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Abstract. Rather simple general arguments lead one to conclude that at least a very large fraction of 
the momentum transfer from air into water must be in the form of wave generation. This is in agree- 
ment with some recent measurements. The theory of wave generation remains incomplete and it 
seems probable that more attention should be paid to three-dimensional motions. 

The nature of the mechanism for the transport of momentum between the atmosphere 
and the surface of water attracts scientific attention for two reasons: first, parameteri- 
zation of this process is extremely important to the understanding of the circulation of 
the atmosphere and in particular of the ocean; and second, the nature of the process, 
intimately connected as it is with that of wave generation, is scientifically fascinating. 
It may also be the case that a fairly complete understanding of the process will be 
required if the parameterization is to be fully satisfactory. 

Let us attempt to examine the facts as we have them from as general a point of 
view as possible. 

First, consider the information that we have on the magnitude of momentum 
transfer. Over the last decade a substantial body of data has been collected, using 
modern methods. Karl Brocks and his team from the University of Hamburg played 
no small role in amassing these data, and Figure 1 shows some of their data (Brocks 
and Krugermeyer, 1970). Figure 2, taken from Smith (1973), presents data collected 
by some Canadian groups. 

These data show that the drag coefficient, defined as CD,, = r/@U&,, where r is the 
stress, or rate of momentum transfer, Q is the air density and U,, is the mean wind 
velocity at 10-m height, has a value in the neighbourhood of 1.3 x low3 plus or minus 
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Fig. 1. Redrawn from Brocks and Krugermeyer (1970). Drag coefficient CO,, and roughness length 
.za as a function of wind speed. The data were obtained under neutral conditions. The solid line is the 
smooth surface result. The other two curves correspond to the Charnock formula, zo = ue2/ag with 

a=285 for the dotted line and a= 81 for dash-dot line. 
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Fig. 2. Drag coefficients measured by some Canadian groups. (a) Drag coefficients copied from 
Smith (1973). (b) A compilation of results copied from Smith (1970). 
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some 20%, for wind speeds between about 2 and about 12 or 15 m s-l. There may be 
some increase in drag coefficient with wind speed, some dependence on the stability of 
the air column, some dependence upon wind duration and fetch and perhaps on other 
parameters, but anyone who did not wish to believe in these dependencies would be 
difficult to convince from the data. 

There is always a substantial amount of scatter in published drag coefficient results. 
Much of this is undoubtedly due to the technical difficulties of making the measure- 
ments themselves. For example, when the measurement of the eddy flux is direct, not 
only are the results very sensitive to the orientation of the instruments, which are 
themselves rather ‘fussy’, but the quantity being measured has some inherently 
unpleasant characteristics. Typically, measured values of the downstream and vertical 
components of the wind, u and w, are very nearly Gaussian in distribution and have 
rather straightforward statistical characteristics. The product uw, which determines 
the momentum transfer, is much less well behaved. Occasional very large values are 
of much more importance. For example, some unpublished data obtained recently at 
the University of British Columbia reveal coefficients of excess, for the distribution of 
the quantity uw, to be in the neighbourhood of six or more, indicating that the distribu- 
tion is very far from Gaussian. The theory of the statistical behaviour of variables 
having unusual distributions is not well established. There is no theoretical basis for 
determining, for example, how long a record is required to establish the value of z 
within given limits in a given situation. Empirically, however, those working with 
these data observe that the quantity does not ‘settle down’ at all rapidly and indeed in 
most cases it is difficult to establish a value before the overall conditions change. This 
sort of thing may well be the source of much of the large scatter in the observed data. 
On the other hand, there may very well be some external parameters which have not 
yet been closely examined but which contribute importantly to this scatter. 

Scattered though the data may be, one thing, however, is quite clear. Over this range 
of wind speed over the sea surface, the drag is substantially greater than that over a 
flat surface. (The flat surface drag coefficient is plotted as a solid line on Figure 1). It is 
almost incredibly smooth, considering its appearance - much smoother than mown 
grass for example which has a drag coefficient of about 5 x low3 - but it is not like 
glass. 

Now consider some quite general comments which can be made without requiring 
any detailed observations. It is interesting to note that the interaction between wind 
and water has very little in the way of natural scale. There is no natural velocity scale 
in the wind field, as it is usually considered, except for the friction velocity u*. Typical 
analyses of the problem assume that the depth of the air column is effectively infinite. 
In the neutral stability case, usual turbulent boundary-layer analysis then yields a 
logarithmic profile 

U(z) - u* In z/z0 (1) 

where ~4: = T/Q, z is the height above the surface and z0 is the roughness length. The 
wind speed increases indefinitely, if slowly, as the height increases (Ekman-layer effects 
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usually being taken to be irrelevant). Also, there is no natural length scale in a neutrally 
stable air flow apart from the roughness length. In flows over solid surfaces, the rough- 
ness length is usually determined by the nature of the surface. However, here the 
surface roughness is itself largely determined by the wind, and the parameter z0 must 
be regarded as internally determined as part of the problem, rather than externally 
imposed. Solution to this problem then requires that z0 be determined as a function of 
U* and such other parameters of the wave field as may be relevant. 

On the other hand, in the water, there is a natural length scale L, associated with the 
longest waves which have been vigorously excited. The length of these longest waves 
depends upon wind speed, the duration of the wind and the fetch. There is a characte- 
ristic velocity CL associated with L, given by the dispersion relationship for gravity 
waves. As well, this wavelength L can be used vertically in the air to establish a height 
at which the wind speed can be determined. We thereby obtain another scale velocity 
U,. The ratio CJU, is a dimensionless parameter which can differentiate one wind- 
driven gravity wave system from another. This ratio normally approaches unity when 
both the duration of the wind and the fetch become large. (The parameter is closely 
related to, although not quite identical to, the so-called ‘wave age’.) If only gravity 
waves are important, we would conclude by dimensional analysis that 

zo = (d/s)f (CL/Q 

which is a generalization of the well known Charnock (1955) relation 

(2) 

z. = u:/ga 

where a is a constant. 

(3) 

The observational evidence is that the functional dependence on CL/U, is weak. If 
f(C,/U,) is essentially constant, then one expects the Charnock relation to hold. 
With the wind-speed variation with height taken to be logarithmic, we get a relation- 
ship between drag coefficient and wind speed, indicating a significant increase in drag 
coefficient with wind speed. On the whole, most observations tend to indicate that if 
there is an increase in drag coefficient with wind speed, it is weaker than that predicted 
by this relation, as is shown in Figure 1. 

Of course there are some other factors and perhaps they should not be ignored. 
Both the air and the water have molecular viscosities which tend to become important 
when scales become less than about a few centimeters, somewhat smaller in the water 
than in the air. Perhaps more important is the fact that the water has surface tension. 
This surface tension adds another length and velocity scale to the system - the wave 
length 1, and the propagation speed C,,, of the slowest waves in the system-respective- 
ly about 1.7 and 23 cm s -’ for clean cold water, but dependent on both temperature 
and surface contaminants. It is possible that the parameter CL/C,,, is an important one. 
Perhaps equally or even more important is the influence of the surface tension at the 
crests of the larger waves. The wave-generation process is limited by the fact that for 
a given wavelength, a wave can have only a limited amount of energy before the crest 
cusps. Near this limiting amount of energy, strong non-linear processes come into 
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play which cause vigorous wave dissipation, absorbing the additional energy being put 
in from the wind. At fairly low wind speeds, the surface tension is able to hold the sur- 
face together and these non-linear effects involve the creation of surface tension- 
dominated waves which are rapidly dissipated by viscosity. At higher wind speeds, the 
surface tension is unable to hold the surface together and it becomes disrupted, with 
the formation of droplets. The wave breaks; a different non-linear effect controls the 
wave amplitude. The difference between breaking and non-breaking waves may be of 
importance in determining the drag coefficient. Certainly, in principle, there is no 
reason to believe that it should not. In practice the evidence is slight. What evidence 
we have seems to indicate that any additional effects such as those of surface tension 
seem to act to make the drag coefficient less dependent on wind speed than that predicted 
in the Charnock relation (3), as illustrated in Figure 1. 

Be that as it may, let us return to the points made above. The drag over a water 
surface is substantially greater than that over a smooth surface. Particularly at lower 
wind speeds, the surface may not be fully rough in the aerodynamic sense, but it is 
equally not smooth in the aerodynamic sense and at least a large fraction of the mo- 
mentum transfer must be through the mechanisms of aerodynamically rough flow. 
These mechanisms are known to involve the correlation between the surface slope 
and the pressure, with the pressure on the upstream slopes being greater than that on 
the downstream slopes. This being the case, we must conclude that momentum transfer 
into the water from the air is to a very large extent effected by pressure fluctuations. 
As I pointed out, many years ago now (Stewart, 1961), this means that when one 
looks at this phenomenon from the point of view of the water, one finds that the 
momentum must be going into the water by pressure fluctuations - and the only kind 
of motion which pressure fluctuations are able to set up in a homogeneous fluid are 
irrotational ones. 

Of course, natural waters are rarely truly homogeneous so this statement may not 
seem to be a very strong one. Motions other than irrotational ones can in principle, 
and probably will in fact, be induced. However, occasions do occur, particularly in 
the autumn, when the water is very close to homogeneous. There is no evidence that 
either the wave-generation process or the air-sea momentum interchange process is 
appreciably different under these circumstances than in the more usual ones for which 
the water is stratified. (As an aside, it is rather curious that while a great many para- 
meters have been examined for their possible influence on the air-sea momentum 
transfer process, the degree of stratification of the underlying water seems not to have 
been one. It may be that everyone has intuitively assumed that this parameter could 
not be important. I myself share this intuitive feeling.) 

Having dismissed that question, then, we return to a requirement that the momentum 
from the air be transferred into the ocean in the form of irrotational motion. This 
leads us to seek some irrotational motion capable of carrying horizontal momentum 
relative to that of the deep water. That is, assuming the deep water to be stationary, 
the motion we seek in the upper water must carry horizontal momentum. Figure 3 
represents a vertical cross-section of the water body with the x axis being that for 
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Fig. 3. Diagram illustrating the argument that an irrotational flow carrying momentum should be 
wave-like. The circuit A, B, C, D, must have no circulation, but the circuit A’, B’, C, D, may have cir- 

culation since parts of it lie above the surface and therefore outside of the irrotational flow. 

which the motion we seek must have positive momentum. The diagram illustrates the 
following argument. The total momentum of a box of unit thickness in the y direction 
(into the page) is given by 

e s udxdz. 

For this to be greater than zero, there must be at least one level for which 

s udx>O. 

Indeed the requirement that the motion be irrotational means that there must be a 
range of levels for which this inequality is valid since if inequality (4) resulted from the 
existence of a delta function for u at some value of z, infinite values of shears would 
surround this value of z - incompatible with the assumption of irrotationality. We 
may draw a rectangular circuit,with the upper path being at some level for which 
inequality (4) is valid and the lower line of the path in deep water, where the water is 
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assumed stationary. Now since the motion is irrotational, the line integral of velocity 
around the circuit must vanish, so we require that the line integral of velocity at the 
right-hand side of this circuit be up or that the line integral of the velocity on the 
left-hand side be down, or both. Further, we require from the nature of the problem 
that the magnitude of these vertical line integrals must increase as the horizontal size 
of our circuit increases - i.e., as the length AB increases. 

The vertical velocities necessary are very difficult to believe in. It might be easier if 
they had the opposite signs! A vertical velocity upwards at the right and downwards 
at the left demands from continuity a divergence at the right and a convergence at the 
left and this cannot easily be reconciled with a horizontal motion to the right in the 
upper regions. We seem to be faced with an impass. However, the escape is easy. We 
know that irrotational waves carry momentum. They escape from the above argument 
because it is possible to draw a horizontal line, like the line A’B’ drawn dashed in 
Figure 3, which is only partly within the irrotational fluid. Other portions of the line 
are outside of the irrotational fluid (in this case in the air), and are not constrained by 
the irrotational requirements. In the case of the waves, where the line is in the water, 
the motion is systematically to the right. Any closed circuit entirely within the water 
like ABCD in Figure 3, has zero circulation. But a closed circuit, like A’, B’, C9 D, in 
the same diagram, has a net clockwise circulation and there is net momentum to the 
right in the neighbourhood of the dashed line A’B’. (None of this demands that the 
total motion in a real water column be irrotational - we are discussing merely an 
irrotational component of the motion. It is well known that any fluid motion can be 
divided into a portion derived from a scalar potential which is irrotational and a 
portion derived from a vector potential which is rotational. We are here discussing the 
former.) 

All of thisforces one to conclude that the principal mechanism by which momentum 
is transferred to the water is through the process of wave generation. This is not to 
say, of course, that most of the momentum in the water is in fact carried by the waves. 
There are all kinds of wave-dissipation mechanisms acting, including wave breaking 
and a variety of non-linear wave interactions which generate very short waves suscep- 
tible to rapid viscous dissipation. When a wave loses its energy, it must lose its mo- 
mentum as well, but the momentum is not in general lost from the water. It will 
appear in the form of mean water movements - the drift current. 

The observational results most directly related to the statement that the momentum 
transfer is in fact wave generation, are those of Dobson (1971). Dobson directly 
measured the transfer of momentum into the water by pressure forces, and within the 
rather large scatter of his observations found that it was not significantly less than the 
rate at which momentum was leaving the atmosphere. This result proves also to be 
consistent with those obtained in the JONSWAP Experiments (Barnett et al., 1973). 
However as is indicated above, it is possible to convince oneself of this result without 
any measurements at all. 

Dobson’s (1971) measurements, interpretation of the JONSWAP (1973) observa- 
tions and also simple calculations based on standard wave climate data (Stewart, 1961), 
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show that a substantial proportion of this momentum is transferred into rather long 
waves - waves not very much shorter than the longest ones vigorously excited in the 
system. It is frequently claimed that the momentum transfer is mostly determined by 
short waves, but the evidence for this seems to be thin and the notion may itself be 
wrong. The principal argument for believing in such an effect is the observed fact that 
the drag coefficient depends rather little - indeed practically undetectably - upon 
such features as fetch and duration of wind. The long waves depend critically upon 
these features, the short waves much less so. 

The strength of this argument has been weakened recently by the JONSWAP 
(1973) discovery that the amplitude of the short waves tends to decrease as fetch 
increases and is not in fact a constant. Altogether, the weight of present evidence 
seems to support the JONSWAP (1973) conclusion, and Dobson’s (1971) observa- 
tions that the input by wind to waves is mostly in the central region of the wave 
spectrum. 

The theory of wave generation was awakened from a long somnolence by Eckart 
(1953) and in particular by Ursell(l956). Since then it has been the subject of a large 
number of theoretical and observational studies. However, I think it has to be ad- 
mitted that the problem is not yet solved. 

The theories which have been most extensively discussed recently can be placed in 
two categories: Those I will call P-Type and those I will call M-Type, after 0. M. 
Phillips and J. W. Miles, the authors who have probably done the most work and 
been most quoted in this area. P-Type theory discusses wave generation in terms of 
pressure fluctuations generated in a turbulent atmosphere and advected over the sur- 
face by the wind. The rudiments of the idea were first presented by Eckart in 1953, but 
it was much refined and clarified by Phillips. It is probably easiest to grasp by noting 
that the original Kelvin (1887) wake theory discussed the effect of a local disturbance 
of pressure advancing with constant velocity over the surface. P-Type theory can be 
taken as discussing an ensemble of Kelvin wakes, generated by turbulent pressure 
fluctuations. There is no question that this is a real mechanism for wave generation. 
However the information we now have indicates that it cannot provide an important 
proportion of the transfer of momentum from the atmosphere to the water. It appears 
that pressure fluctuations are in fact much smaller than was originally assumed by 
Phillips, and recent work by Stewart and Manton (1971) has shown that, quite apart 
from this, the mechanism is somewhat less efficient than was originally thought. 
Thus one has to consider the P-Type mechanism to be real, but not very important 
except perhaps in the very initial stages of the generation of waves on a smooth surface. 

M-Type theory is non-linear, involving the interaction of the existing wave field 
with the shear flow in the atmosphere above it. It bears a strong family resemblance to 
the classical work on the instability of boundary layers. Qualitatively it can be describ- 
ed as follows. Let us put ourselves in a coordinate system fixed relative to the waves. 
We find the water is moving rapidly to the left, as shown in Figure 4 and the wind at 
upper elevations is moving to the right. The air right at the surface must follow the 
water since there is no slip, and therefore at very low levels, the air is moving to the 
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left. There must be thus some particular level at which the mean motion of the air is 
stationary. Above this level, air moves to the right and below it to the left. However, in 
order to conform with the wave profile, the air close to the surface must be subjected 
to vertical pressure gradients, which must fluctuate horizontally according to the phase 
of the wave. This necessarily gives rise to horizontal pressure gradients. 

mean air velocity profile 

/+> 
air 

b-C+ //,/// /‘/A 

4 
-C 

Fig. 4. The critical height. In a coordinate system in which the waves are stationary, the water moves 
to the left with a speed equal to the phase velocity of the wave. Since there is no slip, the air at the 
surface must have the same mean speed. At higher levels the wind velocity may be greater than the 
phase velocity of the wave so that in this coordinate system it is positive. In this case there must be 

some intermediate height at which the mean velocity vanishes. 

M-Type theory is essentially two-dimensional. Flows of this kind have some pro- 
perties which can be rather simply described in a way which improves intuitive under- 
standing of the hypothesized two-dimensional flows, and may even have some rele- 
vance to the real three-dimensional flows. Suppose that a wave field exists, which we 
will simplify by assuming that it can be represented by a single sinusoid. (The rele- 
vance of discussions of this kind depends upon the importance of non-linear effects. 
M-Type theory usually assumes that the wave field can be broken into Fourier com- 
ponents and each component treated without reference to the others. If non-linear 
effects are not too great, this treatment will have some validity). Let us choose a coor- 
dinate system, such as the one used in Figure 4 above, in which this wave field is 
quasistationary (only quasistationary since presumably there are some wave growth 
or decay mechanisms in effect, but their time constant is assumed long relative to the 
characteristic periods under consideration). Let us further assume that this wave field 
induces in the air a sinusoidal pressure fluctuation p and a sinusoidal vertical displace- 
ment [ of the air flow, each with the same wavelength as the underlying wave. Now let 
us see what are the consequences of making the assumption that there is no shear 
stress in the system - that is, that the Bernoulli expression 

p+~@(U+Iq = const - qgz - p(z) 

relating velocity and pressure along a streamline is valid. For this purpose, we may 
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ignore hydrostatic effects and acceleration due to gravity and take the right side of (4) 
to be constant. Thus we find that the flow in regions of high pressure must be slower 
than that in regions of low pressure. If the pressure and the velocity fields are in phase 
(or in opposite phase) for a particular streamline, the result is that they remain in 
phase (or opposite phase) for the neighbouring streamline. Where the phase is such 
that minimum pressure coincides with maximum upwards displacement, the ampli- 
tude of the streamline displacement must decrease as we go upwards, as is shown in 
Figure 5. 

Another simple argument permits us to examine the vertical dependence of the 
pressure fields. The vertical acceleration of the streamline must be provided by a 
vertical pressure gradient. In fact 

ap -2 

z- 
--e(U+u)“$ (6) 

P 
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B. 

C. 

Pressure Fluctuation 

Fig. 5. Effect of pressure fluctuations upon streamline configuration, assuming Bernoulli’s equation 
to hold. When the displacement of the streamline is in phase or 180” out of phase with the pressure 
fluctuation, the neighbouring streamlines have the same phase, although different amplitude. When 
the streamline is out of phase with the pressure, neighbouring streamlines have different phases. 
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and we see that @/LYz is in phase with the vertical displacement. In other words, if the 
vertical displacement and the pressure field are in phase at any value of z, within the 
assumptions we have made, they remain in phase at all other values of z. 

Now let us see what happens if the pressure field is different in phase from the 
displacement field. In this case, the Bernoulli relation requires that the minimum 
velocity, and therefore the widest separation between streamlines, must again occur 
at the point of maximum pressure - but this is no longer a point of maximum displace- 
ment. As a result, the phase of the neighbouring streamline differs from the phase of 
the original streamline, as shown in Figure 5(c). When there is a difference in phase 
between neighbouring streamlines, there are several important consequences. For 
example, in Figure 5(c) the upward flow is slower than the downward flow. Thus 
averaged over a horizontal plane covering one full wavelength, the product Uw is 
negative. That is, a Reynolds’ shear stress transporting momentum downward exists. 
Also, the pressure has a component in phase with the slope, so that if a streamline 
coincides approximately with the surface, there will be a pressure-slope correlation 
which will transmit momentum to the surface. This is a requirement for wave genera- 
tion and in fact if the water motions involved in the wave are taken into account, it can 
be shown that this is sufficient for wave generation. 

Note that if minimum pressure coincides with maximum displacement, the ampli- 
tudes of both pressure and displacement fluctuations decrease as one moves upwards. 
(And vice versa if the phase is reversed.) The pressure fluctuation cannot increase 
indefinitely. The value of + Q (U + u)” in Equation (5) cannot become smaller than zero, 
so the magnitude of the pressure fluctuation along a streamline cannot exceed $Q U2. 
Thus as the value of z decreases, and the pressure fluctuation increases, either the situ- 
ation must change, or there must ultimately be some kind of surface capable of sup- 
porting a pressure fluctuation. 

All M-Type theory involves examining various ways in which the displacement 
fluctuation may get out of phase with the pressure fluctuation in the face of the situa- 
tion described above, where under simple assumptions once these two get in phase they 
remain in phase. A wide range of effects may be invoked. The simplest, that of Kelvin- 
Helmholtz theory, discards the quasistationary assumption and by introducing a time 
rate of change, generates a phase shift which is capable under some circumstances of 
producing an instability. Others invoke the effect of various kinds of turbulent stresses 
which cause modifications in Equation (5) and generate phase differences. 

The most complex are probably those studied in detail by Miles and his successors. 
This kind of theory is analogous to that which has been worked out in considerable 
detail to describe the instability in shear flows in viscous fluids. Here attention is 
drawn to the particular level shown in Figure 4 and discussed above in that context, 
where the mean flow has zero velocity relative to the fluctuating disturbance (in this 
case the wave). As was pointed out above, if there is a pressure fluctuation, it is only 
the mean flow which can be zero, and particles are accelerated backwards and for- 
wards depending on where they are in the pressure gradient. At this so-called ‘critical 
height’, if the assumptions of no stresses between fluids on different streamlines - i.e., 
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the assumptions of Equation (5) - remain valid, a symmetrical closed flow will occur 
such as is sketched in Figures 6(a) and 6(b). This closed flow must be symmetrical 
since the vorticity of the fluid following the closed streamline must remain the same 
everywhere, in particular at both ends. The result can be either of two kinds, shown 
in Figures 6(a) and 6(b). In Figure 6(a) the displacement has the same sign above and 
below the critical layer, but is sharply changed in amplitude. In Figure (6b) the closed 
circulation (or ‘cat’s eye’) causes the displacement to change phase by 180” across the 
critical layer. In neither case is any phase difference of the kind required to develop a 
Reynolds’ stress generated between the pressure and the displacement field. To get 
this phase difference, some other effect must be invoked. 

This other effect is the diffusion of vorticity, either by viscosity or by turbulence 
mechanisms. If there is vorticity diffusion such that the fluid moving in the closed 

A. 

B. 

C. 

Fig. 6. Behaviour near the critical height. If no diffusion of vorticity is assumed, we get symmetrical 
patterns as in (a) and (b), which may or may not invert the phase of the streamline above and below 

the critical height. When diffusion of vorticity is assumed, the closed circulation becomes asymmetri- 
cal and a phase difference is generated between streamlines above and below thecritical height (as in(c)). 
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circulation loses vorticity as it moves to the right on the upper part of the circulation 
in the diagram, and gains vorticity as it moves to the left in the lower part, then the 
closed circulation will become asymmetrical as shown in Figure 6(c). The asymmetrical 
circulation forces a change in phase between the flow above the critical layer relative 
to that below. In the neighbourhood of this closed circulation, the flow velocities are 
very low so that the pressure gradients are very weak and the pressure changes very 
little. Therefore the displacement fluctuation is forced out of phase with the pressure 
fluctuation. 

In this kind of theory the loss of vorticity in the upper part of the flow and the gain 
in the lower part is explained because in a typical boundary layer, the profile is curved 
in such a way that the shear decreases as one moves away from the boundary (as in 
Figure 4), so that one has less mean vorticity above the critical height than below. In 
all of these theories, then, the effectiveness of the wave-generation mechanism depends 
upon the rate of change of mean vorticity as one moves through the critical layer - 
that is to say, upon the curvature of the mean velocity profile. 

There is no question but that this type of theory is sound fluid-dynamically, and its 
validity in the case of the development of instabilities in the viscous boundary layer 
seems well established. It is, however, possible to question its relevance to the problem 
of the generation of waves by a turbulent wind. I am not aware of any example of a 
measured, detailed instantaneous wind profile over water. However, such measure- 
ments do exist in turbulent boundary layers over solid surfaces. Figure 7 copied 
from Kim et al., 1971, shows an extreme example - extreme in that this was deli- 
berately selected by the authors as a particularly disturbed situation. However, it 
makes the point I wish to emphasize. What exactly do we mean by the curvature of the 
mean velocity profile? Clearly when the instantaneous velocity profile has a character 
such as is shown in Figure 7, it takes averaging over a very large ensemble to produce 
a curve smooth enough that the curvature of the mean velocity profile would be a 
well-established quantity. The question then arises as to whether such a large ensemble 
is meaningful in the wave-generation process, because in a real wave a quite wide 

LLIi 
0 0 0 

O "(&) 2 O O O 

Fig. 7. Redrawn from Kim et al., 1971. Instantaneous appearance of vertical velocity profile in 
a turbulent boundary layer. 
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band of wave directions exists, and because the dispersion relation causes wave forms 
and wave amplitudes to change significantly as the wave propagates; the meaningful 
averaging time for a particular wave is really quite short. In fact it is quite doubtful if 
it is long enough for an air particle actually to execute one complete circuit of the 
closed circulation. Further, the turbulence causes significant variations in the down- 
stream wind flow, so that the height of the ‘critical layer’ varies a great deal from 
time-to-time and place-to-place. Since the curvature of the mean profile depends 
critically upon this height, there arises additional difficulty in relating the effectiveness 
of this wave-generation mechanism on the basis of observed mean profiles. What is 
more, in a very large fraction of the cases, the critical height is very low indeed - often 
significantly lower than the height of the waves. 

None of these worries affects the principle that wave generation may be associated 
with the shift in phase between pressure and displacement which can occur around the 
height of the critical layer. They do point to the almost insuperable difficulties of cal- 
culating the magnitude of such changes in real situations, which must certainly be 
very strongly nonlinear. 

There are other considerations as well. Why must we assume that the flow has an 
essential two-dimensional character? For wave generation we require that momentum 
be transferred toward the surface, and this means that downward flowing air must 
carry more forward momentum than upward flowing air. In M-Type theory this is 
accomplished, as has been outlined above, by a shift of phase of the streamline 
displacement as the mean height changes. But why must one assume that the down- 
ward flowing air and the upward flowing air occur in the same vertical plane? Is it not 
equally or more reasonable to assume that the upward flowing air is displaced laterally 
from the downward flowing air - i.e., that the flow is essentially three-dimensional. 
This is the opinion which has been expressed by Mollo-Christensen and his co-workers 
(Dorman and Mollo-Christensen, 1971). It is also consistent with the view which is 
rapidly gaining a foothold among those working in turbulent boundary layers over 
solid surfaces. These workers are placing emphasis on fairly organized structures in the 
boundary layer. Most of the hypothesized structures called for downward flowing air 
in the middle of a sort of double roll with upward flowing regions on each side - struc- 
tures which have a close family resemblance to that proposed by Townsend many years 
ago (Townsend, 1956, p. 114). 

This kind of structure seems very favourable to wave generation. Over a solid sur- 
face the picture is one of downward flowing air encountering the surface in two ways. 
The presence of the surface sets up a pressure fluctuation field which deflects the air 
laterally and eventually forces it back up again. The presence of slow moving air close 
to the surface slows the forward motion of the fluid so that when it turns upwards, it is 
moving more slowly than it was when coming downward. In the presence of a rough 
surface like the sea surface, the downward moving air can slide forward along a lee 
surface, but will be forced out laterally when it encounters a windward surface. This 
lends itself exactly to the requirement of a high-pressure region at the windward side 
and a relatively low pressure on the lee side of the wave. 
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A situation like this can be examined very crudely with an irrotational flow in the 
following way. Consider an irrotational flow moving with mean velocity U in the 
x direction over a corrugated surface described by : 

g = Acoskx. (7) 

Assume the existence of a downward motion spreading laterally which would be 
described, if flowing over a plain surface, by the velocity potential 

q5 = B(y2 - z’). (8) 

It is easy to show that if kA G 1, a suitable approximation (to the irrotational flow which 
combines these three characteristics : forward movement relative to the corrugations, 
conformity with the corrugations at the surface (with slip) and a downward flow 
spreading laterally), can be described by the velocity potential: 

c$ = Ux - AU eekz sin kx + B (y’ - z’) t 

- 2 “k” e-k= cos kx + A2B e-2k’(sin2 kx - cos’kx). (9) 

From Bernoulli’s equation we can get an approximate expression for the pressure 
distribution on the surface, which turns out to be: 

P = - 2AU2k cos kx - 2ABU sin kx . 
e 

(10) 

The wave slope is given by 

all ~ =- Aksinkx 
ax 

and so we see that the portion of the pressure fluctuation 

- 2ABU sin kx 

associated with the downward moving flow is in phase with this slope -just the right 
pressure variation required to produce waves. Under an upward flowing motion, the 
pressure variation has the wrong sign - but we must remember that in the real situa- 
tion, the upward motion will be retarded by having been influenced by the surface and 
so the appropriate mean velocity U would be lower. To relate the expression to wave 
generation, U should be replaced by (U- C) - the difference between wind speed and 
wave speed. 

The wave generating force is thus given by 

A2kB(U - C). (11) 

This analysis is too crude to be worth pushing very far, but it is incumbent upon me to 
demonstrate that its magnitude is sufficient that it should be taken into account. This 
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can be accomplished in the following fashion. It is not unreasonable to take C=+U, 
and Ak=0.3. The crudest part of the calculation centres on attempting to give a 
reasonable value to B. 

A good deal is known about the nature of turbulence over rough boundaries - 
including the sea. The vertical velocity spectrum is known to have an approximately 
universal form which has a fairly well defined peak in the neighbourhood of kz= 1 
(Miyake ef al., 1970). The magnitude of the vertical velocity is about 1.2 u* under 
near-neutral conditions (Wyngaard et al., 1971). A drag coefficient of 1.3 x 10m3 
corresponds to u* =3.5 x lo-’ U. From Equation (6) one finds that the vertical 
velocity is 2Bz. 

These numbers may be put together to yield as a reasonable assumption : B = 0.02 Uk. 
The total wave generating force may therefore be put as 

0.02 A2kZU(U - C) 21 10-3U2. (12) 

This calculation should not be taken too seriously, but its result seems to indicate 
that the effect is sufficiently important to be worth examining. 

It should be noted that put in the form of Expression (12), the resulting momentum 
input depends upon the wave slope only, and not upon wavelength or height indepen- 
dently. It also depends upon (U- C) and becomes ineffective as C approaches U. 
Unlike the M-Type mechanism or the P-Type mechanism, it works in the negative 
sense when the waves are moving against the wind. There is substantial evidence, both 
from general observation and from the measurements of Dobson (1971) that when 
wind blows against the waves, there is a significant loss of wave energy. 

Examination of these notions will require a more detailed investigation of the 
relationship between pressure on the water surface and flow in the air above than has 
yet been carried out. However, a program of analysis of this kind would seem to be 
compatible with the forthcoming JONSWAP II Experiment. 
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