAX-11/780. There are approximately 1,000 lines of executable
source code. The program is written in VAX FORTRAN, and it calls the necessary SLAM
routines. The size of the net, i.e., the number of places and transitions, is limited to 100.
The CPU time for the simulation of the present FMS example is nearly 2 seconds. The
execution of the model is event-driven. There seems to be a clear possibility of improving
the CPU time by optimizing the SEARCH routine. At present, whenever a transition fires,
a search for the new firable waiting transitions involves a check on all transition files. This
can be easily modified to search for only those transitions that are associated with the input
and output places of the currently fired transition. In general, the CPU time should logicaily
depend on the maximum number of places and transitions in any net and the simulation
runtime. ROBSIM has the capability of simulating both Petri net models and DPN models.

10. Summary, conclusions, and future research

101 Summary

Several researchers who have used Petri nets to model systems have found them too simple
and limited to easily model real systems. In this article, we present some extensions to
timed Petri nets in order to develop a user-friendly graphic modeling framework, which
enables us to conveniently and concisely model different types of flexibilities and real-
time priority controls in FMS. The resulting modeling framework is called decision Petri
nets (DPN). We propose that while retaining the fundamental Petri net concept of represent-
ing states, transitions, and their relations, one should explore what type of transition firing
rules can represent the pertinent features of a particular domain more conveniently. Based
on this approach, we introduced three types of decision points that can be associated with
the firing of any transition: token priority, transition priority, and place priority decision
points. Through an example, we show how these can explicitly and simply model the real-
time flexibilities in an FMS involving priority part selection, priority resource selection,
and priority queue selection, respectively. The priority selection encompasses both criterion-
based selection and probabilistic selection. For conveniently modeling the blocking logic
in FMS, the notion of a bounded transition is defined. Such a transition involves a firing
rule that does not allow the transition to fire until its output place has capacity to hold
the released token. To model multiple part types, the DPN framework allows tokens to
be defined with attributes, and to simplify the model development and its interpretation,
the DPN framework is based on the disjointed net approach. One disjointed net is developed
to represent the processing logic of a corresponding part type.

While the DPN framework is suggested primarily as a convenient and concise represen-
tation for detailed modeling of FMS, for analysis purposes DPN can be easily supported
by discrete event simulation. The methodological basis for the development of a data-driven
generalized simulator (ROBSIM) to execute DPN models is outlined. We have developed
and tested this simulator for industrial case studies.
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10.2. Conclusions

Decision point extended timed Petri nets (DPN) can be used as a convenient graphic model
for performance evaluation of FMS using discrete event simulation. The use of disjointed
DPN model allows us to view the FMS operation in a process-oriented framework and
hence simplifies the model development and its interpretation. The purposc of the DPN
model is limited to simulation, as it lacks techniques for validating the specification of
the system. It is possible to build a generalized data-driven simulator for analyzing DPN
models using discrete cvent simulation.

10.3. Future research

With respect to its modeling potential, the disjointed DPN approach can model a wide
spectrum of FMS. Research is in progress to model more complicated systems, for in-
stance, the multilevel assembly in flexible assembly systems, and for systems requiring
transport control decisions. Either of these applications involve multiple attribute places
to the transitions. In the present ROBSIM version, there is only one attribute place per
transition. Thus, the flow can be controlled on only type of entity (at present, part types).

The expert system language OPS35 has an execution strategy similar to a Petri net model.
Based on this, ESPNET (Duggan and Browne 1988) has been developed as an expert-system-
based simulator. Our future research will involve the extension of this software for the DPN
models. Further, there is potential for the DPN approach in interactive model development
using expert systems. This potential stems from the nature of DPN graphs, which graphically
represent a discrete event simulation model for decision-based systems.
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Note

1. While retaining the fundamental Petri net concepts, we have presented four new transi-
tion firing rules as extensions to the fundamental transition firing rule of conventional
Petri nets. Our primary motivation in developing decision Petri nets (DPN) is to facilitate
a convenient and concise graphic representation for detailed simulation modeling of FMS.
‘We leave it to the reader to decide whether decision Petri nets are an extension to Petri
nets or a modeling framework loosely based on Petri nets, used to structure a problem
for input to a computer simulation.
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